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Abstract

We present certain duality results on comparative statics on competitive rent vectors in the rental
market model. In the model, apartments as indivisible goods are classified into a finite number of cat
and are traded for one composite commodity. Our concern is about certain general properties of the
of rents with parameter changes. In particular, the rent changes are intimately related to the boundar
changes of the categories of apartments. Both changes are endogenously determined in equilibrium
show that these changes exhibit nice dual structures. We will also apply our model and comparativ
to a rental housing market in the Tokyo metropolitan area.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

This paper aims to present certain duality results on comparative statics on competiti
vectors in the rental housing market model. In the model, apartments as indivisible goo
classified into a finite number of categories by some attributes such as sizes, commuting tim
housing regions, and they are traded for one composite commodity. By comparative sta
mean a study of the behavior of rents when some parameters of the market change. Our
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is not a particular form of “cause–effect” comparative statics, but it is about certain ge
properties of the behavior of rents with parameter changes. We focus on the boundary i
i.e., the lowest income, in each category. The changes in rent differences are intimately
to the changes in boundary income differences. Both changes are endogenously determ
equilibrium. We will show that these changes exhibit nice dual structures.

This introduction will first give brief explanations of the relation of our housing mode
some urban economics literatures as well as to the literature of markets with indivisible
and then will explain our comparative statics.

Our model is a partial equilibrium model in that all goods other than housing are treated
composite commodity. But it admits commodity differentiations in apartments as well as in
effects on households’ behavior. Our model is a variant of the bid–offer model in the sta
urban economics literature from Alonso [1] and Muth [18] (see Fujita [7] for a recent textb
where housing sizes are treated as continuous variables. A salient difference of our mod
this literature is that each housing unit is indivisible, and also, the number of apartment u
finite.

In another literature in urban economics such as Sweeney [22], Braid [5] and van Liero
apartments are treated as indivisible. However, the housing quality is expressed as a con
variable. The mathematical methodology used in these urban economics literatures is dom
calculus and analysis. Our approach differs from those literatures in that our housing mod
finite nature, except the composite commodity. This requires a different mathematical m
which is of combinatorics nature. We show that this finite nature is able to capture the h
market structure well.

The mathematical model of this paper also belongs to the other tradition from B
Bawerk [25], Neumann–Morgenstern [26] and Shapley–Shubik [21] (see Laan et al. [16
its references for recent papers). Nevertheless, this tradition has had a theoretical focu
existence of competitive equilibria and the nonemptiness of the core, etc. Only Kaneko [1
Gerber [9] tried to apply this approach to urban housing market problems. The present pa
further development of [15].

Our approach has both advantages and disadvantages to the standard bid–offer appro
a disadvantage, caused by the indivisibility assumption, that the finite number of housin
are already fixed, while a household can choose freely a size or quality in the standard ap
This disadvantage restricts our scope to housing markets where houses are dwellings, i
are already built and their sizes are fixed. With the cost of this disadvantage, our restricti
be regarded as advantageous in a quite few respects over the standard approach. For ex
will be clear by giving certain numerical examples that our model is flexible enough to ca
rental housing markets well. The main theme of this paper, i.e., comparative statics, is
advantage.

We should emphasize that our approach is short-run in the sense that we treat housing
already produced and provided to the market. It may be found in the numerical example
in Sections 3 and 7 that our approach is even regarded as snapshot in that the housing m
a point of time is studied. This is in contrast with the long-run approach such as in Braid [61

Let us give a brief description of our housing market model. Our model has various dif
tiated apartments and one composite commodity. Section 2 will start with a general formu
while referring to some preceding works on the existence of a competitive equilibrium. The

1 Cf., also Sweeney [23], Ohls [20] and Arnott–Braid [2].
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households are allowed to have different utility functions. Then we assume that every hou
has the same utility function, and make a few specific assumptions on the utility function
the normality of apartment qualities. Although the households have the same utility fun
they may have different incomes, which cause their different behaviors of housing consum

With the above specifications, we focus on a certain system of equations, which we c
rent equation. Its solution is adifferential rent vector. It can be regarded as representing co
petitive rents in our model: Section 2.3 gives sufficient conditions for the equivalence betw
differential rent vector and a competitive rent vector. Its basic logic is the same as Ricardo
and Alonso’s [1] argument of differential rents. Technically, it is also corresponding to the
lope curve of the bid–offer curves in the bid–offer model (e.g., Fujita [7, Section 3.6] Bra
and Gerber [9]). In our comparative study, we will consider a differential rent vector as a
of a competitive rent vector.

We should mention the two key concepts to determine the rent equation:

(i) the marginal category, f , of apartments;
(ii) the boundary household, G(k), of each category,k, of apartments.

Recall that the apartments are classified into a finite number of categories. The margin
gory corresponds to the marginal land in the Ricardian argument. We put richer househo
better categories of apartments, and then the boundary household in each category has th
income in the category. In fact, this is a result in competitive equilibrium. Thus, this bo
ary household is endogenously determined. The income level of the boundary househo
category is called theboundary income of the category.

In Section 2.3, the rent equation will be formulated, using the marginal category and bou
households, and it states that the boundary household of each category is indifferent bet
apartment in his category and one in the one-rank lower category.

Now we are in a state to describe our comparative statics results. As mentioned in the
ning of this introduction, our concern is not a particular cause–effect form of comparative s
instead, it is the consideration of certain general properties of the behavior of a differenti
vector with changes in the boundary incomes. We will focus on the boundary income o
categoryk. Now, letIG(k) be the boundary income of categoryk, andrk the rent in categoryk.
Suppose thatIG(k) andrk change into new oneŝIĜ(k) andr̂k . The rent differenceŝrk − rk are inti-

mately related to the boundary income differencesÎĜ(k) − IG(k). Our comparative statics resu

will be stated in terms of these differences. Note thatr̂k − rk andÎĜ(k) − IG(k) are endogenousl
determined in equilibrium.

The incomes of households 1, . . . ,m are ordered in the descending way, i.e.,I1 � I2 � · · ·
� Im > 0. Two cases of changes in the boundary incomes are considered:

(1) ÎĜ(1) − IG(1) � ÎĜ(2) − IG(2) � · · · � ÎĜ(f −1) − IG(f −1);

(2) ÎĜ(1) − IG(1) � ÎĜ(2) − IG(2) � · · · � ÎĜ(f −1) − IG(f −1).

Recall thatf is the marginal category of apartments. In case (1), the boundary income diffe
is larger for a better category of apartments; and the opposite in (2). In these two cas
comparative statics results between the income and rent differences exhibit a dual st
By a dual structure, we mean that a comparative statics proposition for (2) is obtained
proposition for (1) by replacing the inequalities with the opposite inequalities, and vice
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In Sections 5 and 6, we will give various theorems on comparative statics, which have d
properties.

In Sections 3 and 7, we will exemplify the model and some theorems in a rental ho
market of the residential area along the Chuo railway line in Tokyo. In those example
consider not only numerical examples but compare the computational results of rents w
data form the Chuo railway line. We consider how the numerical calculation fits to the
Using those numerical examples, we illustrate our comparative statics results.

Some results in this paper are restatements already found in a more specific m
Kaneko [15], though we follow his specification in the numerical example. The present
gives a better discourse of the rental housing market with indivisibilities than [15].

The paper consists of eight sections including this introduction. In Section 2, we will pr
a basic framework and state basic results. In Section 3, we will start an illustration of a
housing market example in Tokyo. In Section 4, we will formulate comparative statics and
tion one basic theorem for comparative statics. In Sections 5 and 6, we will give various the
on the dual treatments of the rent differences. In Section 7, we will give more explanati
numerical example given in Section 3 and will illustrate some comparative statics results. I
tion 8, we will conclude this paper with some remarks on future possible researches as
generalizations of certain results obtained in this paper.

2. Rental housing markets

We begin this section with a general formulation of a rental housing market model a
as that of competitive equilibrium. In our comparative study, we will not directly use com
itive equilibrium, but will adopt adifferential rent vector and therent equation. Nevertheless
their definitions need a precise description of a housing market model as well as that of c
itive equilibrium. We will give certain sufficient conditions for a competitive rent vector to
differential rent vector.

2.1. General formulation

Therental housing market model we consider is denoted by(M,N). The first symbolM is the
set ofhouseholds, {1, . . . ,m}, each of whom looks for one unit of an apartment, and the se
symbolN is the set oflandlords, {1′, . . . , n′}, each of whom supplies some units of apartme
to the market. The apartments are classified intoT categories, 1, . . . , T . TheseT categories of
apartments are interpreted as potentially supplied. If no confusion is expected, we would
word “apartment” for either one unit or a category of apartments.

Each householdi ∈ M wants to rent at most one apartment (for a given period of tim
He chooses a consumption bundle(xi, c) from the consumption setX := {0, e1, . . . , eT } × R+,
where eachek is the unitT -vector with itskth component 1 andR+ is the set of nonnegativ
real numbers. The inclusion of vector0 means that householdi may not rent an apartment
this market. We denote the zero vector0 by e0. A typical element(ek, c) means that householdi
rents one unit of thekth category of apartments and enjoys the consumptionc = Ii − pk of the
composite commodity after paying the rentpk for the one unitek from hisincome Ii > 0.

Each householdi ∈ M has the initial endowment(e0, Ii) with Ii > 0. That is, householdi
with incomeIi looks for an apartment. Also, each householdi has autility function ui : X → R.
First, we make the following assumption:
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Assumption A (Continuity and Monotonicity). For eachi ∈ M andx ∈ {e0, e1, . . . , eT }, ui(xi, c)

is a continuous and strictly monotone function ofc, andui(e0, Ii) > ui(ek,0) for k = 1, . . . , T .

