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Abstract

We present certain duality results on comparative statics on competitive rent vectors in the rental housing
market model. In the model, apartments as indivisible goods are classified into a finite number of categories,
and are traded for one composite commodity. Our concern is about certain general properties of the behavior
of rents with parameter changes. In particular, the rent changes are intimately related to the boundary income
changes of the categories of apartments. Both changes are endogenously determined in equilibrium. We will
show that these changes exhibit nice dual structures. We will also apply our model and comparative statics
to a rental housing market in the Tokyo metropolitan area.
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1. Introduction

This paper aims to present certain duality results on comparative statics on competitive rent
vectors in the rental housing market model. In the model, apartments as indivisible goods are
classified into a finite number of categories by some attributes such as sizes, commuting times and
housing regions, and they are traded for one composite commodity. By comparative statics, we
mean a study of the behavior of rents when some parameters of the market change. Our concern
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is not a particular form of “cause—effect” comparative statics, but it is about certain general
properties of the behavior of rents with parameter changes. We focus on the boundary income,
i.e., the lowest income, in each category. The changes in rent differences are intimately related
to the changes in boundary income differences. Both changes are endogenously determined in
equilibrium. We will show that these changes exhibit nice dual structures.

This introduction will first give brief explanations of the relation of our housing model to
some urban economics literatures as well as to the literature of markets with indivisible goods,
and then will explain our comparative statics.

Our model is a partial equilibrium model in that all goods other than housing are treated as one
composite commodity. But it admits commodity differentiations in apartments as well as income
effects on households’ behavior. Our model is a variant of the bid—offer model in the standard
urban economics literature from Alonso [1] and Muth [18] (see Fuijita [7] for a recent textbook),
where housing sizes are treated as continuous variables. A salient difference of our model from
this literature is that each housing unit is indivisible, and also, the number of apartment units is
finite.

In another literature in urban economics such as Sweeney [22], Braid [5] and van Lierop [24],
apartments are treated as indivisible. However, the housing quality is expressed as a continuous
variable. The mathematical methodology used in these urban economics literatures is dominantly
calculus and analysis. Our approach differs from those literatures in that our housing model is of
finite nature, except the composite commodity. This requires a different mathematical method,
which is of combinatorics nature. We show that this finite nature is able to capture the housing
market structure well.

The mathematical model of this paper also belongs to the other tradition from B6hm-
Bawerk [25], Neumann—Morgenstern [26] and Shapley—Shubik [21] (see Laan et al. [16] and
its references for recent papers). Nevertheless, this tradition has had a theoretical focus on the
existence of competitive equilibria and the nonemptiness of the core, etc. Only Kaneko [15] and
Gerber [9] tried to apply this approach to urban housing market problems. The present paper is a
further development of [15].

Our approach has both advantages and disadvantages to the standard bid—offer approach. It i
a disadvantage, caused by the indivisibility assumption, that the finite number of housing sizes
are already fixed, while a household can choose freely a size or quality in the standard approach.
This disadvantage restricts our scope to housing markets where houses are dwellings, i.e., they
are already built and their sizes are fixed. With the cost of this disadvantage, our restriction can
be regarded as advantageous in a quite few respects over the standard approach. For example,
will be clear by giving certain numerical examples that our model is flexible enough to capture
rental housing markets well. The main theme of this paper, i.e., comparative statics, is also an
advantage.

We should emphasize that our approach is short-run in the sense that we treat housing units as
already produced and provided to the market. It may be found in the numerical examples given
in Sections 3 and 7 that our approach is even regarded as snapshot in that the housing market a
a point of time is studied. This is in contrast with the long-run approach such as in Braid [6].

Let us give a brief description of our housing market model. Our model has various differen-
tiated apartments and one composite commodity. Section 2 will start with a general formulation,
while referring to some preceding works on the existence of a competitive equilibrium. There the

1 cf., also Sweeney [23], Ohls [20] and Arnott—Braid [2].
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households are allowed to have different utility functions. Then we assume that every household
has the same utility function, and make a few specific assumptions on the utility function, e.g.,
the normality of apartment qualities. Although the households have the same utility function,
they may have different incomes, which cause their different behaviors of housing consumption.

With the above specifications, we focus on a certain system of equations, which we call the
rent equation. Its solution is adifferential rent vector. It can be regarded as representing com-
petitive rents in our model: Section 2.3 gives sufficient conditions for the equivalence between a
differential rent vector and a competitive rent vector. Its basic logic is the same as Ricardo’s [19]
and Alonso’s [1] argument of differential rents. Technically, it is also corresponding to the enve-
lope curve of the bid—offer curves in the bid—offer model (e.g., Fujita [7, Section 3.6] Braid [5]
and Gerber [9]). In our comparative study, we will consider a differential rent vector as a proxy
of a competitive rent vector.

We should mention the two key concepts to determine the rent equation:

(i) themarginal category, f, of apartments;
(i) the boundary household, G (k), of each category;, of apartments.

Recall that the apartments are classified into a finite number of categories. The marginal cate-
gory corresponds to the marginal land in the Ricardian argument. We put richer households into
better categories of apartments, and then the boundary household in each category has the lowest
income in the category. In fact, this is a result in competitive equilibrium. Thus, this bound-
ary household is endogenously determined. The income level of the boundary household in a
category is called thioundary income of the category.

In Section 2.3, the rent equation will be formulated, using the marginal category and boundary
households, and it states that the boundary household of each category is indifferent between an
apartment in his category and one in the one-rank lower category.

Now we are in a state to describe our comparative statics results. As mentioned in the begin-
ning of this introduction, our concern is not a particular cause—effect form of comparative statics;
instead, it is the consideration of certain general properties of the behavior of a differential rent
vector with changes in the boundary incomes. We will focus on the boundary income of each
categoryk. Now, let I, be the boundary income of categdryandr, the rent in category.
Suppose thalg k) andr; change into new onef%(k) andr,. The rent difference®, — r; are inti-

mately related to the boundary income diﬂereni@@ — Ig k). Our comparative statics results

will be stated in terms of these differences. Note that r; andfg(k) — Igx) are endogenously
determined in equilibrium.

The incomes of households.1.,m are ordered in the descending way, i&.> Io > ---
> I, > 0. Two cases of changes in the boundary incomes are considered:

D Iga — I

2 gy — o1
) 1ga) — Il < g

=
< -1 —lor-v-

Recall thatf is the marginal category of apartments. In case (1), the boundary income difference
is larger for a better category of apartments; and the opposite in (2). In these two cases, the
comparative statics results between the income and rent differences exhibit a dual structure.
By a dual structure, we mean that a comparative statics proposition for (2) is obtained from a
proposition for (1) by replacing the inequalities with the opposite inequalities, and vice versa.
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In Sections 5 and 6, we will give various theorems on comparative statics, which have duality
properties.

In Sections 3 and 7, we will exemplify the model and some theorems in a rental housing
market of the residential area along the Chuo railway line in Tokyo. In those examples, we
consider not only numerical examples but compare the computational results of rents with the
data form the Chuo railway line. We consider how the numerical calculation fits to the data.
Using those numerical examples, we illustrate our comparative statics results.

Some results in this paper are restatements already found in a more specific model in
Kaneko [15], though we follow his specification in the numerical example. The present paper
gives a better discourse of the rental housing market with indivisibilities than [15].

The paper consists of eight sections including this introduction. In Section 2, we will provide
a basic framework and state basic results. In Section 3, we will start an illustration of a rental
housing market example in Tokyo. In Section 4, we will formulate comparative statics and men-
tion one basic theorem for comparative statics. In Sections 5 and 6, we will give various theorems
on the dual treatments of the rent differences. In Section 7, we will give more explanation the
numerical example given in Section 3 and will illustrate some comparative statics results. In Sec-
tion 8, we will conclude this paper with some remarks on future possible researches as well as
generalizations of certain results obtained in this paper.

2. Rental housing markets

We begin this section with a general formulation of a rental housing market model as well
as that of competitive equilibrium. In our comparative study, we will not directly use compet-
itive equilibrium, but will adopt adifferential rent vector and therent equation. Nevertheless,
their definitions need a precise description of a housing market model as well as that of compet-
itive equilibrium. We will give certain sufficient conditions for a competitive rent vector to be a
differential rent vector.

2.1. General formulation

Therental housing market model we consider is denoted liy/, N). The first symbol is the
set ofhouseholds, {1, ..., m}, each of whom looks for one unit of an apartment, and the second
symbol N is the set ofandlords, {1/, ..., n’}, each of whom supplies some units of apartments
to the market. The apartments are classified ihtcategories, 1, ..., T. TheseT categories of
apartments are interpreted as potentially supplied. If no confusion is expected, we would use the
word “apartment” for either one unit or a category of apartments.

Each household € M wants to rent at most one apartment (for a given period of time).
He chooses a consumption bundlg, ¢) from the consumption set := {0,el, ..., e’} x Ry,
where eacle® is the unit7-vector with itskth component 1 an®&., is the set of nonnegative
real numbers. The inclusion of vect@rmeans that householdmay not rent an apartment in
this market. We denote the zero vecddoy €°. A typical elementét, ¢) means that household
rents one unit of théth category of apartments and enjoys the consumptier/; — p; of the
composite commaodity after paying the rentfor the one unig* from hisincome 7; > 0.

