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1 Model

1.1 Set-up

We consider a unitary household composed of one adult and the adult’s surviving offspring.1

We assume that the household cares about its own consumption c and leisure ` as well

as about the number n and human capital h of the offspring. Though human capital in

childhood is an important determinant of future earnings (Becker, 1975; Currie and Madrian,

1999; Currie, 2009; Hong, 2013), we focus only on contemporaneous effects of improved health

on fertility, labor supply and education. We denote by b the number of births and by s the

probability for a newborn to survive, such that n = sb (with 0 < s < 1).

The household’s preferences are summarized by the following Cobb-Douglas utility function:

u(c, `, sb, h(e,H)) = (c`)1−γ(sbh(e,H))γ, (1)

where

0 < γ < 1 and h(e,H) = (eρ +Hρ)
1
ρ with ρ < 1.

1The impact of children’s exposure to malaria control campaigns on their adult longevity has not yet
been documented (and cannot be investigated based on our data). Our analysis therefore relies on a one-
period model, with no reference to adult longevity. The interplay between adult longevity and some of our
outcomes is complex. For instance, increased longevity does not necessarily increase parents’ incentives to
invest in their offspring’s education. On one hand, the longer the stream of payouts, the more valuable
the investment. Increased longevity should therefore translate into more parental investment in education
(Ben-Porath, 1967; Soares, 2005; Jayachandran and Lleras-Muney, 2009). On the other hand however, a
higher life expectancy affects not only the returns to children’s quality but also the returns to their quantity.
Greater longevity might therefore result in no increase in the level of education chosen by the parents (Hazan
and Zoabi, 2006) and could even reduce income per capita (Acemoglu and Johnson, 2007). Adult and child
mortality shocks can also bring about opposing influences on fertility (Boucekkine, Desbordes and Latzer,
2009). As is apparent from the subsequent sections, the impact of improved children’s survival rate and
health on our various outcomes is not trivial either.
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The human capital h(e,H) of a surviving child is assumed to be a CES production function

that depends on his/her education e and his/her health H, with H > 1. We denote by σ the

elasticity of substitution between these two inputs. Therefore, σ = 1
1−ρ . The lower (resp.

the higher) ρ, the higher the complementarity (resp. the substitutability).2 In particular, if

ρ < 0, then the impact of one additional unit of education on human capital increases with

health (heH > 0). If 0 < ρ < 1 instead, the reverse is true (heH < 0).

For the sake of generality, we allow ρ to take positive values. We assume that each member

of the household is endowed with one unit of time. The adult allocates this unit between

work, leisure and time spent caring for surviving child(ren). We denote by τ the time the

parent dedicates to each surviving child, with τ > 0.3 As for each surviving child, the parent

allocates time between education and child labor. Put differently, we assume that education

and child labor are mutually exclusive.4 (Child labor may also extend to non-remunerative

domestic tasks and other productive activities which we abstract from here.) The wage rates

of the parent and of each child are denoted by W and w(H) = wH respectively, with W > 0

and w > 0.5

Therefore, the budget constraint is

c ≤ W (1− `− τsb) + sbwH(1− e). (2)

The parameters of the model are chosen to yield an interior solution for the optimal number

of births b∗, the optimal level of leisure `∗ and the optimal level of education e∗. More

precisely, they ensure that (i) 0 < b∗ < W (1−`∗)
s(Wτ−wH(1−e∗))

, that (ii) 0 < `∗ < 1 (iii) and that

0 < e∗ < 1. The first condition is obtained by assuming a positive consumption. This

notably implies that Wτ − wH(1 − e∗) > 0 for all e∗ between 0 and 1. Put differently, a

surviving child must cost more than the labor earnings he/she generates. Otherwise, the

optimal number of births is infinite.

2If ρ converges to 1, h(e,H) is a linear production function; if ρ converges to 0, h(e,H) is a Cobb-Douglas
production function; if ρ converges to −∞, h(e,H) is a Leontief production function.