The last inequality,ui(e0, Ii) > ui(ek,0), means that going out of the market is prefer
to renting an apartment with no consumption. This is just a boundary condition. Here
not specify the urban structure of a housing market, and will use the utility functionui , which
will later be assumed to satisfy more assumptions. Nevertheless, the utility functionui is rather
regarded as derived from a larger utility function with more urban economic variables. Th
be discussed in Section 3.

Next, we will formulate the suppliers of apartments. Since the supply side plays a little r
this paper, we simplify this side of the model. Although we adopt the story of production,
be translated into an exchange economy, which will be explained later.

The set of landlords is given asN = {1′, . . . , n′}. We assume that each landlordj ∈ N provides
apartments in one category, sayk, and has a cost functionCj(yj ) : Z+ → R+ with Cj (0) = 0
andCj (1) > 0, whereZ+ is the set of nonnegative integers. The cost to provideyj units of
apartments of thekth category isCj(yj ). No fixed costs are required when no units are provi
to the market.

As far as competitive equilibrium is concerned, we can assumewithout loss of generality
that only one landlord j provides apartments in thekth category. Hence, the setN becomes
{1′, . . . , T ′}, and landlordk ∈ N is the only landlord providing thekth apartments. The reaso
for this reduction is as follows: LetNk be the set of landlords in the originalN to provide some
units of thekth category. We can combine the cost functions{Cj }j∈Nk

into the one cost functio
Ck : Z+ → R+ defined by

Ck(yk) = min

{ ∑
j∈Nk

Cj (yj ):
∑
j∈Nk

yj = yk andyj ∈ Z+ for all j ∈ Nk

}

for eachyk ∈ Z+. Thisk is regarded as therepresentative landlord providing thekth apartments.2

From now on,N is assumed to be{1′, . . . , T ′}, and landlordk ∈ N is the only landlord providing
thekth apartments.

We are dealing with the problem of dwellings. Thus, the cost function represents ope
costs. The marginal costCk(yk +1)−Ck(yk) is the operating cost newly incurred for the landlo
when this additional unit is leased to a household. If the rent is higher thanCk(yk + 1)−Ck(yk),
then it would be better to lease this unit, but otherwise, it would be better to keep the unit.

We assume:

Assumption B (Convexity). For eachk ∈ N ,

Ck(yk + 1) − Ck(yk) � Ck(yk + 2) − Ck(yk + 1) for all yk ∈ Z+.

This is a discrete version of the standard convexity assumption on a cost function, and
that the marginal cost of providing one additional unit is (weakly) increasing.

2 This means that as far as the price taker behavior is assumed, “many landlords” can be reduced into “one land
course, the justification of price-taker behavior itself needs the assumption of “many landlords.” However the ass
of one landlord for one category simplifies our notation.
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Under these assumptions, we have a competitive equilibrium. Let(p, x, y) = ((p1, . . . , pT ),
(x1, . . . , xm), (y1, . . . , yT )) be a triple ofp ∈ RT+, x ∈ {e0, e1, . . . , eT }m andy ∈ ZT+. We say that
(p, x, y) is acompetitive equilibrium iff

Utility Maximization under the Budget Constraint. For all i ∈ M ,

(1) Ii − pxi � 0, wherepxi = ∑T
k=1 pkxik ;

(2) ui(xi, Ii − pxi) � ui(x
′
i , Ii − px′

i ) for all x′
i ∈ {e0, e1, . . . , eT } with Ii − px′

i � 0.

Profit Maximization. For all k = 1, . . . , T , pkyk − Ck(yk) � pky
′
k − Ck(y

′
k) for all y′

k ∈ Z+.

Balance of the Total Demand and Supply.
∑

i∈M xi = ∑T
k=1 ykek .

These conditions constitute the standard notion of competitive equilibrium. Notice that th
hand side of the Balancedness condition is the sum ofT dimensional vectors. However, sin
eachyk of the right-hand side is an integer, we multiply it with the unit vectorek ; thus both sides
have the same dimensionT .

The above housing market model is an extension of the “assignment market mod
Shapley–Shubik [21] in the two respects that we allow the utility functionsui to have income
effects and that a landlord may provide more than one unit of apartments. The former res
crucial in this paper. Kaneko [14] and Kaneko–Yamamoto [13] proved the existence of a
petitive equilibrium for this housing market model.3

Theorem 2.1 (Existence). There is a competitive equilibrium (p, x, y) in (M,N).

The purpose of this paper is to study not general properties of equilibrium in(M,N) but more
specific behavior of a competitive rent vector. Specifically, we target to study comparative s
For this reason, we need to specify our housing model more.

We say thatp = (p1, . . . , pT ) is acompetitive rent vector iff (p, x, y) is a competitive equi
librium for somex ∈ {e0, e1, . . . , eT }m and y ∈ ZT+. Also, we say thatp = (p1, . . . , pT ) is a
maximal competitive rent vector iff p � p′ for any competitive rent vectorp′. A competitive
equilibrium(p, x, y) is called amaximal competitive equilibrium iff p is maximal. In the paralle
manner, we can define a minimal competitive rent vector and a minimal competitive equilib
In this paper, we will focus on a maximal competitive rent vector, though we can adopt a m
competitive rent vector for our study of comparative statics.

By definition,a maximal competitive rent vector would be unique if it ever exists. In a stand
ard equilibrium model, the existence of such a price vector could not be expected. Ho
we have the existence of a maximal competitive rent vector in(M,N). This fact has bee
known in slightly different models since the pioneering work of Shapley–Shubik [21] and G
Shapley [8]. A result close to the following theorem is found in Kaneko [15] and Miyake [14

The proof of this theorem will be provided upon request.

3 A similar existence result was obtained by Gerber [9], using a bid–offer model close to the literature of urb
nomics.

4 In the literature of assignment games, it is shown that the core of a two-sided assignment market has the
geometric structure that the core has the maximal and minimal payoff vectors for one side of players. Also,
that the core is equivalent to the set of competitive allocations in a typical assignment market, though this equ
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Theorem 2.2 (Existence of a Maximal Competitive Rent Vector). There is a maximal competitive
price vector in the housing market model (M,N).

It is also shown in the same manner that a minimal competitive rent vector exists. Nev
less, we will use only the maximal one in the subsequent discussions.

2.2. Specific assumptions on the rental housing market (M,N)

In this section, we give more specific assumptions particularly on the utility functions o
households in order to facilitate our study of comparative statics.

First, we order the households by the order of incomes, that is,

I1 � I2 � · · · � Im. (2.1)

This is simply a renaming of households.
The following is a substantive restriction:

Assumption C (Identical Utility Function). ui(· , ·) = ui′(· , ·) for all i, i′ ∈ M .

We denoteui(xi, c) by u(xi, c) by eliminating the subscripti. Households may still behav
differently since they have different incomes and since the utility functionu(xi, c) may admit
income effects. In the context of urban economics, Assumption C is interpreted as mean
every household commutes to the same office area. It excludes the situation with two o
office districts to one of which each household commutes. Indeed, when a housing mar
two or more office districts, only the households who commute to the same business distri
identical utility functions. This extension will be discussed in Section 8.

Assumption C is almost indispensable in that without it, our comparative statics results
be too complicated to be operational. We may extend some of our results to an economy
Assumption C, which will be remarked in Section 8.

Some general theorists may criticize Assumption C as too restrictive. However, the
this paper is not to discuss general properties such as the existence and/or Pareto optim
an equilibrium, but to study more concrete properties. From the viewpoint of such a rese
there are no positive reasons for differences in utility functions, it would be better to assu
identical utility function among the households of commuting to the same business distric

We impose also the following two assumptions onu(· , ·).

Assumption D (Substitutability). If u(xi, c) > u(x′
i , c

′), thenu(xi, c) = u(x′
i , c

′ + δ) for some
δ > 0.

Assumption E (Normality). If u(xi, c) = u(x′
i , c

′) andc < c′, thenu(xi, c + δ) > u(x′
i , c

′ + δ)

for anyδ > 0.

Assumption D may be interpreted as meaning that the variety of apartments in(M,N) is not
so large that the difference between any two apartments may be compensated by an

requires each landlord to produce at most one unit in the model of the present paper (see Kaneko [14]). The ex
a maximal rent vector is expected from these facts. Indeed, our housing market keeps this property for the co
rent vectors.
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in consumption. Assumption E is the normality assumption on the qualities of apartmen
premise states that the apartmentxi is better thanx′

i , and the claim is that if consumption in
creases by the same magnitudeδ, a better apartment is preferred to a worse one. Assumpti
will play a central role in the study of this paper.

Assumption E is the same as the standard normality assumption in that when the inc
a household increases, his demand shifts to a better apartment or remains the same. T
be stated as the property of a competitive equilibrium in Lemma 2.3(2), rather than the d
function. Indeed, the assertion can be rewritten for the demand function.

The other direction ofδ in Assumption E holds: Ifu(xi, c) = u(x′
i , c

′) and c < c′, then
u(xi, c − δ) < u(x′

i , c
′ − δ) for any δ (c � δ > 0). Indeed, we can prove its contrapositive

follows: Let c < c′ andu(xi, c − δ) � u(x′
i , c

′ − δ) for someδ (c � δ > 0). Then, by Assump
tion D, we haveu(xi, c − δ) = u(x′

i , c
′ − δ + δ′) for someδ′ � 0. Sincec − δ < c′ − δ + δ′, we

haveu(xi, c) > u(x′
i , c

′ + δ′) � u(x′
i , c

′) by Assumptions E and A.
We assume that the apartments are ordered as follows:

Assumption F (Qualities of Apartments). u(e1,0) > u(e2,0) > · · · > u(eT ,0).

Under Assumption F, the qualities of the apartments are unambiguously defined. Never
this is to avoid unnecessary complications in the presentations of our results and argum
them. If we replace the strict inequalities by weak inequalities, this would be simply a rena
of the apartments. It is only a restriction that there are no indifferences in(e1,0), . . . , (eT ,0).