Each household € M has the initial endowmen@&®, 7;) with 7; > 0. That is, household
with income/; looks for an apartment. Also, each househdhés autility function u; : X — R.

First, we make the following assumption:
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Assumption A (Continuity and Monotonicity). For eachi € M andx € {€°, €', ..., e’} u; (x;, ¢)
is a continuous and strictly monotone functiorcoindu; (€2, I;) > u; (e, 0) fork =1,..., T

The last inequalityy; (€°, I;) > u; (X, 0), means that going out of the market is preferred
to renting an apartment with no consumption. This is just a boundary condition. Here we do
not specify the urban structure of a housing market, and will use the utility fungtionhich
will later be assumed to satisfy more assumptions. Nevertheless, the utility functi®nather
regarded as derived from a larger utility function with more urban economic variables. This will
be discussed in Section 3.

Next, we will formulate the suppliers of apartments. Since the supply side plays a little role in
this paper, we simplify this side of the model. Although we adopt the story of production, it can
be translated into an exchange economy, which will be explained later.

The set of landlords is given 86= {1/, ..., n’}. We assume that each landlgrd N provides
apartments in one category, sayand has a cost functiofi;(y;) : Z — R4 with C;(0) =
and C;(1) > 0, whereZ. is the set of nonnegative integers. The cost to prowpemlts of
apartments of theth category isC; (y;). No fixed costs are required when no units are provided
to the market.

As far as competitive equilibrium is concerned, we can asswitieout loss of generality
that only one landlord j provides apartments in thigh category. Hence, the sat becomes
{1,..., T}, and landlordk € N is the only landlord providing théth apartments. The reason
for this reduction is as follows: L&V, be the set of landlords in the origin&l to provide some
units of thekth category. We can combine the cost functi¢dis} ;< v, into the one cost function
Cy : Z+ — R defined by

Cr(yp) = min{ Z Ci(yj: Z yj=yrandy; eZ  forall j e Nk}
JENK JENK

for eachy; € Z.,. Thisk is regarded as thespresentative landlord providing théth apartments.
From now onN is assumedto bfl’, ..., T'}, and landlordk € N is the only landlord providing
thekth apartments.

We are dealing with the problem of dwellings. Thus, the cost function represents operating
costs. The marginal co€¥ (yx + 1) — Cx (yx) is the operating cost newly incurred for the landlord
when this additional unit is leased to a household. If the rent is higherdhan + 1) — Ci (vr),
then it would be better to lease this unit, but otherwise, it would be better to keep the unit.

We assume:

Assumption B (Convexity). For eachk € N,

Cekk+D —Cr ) < Ck(k +2) = Cr(yk +1) forall yr e Z,.

This is a discrete version of the standard convexity assumption on a cost function, and means
that the marginal cost of providing one additional unit is (weakly) increasing.

2 This means that as far as the price taker behavior is assumed, “many landlords” can be reduced into “one landlord.” Of
course, the justification of price-taker behavior itself needs the assumption of “many landlords.” However the assumption
of one landlord for one category simplifies our notation.
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Under these assumptions, we have a competitive equilibrium(Let, y) = ((p1, ..., pr),
(X1, -+, Xm), 1, ..., yr)) be atriple ofp e RT, x e {€°, €', ..., €’} andy € ZT. We say that
(p, x, y) is acompetitive equilibrium iff

Utility Maximization under the Budget Constraint. For alli € M,

(1) I; — px; =0, wherepx; = Y {_; prxik;
(2) ui(xi, I; — px;) > u;(x], I; — px]) forall x] € (€, ¢el,... ey with I; — px; = 0.

Profit Maximization. Forallk =1,..., T, pryx — Ck (k) = pry, — Ci(y;) forall y; € Z,,..

Balance of the Total Demand and Supply. 3"y, Xi = S1_; wieb.

These conditions constitute the standard notion of competitive equilibrium. Notice that the left-
hand side of the Balancedness condition is the surfi dimensional vectors. However, since
eachy; of the right-hand side is an integer, we multiply it with the unit veefgrthus both sides
have the same dimensidn

The above housing market model is an extension of the “assignment market model” of
Shapley—Shubik [21] in the two respects that we allow the utility functign® have income
effects and that a landlord may provide more than one unit of apartments. The former respect is
crucial in this paper. Kaneko [14] and Kaneko—Yamamoto [13] proved the existence of a com-
petitive equilibrium for this housing market model.

Theorem 2.1 (Existence) Thereis a competitive equilibrium (p, x, y) in (M, N).

The purpose of this paper is to study not general properties of equilibrigm,iv) but more
specific behavior of a competitive rent vector. Specifically, we target to study comparative statics.
For this reason, we need to specify our housing model more.

We say thatp = (p1, ..., pr) is acompetitive rent vector iff (p, x, y) is a competitive equi-
librium for somex € {€°, €', ..., e’} andy € ZL. Also, we say thap = (p1,..., pr) is a
maximal competitive rent vector iff p > p’ for any competitive rent vectgs’. A competitive
equilibrium(p, x, y) is called anaximal competitive equilibriumiff p is maximal. In the parallel
manner, we can define a minimal competitive rent vector and a minimal competitive equilibrium.
In this paper, we will focus on a maximal competitive rent vector, though we can adopt a minimal
competitive rent vector for our study of comparative statics.

By definition,a maximal competitive rent vector would be unique if it ever exists. In a stand-
ard equilibrium model, the existence of such a price vector could not be expected. However,
we have the existence of a maximal competitive rent vectogMi) N). This fact has been
known in slightly different models since the pioneering work of Shapley—Shubik [21] and Gale—
Shapley [8]. A result close to the following theorem is found in Kaneko [15] and Miyake*[17].
The proof of this theorem will be provided upon request.

3 A similar existence result was obtained by Gerber [9], using a bid—offer model close to the literature of urban eco-
nomics.

4 In the literature of assignment games, it is shown that the core of a two-sided assignment market has the specific
geometric structure that the core has the maximal and minimal payoff vectors for one side of players. Also, it holds
that the core is equivalent to the set of competitive allocations in a typical assignment market, though this equivalence
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Theorem 2.2 (Existence of a Maximal Competitive Rent Vectdrpereisa maximal competitive
price vector in the housing market model (M, N).

It is also shown in the same manner that a minimal competitive rent vector exists. Neverthe-
less, we will use only the maximal one in the subsequent discussions.

2.2. Secific assumptions on the rental housing market (M, N)

In this section, we give more specific assumptions particularly on the utility functions of the
households in order to facilitate our study of comparative statics.
First, we order the households by the order of incomes, that is,

h>z2h>--->21,. (2.1)

This is simply a renaming of households.
The following is a substantive restriction:

Assumption C (Identical Utility Function). u; (-, ) = u;(-,-) foralli,i’ € M.

We denotey; (x;, ¢) by u(x;, ¢) by eliminating the subscript Households may still behave
differently since they have different incomes and since the utility funation, ¢) may admit
income effects. In the context of urban economics, Assumption C is interpreted as meaning that
every household commutes to the same office area. It excludes the situation with two or more
office districts to one of which each household commutes. Indeed, when a housing market has
two or more office districts, only the households who commute to the same business district have
identical utility functions. This extension will be discussed in Section 8.

Assumption C is almost indispensable in that without it, our comparative statics results would
be too complicated to be operational. We may extend some of our results to an economy without
Assumption C, which will be remarked in Section 8.

Some general theorists may criticize Assumption C as too restrictive. However, the aim of
this paper is not to discuss general properties such as the existence and/or Pareto optimality of
an equilibrium, but to study more concrete properties. From the viewpoint of such a research, if
there are no positive reasons for differences in utility functions, it would be better to assume the
identical utility function among the households of commuting to the same business district.

We impose also the following two assumptionsuan, -).

Assumption D (Substitutability). If u(x;, c) > u(x/, ), thenu(x;, c) = u(x;, ¢’ 4 &) for some
5§ > 0.

Assumption E (Normality). If u(x;,c) = u(x],c’) andc < ¢/, thenu(x;, c 4 8) > u(x, ¢’ + 8)
for anyé > 0.

Assumption D may be interpreted as meaning that the variety of apartmegits i¥) is not
so large that the difference between any two apartments may be compensated by an increase

requires each landlord to produce at most one unit in the model of the present paper (see Kaneko [14]). The existence of
a maximal rent vector is expected from these facts. Indeed, our housing market keeps this property for the competitive
rent vectors.
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in consumption. Assumption E is the normality assumption on the qualities of apartments. Its
premise states that the apartmepis better than/, and the claim is that if consumption in-
creases by the same magnitde better apartment is preferred to a worse one. Assumption E
will play a central role in the study of this paper.

Assumption E is the same as the standard normality assumption in that when the income of
a household increases, his demand shifts to a better apartment or remains the same. This will
be stated as the property of a competitive equilibrium in Lemma 2.3(2), rather than the demand
function. Indeed, the assertion can be rewritten for the demand function.