3For the sake of simplicity, but without loss of generality, τ depends on neither e nor H.
4Evidence confirms that, on average, child labor and education exert a negative impact on one another

(Beegle, Dehejia and Gatti, 2009; Edmonds and Shrestha, 2014), although exceptions obviously exist (Basu
and Van, 1998; Basu, 1999; Psacharopoulos, 1997).

5Just as w(H) depends positively on H, W depends positively on the parent’s health. However, this
relationship is not made explicit since we focus on the impact of an increase in children’s survival rate and
health.
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1.2 Predictions

Solving the model yields the optimal level of education e∗, the optimal amount of time

worked by the parent Λ∗ and the optimal number of births b∗:

e∗ = (
Wτ − wH
wHρ+1

)

1
1−ρ
, (3)

Λ∗ = 1− `∗ − τsb∗ =
(1− γ)Wτ − wH(1− e∗)

(2− γ)(Wτ − wH(1− e∗))
, (4)

and

b∗ =
γW

(2− γ)s(Wτ − wH(1− e∗))
. (5)

Proof :

Using monotonic transformation, the household’s preferences can be represented by

U(c, `, sb, h(e,H)) = (1− γ)[log c+ log `] + γ[log sb+ log h(e,H)],

which yields the following maximization problem:

max
e,b,`

(1− γ)[log(W (1− `− τsb) + w(H)sb(1− e)) + log `] + γ[log sb+ log h(e,H)].

The first-order conditions for the optimal level of education e∗, for the optimal number of

births b∗ and for the optimal level of leisure `∗ are given by Equations (1) to (3) respectively:

γeρ−1

eρ +Hρ
=

(1− γ)sbwH

W (1− `)− sb(Wτ − wH(1− e))
, (6)

γ

b
=

(1− γ)s(Wτ − wH(1− e))
W (1− `)− sb(Wτ − wH(1− e))

, (7)

and

1

`
=

W

W (1− `)− sb(Wτ − wH(1− e))
. (8)

Dividing Equation (1) by Equation (2) and rearranging yields
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e∗ = (
Wτ − wH
wHρ+1

)

1
1−ρ
.

Solving the system of Equation (2) and Equation (3) yields

`∗ =
1− γ
2− γ

,

and

b∗ =
γW

(2− γ)s(Wτ − wH(1− e∗))

�

We observe that b∗ declines in inverse proportion to the survival rate s. Indeed, since parents

care about surviving children, this probability affects parents’ fertility choices through the

net cost of a surviving child (denoted by Wτ − wH(1 − e∗)), which is independent of s.

Consequently, parents choose the preferred number of surviving children irrespective of s,

leading to a total number of births that is inversely proportional to this parameter. Therefore,

since education and labor supply depend on the number of surviving children (not on the

total number of births), they are not affected by s.

1.2.1 The optimal level of education

The optimal level of education e∗ increases with child health if ρ < ρ1, with ρ1 = − Wτ
Wτ−wH ;

e∗ decreases with child health otherwise.

Proof :

Deriving e∗ with respect to H yields

∂e∗

∂H
= −(

1

1− ρ
)(
ρ(Wτ − wH) +Wτ

wHρ+2
)(
Wτ − wH
wHρ+1

)

ρ
1−ρ
.

We observe that ∂e∗

∂H
is of the opposite sign of ρ(Wτ − wH) + Wτ . More precisely, ∂e∗

∂H
is

positive if ρ < − Wτ
Wτ−wH . It is negative otherwise. �
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Consistent with Bleakley (2010), an increase in child health raises the child’s wage rate

(wH) and, hence, the opportunity cost of education. If education and health are substi-

tutes (0 < ρ < 1), this negative effect is reinforced. If, however, education and health are

complements (ρ < 0), an increase in health generates an additional impact that runs in the

opposite direction: better health improves the returns to education. In this setting, if the

complementarity between education and health is sufficiently high (ρ < ρ1), then the latter

effect wins out, and e∗ increases with child health.