Note that Assumption F together with Assumptions A, D and E imply:

u
(
e1, c

)
> u

(
e2, c

)
> · · · > u

(
eT , c

)
for all c � 0. (2.2)

This is verified as follows: Sinceu(et , c) � u(et ,0) > u(et+1,0) by Assumptions A and F, w
have, by Assumption D,u(et ,0) = u(et+1, d) for somed > 0. By Assumptions E and A, w
haveu(et , c) > u(et+1, c + d) > u(et+1, c). Thus, (2.2) is equivalent to Assumption F. This fa
will be used without reference.

Note that Assumption F or (2.2) does not mean that the apartments are ordered by the d
to the central office district. In fact, the above model has a large freedom to include various
structures. A numerical example for our rental housing market will be discussed in Section
Section 7.

Some reader may think that the combination of the identical utility function (Assumptio
and normality assumption (Assumption E) could be more restrictive than what appear, in
cations of our model to more concrete urban economies. For example, it might be suspec
the combination could imply separability of urban economic variables in the utility function
will consider two examples about this problem in the end of Section 3.

2.3. The rent equation and the differential rent vector

We will provide a system of equations, which we will call therent equation. The rent equation
determines a unique rent vector if a boundary condition, e.g., a rent for the marginal cate
given. We will call this vector adifferential rent vector and will directly consider a differentia
rent vector rather than the maximal competitive rent vector in the subsequent discussions
section, we will give certain sufficient conditions for the maximal competitive rent vector to
differential rent vector.
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To define the rent equation, we need some lemmas, a definition and an additional a
tion. First, we show that in equilibrium, (1) a better apartment is priced higher than a wors
and (2) a richer household rents an apartment of a better or equal quality. As stated after A
tion E, the second assertion is interpreted as meaning that the apartment qualities are reg
normal goods, though it is not stated in terms of the demand function.

Lemma 2.3. Let (p, x, y) be any competitive equilibrium.

(1) If k′ < k and xi = ek for some i, then pk′ > pk ;
(2) If xi = ek , xi′ = ek′

and Ii > Ii′ , then k � k′.

Proof. We prove only (2), and can prove (1) similarly. LetIi > Ii′ . Suppose, on the contrar
k > k′. Thenpk′ > pk by (1). Sinceu(ek′

, Ii′ − pk′) � u(ek, Ii′ − pk) by utility maximization,
we haveu(ek′

, Ii′ −pk′) = u(ek, Ii′ −pk +δ′) for someδ′ � 0 by Assumption D. Letδ′′ = Ii −Ii′ .
SinceIi′ −pk′ < Ii′ −pk � Ii′ −pk + δ′ by pk′ > pk , we haveu(ek′

, Ii′ −pk′ + δ′′) > u(ek, Ii′ −
pk + δ′ + δ′′) by Assumption E. Hence, we haveu(ek′

, Ii − pk′) = u(ek′
, Ii′ − pk′ + δ′′) >

u(ek, Ii′ − pk + δ′ + δ′′) = u(ek, Ii − pk + δ′) � u(ek, Ii − pk), where the two equalities follow
from δ′′ = Ii − Ii′ and the last inequality follows from Assumption A. This is a contradictio
utility maximization for householdi atxi = ek . �

In the assertion (1) of Lemma 2.3, categoryk′ may be inactive in the sense that no units
traded, while categoryk is active. We rule out such a case, that is, we assume that ther
categoryf dividing the apartments into the active categories and inactive ones: For any ma
competitive equilibrium(p, x, y),

Assumption G. yk > 0 for k = 1, . . . , f andyk = 0 for k = f + 1, . . . , T .

We callf themarginal category. Then, by Lemma 2 .3(1), we have the following inequaliti

p1 > p2 > · · · > pf . (2.3)

By Lemma 2.3(2), we can assume without loss of generality that the households go t
gories 1, . . . , T in the order of their incomes. That is, the highest income group is in catego
the second highest income group is in category 2, and so on. Assumption E (normality) is
for this step.

We find the household with the lowest income in each active category. This househ
called theboundary household of this category. We introduce a function to express the bo
ary households. Let(p, x, y) be a maximal competitive equilibrium. We define the funct
G(k) (k = 1, . . . , T ) by

G(k) =
k∑

t=1

yt for k = 1, . . . , T . (2.4)

This G(k) is the accumulated number of units up to thekth category. Whenk � f , G(k) corre-
sponds to the household with the lowest income in the group of categoryk, i.e., he is the boundar
household in categoryk. Whenk > f , there are no corresponding boundary households in
gory k.

Although the maximal competitive rent vector is unique, there may be multiple maximal
petitive allocations. The boundary householdG(k) in each category depends upon the choic
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a maximal competitive allocation, but this does not cause any problem because of the uniq
of the maximal competitive rent vector.

Now, we can present the main tool for the subsequent discussions.

Definition 2.4. We call the following system of equations therent equation:

u
(
ef −1, IG(f −1) − rf −1

) = u
(
ef , IG(f −1) − rf

)
,

u
(
ef −2, IG(f −2) − rf −2

) = u
(
ef −1, IG(f −2) − rf −1

)
...

u
(
e1, IG(1) − r1

) = u
(
e2, IG(1) − r2

)
.

(2.5)

These equations have unknown variablesr1, . . . , rf . We say that(r1, . . . , rf ) is adifferential
rent vector iff it is a solution of the rent equation. Under our assumptions, ifrf is given with
u(e1,0) < u(ef , IG(f −1) − rf ), then(r1, . . . , rf −1) is uniquely determined, i.e., the uppermo
equation givesrf −1, and the second uppermost one givesrf −2, and so on. We write this resu
as Lemma 2.5. However, whenrf is not fixed, there are many differential rent vectors.

Lemma 2.5. Let r∗
f be given with u(e1,0) < u(ef , IG(f −1) − r∗

f ). Then the rent equation has a
unique solution (r1, . . . , rf ) with rf = r∗

f .

As already stated, the rent equation (2.5) is reminiscent of Ricardo’s [19] theory of d
ential rents of farm lands around a city. It is argued that the absolute rent is determined
agricultural productivity of the marginal land, and then that the rent of a land closer to the
higher, reflecting its advantage in transportation to the city. A similar structure is found in
Suppose that the rentrf in the marginal categoryf is given. The uppermost equation of (2.
makes the boundary householdG(f − 1) of categoryf − 1 indifferent between the apartmen
in f − 1 andf at the rentsrf −1 andrf . The advantage off − 1 overf is reflected in the differ-
ence betweenrf −1 andrf . Since the utility function has income effects, richer people succ
in obtaining better apartments. The other equations of (2.5) are considered from the view
of the boundary householdsG(f − 2), . . . ,G(1).

A similar argument is found in the literature of urban economics: The land rents for
envelope curve of the bid–offer curves of individual households, e.g., Alonso [1], Muth
Braid [6] and Gerber [9]. The differential rent vector defined by (2.5) can be regarded a
envelope curve of the rent vectors determined by the boundary householdsG(1), . . . ,G(f − 1).

We can guarantee the maximal competitive rent vector to be a differential rent vector
certain conditions. These conditions look slightly restrictive, but differential rent vector
be still regarded as good approximation of the maximal competitive rents. In the subs
analysis, we will adopt a differential rent vector as a representative of a competitive rent v

Theorem 2.6 (Condition for the Rent Equation). Let (p, x, y) = ((p1, . . . , pT ), x, y) be a maxi-
mal competitive equilibrium. If at least one of the following (1) and (2) holds:

(1) IG(k) = IG(k)+1 for each k = 1, . . . , f − 1;
(2) pk < Ck(yk + 1) − Ck(yk) for each k = 1, . . . , f − 1,

then (p1, . . . , pf ) is a differential rent vector, that is, the differential rent vector (r1, . . . , rf )

determined by rf = pf coincides with (p1, . . . , pf ).
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A merit of this theorem is as follows: We takepf as given, which is endogenously determin
by a maximal competitive equilibrium. Then, under conditions (1) and/or (2), the relevan
of the maximal competitive rent vector satisfies the rent equation (2.5). By the argument
Lemma 2.5, we can calculate the maximal competitive rentsp1, . . . , pf −1. In the application to
real data in the Tokyo area in Section 7, the rentpf of the marginal categoryf is also estimated
from the real data.

Condition (1) states that the incomeIG(k) of the last household in thekth category coincide
with the incomeIG(k)+1 of the first household in the(k + 1)th category. When the number
households is large and their incomes are distributed in a (relatively) continuous mann
holds approximately. In this case, a differential rent vector is an approximation of the ma
competitive rent vector.

Since(p, x, y) is a competitive equilibrium, it hods generally that

Ck(yk) − Ck(yk − 1) � pk � Ck(yk + 1) − Ck(yk).

In addition to this, (2) requires the right inequality to hold strictly. According to the interpret
of a rental housing as a dwelling, apartments are already built and new units are costly.
tion (2) is naturally applied to this case. We will use this case in our application to num
examples in Section 3 and Section 7.

It is easy to prove case (1), but (2) needs a longer proof. A proof of (2) will be give
Appendix A. Here, we consider only (1). Recall thatG(k) is the last household living in thekth
category andG(k) + 1 is the first household living in the(k + 1)th category. It holds by utility
maximization for householdsG(k) andG(k) + 1 that

u
(
ek, IG(k) − pk

)
� u

(
ek+1, IG(k) − pk+1

)
and

u
(
ek+1, IG(k)+1 − pk+1

)
� u

(
ek, IG(k)+1 − pk

)
.

By condition (1), these hold with equalities, i.e., the rent equation holds.
When neither (1) nor (2) holds, the maximal competitive rent vector may fail to satisf

rent equation (2.5). This is shown by Example 2.7. Moreover, even under (2), a comp
rent vector may not satisfy the rent equation, but it holds generally that each left-hand
(2.5) is greater than or equal to the corresponding right-hand side. It is the point of (2
each line to hold with equality. Under condition (1), any competitive rent vector satisfies th
equation (2.5). When the market is close to perfect competition, (1) holds approximately. H
a differential rent vector may be a good representative of a competitive rent vector.