The other direction oB in Assumption E holds: lfu(x;,c) = u(x},¢’) andc < ¢/, then
u(xi,c —8) <u(x;,c" —8) foranyés (c > 8 > 0). Indeed, we can prove its contrapositive as
follows: Letc < ¢’ andu(x;, c — 8) > u(x],c’ — &) for somes (c > § > 0). Then, by Assump-
tion D, we haveu(x;, c —8) =u(x!, ¢’ — 8§ 4 §') for somes’ > 0. Sincec — 8 <’ — 8§ + &', we
haveu(x;, ¢) > u(x], ¢’ +48') > u(x], ¢’) by Assumptions E and A.

We assume that the apartments are ordered as follows:

Assumption F (Qualities of Apartments). u(et, 0) > u(€?,0) > --- > u(e’, 0).
Under Assumption F, the qualities of the apartments are unambiguously defined. Nevertheless,

this is to avoid unnecessary complications in the presentations of our results and arguments for
them. If we replace the strict inequalities by weak inequalities, this would be simply a renaming

of the apartments. It is only a restriction that there are no indifferences i), ..., (€', 0).
Note that Assumption F together with Assumptions A, D and E imply:
u(el,c)>u(e2,c)>-~>u(eT,c) forall¢>0. (2.2)

This is verified as follows: Since(€, ¢) > u(€,0) > u(¢+1, 0) by Assumptions A and F, we
have, by Assumption Dy (€, 0) = u(¢*1, d) for somed > 0. By Assumptions E and A, we
haveu(€,c) > u(€*1, c +d) > u(@*l,c). Thus, (2.2) is equivalent to Assumption F. This fact
will be used without reference.

Note that Assumption F or (2.2) does not mean that the apartments are ordered by the distance
to the central office district. In fact, the above model has a large freedom to include various urban
structures. A numerical example for our rental housing market will be discussed in Section 3 and
Section 7.

Some reader may think that the combination of the identical utility function (Assumption C)
and normality assumption (Assumption E) could be more restrictive than what appear, in appli-
cations of our model to more concrete urban economies. For example, it might be suspected that
the combination could imply separability of urban economic variables in the utility function. We
will consider two examples about this problem in the end of Section 3.

2.3. Therent equation and the differential rent vector

We will provide a system of equations, which we will call tteat equation. The rent equation
determines a unique rent vector if a boundary condition, e.g., a rent for the marginal category, is
given. We will call this vector alifferential rent vector and will directly consider a differential
rent vector rather than the maximal competitive rent vector in the subsequent discussions. In this
section, we will give certain sufficient conditions for the maximal competitive rent vector to be a
differential rent vector.
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To define the rent equation, we need some lemmas, a definition and an additional assump-
tion. First, we show that in equilibrium, (1) a better apartment is priced higher than a worse one;
and (2) aricher household rents an apartment of a better or equal quality. As stated after Assump-
tion E, the second assertion is interpreted as meaning that the apartment qualities are regarded as
normal goods, though it is not stated in terms of the demand function.

Lemma 2.3. Let (p, x, y) be any competitive equilibrium.

(1) If k' < k and x; = €* for some i, then py > pi;
() Ifx; =€k, xy =€ and I; > I/, then k < k'.

Proof. We prove only (2), and can prove (1) similarly. LBt> I;;. Suppose, on the contrary,
k> k'. Thenpy > pi by (1). Sinceu(e"', I — pr) > u(e", I — py) by utility maximization,

we haveu(e'', I — pp) = u(€t, I — px +8') for somes’ > 0 by Assumption D. Les” = I; — I
Sincely — py < Iy — px < Iy — px +8' by prr > pr, we haveu(e'', I — pp +8") > u(e, I, —

e + 8 + 8”) by Assumption E. Hence, we havee', I; — pp) = u(e', I — pp + 8") >
u(€, L —pr+8 +8") =ué, I — pr +8") > u(, I — pr), where the two equalities follow
from §” = I; — I;; and the last inequality follows from Assumption A. This is a contradiction to
utility maximization for household atx; = . O

In the assertion (1) of Lemma 2.3, categéfymay be inactive in the sense that no units are
traded, while category is active. We rule out such a case, that is, we assume that there is a
categoryf dividing the apartments into the active categories and inactive ones: For any maximal
competitive equilibrium(p, x, y),

Assumption G. yy >0fork=1,..., fandy,=0fork=f+1,...,T.

We call f themarginal category. Then, by Lemma 2 .3(1), we have the following inequalities:

p1>p2>--->py. (2.3)

By Lemma 2.3(2), we can assume without loss of generality that the households go to cate-
gories 1..., T in the order of their incomes. That is, the highest income group is in category 1,
the second highest income group is in category 2, and so on. Assumption E (normality) is crucial
for this step.

We find the household with the lowest income in each active category. This household is
called theboundary household of this category. We introduce a function to express the bound-
ary households. Letp, x, y) be a maximal competitive equilibrium. We define the function
Gk) (k=1,...,T) by

k
Gky=Y y fork=1,...T. (2.4)
t=1
This G (k) is the accumulated number of units up to itk category. Wheik < f, G (k) corre-
sponds to the household with the lowest income in the group of catégoey, he is the boundary
household in category. Whenk > f, there are no corresponding boundary households in cate-
goryk.

Although the maximal competitive rent vector is unique, there may be multiple maximal com-

petitive allocations. The boundary househdl¢) in each category depends upon the choice of
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a maximal competitive allocation, but this does not cause any problem because of the uniqueness
of the maximal competitive rent vector.
Now, we can present the main tool for the subsequent discussions.

Definition 2.4. We call the following system of equations ttest equation:

u(@ Iy —rp-1) = u(el lo-n = ry),

u(€ 2 Ig(r-2 —ry-2) = u(e/ "1 Io(s-2) —ry-1) (2.5)

u(el, IG(l) — V]_) = u(e27 IG(l) - 72)-

These equations have unknown variabigs .., ry. We say thatry, ..., ry) is adifferential
rent vector iff it is a solution of the rent equation. Under our assumptionsyifs given with
u(er,0) <u(e’, Igr—1) — ryr), then(ra, ..., ry_1) is uniquely determined, i.e., the uppermost
equation gives y_1, and the second uppermost one givesy, and so on. We write this result
as Lemma 2.5. However, when is not fixed, there are many differential rent vectors.

Lemma 2.5. Let r be given with u(er,0) <u’, Igr-1) — r%). Then the rent equation has a
unique solution (r1, ..., ry) with r = r¥. ’

As already stated, the rent equation (2.5) is reminiscent of Ricardo’s [19] theory of differ-
ential rents of farm lands around a city. It is argued that the absolute rent is determined by the
agricultural productivity of the marginal land, and then that the rent of a land closer to the city is
higher, reflecting its advantage in transportation to the city. A similar structure is found in (2.5).
Suppose that the ren} in the marginal category is given. The uppermost equation of (2.5)
makes the boundary househdld f — 1) of categoryf — 1 indifferent between the apartments
in f —1andf atthe rents,_; andry. The advantage of — 1 over f is reflected in the differ-
ence between;_; andr. Since the utility function has income effects, richer people succeed
in obtaining better apartments. The other equations of (2.5) are considered from the view points
of the boundary households(f — 2), ..., G(1).

A similar argument is found in the literature of urban economics: The land rents form an
envelope curve of the bid—offer curves of individual households, e.g., Alonso [1], Muth [18],
Braid [6] and Gerber [9]. The differential rent vector defined by (2.5) can be regarded also an
envelope curve of the rent vectors determined by the boundary househdds.., G(f — 1).

We can guarantee the maximal competitive rent vector to be a differential rent vector under
certain conditions. These conditions look slightly restrictive, but differential rent vectors can
be still regarded as good approximation of the maximal competitive rents. In the subsequent
analysis, we will adopt a differential rent vector as a representative of a competitive rent vector.

Theorem 2.6 (Condition for the Rent Equationlet (p, x, y) = ((p1, ..., pr), x, y) be a maxi-
mal competitive equilibrium. If at least one of the following (1) and (2) holds:

(1) Iewy =Icw+1foreachk=1,..., f —1;
() pr <Cr(k +1) — Cr(y) foreach k=1, ..., f —1,

then (p1,..., pyr) is a differential rent vector, that is, the differential rent vector (r1,...,ry)
determined by r r = p coincideswith (p1,..., py).
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A merit of this theorem is as follows: We talgg: as given, which is endogenously determined
by a maximal competitive equilibrium. Then, under conditions (1) and/or (2), the relevant part
of the maximal competitive rent vector satisfies the rent equation (2.5). By the argument before
Lemma 2.5, we can calculate the maximal competitive rgfts. ., pr_1. In the application to
real data in the Tokyo area in Section 7, the rgptof the marginal category is also estimated
from the real data.

Condition (1) states that the inconig, of the last household in theth category coincides
with the incomelg)+1 of the first household in thé + 1)th category. When the number of
households is large and their incomes are distributed in a (relatively) continuous manner, (1)
holds approximately. In this case, a differential rent vector is an approximation of the maximal
competitive rent vector.

Since(p, x, y) is a competitive equilibrium, it hods generally that

Cr(yi) = Cek — D < pr < Cr (e + 1) — Cr ().

In addition to this, (2) requires the right inequality to hold strictly. According to the interpretation
of a rental housing as a dwelling, apartments are already built and new units are costly. Condi-
tion (2) is naturally applied to this case. We will use this case in our application to numerical
examples in Section 3 and Section 7.

It is easy to prove case (1), but (2) needs a longer proof. A proof of (2) will be given in
Appendix A. Here, we consider only (1). Recall th@atk) is the last household living in theth
category ands (k) + 1 is the first household living in thé + 1)th category. It holds by utility
maximization for households (k) andG (k) + 1 that

u(€, Iowy — pi) = u(e, Iy — pey1) and

u(é, Ig+1 — pra) = u(€, Iowy+1 — pr)-

By condition (1), these hold with equalities, i.e., the rent equation holds.

When neither (1) nor (2) holds, the maximal competitive rent vector may fail to satisfy the
rent equation (2.5). This is shown by Example 2.7. Moreover, even under (2), a competitive
rent vector may not satisfy the rent equation, but it holds generally that each left-hand side of
(2.5) is greater than or equal to the corresponding right-hand side. It is the point of (2.5) for
each line to hold with equality. Under condition (1), any competitive rent vector satisfies the rent
equation (2.5). When the market is close to perfect competition, (1) holds approximately. Hence,
a differential rent vector may be a good representative of a competitive rent vector.

We have emphasized the similarity of the rent equation to the Ricardian theory of differential
rents of farm lands around a city. In the Ricardian theory, the rent of the marginal land is deter-
mined by agricultural productivity of the marginal land. Similar to this, the marginal category of
apartments are slightly different from the other categories. The determination of markg} rent
is related closely to the rent of farm land. For the categogy f, apartments are dwellings, and
the marginal cos€y (f + 1) — Ck (f) is interpreted as operating costs, which is typically smaller
than the market rent,. However, in the category, new apartments are possibly supplied by
transforming farm lands into residential lands. In this ca5€ 4+ 1) — C(¢y) is calculated as
the monthly value of the production (+operation) cost. This remark will be relevant the treatment
of ry in Sections 5 and 6.

Example 2.7. Suppose that there are only two households 1 and 2. Let their utility function
u(x, c) be given as

u(x,c)=hy+/c fork=1,23,



M. Kaneko et al. / Journal of Urban Economics 59 (2006) 142-170 153

whereh1 = 10, h = 7 andhs = 3. Also, let/; = 100 andl; = 52. Assumep; = 51 andp, = 25.
Under these rents, household 1 rents apartment 1, and household 2 rents apartment 2. Indeed,

u(et, Iy — p1) = 10+ v/100— 51= 17> u(€*, I — py)

=7+ +/100— 25=1566..., (2.6)
u(€, I — p1) =10+ /52— 51=11< u(€?, I — py)
=7++/52—-25=1419.... 2.7)

Suppose that there are two landlordsatid 2 such that 1has two units with valuation 51 for
each unit andZhas two units with valuation 25 for each. Then the above competitive equilibrium
is maximal and, in fact, is minimal, too. In this economy, the rent equation corresponds only to
(2.6), which fails to hold with equality.

We are focussing on the maximal competitive rent vector and differential rent vectors for
(2.5). Instead of the maximal one, we may focus onrtileimal competitive rent vector. With
the modification of (2.5) with the replacement of the boundary incégg by I «)+1 for k =
1,..., f —1, the above argument could be carried over to the case of minimal competitive rents
and differential rents. It follows from this consideration that under condition (1) of Theorem 2.6
holds, if the competitive renp » for the marginal apartment is uniquely determined, then all the
rents are uniquely determined. Incidentalty, might be determined by the farm land rent, and
it could be considered to be determined uniquely.

3. Application to a rental housing market in Tokyo (1)

In this section, we exemplify our theory by an application to a rental housing market in Tokyo.
This application will be continued in Section 7.

Consider the JR (Japan Railway) Chuo line running from Tokyo station to the west direction,
along which residential areas are spread out. See Fig. 3.1. The line has 24 stations from Tokyo
station up to Hachioji station, which is almost on the west boundary of the Tokyo great metropol-
itan area. Here, we consider only a submarket of the entire market. That is, we take 5 stations
and 4 types of sizes of apartments. Now, we explain how we formulate this submarket by means
of a housing market modéM, N).

Look at Table 3.1: We take 5 railway stations, near which four sizes of apartments are sup-
plied. The first column of Table 3.1 shows the time distance from Tokyo station to each railway
station, i.e., 1828, 35, 41 and 53 (minutes). It is assumed that people commute to Tokyo station
(office area) from their apartments. The first row of Table 3.1 designates the sizes of apartments.
These intervals are represented by the median83.55 and 75(m2), which we plug into a

Yamanote line

53 min. 28 min. 18 min.

41 min. 35 min.

UTokyo Sta.

Fig. 3.1. Chuo line.
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Table 3.1
Time (min) Size f12)
<25 25-45 45-65 65-85

18:Nakano 15 ® 1204 10 6® 780 5 13M® 250 1 1929 113
28:Mitaka 17 -151 608 12 460 391 7 1089 197 2 1709 63
35:Kokubunji 18 —305 373 13 315 229 8 935 77 3 1555 20
41:Tachikawa 19 —437 362 14 18 316 9 81 91 4 1423 30
53:Hachioji 20 —701 689 16 -81 234 11 53 137 6 1159 30

utility function® Thus, the apartments are classified ifite= 5 x 4 = 20 categories. When we
consider data of apartment supplies, each apartment is classified into one category.

Before having the utility functiom : X = {€°, e!,..., €%} x R, — R in the sense of Sec-
tion 2.2, we assume that the households have the conambnutility function as follows:

Ut,s,c) =—2.2t +3.1s + 80/, (3.1)

wherer takes possible values 133, 35,41, 53 ands takes values 0135, 55, 75, andc is the
expenditure to consumption measured by thousand yen, ecgs £00,000 yen, then = 100.
Calculating—2.2r +3.1s, we haveh; (k =1, ..., 20) in the legendik [ 7 [ wy |of Table 3.1. The
first k representing the quality rank of a category is determined &y + 3.1s. For example, the
term —2.2¢ + 3.1s takes the largest value &t s) = (18, 75), and thus, the label of the category
is k = 1. Up tok = 4, this order follows the distance to Tokyo Station. But it takes the 5th
value at(z, s) = (18, 55) and the 6-value at53, 75), where it is more important to decrease the
commuting time than to have a larger size of an apartment.

The labeling of categories is denoted by the first nunibafrthe each cell of Table 3.1. Based
on this correspondence, we defineX — R

u(et, c) = hy + 80y, (3.2)
wherehy = —2.2¢ + 3.1s for k > 1 andhg is assumed to be 500, i.e.u(e%, ¢) = ho + 80/c =
—500+ 80,/c.

In the formulation given in Section 2.1, househaldchoosesk to maximize his utility
u(ek, I, — pr) with I; > pr. From the viewpoint of the basic utility function of (3.1), this can be
expressed as the choice(@fs) to maximize

Ut,s, I; — prars)) = —2.2 + 315 + 80y/I; — pir,sy With I; 2> pig.s)s

wherek(z, s) is the category corresponding tq s).5-7

The derived utility function in (3.2) satisfies Assumptions A and C-F. The concavity.gt80
corresponds to the normality assumption (Assumption E).

The third entryw, of the legend of Table 3.1 is the number of units for sale listed in the
housing information servicehe Yahoo Real Estate (15, Dec. 2004). Suppose that only those

5 The first interval is taken from 5 to 25. In the Japanese standard, one-room apartments are categorized into this class.

6 I1f —2.2t +3.15 = —2.2/ + 3.15’, then it suffices to some tie-breaking rule.

7 In Japan, commuting costs are usually provided by a company. Therefore, commuting costs are not included in the
budget constraint of a household. However, this custom is not necessarily found in other countries. The other case was
analyzed more typically in the urban economics literature, such as Wheaton [27], Hartwick et al. [10], Braid [5] and
Arnott et al. [3]. Haurin [11] and White [28] discussed the comparisons of surpluses for companies in different subsidy
systems.
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units appear on the market and no units are newly built. Then, the cost fulitiop) may be
formulated as

Cr(yr) = {

Ck Yk if ye < wy

3.3
“large” if yx > wy, (3.3)

where “large” is a number greater th&n That is, landlord has the reservation price (operating
cost) ¢, for all units he provides, but the cost to build a new unit is very large relative to this
housing market. This satisfies Assumption B.

The numbenw, of apartment units in categoky(k =1, ..., 20) for sale is taken for a given
period of time, say, two weeks, frothe Yahoo Real Estate. These units will disappear from
the market after that period. We assume that the same number of households are coming to the
market to look for apartments, and that all the units are traded in the end of the period. Therefore,
the total numbem of households on the market¥s2°; wy = 6194.

The remaining element of the housing market madél N) is the incomes for the house-
holds. We assume that the (monthly) income distribution adee {1,...,m} ={1,...,6194
is a uniform distribution from 10@00 yen to 9000 yen. Hence/g194 = 100,000 and
I; =900,000. In fact, this uniform distribution is just for calculation, and can be changed into
other distribution$.