We have emphasized the similarity of the rent equation to the Ricardian theory of differ
rents of farm lands around a city. In the Ricardian theory, the rent of the marginal land is
mined by agricultural productivity of the marginal land. Similar to this, the marginal catego
apartments are slightly different from the other categories. The determination of market rpf

is related closely to the rent of farm land. For the categoryk < f , apartments are dwellings, an
the marginal costCk(tk + 1)−Ck(tk) is interpreted as operating costs, which is typically sma
than the market rentpk . However, in the categoryf , new apartments are possibly supplied
transforming farm lands into residential lands. In this case,Cf (tf + 1) − Cf (tf ) is calculated as
the monthly value of the production (+operation) cost. This remark will be relevant the trea
of rf in Sections 5 and 6.

Example 2.7. Suppose that there are only two households 1 and 2. Let their utility fun
u(x, c) be given as

u(x, c) = hk + √
c for k = 1,2,3,



M. Kaneko et al. / Journal of Urban Economics 59 (2006) 142–170 153

deed,

r
rium
nly to

rs for

rents
2.6

the
nd

okyo.

ction,
Tokyo

ropol-
tations
means

e sup-
ilway

tation
tments.
whereh1 = 10, h2 = 7 andh3 = 3. Also, letI1 = 100 andI2 = 52. Assumep1 = 51 andp2 = 25.
Under these rents, household 1 rents apartment 1, and household 2 rents apartment 2. In

u
(
e1, I1 − p1

) = 10+ √
100− 51= 17> u

(
e2, I1 − p2

)
= 7+ √

100− 25= 15.66. . . , (2.6)

u
(
e2, I2 − p1

) = 10+ √
52− 51= 11< u

(
e2, I2 − p2

)
= 7+ √

52− 25= 14.19. . . . (2.7)

Suppose that there are two landlords 1′ and 2′ such that 1′ has two units with valuation 51 fo
each unit and 2′ has two units with valuation 25 for each. Then the above competitive equilib
is maximal and, in fact, is minimal, too. In this economy, the rent equation corresponds o
(2.6), which fails to hold with equality.

We are focussing on the maximal competitive rent vector and differential rent vecto
(2.5). Instead of the maximal one, we may focus on theminimal competitive rent vector. With
the modification of (2.5) with the replacement of the boundary incomeIG(k) by IG(k)+1 for k =
1, . . . , f − 1, the above argument could be carried over to the case of minimal competitive
and differential rents. It follows from this consideration that under condition (1) of Theorem
holds, if the competitive rentpf for the marginal apartment is uniquely determined, then all
rents are uniquely determined. Incidentally,pf might be determined by the farm land rent, a
it could be considered to be determined uniquely.

3. Application to a rental housing market in Tokyo (1)

In this section, we exemplify our theory by an application to a rental housing market in T
This application will be continued in Section 7.

Consider the JR (Japan Railway) Chuo line running from Tokyo station to the west dire
along which residential areas are spread out. See Fig. 3.1. The line has 24 stations from
station up to Hachioji station, which is almost on the west boundary of the Tokyo great met
itan area. Here, we consider only a submarket of the entire market. That is, we take 5 s
and 4 types of sizes of apartments. Now, we explain how we formulate this submarket by
of a housing market model(M,N).

Look at Table 3.1: We take 5 railway stations, near which four sizes of apartments ar
plied. The first column of Table 3.1 shows the time distance from Tokyo station to each ra
station, i.e., 18,28,35,41 and 53 (minutes). It is assumed that people commute to Tokyo s
(office area) from their apartments. The first row of Table 3.1 designates the sizes of apar
These intervals are represented by the medians 15,35,55 and 75(m2), which we plug into a

Fig. 3.1. Chuo line.
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Table 3.1
k

∣∣ hk

∣∣ wk

Time (min) Size (m2)

< 25 25–45 45–65 65–85

18:Nakano 15 6.9 1204 10 68.9 780 5 130.9 250 1 192.9 113
28:Mitaka 17 −15.1 608 12 46.9 391 7 108.9 197 2 170.9 63
35:Kokubunji 18 −30.5 373 13 31.5 229 8 93.5 77 3 155.5 20
41:Tachikawa 19 −43.7 362 14 18.3 316 9 80.3 91 4 142.3 30
53:Hachioji 20 −70.1 689 16 −8.1 234 11 53.9 137 6 115.9 30

utility function.5 Thus, the apartments are classified intoT = 5 × 4 = 20 categories. When w
consider data of apartment supplies, each apartment is classified into one category.

Before having the utility functionu : X = {e0, e1, . . . , e20} × R+ → R in the sense of Sec
tion 2.2, we assume that the households have the commonbasic utility function as follows:

Û (t, s, c) = −2.2t + 3.1s + 80
√

c, (3.1)

wheret takes possible values 18,28,35,41,53 ands takes values 015,35,55,75, andc is the
expenditure to consumption measured by thousand yen, e.g., ifc is 100,000 yen, thenc = 100.
Calculating−2.2t +3.1s, we havehk (k = 1, . . . ,20) in the legendk

∣∣ hk

∣∣ wk of Table 3.1. The
first k representing the quality rank of a category is determined by−2.2t +3.1s. For example, the
term−2.2t + 3.1s takes the largest value at(t, s) = (18,75), and thus, the label of the catego
is k = 1. Up to k = 4, this order follows the distance to Tokyo Station. But it takes the
value at(t, s) = (18,55) and the 6-value at(53,75), where it is more important to decrease
commuting time than to have a larger size of an apartment.

The labeling of categories is denoted by the first numberk of the each cell of Table 3.1. Base
on this correspondence, we defineu : X → R

u
(
ek, c

) = hk + 80
√

c, (3.2)

wherehk = −2.2t + 3.1s for k � 1 andh0 is assumed to be−500, i.e.,u(e0, c) = h0 + 80
√

c =
−500+ 80

√
c.

In the formulation given in Section 2.1, householdi choosesk to maximize his utility
u(ek, Ii − pk) with Ii � pk . From the viewpoint of the basic utility function of (3.1), this can
expressed as the choice of(t, s) to maximize

Û (t, s, Ii − pk(t,s)) = −2.2t + 3.1s + 80
√

Ii − pk(t,s) with Ii � pk(t,s),

wherek(t, s) is the category corresponding to(t, s).6,7

The derived utility function in (3.2) satisfies Assumptions A and C-F. The concavity of 8
√

c

corresponds to the normality assumption (Assumption E).
The third entrywk of the legend of Table 3.1 is the number of units for sale listed in

housing information service,the Yahoo Real Estate (15, Dec. 2004). Suppose that only tho

5 The first interval is taken from 5 to 25. In the Japanese standard, one-room apartments are categorized into
6 If −2.2t + 3.1s = −2.2t ′ + 3.1s′, then it suffices to some tie-breaking rule.
7 In Japan, commuting costs are usually provided by a company. Therefore, commuting costs are not includ

budget constraint of a household. However, this custom is not necessarily found in other countries. The other
analyzed more typically in the urban economics literature, such as Wheaton [27], Hartwick et al. [10], Braid
Arnott et al. [3]. Haurin [11] and White [28] discussed the comparisons of surpluses for companies in different
systems.
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units appear on the market and no units are newly built. Then, the cost functionCk(yk) may be
formulated as

Ck(yk) =
{

ckyk if yk � wk

“large” if yk > wk,
(3.3)

where “large” is a number greater thanI1. That is, landlordk has the reservation price (operati
cost)ck for all units he provides, but the cost to build a new unit is very large relative to
housing market. This satisfies Assumption B.

The numberwk of apartment units in categoryk (k = 1, . . . ,20) for sale is taken for a give
period of time, say, two weeks, fromthe Yahoo Real Estate. These units will disappear from
the market after that period. We assume that the same number of households are comin
market to look for apartments, and that all the units are traded in the end of the period. The
the total numberm of households on the market is

∑20
k=1 wk = 6194.

The remaining element of the housing market model(M,N) is the incomes for the house
holds. We assume that the (monthly) income distribution overM = {1, . . . ,m} = {1, . . . ,6194}
is a uniform distribution from 100,000 yen to 900,000 yen. Hence,I6194 = 100,000 and
I1 = 900,000. In fact, this uniform distribution is just for calculation, and can be changed
other distributions.8

Under the above specification of the housing market model(M,N), we can calculate th
differential rent vectorr = (r1, . . . , r20) as in Table 3.2. This rent vectorr = (r1, . . . , r20) is
determined by the rent equation (2.5) withr20 = 49.6. In Section 7.1, we will explain how t
choose thisr20 = 49.6 and the particular utility function given by (3.1).

Table 3.2 gives the average rentsp̄ = (p̄1, . . . , p̄20) of the data fromthe Yahoo Real Estate. In
Fig. 3.2,r = (r1, . . . , r20) andp̄ = (p̄1, . . . , p̄20) are depicted. The evaluation of the discrepa
betweenr andp̄ will be discussed in Section 7.1.