Under the above specification of the housing market mostelN), we can calculate the
differential rent vector = (r1, ..., rpg) as in Table 3.2. This rent vecter= (r1, ..., rpg) iS
determined by the rent equation (2.5) witly = 49.6. In Section 7.1, we will explain how to
choose this»g = 49.6 and the particular utility function given by (3.1).

Table 3.2 gives the average repts= (p1, ..., p2o) of the data fronthe Yahoo Real Estate. In
Fig.3.2,r =(r1,...,r20) andp = (p1, ..., p2o) are depicted. The evaluation of the discrepancy
between- and p will be discussed in Section 7.1.

In the above numerical example, we have assumed the separable utility function of (3.2) (or
(3.1)), but our theory itself does not restrict to such a separable utility function. For example, we
can modify our utility function as follows:

u(ek, c) =hy+a(L —k)+/c, (3.4)

wherea andL are positive constants. This does satisfy Assumption E. In this utility function, an
apartment in a better category enhances the utility from consumption. However, Assumption E
is violated if it is modified to:

u(ek,c) =hk+a(L —t(k))\/z, (3.5)
Table 3.2
(1000 yen)
Time (min) Size f:2)

<25 25-45 45-65 65-85

18 : Nakano 15 s 739 10 1126 1121 5 1530 1624 1 1942 2095
28 : Mitaka 17 674 693 12 994 1016 7 1386 1413 2 1797 1839
35 : Kokubuniji 18 617 588 13 906 826 8 1286 1183 3 1695 1493
41 : Tachikawa 19 538 601 14 832 781 9 1200 1188 4 16Q7 1296
53 : Hachioji 20 46 54.6 16 704 737 11 1036 1051 6 1432 1221

8 Even if we change it to a truncated normal distribution, the calculated rents are not changed a lot.
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Fig. 3.2. Comparison.

wheret (k) is the commuting time (minutes) fo In this example, an apartment in a closer loca-
tion to the city center enhances the utility from consumption. One may think that “if a pleasant
downtown life calls for high spending, low income households may concentrate more on the sizes
and high income households more on the location of the apartment when judging its duality.”
This phenomenon is excluded from our analysis with Assumption E.

4. Thebasic comparative statics theorem

This section will formulate our comparative statics and will provide one basic theorem. This
theorem will be crucial in obtaining comparative statics results in Sections 5 and 6. We remark
that a particular comparative statics is not our focus; instead, we will focus on certain general
properties of the behavior of rent vectors when some changes occur in paratfiéteening
this remark in mind, first we explain our comparative statics.

We will consider the behavior of a differential rent vecto= (r4, ..., r¢) defined by (2.5)
when some parameters of the housing mackét N) change. Recall that a differential rent
vectorr = (r1,...,ry) is the representative of the maximal rent vectoe (p1, ..., pr) as
discussed in Section 2.3. We denote the market after those parameter changés Ny,
Throughout the following, we make Assumptions A—G on bath, N) and (1\71, JV). The un-
changed part and the parameters changes are as follows:

(0) the apartment categories.1., T and the utility functioru(., -) remain the same;
(1) the housethdM = {1,...,m} change intoM = {1, ..., m}, and the income$y, ..., I,
changeintdy, ..., I;

9 This is pointed out by a referee.
10 Representative papers in the standard comparative statics studies are Wheaton [27], Hartwick et al. [10] and Arnott—
MacKinnon-Wheaton [4].
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(2) the landlordsN = {1,..., T’} remains the same, but the cost functiafis change into
Cy(k=1,...,T).

A typical comparative statics takes a form of cause—effect in changes in one parameter and
the rents. For example in the urban economics literature, various forms of comparative statics are
found in, for example, Kaneko [15], Fujita [7, Section 3.6], and Braid [5,6]. We will not consider
this form of a particular cause—effect comparative statics, but will consider general properties of
the behavior of a differential rent vector when the housing maikety) changes intcéﬁ, ]V).

For this consideration, the relation between the rgriind the boundary incomg; ) of cate-
gory k plays crucial roles. Incidentally, the changes in the boundary incdmes ..., Ig(r-1
may be caused by ones in (1)—(2). We write the relevant changes explicitly:

(3) the marginal category changes intof; A
(4) the boundary incoméy; k) changes intdg,,, .

The boundary househofﬁ(k) may differ fromG (k).

In general, the income differencl%(k) — Ik is intimately related to the rent differ-
encery — ri, and these differences play the major role in our study. The following theorem is
basic, and also is suggestive for why we focus on income differefg@)s— I rather than
other parameters. This is a weaker form of the theorem given in a more specific environment in
Kaneko [15, p. 39, Theorem 5(i}t.

Theorem 4.1 (Basic Comparative Statics Theorefngt » = (r1,...,ryp) and7 = (71, .. ., ff) be

differential rent vectorsin (M, N) and (M, N). Let k bea category with 1 < k < min(f, f) — 1.
Then

Igw — Iow <Fe—ri ifandonlyif f —r < eya — riga. (4.1)

Notethat < in(4.1)canbereplaced by >, >, < or =.

The point of Theorem 4.1 is that the comparison of the rent differences at two neighboring cat-
egoriesk andk + 1 is reduced into that of the rent difference and the boundary income difference
of categoryk. The following equivalent form may be easier to understand:

Ig — Fc <o —re ifandonlyif 7 —feia <re —riga. (4.2)

That is, consumption is smaller in the new situation than in the original if and only if the rent
difference for those neighboring categories becomes smaller. Since categbiyg the reference
point to the boundary householé(k), he compares his utility from an apartment in category
with one in category + 1. The left-hand inequality of (4.2) means that his consumption in
categoryk decreases fortiori, his utility decreases. This is equivalent to the relative decrease
of the rent difference, which is expressed by the right-hand side of (4.2). For this equivalence,
the normality assumption (Assumption E) is essential.

From the above theorem, we will obtain duality results in comparative statics, which will be
the subjects of Sections 5 and 6.

11 Braid [5] obtained a similar result (differential equation (6) on p. 293) in a short-run housing market with a continuum
of housing qualities. Based on it, he considered various comparative statics results.
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Notice asymmetry betweeh andk 4+ 1 in (4.1) in that only the right-hand side of (4.1)
includesk andk + 1. This asymmetry is caused by the definition of the rent equation (2.5) with
the maximal competitive rent vector. If we adopt the minimal competitive rent vector, we should
have a comparison betwegn- 1 andk in the right-hand side of (2.5).

Proof of Theorem 4.1. (Only-If): Supposefg(k) —Iguy <P —r, i.e. IG(k) — g <Iggy — k-
Lets = (Igu) —re) — (IG(k) 7). Sinceu (e, iG(k) P = u(et1, IG(k) — Fre1) by the rent
equation(2.5) for (M N) we have, by Assumption E,

u(ek, 150 — rr + 8) > u(e(C , Ia(k) — Fry1+ 8). (4.3)
The left-hand side is written age, I, — rx), which equals ta(e*+1, I — ret1) by (2.5)
for (M, N). Hence,

u(€th Igwy — ris) = u(€ Igwy — Fresa +6). (4.4)

This and the monoton|C|ty (Assumption A) afon consumption implyg ) — ri+1 > IG(k)
Fre1+ 6. Thatis,ry — i < Frg1 — rest-
(If): Supposeg ) — Iow) > F — rv. Letd = (Igy, — Iow) — (F — ri). By the rent equation
for (M, N), we haveu(et, I; — ry) = u(eét1, I, — ry11), and then, by Assumption E aid> 0,
u(€, I —ri +8) > u(@*L I, —rp1+ 8). Thus, we have

u(e"“, I(;(k) —rp+1+ 5) < M(ek, IG(k) — Iy + 3)

=u(€. fggy — i) = u(€* Tggy — Fira).

where the last equality follows from the rent equation oF, N). By Assumption A, we have
Iy —ris1+6 < Igx) — Fr+1, which is equivalent té; — ry > Fg+1 — re+1. O

5. Duality in theincome and rent differences

This section will provide two theorems on the relationship between the differences of bound-
ary incomes and the differences of rents. These theorems will be considered in the two cases of
the changes in the boundary incomes. In these two cases, the relationship in the boundary income
differences and rent differences exhibits certain dual structures.

5.1. Differences of the boundary incomes

Throughout this section, we assume that differential rent veetess(ry, ..., ry) and7 =
F1, ..., ff) are chosen and fixed (@, N) and(A7I, ﬁ). Thus, the marginal categorigfsf and

boundary households (k) (k < f), G(k) (k < f) are determined. We also assurfie< f.
In the following, we will consider the two cases:

IG(l) —Igu 2 10(2) —Ig 22 1g-1 — Io(r-), (5.1)

Igay — o <lga — oo <+ <Igys_1 — lo(r-1- (5.2)

The inequalities of (5.1) mean that the difference of the boundary incomes for a better category is
larger than that for a worse category. Those of (5.2) are opposite inequalities. When the boundary
incomes increase at a constant rate, (5.1) holds, and when they decrease at a constant rate, (5.2)
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holds. One may think that when incomes increase, (5.1) is more likely than (5.2). However, even
when incomes increases, changes in the supplies and/or demands of apartments may make (5.2
hold—a numerical example will be given in Section 7.

Neither of (5.1) and (5.2) might be expected since the changes in the boundary income dif-
ferences are caused by those in the basic parameténg,a¥). The subsequent consideration
could be applied to such a case by focussing on a segment of the sequence of the boundary
income differences. Indeed, we divide the sequence

Iz —Iew. g —16@: - Ig(p—1) — Io(f-1)
into thek segments of the form:

Iga) — I, -+ 1gay — loan )

w1 — lea+ns - 1gay — leun)s

a1+ — lowa+n, - Igay — Loan}

so that each segment is alternatively ascending or weakly descending, ite= for.., k — 1,

it Igg, 41— It 1+ < <1gg,y — Lo

then Igg,1) —loa+n = 2 154, — 600

it 150, 141 — I6G1+D) = 2 154, — lou:
then Igq, 11— loa+v < - <1gu, — lca. -

This partition is obtained as follows: Whéa(l) —Igq < 10(2) — Ig(2), we letl] as the largest
number so thalG(l) —Igy <---< IG<11) IGqy)- Then, we lef be the largest number so that
To4,41) — Iow+n) > - IG(I )~ 164y, and so on. Wheilgy, — Io) > Ig) — Io@, we
start with the weakly descendmg segment, and so on.

The subsequent results hold for each segment by regarding it as the sequence of (5.1) or (5.2).
An example with two segments will be given in Section 7.

5.2. Shapes of rent differences
Now, we have the following theorem.

Theorem 5.1 (Upward and Downward Inheritance Theorerngt » and 7 be differential rent
vectorsin (M, N) and (M, N). Letk beaninteger with1 <k < f — 1.

(1) (Upward Inheritance)Jnder (5.1),
(a) fk+1 — Ikl < fk — Ik impliesfk — I < fk_j_ — T << f]_ —r1;
(b) fk —rg < fk+1 — I'k+1 impliesfk+1 — I << ff —rf.
(2) (Downward Inheritance)Jnder (5.2),
(@) Pk — 71k > Frp1 — rep1 IMPli€S gy — g1 > -+ > Fp — 71y
(b) fk+1 — Ik+1 > fk — Ik impliesfk — Ik > fk_j_ —Ff—1 > > f]_ —r1.
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Under (5.1), if the rent difference in categadrys larger than that in categoky+ 1, the same
inequality is inherited in the inner direction, and if the opposite inequality holds, the inheritance
goes in the outer direction. The results of (2) are dual to those of (1), as condition (5.2) is the
dual of (5.1).

Proof of Theorem 5.1. We show (a) of (2). In the dual manner, we can prove the others. Let
[ be an arbitrary category with <! < f — 1. It suffices to show that; — r; > 711 — 1141
implies 711 — rj41 > Fi42 — r142. SUPPOSe; — r; > 7141 — ri+1. By Theorem 4.1, we have
IA@(Z) —Igq) > ;1 —r;. By (5.2) andry — ry > i1 — ri41, We have

I@(H—l) —Iguyy 2 I@(Z) —Igq > Pl —r] > Fe1 — a1

It follows from this and Theorem 4.1 that,1 — rj41 > Fjp2 — 142, O

We have the following theorem on the rent shape as a consequence of Theorem 5.1, which
exhibits also duality.

Tﬂeoiem 5.2 (Rent Shape Theoremlet r and 7 be differential rent vectorsin (M, N) and
(M, N).

(1) (Convex ShapelJnder (5.1), thereare ky and k2 (1 < k1 < k2 < f) such that
(@) Fr—r1> > Fky — 1y
(b) fkl — Tk = =fk2 — Tkys
(©) Fry—riy <---<Pp—ry.

(2) (Concave Shapelinder (5.2), therearek; and k> (1 < k1 < k2 < f) such that
@ Ffi—ri<--<Frg—rigs
(b) ;kl — Tk =" :;kz — Tkys
(C) sz —Tgy > > ff —ry.

In (1), the rent differences form a convex shape, and in (2), they form a concave shape. If
ko = 1, the rent differences are just increasing in (1) and just decreasing in )=k, = f,
we have oppositely monotone sequences. In either (1) or (2), there may be both increasing and
decreasing segments. The theorem also states that the segments of constant differences may be
possible, but such segments are rare cases, since small perturbations of some parameters, e.g..
incomes, destroy these segments, which will be discussed in detail in Section 6.

Proof of Theorem 5.2. We show (2), and (1) can be proved in the dual mannerkLéte the
largest number amongs satisfyingr1 —r1 < --- < 7y — rg. If 71 —r1 > 72 — rp, thenky = 1.
Let k> be the largest number amok satisfyingry, — ry, = - -+ = 7 — rr. Thiskz may bek;
or f. The definitions of1 andkz imply (a) and (b). By the choice df,, we havery, — ry, >
Fro+1 — 'kp+1. IN the former case, by Theorem 5.1(2), we have (c).

The cases (1) and (2) of Theorems 5.1 and 5.2 exhibit the dual structure with the opposite
inequalities. It is the point that we have only these two types of changes.

Naive forms of the above theorems were found in Kaneko [15]. Specifically, Theorems 5.1(1)
and 5.2(1) are generalizations of the corresponding results in a more restricted environment
in [15]. However, the dual structures are not touched at all.
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The above two theorems can be used to have more concrete comparative statics. Here we give
only one instance. The following is a comparative statics result when only the marginal cost for
the marginal category goes up under the assumption that the other parameters are all fixed. The
increase in the rent of the marginal categgrys interpreted as expressing the increase in costs
for providing apartments in the marginal categgtythat is,ry < 7. For the interpretation of
costs for apartments in the marginal categgrysee the paragraph before Example 2.7.

Corollary 5.3. Let (M, N) and (M, N) be two markets with f = f and Igq) = I, for k =
1,...,f —1 Letr and 7 be the differential rent vectorsin (M, N) and (M, N) with r < 7.
ThenO<7ii—ri<---<Fyp—ry.

Proof. By the rent equation (2.5), we hauge/ 1 IG(f 1y —rr1)=u(©, Ig -1 —ry). Let

) _ff—rf Thenu(e/" I(;(f H—rf- 1—98) < u(e Ig(f—1)—rf—9) _u(ef IGf- 1)—rf)
Sinceu(e/ 1, Ig(r—1) — rf 1) = u(ef I(—1) — 7r), we have, by Assumption AlG(s—1) —
re—1— 98 < Ig(r-1 — rf _1, i.e., rf_l —rf1 < IA‘f —ry. By Theorem 5.1(2), we have
f1—ri<---< ff —ry. Also, sinceu(ef—l, Ig(f-1) — ff_]_) = M(ef, Igr-1) — ff) < M(ef,
Ig(r—1 —ry) = u(€/ 1, Igs—1 — ry_1), we have O< #;_1 — ry_1. In the same manner, we
canprove <71 —r1. O

Ito [12] considered a different type of comparative statics, i.e., the quality of apartments of
one category changes. The above results (especially Theorem 4.1) are useful in such a study.

6. Thebending pointsin therent differences

We call the apartment categoriesandk, given in Theorem 5.2 thepper and lower bending
points of rent differences. These points divide the rent differences into the increasing segment,
constant segment, and decreasing segment. These points are useful in knowing the effects of
parameter changes. In this section, we estimate their locations from some basic information.
Also, we will show that the presence of the constant segment is a rare case, i.e., these two points
coincide typically. In the following, we assumfe< f.

Theorem 5.2 states the existence of such bending points, but does not exclude the trivial cases
such asky = k2 =1 orky = ko = f. The following theorem restricts the range of the locations
of the bending point&; andk, by using the rent difference of the marginal categgrand the
boundary income difference of categary

Theorem 6.1 (Conditions for Nontrivial Bending Points)et » and 7 be differential rent vectors
in(M,N)and (M, N).Lett beany category (1<t < f).

(1) Under (5.1)
(a) if IG(,) —Igs >7f —ry, thenthereisaky (r <ky < f) suchthat 7y —ry > -+ >
rkl—rkl andrkl—rk1< <rf—rf,
(b) |fIG(,) Icq) <7f—ry,thenthereisak (r <k < f)suchthatiy —ry <--- <7y —ry.
(2) Under (5.2),
(@ iffG(,) Igu > Py —ry, thenthereisak (r <k < f) suchthat 7 —rg > - -- >ff—rf;
(b) if IG(t) —Ige <7f— rf, then thereisa ks (t <ki < f) suchthatrp —ri <--- <
rkl — Iy and 7, Thy —Thky =+ 2 Vf —rf.
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Proof. We prove only (2). Consider (a). Suppd%gt) — Iy > 7y —ry. First, we show that
Igu — Iew > Fe — i forsomek  (r <k < f). (6.1)

Now, we show the contrapositive that the negation of (6.1) impi'ge(% —Ige <P —ry.
Suppose tha!g(k) —Igq <7x —rx forall k (r <k < f). Then, by Theorem 4.1, we have
Fe —rp <rre1—rrrg forallk=¢, ..., f — 1. This together withfg(,) I <7 —r imply
164 — low < Fr —ry. We have prove the contrapositive. Thus we have (6.1).