In the above numerical example, we have assumed the separable utility function of (3
(3.1)), but our theory itself does not restrict to such a separable utility function. For examp
can modify our utility function as follows:

u
(
ek, c

) = hk + a(L − k)
√

c, (3.4)

wherea andL are positive constants. This does satisfy Assumption E. In this utility functio
apartment in a better category enhances the utility from consumption. However, Assump
is violated if it is modified to:

u
(
ek, c

) = hk + a
(
L − t (k)

)√
c, (3.5)

Table 3.2
k

∣∣ rk
∣∣ p̄k (1000 yen)

Time (min) Size (m2)

< 25 25–45 45–65 65–85

18 : Nakano 15 77.1 73.9 10 112.6 112.1 5 153.0 162.4 1 194.2 209.5
28 : Mitaka 17 67.4 69.3 12 99.4 101.6 7 138.6 141.3 2 179.7 183.9
35 : Kokubunji 18 61.7 58.8 13 90.6 82.6 8 128.6 118.3 3 169.5 149.3
41 : Tachikawa 19 57.3 60.1 14 83.2 78.1 9 120.0 118.8 4 160.7 129.6
53 : Hachioji 20 49.6 54.6 16 70.4 73.7 11 103.6 105.1 6 143.2 122.1

8 Even if we change it to a truncated normal distribution, the calculated rents are not changed a lot.
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wheret (k) is the commuting time (minutes) tok. In this example, an apartment in a closer lo
tion to the city center enhances the utility from consumption. One may think that “if a ple
downtown life calls for high spending, low income households may concentrate more on th
and high income households more on the location of the apartment when judging its qu9

This phenomenon is excluded from our analysis with Assumption E.

4. The basic comparative statics theorem

This section will formulate our comparative statics and will provide one basic theorem
theorem will be crucial in obtaining comparative statics results in Sections 5 and 6. We r
that a particular comparative statics is not our focus; instead, we will focus on certain g
properties of the behavior of rent vectors when some changes occur in parameters.10 Keeping
this remark in mind, first we explain our comparative statics.

We will consider the behavior of a differential rent vectorr = (r1, . . . , rf ) defined by (2.5)
when some parameters of the housing market(M,N) change. Recall that a differential re
vector r = (r1, . . . , rf ) is the representative of the maximal rent vectorp = (p1, . . . , pT ) as
discussed in Section 2.3. We denote the market after those parameter changes by(M̂, N̂).
Throughout the following, we make Assumptions A–G on both(M,N) and (M̂, N̂). The un-
changed part and the parameters changes are as follows:

(0) the apartment categories 1, . . . , T and the utility functionu(·, ·) remain the same;
(1) the householdsM = {1, . . . ,m} change intoM̂ = {1, . . . , m̂}, and the incomesI1, . . . , Im

change intoÎ1, . . . , Îm̂;

9 This is pointed out by a referee.
10 Representative papers in the standard comparative statics studies are Wheaton [27], Hartwick et al. [10] an
MacKinnon–Wheaton [4].
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(2) the landlordsN = {1′, . . . , T ′} remains the same, but the cost functionsCk change into
Ĉk (k = 1, . . . , T ).

A typical comparative statics takes a form of cause–effect in changes in one parame
the rents. For example in the urban economics literature, various forms of comparative sta
found in, for example, Kaneko [15], Fujita [7, Section 3.6], and Braid [5,6]. We will not cons
this form of a particular cause–effect comparative statics, but will consider general prope
the behavior of a differential rent vector when the housing market(M,N) changes into(M̂, N̂).
For this consideration, the relation between the rentrk and the boundary incomeIG(k) of cate-
gory k plays crucial roles. Incidentally, the changes in the boundary incomesIG(1), . . . , IG(f −1)

may be caused by ones in (1)–(2). We write the relevant changes explicitly:

(3) the marginal categoryf changes intof̂ ;
(4) the boundary incomeIG(k) changes intôIĜ(k).

The boundary household̂G(k) may differ fromG(k).
In general, the income differencêIĜ(k) − IG(k) is intimately related to the rent differ

encer̂k − rk , and these differences play the major role in our study. The following theore
basic, and also is suggestive for why we focus on income differencesÎĜ(k) − IG(k) rather than
other parameters. This is a weaker form of the theorem given in a more specific environm
Kaneko [15, p. 39, Theorem 5(i)].11

Theorem 4.1 (Basic Comparative Statics Theorem). Let r = (r1, . . . , rf ) and r̂ = (r̂1, . . . , r̂f̂ ) be

differential rent vectors in (M,N) and (M̂, N̂). Let k be a category with 1� k � min(f, f̂ ) − 1.
Then

ÎĜ(k) − IG(k) � r̂k − rk if and only if r̂k − rk � r̂k+1 − rk+1. (4.1)

Note that � in (4.1)can be replaced by �,>,< or = .

The point of Theorem 4.1 is that the comparison of the rent differences at two neighborin
egoriesk andk +1 is reduced into that of the rent difference and the boundary income diffe
of categoryk. The following equivalent form may be easier to understand:

ÎĜ(k) − r̂k � IG(k) − rk if and only if r̂k − r̂k+1 � rk − rk+1. (4.2)

That is, consumption is smaller in the new situation than in the original if and only if the
difference for those neighboring categories becomes smaller. Since categoryk+1 is the reference
point to the boundary householdG(k), he compares his utility from an apartment in categork

with one in categoryk + 1. The left-hand inequality of (4.2) means that his consumptio
categoryk decreases,a fortiori, his utility decreases. This is equivalent to the relative decr
of the rent difference, which is expressed by the right-hand side of (4.2). For this equiva
the normality assumption (Assumption E) is essential.

From the above theorem, we will obtain duality results in comparative statics, which w
the subjects of Sections 5 and 6.

11 Braid [5] obtained a similar result (differential equation (6) on p. 293) in a short-run housing market with a cont
of housing qualities. Based on it, he considered various comparative statics results.
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Notice asymmetry betweenk and k + 1 in (4.1) in that only the right-hand side of (4.
includesk andk + 1. This asymmetry is caused by the definition of the rent equation (2.5)
the maximal competitive rent vector. If we adopt the minimal competitive rent vector, we s
have a comparison betweenk − 1 andk in the right-hand side of (2.5).

Proof of Theorem 4.1. (Only-If ): SupposêIĜ(k) − IG(k) � r̂k − rk , i.e., ÎĜ(k) − r̂k � IG(k) − rk .

Let δ = (IG(k) − rk) − (ÎĜ(k) − r̂k). Sinceu(ek, ÎĜ(k) − r̂k) = u(ek+1, ÎĜ(k) − r̂k+1) by the rent
equation(2.5) for (M̂, N̂), we have, by Assumption E,

u
(
ek, ÎĜ(k) − r̂k + δ

)
� u

(
ek+1, ÎĜ(k) − r̂k+1 + δ

)
. (4.3)

The left-hand side is written asu(ek, IG(k) − rk), which equals tou(ek+1, IG(k) − rk+1) by (2.5)

for (M,N). Hence,

u
(
ek+1, IG(k) − rk+1

)
� u

(
ek+1, ÎG(k) − r̂k+1 + δ

)
. (4.4)

This and the monotonicity (Assumption A) ofu on consumption implyIG(k) − rk+1 � ÎG(k) −
r̂k+1 + δ. That is,r̂k − rk � r̂k+1 − rk+1.

(If ): SupposeÎĜ(k) − IG(k) > r̂k − rk . Let δ = (ÎĜ(k) − IG(k)) − (r̂k − rk). By the rent equation

for (M,N), we haveu(ek, Ii − rk) = u(ek+1, Ii − rk+1), and then, by Assumption E andδ > 0,
u(ek, Ii − rk + δ) > u(ek+1, Ii − rk+1 + δ). Thus, we have

u
(
ek+1, IG(k) − rk+1 + δ

)
< u

(
ek, IG(k) − rk + δ

)
= u

(
ek, ÎĜ(k) − r̂k

) = u
(
ek+1, ÎĜ(k) − r̂k+1

)
,

where the last equality follows from the rent equation for(M̂, N̂). By Assumption A, we have
IG(k) − rk+1 + δ < ÎG(k) − r̂k+1, which is equivalent tôrk − rk > r̂k+1 − rk+1. �
5. Duality in the income and rent differences

This section will provide two theorems on the relationship between the differences of b
ary incomes and the differences of rents. These theorems will be considered in the two c
the changes in the boundary incomes. In these two cases, the relationship in the boundary
differences and rent differences exhibits certain dual structures.

5.1. Differences of the boundary incomes

Throughout this section, we assume that differential rent vectorsr = (r1, . . . , rf ) and r̂ =
(r̂1, . . . , r̂f̂ ) are chosen and fixed in(M,N) and(M̂, N̂). Thus, the marginal categoriesf, f̂ and

boundary householdsG(k) (k � f ), Ĝ(k) (k � f̂ ) are determined. We also assumef � f̂ .
In the following, we will consider the two cases:

ÎĜ(1) − IG(1) � ÎĜ(2) − IG(2) � · · · � ÎĜ(f −1) − IG(f −1), (5.1)

ÎĜ(1) − IG(1) � ÎĜ(2) − IG(2) � · · · � ÎĜ(f −1) − IG(f −1). (5.2)

The inequalities of (5.1) mean that the difference of the boundary incomes for a better cate
larger than that for a worse category. Those of (5.2) are opposite inequalities. When the bo
incomes increase at a constant rate, (5.1) holds, and when they decrease at a constant r
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holds. One may think that when incomes increase, (5.1) is more likely than (5.2). Howeve
when incomes increases, changes in the supplies and/or demands of apartments may m
hold—a numerical example will be given in Section 7.

Neither of (5.1) and (5.2) might be expected since the changes in the boundary incom
ferences are caused by those in the basic parameters of(M,N). The subsequent considerati
could be applied to such a case by focussing on a segment of the sequence of the b
income differences. Indeed, we divide the sequence

ÎĜ(1) − IG(1), ÎĜ(2) − IG(2), . . . , ÎĜ(f −1) − IG(f −1)

into thek segments of the form:

{ÎĜ(1) − IG(1), . . . , ÎĜ(l1)
− IG(l1)},

{ÎĜ(l1+1) − IG(l1+1), . . . , ÎĜ(l2)
− IG(l2)},

...

{ÎĜ(lk−1+1) − IG(lk−1+1), . . . , ÎĜ(lk)
− IG(lk)}

so that each segment is alternatively ascending or weakly descending, i.e., fort = 1, . . . , k − 1,

if ÎĜ(lt−1+1) − IG(lt−1+1) < · · · < ÎĜ(lt )
− IG(lt ),

then ÎĜ(lt+1) − IG(lt+1) � · · · � ÎĜ(lt+1)
− IG(lt+1);

if ÎĜ(lt−1+1) − IG(lt−1+1) � · · · � ÎĜ(lt )
− IG(lt ),

then ÎĜ(lt+1) − IG(lt+1) < · · · < ÎĜ(lt+1)
− IG(lt+1).

This partition is obtained as follows: When̂IĜ(1) − IG(1) < ÎĜ(2) − IG(2), we letl1 as the larges

number so that̂IĜ(1) − IG(1) < · · · < ÎĜ(l1)
− IG(l1). Then, we letl2 be the largest number so th

ÎĜ(l1+1) − IG(l1+1) � · · · � ÎĜ(l2)
− IG(l2), and so on. When̂IĜ(1) − IG(1) � ÎĜ(2) − IG(2), we

start with the weakly descending segment, and so on.
The subsequent results hold for each segment by regarding it as the sequence of (5.1)

An example with two segments will be given in Section 7.

5.2. Shapes of rent differences

Now, we have the following theorem.

Theorem 5.1 (Upward and Downward Inheritance Theorem). Let r and r̂ be differential rent
vectors in (M,N) and (M̂, N̂). Let k be an integer with 1� k � f − 1.

(1) (Upward Inheritance):Under (5.1),
(a) r̂k+1 − rk+1 < r̂k − rk implies r̂k − rk < r̂k−1 − rk−1 < · · · < r̂1 − r1;
(b) r̂k − rk < r̂k+1 − rk+1 implies r̂k+1 − rk+1 < · · · < r̂f − rf .

(2) (Downward Inheritance):Under (5.2),
(a) r̂k − rk > r̂k+1 − rk+1 implies r̂k+1 − rk+1 > · · · > r̂f − rf ;
(b) r̂k+1 − rk+1 > r̂k − rk implies r̂k − rk > r̂k−1 − rk−1 > · · · > r̂1 − r1.
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Under (5.1), if the rent difference in categoryk is larger than that in categoryk + 1, the same
inequality is inherited in the inner direction, and if the opposite inequality holds, the inheri
goes in the outer direction. The results of (2) are dual to those of (1), as condition (5.2)
dual of (5.1).

Proof of Theorem 5.1. We show (a) of (2). In the dual manner, we can prove the others
l be an arbitrary category withk � l � f − 1. It suffices to show that̂rl − rl > r̂l+1 − rl+1
implies r̂l+1 − rl+1 > r̂l+2 − rl+2. Supposêrl − rl > r̂l+1 − rl+1. By Theorem 4.1, we hav
ÎĜ(l) − IG(l) > r̂l − rl . By (5.2) andr̂l − rl > r̂l+1 − rl+1, we have

ÎĜ(l+1) − IG(l+1) � ÎĜ(l) − IG(l) > r̂l − rl > r̂l+1 − rl+1.

It follows from this and Theorem 4.1 thatr̂l+1 − rl+1 > r̂l+2 − rl+2. �
We have the following theorem on the rent shape as a consequence of Theorem 5.1

exhibits also duality.

Theorem 5.2 (Rent Shape Theorem). Let r and r̂ be differential rent vectors in (M,N) and
(M̂, N̂).

(1) (Convex Shape):Under (5.1), there are k1 and k2 (1� k1 � k2 � f ) such that
(a) r̂1 − r1 > · · · > r̂k1 − rk1;
(b) r̂k1 − rk1 = · · · = r̂k2 − rk2;
(c) r̂k2 − rk2 < · · · < r̂f − rf .

(2) (Concave Shape):Under (5.2), there are k1 and k2 (1 � k1 � k2 � f ) such that
(a) r̂1 − r1 < · · · < r̂k1 − rk1;
(b) r̂k1 − rk1 = · · · = r̂k2 − rk2;
(c) r̂k2 − rk2 > · · · > r̂f − rf .

In (1), the rent differences form a convex shape, and in (2), they form a concave shape.k1 =
k2 = 1, the rent differences are just increasing in (1) and just decreasing in (2). Ifk1 = k2 = f ,
we have oppositely monotone sequences. In either (1) or (2), there may be both increas
decreasing segments. The theorem also states that the segments of constant difference
possible, but such segments are rare cases, since small perturbations of some parame
incomes, destroy these segments, which will be discussed in detail in Section 6.

Proof of Theorem 5.2. We show (2), and (1) can be proved in the dual manner. Letk1 be the
largest number amongk’s satisfyingr̂1 − r1 < · · · < r̂k − rk . If r̂1 − r1 � r̂2 − r2, thenk1 = 1.
Let k2 be the largest number amongk’s satisfyingr̂k1 − rk1 = · · · = r̂k − rk . This k2 may bek1
or f . The definitions ofk1 andk2 imply (a) and (b). By the choice ofk2, we haver̂k2 − rk2 >

r̂k2+1 − rk2+1. In the former case, by Theorem 5.1(2), we have (c).�
The cases (1) and (2) of Theorems 5.1 and 5.2 exhibit the dual structure with the op

inequalities. It is the point that we have only these two types of changes.
Naive forms of the above theorems were found in Kaneko [15]. Specifically, Theorems

and 5.2(1) are generalizations of the corresponding results in a more restricted envir
in [15]. However, the dual structures are not touched at all.
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The above two theorems can be used to have more concrete comparative statics. Here
only one instance. The following is a comparative statics result when only the marginal c
the marginal category goes up under the assumption that the other parameters are all fix
increase in the rent of the marginal categoryf is interpreted as expressing the increase in c
for providing apartments in the marginal categoryf , that is,rf < r̂f . For the interpretation o
costs for apartments in the marginal categoryf , see the paragraph before Example 2.7.

Corollary 5.3. Let (M,N) and (M̂, N̂) be two markets with f = f̂ and IG(k) = ÎĜ(k) for k =
1, . . . , f − 1. Let r and r̂ be the differential rent vectors in (M,N) and (M̂, N̂) with rf < r̂f .
Then 0< r̂1 − r1 < · · · < r̂f − rf .

Proof. By the rent equation (2.5), we haveu(ef −1, IG(f −1) − rf −1) = u(ef , IG(f −1) − rf ). Let
δ = r̂f −rf . Thenu(ef −1, IG(f −1)−rf −1−δ) < u(ef , IG(f −1)−rf −δ) = u(ef , IG(f −1)− r̂f ).
Sinceu(ef −1, IG(f −1) − r̂f −1) = u(ef , IG(f −1) − r̂f ), we have, by Assumption A,IG(f −1) −
rf −1 − δ < IG(f −1) − r̂f −1, i.e., r̂f −1 − rf −1 < r̂f − rf . By Theorem 5.1(2), we hav
r̂1 − r1 < · · · < r̂f − rf . Also, sinceu(ef −1, IG(f −1) − r̂f −1) = u(ef , IG(f −1) − r̂f ) < u(ef ,

IG(f −1) − rf ) = u(ef −1, IG(f −1) − rf −1), we have 0< r̂f −1 − rf −1. In the same manner, w
can prove 0< r̂1 − r1. �

Ito [12] considered a different type of comparative statics, i.e., the quality of apartme
one category changes. The above results (especially Theorem 4.1) are useful in such a s

6. The bending points in the rent differences

We call the apartment categoriesk1 andk2 given in Theorem 5.2 theupper and lower bending
points of rent differences. These points divide the rent differences into the increasing se
constant segment, and decreasing segment. These points are useful in knowing the e
parameter changes. In this section, we estimate their locations from some basic inform
Also, we will show that the presence of the constant segment is a rare case, i.e., these tw
coincide typically. In the following, we assumef � f̂ .

Theorem 5.2 states the existence of such bending points, but does not exclude the trivi
such ask1 = k2 = 1 or k1 = k2 = f . The following theorem restricts the range of the locati
of the bending pointsk1 andk2 by using the rent difference of the marginal categoryf and the
boundary income difference of categoryt .

Theorem 6.1 (Conditions for Nontrivial Bending Points). Let r and r̂ be differential rent vectors
in (M,N) and (M̂, N̂). Let t be any category (1 � t < f ).

(1) Under (5.1),
(a) if ÎĜ(t) − IG(t) > r̂f − rf , then there is a k1 (t < k1 � f ) such that r̂1 − r1 > · · · >

r̂k1 − rk1 and r̂k1 − rk1 � · · · � r̂f − rf ;
(b) if ÎĜ(t) − IG(t) < r̂f − rf , then there is a k (t � k < f ) such that r̂k − rk < · · · < r̂f − rf .

(2) Under (5.2),
(a) if ÎĜ(t) − IG(t) > r̂f − rf , then there is a k (t � k < f ) such that r̂k − rk > · · · > r̂f − rf ;

(b) if ÎĜ(t) − IG(t) < r̂f − rf , then there is a k1 (t < k1 � f ) such that r̂1 − r1 < · · · <

r̂k1 − rk1 and r̂k1 − rk1 � · · · � r̂f − rf .
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Proof. We prove only (2). Consider (a). SupposeÎĜ(t) − IG(t) > r̂f − rf . First, we show that

ÎĜ(k) − IG(k) > r̂k − rk for somek (t � k < f ). (6.1)

Now, we show the contrapositive that the negation of (6.1) impliesÎĜ(t) − IG(t) � r̂f − rf .