By (6.1) and Theorem 4.1, we hakge— ry > Fr+1 — rr+1. This together with Theorem 5.1(2)
implies thatiy —rg > --->7p —ry.

Consider (b). Supposk;,, — Icx) <7r —ry. It holds that

Ig — Iew <Fc—ri forsomek (1 <k < f). (6.2)

This can be proved in the same manner as (6.1). By (6.2) and Theorem 4.1, wi& hame<
Fr+1 — re+1. This together with Theorem 5.1(2) implies thiat—r1 < - -+ < Frp1 — rese1.

Letks be the largest integer among suéht+ 1)’'s. Hence we have the latter inequalities of (a).
By Theorem 5.2(2), we havig, —ry, >--->7r—ry. O

Each claim of Theorem 6.1 has two statements. These are combined as followsahdk,
be upper and lower bending points.

Corallary 6.2A(L90ations of the Bending Pointslet r and 7 be differential rent vectors in
(M, N)and (M, N). Let ¢ be a category number withr < f — 1.

(1) Under (5.1),if Iz, — Io@) > 7y —rf > I:a<,+1> — Igusy, thent + 1< kg <kz < f.
(2) Under (5.2), if I —1lew < Fr—rp< 16¢+1) — 16+, thenr+1<k1<ka< f.

Proof. Consider (2). Supposés ;) — Iga) <7y —rf < I};(,H) — Ig¢+1. Then, by Theo-
rem6.1(2);y + 1<k < fandr +1<ky < f. By Theorem 5.2(2), we hava < k. O

In Theorem 6.1 and Corollary 6.2, the locations of the upper and lower bending points are
restricted, but they may still differ. Now we argue that the they typically coincide or differ by 1.
The next theorem gives a condition for the coincidence of the upper and lower bending points.

Theorem 6.3 Gogdition for a unique Bending Point)et » and 7 be differential rent vectorsin
(M, N)and (M, N). Let k1, ko be the upper and lower bending points, and ¢ a category number
witht < f — 1.

(1) Under (5.1), Ig) — I > Fr — e and g ) — Ioa+1) < Fryn — rega if and only if ky =
ko=1t+1. . .

(2) Under (5.2), 160y — low < r; —r; and 164+1) — loa+y > Fry1 — g1 ifand only if k1 =
ko=1t+1.

Proof. Consider (2). Supposi:g(,) Iuy <F—r1y andIG(Hl) —IG(+1) > F141 — ri+1. Then
it follows from Theorem 4.1 that — r; < Fy41 — ri11 > 7142 — rr12. By Theorem 5.1, we have
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F1—r1<---<fy1—rippandi g — 1> - > 7y —ry. Thus, the upper and lower bending
pointsk, andk, coincide withr + 1.
The converse can be proved by tracing the above proof bauk.

Even when the inequalities in (5.1) are all strict, the upper and lower bending poetsik,
may not coincide, but they may differ by at most one, which is stated in the following corollary.
Let k1, k2 be the upper and lower bending points.

Coroallary 6.4 (Small Difference of the Bending Pointdf (5.1) or (5.2) holds with strict in-
equalities, then k1 = kp or k1 + 1 =kp.

Proof. Consider the case where (5.1) holds with strict inequalities. ThenjiJet ry, =
Fly+1 — Ty +1- Thenlg ) — IGky) = Ty — Tkq = Fky+1 — Tla+1 > 1G4, +1) — LG (ka+1), Which, by
Theorem 4.1, implie$y, +1 — rky+1 > 7ky+2 — Fry+2- It follows from this and Theorem 5.1 that
Fr—rs>rp1—reprforalle > k1. Thus,kpo=k1+1. O

When (5.1) or (5.2) holds with strict inequalities, the upper and lower bending points coincide
or differ by 1. Even the latter case can be regarded as rare. In practice, the upper and lower
bending points coincide.

7. Application to a housing market in Tokyo (2)
7.1. Estimation of the basic utility function

Let us continue the application of our housing market madé] N) to a rental housing
market in Tokyo in Section 3. We assume that all the elements of our model other than the
utility function U (z, s, ¢) are the same as those given in Section 3. In this section, we discuss
the estimation method for the utility functioti (z, s, ¢) = —2.2¢ + 3.1s + 80,/c of (3.1) and
mention briefly how we evaluate this estimation. Here, we emphasize that the linearity of the
utility function overr ands is the result of this estimation. In a separate paper, we will give a full
statistical and econometric study of this estimation.

Let a utility function be given as:

Ul(t,s,c)=—at + Bs +y+/c, (7.1)
whereq, 8, y are positive parameters. Then, the differential rent veetqr.. ., rpo) is deter-
mined by the rent equation (2.5) with a given, i.e.,

U('a y )

} —> (r1,...,720). (7.2)
20

We measure the distance 0fi, ..., r20) to the actual data of rentp14)22, ..., {p2as}58Y

observed inthe Yahoo Real Estate, 2004, Dec.15 by the total sum of square variations over
categories L.., T = 20:

20

D (pra — )% (7.3)

k=1 d
We minimize this distance controllingo, «, 8 andy .
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We can fixy = 80 without influencing(7.2). Giving small grids forr,g, «, 8, and using a
computer, we make an exhaustive search for the m|n|m|zat|oEf)Ef1 > (Pka — r1)?. The
computation result is the utility functiobi (¢, s, ¢) = — 2.2 + 3.1s + 80,/c of (3.1) together with
the rent vector given in Table 3.2 and depicted in Figure 3.2.

Now, let p1, ..., p2o be the average rents 6p1s}323, ..., {pgw}sggl, e.g.p1=Y5 pu.

Those averages have the special status in statistics. They minimize the total square variations
with no constraints. That is,

20

2.2 (pea—po)? isminimizedat (p1.....p20) = (P1. ... 20)- (7.4)
k=1 d

Thus, we havey 22 3" (pra — )2 < Y221 3" (pra — ri)?. The left-hand sum is the total
square variations from the average rent ve¢far . .., p2o), and the right-hand sum is that from
the differential rent vectotry, ..., ro0) we estimate. We adopt the left-hand sum as the point for
criterion: We take the ratio oz,fgl > i (Pra — )2 to ngl > i (pra — P1)%. In our example,
this ratio is given as

20 > (pra — 1)? . 17015104
Z/%il > i(Pra — Pr)? 15253506

Thus, our model can approximate the average rent vectors within the accuracy of (7.5).
In the above calculation, we have already assumed that the utility funi¢tian, c) is of the
form (7.1). However, the above calculation can be done in a different class of utility functions:

Ul(t,s,c) = ~/az —ait ++/Bis + B2 + y+/c. (7.6)

This satisfies the law of diminishing marginal utility for each variable, while (7.1) does not
satisfy it fors ands in a strict sense. In this sense, the utility function of (7.6) is more compatible
with the standard textbook teaching than the utility functiog, s, ¢) of (7.1). However, by the
computer experiments, we can show t@ﬁl > a(Pka — rv)? is getting smaller as» and B,
become larger in (7.6). This can be interpreted as meaning that we have a better estimation result
whenU (t, s, ¢) become close to linear in variableands. Also, it is a result of computation that
the total sum of square variations corresponding to (7.1) always dominates that corresponding
to (7.6). Thus, the estimated utility functidi(z, s, ¢) is linear fors ands. In fact, the linearity
for the consumptiom is not obtained, i.e., the law of diminishing marginal utility holds only for
consumption.

We will discuss the details of the above statistical and econometric study in a separate paper.

=1.1154 (7.5)

7.2. Comparative staticsin the rental housing market along the Chuo-line

Let us continue the rental housing market in Section 3. Now, suppose that the boundary in-
comes in the marketV/, N) increase by 1% uniformly, and the ren for a unit of category 20
increases by 10%. We use the estimated utility fundﬁ(@n s,¢) =—22t+3.1s +80,/c of (3.1)
for (M, N), but we assume the same utility function t(M N) The other parameters are as-
sumed to be the santé Here, we assume to knoig = 1.1 x ryo.

12 1t may be asymmetric to have 1 and 10% increments, respectively, in the incomes and vahtptioppg. However,
the valuatioruyq reflects the cost of building an apartment, and a change in the valuation may be different from those in
the incomes of households.
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In this case, condition (5.1) holds, i.ég ) — Ica) > -+ > Iga9 — lGa19- Also,
Iga)—ley = 8.9 > rog — ro0 = 4.96.

Thus the income difference for the boundary houseldaltl) is 8900 yen and is greater than the
rent difference 4960 yen. Theorem 6.1 implies that the bending poistl exists. In fact, we
can get better information from Table 7.1: we find

16(14) —Ig14) =5.48> Fog—rp0=4.96> 3.93= ]6(15) — Ig1s5).

Then, we can use Corollary 6.2 to obtaind%; < k2 < 20. Even Theorem 6.3 gives the precise
answelk, = k> = 15, since’14 — r14 = 4.804 < 16(14) — 1G4 andlg(ls) —Igas) < F15—ri5=
4.800. Then, we can estimate the shape of the differential rent curves (see Fig. 7.1).