Suppose that̂IĜ(k) − IG(k) � r̂k − rk for all k (t � k < f ). Then, by Theorem 4.1, we hav

r̂k − rk � r̂k+1 − rk+1 for all k = t, . . . , f − 1. This together witĥIĜ(t) − IG(t) � r̂t − rt imply

ÎĜ(t) − IG(t) � r̂f − rf . We have prove the contrapositive. Thus we have (6.1).
By (6.1) and Theorem 4.1, we haver̂k − rk > r̂k+1 − rk+1. This together with Theorem 5.1(2

implies thatr̂k − rk > · · · > r̂f − rf .
Consider (b). SupposêIĜ(t) − IG(t) < r̂f − rf . It holds that

ÎĜ(k) − IG(k) < r̂k − rk for somek (t � k < f ). (6.2)

This can be proved in the same manner as (6.1). By (6.2) and Theorem 4.1, we haver̂k − rk <

r̂k+1 − rk+1. This together with Theorem 5.1(2) implies thatr̂1 − r1 < · · · < r̂k+1 − rk+1.
Let k1 be the largest integer among such(k +1)’s. Hence we have the latter inequalities of (

By Theorem 5.2(2), we havêrk1 − rk1 � · · · � r̂f − rf . �
Each claim of Theorem 6.1 has two statements. These are combined as follows: Letk1 andk2

be upper and lower bending points.

Corollary 6.2 (Locations of the Bending Points). Let r and r̂ be differential rent vectors in
(M,N) and (M̂, N̂). Let t be a category number with t < f − 1.

(1) Under (5.1), if ÎĜ(t) − IG(t) > r̂f − rf > ÎĜ(t+1) − IG(t+1), then t + 1� k1 � k2 < f .

(2) Under (5.2), if IĜ(t) − IG(t) < r̂f − rf < ÎĜ(t+1) − IG(t+1), then t + 1� k1 � k2 < f .

Proof. Consider (2). SupposeIĜ(t) − IG(t) < r̂f − rf < ÎĜ(t+1) − IG(t+1). Then, by Theo-
rem 6.1(2),t + 1� k1 � f andt + 1� k2 < f . By Theorem 5.2(2), we havek1 � k2. �

In Theorem 6.1 and Corollary 6.2, the locations of the upper and lower bending poin
restricted, but they may still differ. Now we argue that the they typically coincide or differ b

The next theorem gives a condition for the coincidence of the upper and lower bending

Theorem 6.3 (Condition for a unique Bending Point). Let r and r̂ be differential rent vectors in
(M,N) and (M̂, N̂). Let k1, k2 be the upper and lower bending points, and t a category number
with t < f − 1.

(1) Under (5.1), ÎĜ(t) − IG(t) > r̂t − rt and ÎĜ(t+1) − IG(t+1) < r̂t+1 − rt+1 if and only if k1 =
k2 = t + 1.

(2) Under (5.2), ÎĜ(t) − IG(t) < r̂t − rt and ÎĜ(t+1) − IG(t+1) > r̂t+1 − rt+1 if and only if k1 =
k2 = t + 1.

Proof. Consider (2). SupposêIĜ(t) − IG(t) < r̂t − rt andÎĜ(t+1) − IG(t+1) > r̂t+1 − rt+1. Then
it follows from Theorem 4.1 that̂rt − rt < r̂t+1 − rt+1 > r̂t+2 − rt+2. By Theorem 5.1, we hav
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r̂1 − r1 < · · · < r̂t+1 − rt+1 andr̂t+1 − rt+1 > · · · > r̂f − rf . Thus, the upper and lower bendin
pointsk1 andk2 coincide witht + 1.

The converse can be proved by tracing the above proof back.�
Even when the inequalities in (5.1) are all strict, the upper and lower bending pointsk1 andk2

may not coincide, but they may differ by at most one, which is stated in the following coro
Let k1, k2 be the upper and lower bending points.

Corollary 6.4 (Small Difference of the Bending Points). If (5.1) or (5.2) holds with strict in-
equalities, then k1 = k2 or k1 + 1= k2.

Proof. Consider the case where (5.1) holds with strict inequalities. Then, letr̂k1 − rk1 =
r̂k1+1 − rk1+1. ThenÎĜ(k1)

− IG(k1) = r̂k1 − rk1 = r̂k1+1 − rk1+1 > ÎĜ(k1+1) − IG(k1+1), which, by
Theorem 4.1, implieŝrk1+1 − rk1+1 > r̂k1+2 − rk1+2. It follows from this and Theorem 5.1 tha
r̂t − rt > r̂t+1 − rt+1 for all t > k1. Thus,k2 = k1 + 1. �

When (5.1) or (5.2) holds with strict inequalities, the upper and lower bending points co
or differ by 1. Even the latter case can be regarded as rare. In practice, the upper an
bending points coincide.

7. Application to a housing market in Tokyo (2)

7.1. Estimation of the basic utility function

Let us continue the application of our housing market model(M,N) to a rental housing
market in Tokyo in Section 3. We assume that all the elements of our model other th
utility function U(t, s, c) are the same as those given in Section 3. In this section, we di
the estimation method for the utility function̂U(t, s, c) = −2.2t + 3.1s + 80

√
c of (3.1) and

mention briefly how we evaluate this estimation. Here, we emphasize that the linearity
utility function overt ands is the result of this estimation. In a separate paper, we will give a
statistical and econometric study of this estimation.

Let a utility function be given as:

U(t, s, c) = −αt + βs + γ
√

c, (7.1)

whereα,β, γ are positive parameters. Then, the differential rent vector(r1, . . . , r20) is deter-
mined by the rent equation (2.5) with a givenr20, i.e.,

U(·, ·, ·)
r20

}
�−→ (r1, . . . , r20). (7.2)

We measure the distance of(r1, . . . , r20) to the actual data of rents{p1d}113
d=1, . . . , {p20d}689

d=1
observed inthe Yahoo Real Estate, 2004, Dec.15 by the total sum of square variations o
categories 1, . . . , T = 20 :

20∑
k=1

∑
d

(pkd − rk)
2. (7.3)

We minimize this distance controllingr20, α, β andγ .
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We can fixγ = 80 without influencing(7.2). Giving small grids forr20, α, β, and using a
computer, we make an exhaustive search for the minimization of

∑20
k=1

∑
d(pkd − rk)

2. The
computation result is the utility function̂U(t, s, c) = −2.2t +3.1s +80

√
c of (3.1) together with

the rent vector given in Table 3.2 and depicted in Figure 3.2.
Now, let p̄1, . . . , p̄20 be the average rents of{p1d}113

d=1, . . . , {p20d}689
d=1, e.g.,p̄1 = ∑113

d=1 p1d .
Those averages have the special status in statistics. They minimize the total square va
with no constraints. That is,

20∑
k=1

∑
d

(pkd − pk)
2 is minimized at (p1, . . . , p20) = (p̄1, . . . , p̄20). (7.4)

Thus, we have
∑20

k=1
∑

d(pkd − p̄k)
2 �

∑20
k=1

∑
d(pkd − rk)

2. The left-hand sum is the tota
square variations from the average rent vector(p̄1, . . . , p̄20), and the right-hand sum is that fro
the differential rent vector(r1, . . . , r20) we estimate. We adopt the left-hand sum as the poin
criterion: We take the ratio of

∑20
k=1

∑
d(pkd − rk)

2 to
∑20

k=1
∑

d(pkd − pk)
2. In our example

this ratio is given as∑20
k=1

∑
d(pkd − rk)

2∑20
k=1

∑
d(pkd − p̄k)2

� 1701510.4

1525350.6
� 1.1154. (7.5)

Thus, our model can approximate the average rent vectors within the accuracy of (7.5).
In the above calculation, we have already assumed that the utility functionU(t, s, c) is of the

form (7.1). However, the above calculation can be done in a different class of utility functi

U(t, s, c) = √
α2 − α1t + √

β1s + β2 + γ
√

c. (7.6)

This satisfies the law of diminishing marginal utility for each variable, while (7.1) does
satisfy it fort ands in a strict sense. In this sense, the utility function of (7.6) is more compa
with the standard textbook teaching than the utility functionU(t, s, c) of (7.1). However, by the
computer experiments, we can show that

∑20
k=1

∑
d(pkd − rk)

2 is getting smaller asα2 andβ2
become larger in (7.6). This can be interpreted as meaning that we have a better estimatio
whenU(t, s, c) become close to linear in variablest ands. Also, it is a result of computation tha
the total sum of square variations corresponding to (7.1) always dominates that corresp
to (7.6). Thus, the estimated utility function̂U(t, s, c) is linear fort ands. In fact, the linearity
for the consumptionc is not obtained, i.e., the law of diminishing marginal utility holds only
consumption.

We will discuss the details of the above statistical and econometric study in a separate

7.2. Comparative statics in the rental housing market along the Chuo-line

Let us continue the rental housing market in Section 3. Now, suppose that the bound
comes in the market(M,N) increase by 1% uniformly, and the rentr20 for a unit of category 20
increases by 10%. We use the estimated utility functionÛ(t, s, c) = −2.2t +3.1s+80

√
c of (3.1)

for (M,N), but we assume the same utility function for(M̂, N̂). The other parameters are a
sumed to be the same.12 Here, we assume to knoŵr20 = 1.1× r20.

12 It may be asymmetric to have 1 and 10% increments, respectively, in the incomes and valuationa20 = p20. However,
the valuationa20 reflects the cost of building an apartment, and a change in the valuation may be different from t
the incomes of households.
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In this case, condition (5.1) holds, i.e.,IĜ(1) − IG(1) > · · · > IĜ(19) − IG(19). Also,

IĜ(1) − IG(1) = 8.9> r̂20 − r20 = 4.96.

Thus the income difference for the boundary householdG(1) is 8900 yen and is greater than t
rent difference 4960 yen. Theorem 6.1 implies that the bending pointk1 > 1 exists. In fact, we
can get better information from Table 7.1: we find

IĜ(14) − IG(14) = 5.48> r̂20 − r20 = 4.96> 3.93= IĜ(15) − IG(15).

Then, we can use Corollary 6.2 to obtain 15� k1 � k2 < 20. Even Theorem 6.3 gives the prec
answerk1 = k2 = 15, sincêr14− r14 = 4.804< IĜ(14) − IG(14) andIĜ(15) − IG(15) < r̂15− r15 =
4.800. Then, we can estimate the shape of the differential rent curves (see Fig. 7.1).

Finally, we show that the remark stated in Section 5.1 about more one segments of inc
and decreasing segments of boundary income differences. More concretely, we gives a c
ative statics with two segments of boundary income differentials. Suppose that the num
households increase from

∑20
k=1 wk = 6194 to 6194+ 100= 6294, and specifically that the su

pliesw1, . . . ,w5 increase by 20. That is,̂w1 = 133, ŵ2 = 83, ŵ3 = 40, ŵ4 = 50, ŵ5 = 270, but

Table 7.1

Changes inIG(k) (1000 yen) Changes in rents (1000 yen)

k IG(k) ÎĜ(k) ÎĜ(k) − IG(k) rk r̂k r̂k − rk

1 885.53 894.39 8.86 194.19 199.25 5.05
2 877.39 886.17 8.77 179.66 184.67 5.01
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

14 548.25 553.73 5.48 83.22 88.02 4.804
15 392.72 396.64 3.93 77.05 81.85 4.800
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

20 100.00 101.00 1.00 49.59 54.55 4.96

Table 7.2

Changes inIG(k) (1000 yen) Changes in rents (1000 yen)

k IG(k) ÎĜ(k) ÎĜ(k) − IG(k) rk r̂k r̂k − rk

1 885.53 883.22 −2.31 194.195 189.088 −5.107
2 877.39 872.67 −4.73 179.658 174.522 −5.136
3 874.81 867.58 −7.23 169.451 164.312 −5.139
4 870.93 861.23 −9.71 160.660 155.534 −5.126
5 838.64 826.90 −11.74 153.044 147.942 −5.102
6 834.77 823.09 −11.68 143.190 138.136 −5.054
7 809.32 798.05 −11.27 138.580 133.548 −5.032
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

14 548.25 541.13 −7.12 83.218 78.405 −4.813
15 392.72 388.07 −4.65 77.052 72.254 −4.798
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

20 100.00 100.00 0.00 49.587 44.628 −4.959
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00
Fig. 7.1.k1 = k2 = 15.

Fig. 7.2. Bending points in the two segments.

we assumêwk = wk for k = 6, . . . ,20. Also the incomes are still distributed uniformly from 1
to 900 thousand yen. With above changes, it holds that

IĜ(1) − IG(1) > · · · > IĜ(5) − IG(5) and IĜ(6) − IG(6) < · · · < IĜ(19) − IG(19).
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Thus, we have the two segments of income differentials, which are calculated in Table 7.2
One more change is thatr20 decreases by 10%. Then, we can calculate the new differe

rent vector, which is also given in Table 7.2. Since the income differential lines are divide
the two parts from 1 to 5 and from 6 to 20, it follows from Theorem 6.3 that each segme
one bending point, i.e., the upper and lower bending points coincide with 3 in the left seg
and they coincide with 15 in the right segment. These are depicted in Fig. 7.2.

8. Concluding remarks

We give three remarks on future possible developments of our study of rental housin
kets. One is more on comparative statics, the second is on econometrics, and the third i
possibility of relaxing the assumption of an identical utility function.

We have focussed on the theoretical sides of comparative statics, particularly, on th
relationships between the rents for categories and the boundary income differences. We h
looked at direct cause–effect relationships between basic parameters (mentioned in Se
and rents. Ito [12] gave a direct cause–effect comparative statics along the line of our re
There could be many possible comparative statistical studies on such relationships. Fo
computer simulations may play more roles than theoretical studies, since we have man
of comparisons. We have been developing computer simulation methods for such compa
which is still an ongoing project.

For further comparative statics as well as more practical studies, it would be use
develop an econometric method so as to have an estimation of the utility function su
Û (s, t, c) = −2.2t + 3.1s + 80

√
c of (3.1). The present authors have been practicing suc

estimation method. As mentioned in Section 7.1, this utility function is estimated by min
ing, over possible coefficients for the utility function, the total sum of square variations. S
estimation works well, and some interesting findings have been revealed, for example, the
function does not strictly satisfy the law of diminishing marginal utilities over the leisure tim
well as the housing size, but does in consumption. This will be discussed in a separate pa

The final remark is about the possibility of eliminating Assumption C (Identical Utility Fu
tion). This assumption is interpreted as restricting our scope to a housing market with one
district. If a housing market has two or more office districts to which households commute
Assumption C should be relaxed so that only the households who commute to the same b
district have identical utility functions.

More concretely, the set of consumersM is partitioned intoM1, . . . ,MD: each householdi
in Mk (k = 1, . . . ,D) has the same utility functionuk : {e0, e1, . . . , eT } × R+ → R. In an appli-
cation, this utility function is regarded as derived from a larger utility functionU(t, s, c) as in
Section 3. Here, each householdi ∈ Mk has his office in some location andt is the time-distance
from his office to an apartment. Variabless andc are not affected by its location. For examp
the Sobu JR line connects Tokyo station to Chiba station, and some people have offices in
Then, the households are divided into two groups: the ones commuting to Tokyo station a
ones commuting to Chiba. Then the time-distancet to the office location is depending upon
household. In this formulation, we have two derived utility functionsuT for households to Tokyo
station anduC for ones to Chiba station.

To study the housing market with multiple business districts, both theoretical and simu
analyses are required. For example, some general results such as the existences of an eq
and of a maximal rent vector (Theorems 2.1 and 2.2) remain. However, the Rent Equation
rem (Theorem 4.1) is no longer available at least in the present form. In this case, Miyake
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graph-theoretic consideration of the maximal rent vector may help. Since the fixed-poin
rithm is available in the general case (see Kaneko–Yamamoto [13]), we may develop a co
simulation analysis.

Our results of comparative statics could be extended to such housing markets with m
business districts, where Assumption E (Normality) is needed. If we find a segment of h
holds who have the same utility function and are ordered with income differences such a
and/or (5.2), we would obtain the comparative statics results, restricting our attention to
segment. Nevertheless, we should know how such segments occur with other segments
a theoretical problem for comparative statics in housing markets with multiple business di
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Appendix A. Proof of Theorem 2.6 in case (2)

To prove Theorem 2.6 in case (2), we need one lemma.

Lemma A. Let (p, x, y) be a maximal competitive equilibrium. For each category k = 1, . . . ,

f − 1, there are households i, i′ ∈ M such that xi = ek , Ii = IG(k) and xi′ = ek+1, Ii′ = IG(k)+1.

Proof. We show the existence ofi. Suppose, on the contrary, that there is noi ∈ M such that
xi = ek and Ii = IG(k). There are two cases to be considered, and either case is shown
impossible. First, there is ani such thatIi = IG(k), xi = el andl > k. Then, by the suppositio
and Lemma 2.3(2), it holds thatIi′ > IG(k) for all i′ ∈ M with xi′ = et (t � k). However, this
is impossible by the definition ofG(k). Second, there is ani such thatIi = IG(k), xi = el and
k > l. By the supposition and Lemma 2.3(2), it holds thatIi′ < IG(k) for all i′ ∈ M with xi′ = et

(t � k). This is also impossible. �
Proof of case (2) of Theorem 2.6. Now, suppose, on the contrary, that (2.5) fails. Then the
a categoryt (1 � t � f − 1) such that

u
(
ek, IG(k) − pk

) = u
(
ek+1, IG(k) − pk+1

)
for k = 1, . . . , t − 1

u
(
et , IG(t) − pt

)
> u

(
et+1, IG(t) − pt+1

)
.

Then we increasept ,pt−1, . . . , p1 slightly intop′
t , p

′
t−1, . . . , p

′
1 so that

(A1) p′
k < Ck(yk + 1) − Ck(yk) for k = 1, . . . , t − 1

(A2) u(ek, IG(k) − p′
k) = u(ek+1, IG(k) − p′

k) for k = 1, . . . , t − 1, andu(et , IG(t) − p′
t ) >

u(et+1, IG(t) − pt+1).

We can find thesep′
t , p

′
t−1, . . . , p

′
1 satisfyingA1 andA2. Indeed, observe that for anyk (0 �

k � f −1), sinceu(ek, Ii −pk) � u(0, Ii) > u(ek,0) by utility maximization at(ek, Ii −pk) and
Assumption A, we haveIi −pk > 0. Hence we can increasert slightly top′

t so thatp′
t−1, . . . , p

′
1

satisfy satisfyingA1 andA2.



M. Kaneko et al. / Journal of Urban Economics 59 (2006) 142–170 169

w
r
ther

ics 27

f Urban

exten-
–136.
(1981)

ics 16

(1962)

mics 15

urnal of

ournal of

visible

mics 10

nomies
2002)

mics 23

Sons,

mics 2

–130.

(1974)
Now, we define the rent vectorp∗ by p∗
k = p′

k if k � t and p∗
k = pk if k > t . Once we

prove that(p∗, x, y) is a competitive equilibrium, we would have a contradiction sincep is a
maximal competitive rent vector. The balance of total demands and supplies holds for(x, y).
Sincep′

1, . . . , p
′
t−1 are increased but satisfyA1, profit maximization holds. It remains to sho

utility maximization for each householdi. Utility maximization is almost directly derived fo
each householdi with xi = ek andk > t , since the rent he is facing is unchanged but the o
rents are increased or unchanged. Now, consider a householdxi = ek andk � t . It follows from
Assumption E that for anyk′ < k and anyk′′ > k, we have

u
(
ek′

, Ii − p∗
k′
)
� u

(
ek′+1, Ii − p∗

k′+1

)
and u

(
ek′′

, Ii − p∗
k′′

)
� u

(
ek′′+1, Ii − p∗

k′′+1

)
.

Combining these,u(ek, Ii − p∗
k ) � u(el , Ii − p∗

l ) for all l. �
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