Finally, we show that the remark stated in Section 5.1 about more one segments of increasing
and decreasing segments of boundary income differences. More concretely, we gives a compar-
ative statics with two segments of boundary income differentials. Suppose that the number of
households increase froﬁfgl wy = 6194 to 6194+ 100= 6294, and specifically that the sup-
pliesws, ..., ws increase by 20. That is); = 133 w» = 83, w3 = 40, w4 = 50, ws = 270, but

Table 7.1

Changes ing ) (1000 yen) Changes in rents (1000 yen)
k 16x) Iga Igw — Tlow Tk i P —rk
1 88553 89439 886 19419 19925 505
2 87739 88617 877 17966 18467 501
14 54825 55373 5.48 83.22 8802 4.804
15 39272 39664 3.93 77.05 8185 4.800
20 10000 10100 100 4959 5455 4.96
Table 7.2

Changes il ) (1000 yen) Changes in rents (1000 yen)
k IG k) Igu ) Tk i Pt —rk
1 88553 88322 -231 194195 189088 —5.107
2 87739 87267 —4.73 179658 174522 —5.136
3 874381 86758 -7.23 169451 164312 —5.139
4 87093 86123 -9.71 160660 155534 —5.126
5 83864 82690 1174 153044 147942 —-5.102
6 83477 82309 —1168 143190 138136 —5.054
7 80932 79805 —-1127 138580 133548 —5.032
14 54825 54113 -7.12 83218 78405 —4.813
15 39272 38807 —4.65 77.052 72254 —4.798

20 10000 10000 000 49587 44628 —4.959
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T —n 7. _

i k 1 (k) Lo
510 == 9.00
5.05 8.00
5.00 7.00
4.95 6.00
4.90 5.00
4.85 4.00
4.80 3.00
4.75 2.00
470 x 1.00
4.65 - 0.00

1 23 456 7 8 9101112131415 16 17 18 19 20
k
Fig. 7.1.k1 = kp = 15.
k
1 23 456 7 8 9 1011 12 13 14 15 16 17 18 19 20
-4.70 0.00
-4.75
-2.00
-4.80
-4.85 -4.00
-4.90 -6.00
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-5.05 -10.00
-5.10
-12.00
-5.15
-5.20 - - -14.00
. — T IA(k) — [G(k)

Fig. 7.2. Bending points in the two segments.

we assumév; = wy fork =6, ..., 20. Also the incomes are still distributed uniformly from 100
to 900 thousand yen. With above changes, it holds that

Igay—leay > >1Igs — e and Ige —Ice < < Igag — l6a9-



M. Kaneko et al. / Journal of Urban Economics 59 (2006) 142-170 167

Thus, we have the two segments of income differentials, which are calculated in Table 7.2.

One more change is thatg decreases by 10%. Then, we can calculate the new differential
rent vector, which is also given in Table 7.2. Since the income differential lines are divided into
the two parts from 1 to 5 and from 6 to 20, it follows from Theorem 6.3 that each segment has
one bending point, i.e., the upper and lower bending points coincide with 3 in the left segment,
and they coincide with 15 in the right segment. These are depicted in Fig. 7.2.

8. Concluding remarks

We give three remarks on future possible developments of our study of rental housing mar-
kets. One is more on comparative statics, the second is on econometrics, and the third is on the
possibility of relaxing the assumption of an identical utility function.

We have focussed on the theoretical sides of comparative statics, particularly, on the dual
relationships between the rents for categories and the boundary income differences. We have not
looked at direct cause—effect relationships between basic parameters (mentioned in Section 4)
and rents. Ito [12] gave a direct cause—effect comparative statics along the line of our research.
There could be many possible comparative statistical studies on such relationships. For these,
computer simulations may play more roles than theoretical studies, since we have many cases
of comparisons. We have been developing computer simulation methods for such comparisons,
which is still an ongoing project.

For further comparative statics as well as more practical studies, it would be useful to
develop an econometric method so as to have an estimation of the utility function such as
U(s,t,c) = —2.2t + 3.1s + 80,/c of (3.1). The present authors have been practicing such an
estimation method. As mentioned in Section 7.1, this utility function is estimated by minimiz-
ing, over possible coefficients for the utility function, the total sum of square variations. So far,
estimation works well, and some interesting findings have been revealed, for example, the utility
function does not strictly satisfy the law of diminishing marginal utilities over the leisure time as
well as the housing size, but does in consumption. This will be discussed in a separate paper.

The final remark is about the possibility of eliminating Assumption C (Identical Utility Func-
tion). This assumption is interpreted as restricting our scope to a housing market with one office
district. If a housing market has two or more office districts to which households commute, then
Assumption C should be relaxed so that only the households who commute to the same business
district have identical utility functions.

More concretely, the set of consumeisis partitioned intoMy, ..., Mp: each household
in My (k=1, ..., D) has the same utility functiom, : {€°, e!, ..., e’} x R, — R. In an appli-
cation, this utility function is regarded as derived from a larger utility functitin, s, ¢) as in
Section 3. Here, each household M, has his office in some location andk the time-distance
from his office to an apartment. Variablesndc are not affected by its location. For example,
the Sobu JR line connects Tokyo station to Chiba station, and some people have offices in Chiba.
Then, the households are divided into two groups: the ones commuting to Tokyo station and the
ones commuting to Chiba. Then the time-distant¢e the office location is depending upon a
household. In this formulation, we have two derived utility functiapdor households to Tokyo
station and:¢ for ones to Chiba station.

To study the housing market with multiple business districts, both theoretical and simulation
analyses are required. For example, some general results such as the existences of an equilibriun
and of a maximal rent vector (Theorems 2.1 and 2.2) remain. However, the Rent Equation Theo-
rem (Theorem 4.1) is no longer available at least in the present form. In this case, Miyake’s [17]
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graph-theoretic consideration of the maximal rent vector may help. Since the fixed-point algo-
rithm is available in the general case (see Kaneko—Yamamoto [13]), we may develop a computer
simulation analysis.

Our results of comparative statics could be extended to such housing markets with multiple
business districts, where Assumption E (Normality) is needed. If we find a segment of house-
holds who have the same utility function and are ordered with income differences such as (5.1)
and/or (5.2), we would obtain the comparative statics results, restricting our attention to such a
segment. Nevertheless, we should know how such segments occur with other segments. This is
a theoretical problem for comparative statics in housing markets with multiple business districts.
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Appendix A. Proof of Theorem 2.6 in case (2)
To prove Theorem 2.6 in case (2), we need one lemma.

Lemma A. Let (p, x, y) be a maximal competitive equilibrium. For each category k =1, ...,
f — 1, there are households i, i’ € M such that x; = €, I; = Igx) and x; = €72, I = Igpy+1.

Proof. We show the existence éf Suppose, on the contrary, that there isiroM such that
xi=¢€ andl; = Icw- There are two cases to be considered, and either case is shown to be
impossible. First, there is ansuch thatl; = Ig ), xi = € and! > k. Then, by the supposition

and Lemma 2.3(2), it holds thdp > I« for all i’ € M with x;; =€ (¢ < k). However, this

is impossible by the definition of (k). Second, there is ansuch thatl; = Ig), xi = € and

k > 1. By the supposition and Lemma 2.3(2), it holds that /) for all i’ € M with x;; =€

(t > k). This is also impossible. O

Proof of case (2) of Theorem 2.6. Now, suppose, on the contrary, that (2.5) fails. Then there is
acategory (1<t < f —1) such that

u(ek, Igu) — Pk) = M(ek—’_l, I — Pk+1) fork=1,...,t -1

u(€, Ige — pr) > u(e’H, 1G(t) — Pi+1).

Then we increasg;, p;—1, ..., p1 slightly into p;, p;_,, ..., p; so that

(A1) pp <Crxk+1D = Cr(y) fork=1,...,r -1
(A2) u(e, Igp) — pp) = u€ L Igu — pp) for k=1,....t — 1, andu(€, Igu) — p}) >
w@tL, Iy — pis1)-

We can find thesg;, p;_,. ..., pj satisfyingA1l andA2. Indeed, observe that for aky(0 <
k< f—1), sinceu(e, I — pr) > u(0, I;) > u(e*, 0) by utility maximization at(e, I; — p;) and
Assumption A, we havé; — p; > 0. Hence we can increasgslightly to p; so thatp]_,,..., p}
satisfy satisfyingd1 andA2.
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Now, we define the rent vectgr* by pi = p; if k <t and p} = px if k > . Once we
prove that(p*, x, y) is a competitive equilibrium, we would have a contradiction sipds a
maximal competitive rent vector. The balance of total demands and supplies holds for
Sincepj...., p;_; are increased but satisfy1, profit maximization holds. It remains to show
utility maximization for each household Utility maximization is almost directly derived for
each householdwith x; = €' andk > ¢, since the rent he is facing is unchanged but the other
rents are increased or unchanged. Now, consider a househeld' andk < ¢. It follows from
Assumption E that for an¥’ < k and anyk” > k, we have

u(e[‘ = PZ’) < u(ek o~ pZ,+1) and u(e/‘ I — p,’f//) > u(e/‘ - p,f,url).
Combining thesey (€', I; — p}) > u(€, I, — p}) foralll. O
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