1.2.2 The optimal labor supply and number of births

The optimal labor supply Λ∗ increases with child health while the optimal number of births

b∗ decreases with child health if ρ < ρ2, with ρ2 < ρ1; Λ∗ (resp. b∗) decreases (resp. increases)

with child health otherwise.

Proof :

Deriving Λ∗ and b∗ with respect to H yields

∂Λ∗

∂H
= −

γWτw(1− e∗ − ∂e∗

∂H
H)

(2− γ)(Wτ − wH(1− e∗))2 ,

and

∂b∗

∂H
=

γWw(1− e∗ − ∂e∗

∂H
H)

(2− γ)s(Wτ − wH(1− e∗))2

respectively.

We observe that Λ∗ (resp. b∗) increases (resp. decreases) with H when ∂e∗

∂H
> 1−e∗

H
> 0.

Yet, as we show below, ∂e∗

∂H
decreases with ρ when it is positive. Consequently, there exists

a unique value of ρ, that we denote by ρ2, such that (i) ∂e∗

∂H
= 1−e∗

H
; (ii) ∂e∗

∂H
> 1−e∗

H
when

ρ < ρ2; (iii) ∂e∗

∂H
< 1−e∗

H
when ρ > ρ2. Given that 1−e∗

H
is strictly positive, ρ2 is necessarily

lower than ρ1 = − Wτ
Wτ−wH .

To show that ∂e∗

∂H
decreases with ρ when it is positive, one can rewrite ∂e∗

∂H
as the product of

two functions, denoted byf(ρ) and g(ρ), with
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f(ρ) = −wH(ρ(Wτ − wH) +Wτ)

1− ρ

and

g(ρ) = (
Wτ − wH
wH2

)

ρ
1−ρ
.

When ∂e∗

∂H
is positive (i.e. ρ < − Wτ

Wτ−wH ), f(ρ) is a positive decreasing function of ρ. More-

over, using the fact that e∗ must be comprised between 0 and 1 and, hence, that Wτ−wH
wHρ+1 < 1

for ρ < 1, it is easy to show that g(ρ) is also a positive decreasing function of ρ. Therefore,

∂e∗

∂H
is decreasing with ρ when it is positive. �

We know that an increase in child health decreases each child’s “price” by raising the child’s

wage rate wH. As a result, the adult’s labor supply decreases, and her preferred number

of births increases. If education also decreases with health, these effects are reinforced since

better health increases children’s working time. If, however, education increases with health,

then a child’s “price” increases. Provided that the complementarity between education and

health is sufficiently high, this counter-effect wins out: the parent’s labor supply increases

while the preferred number of births decreases, following a well-documented quality-quantity

trade-off (Becker and Lewis, 1973; Rosenzweig and Zhang, 2009; Bleakley and Lange, 2009).6

The extent to which other aspects of fertility, such as age at first birth, may be influenced

by this dynamic in the medium-run is unclear. Female age at first birth in Sub-Saharan

Africa appears to follow a relatively stable trajectory (Field et al., 2016). Therefore, though

we include this outcome in our empirical study, we do not augment our simple theoretical

framework with more detailed fertility outcomes.

Note that the condition of ρ2 < ρ1, emphasized in Proposition 3, is more binding than that of

Proposition 2. For the labor supply (resp. the number of births) to increase (resp. decrease)

with health, the impact of health on education does not simply need to be positive: it must

be greater than a strictly positive value.

6The variation in opposite directions of Λ∗ and b∗ is intuitive: a lower fertility allows the parent to
dedicate more time to the labor market, while a lower labor supply allows the parent to raise more children.
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2 Data

2.1 Human capital

Source(s): The Demographic and Health Surveys are nationally representative studies

that collect detailed information on numerous population and health characteristics. We

select 27 countries which were surveyed at least once post-campaign, which received RBM

disbursements, and which include geocoded clusters and all of our outcome variables. Figure

1 outlines the period of time covered for each country within the range of 1999 to 2014.

Infant mortality (infants): Because infant mortality may vary substantially within the

first year of life, we follow Pathania (2014) to compute three binary indicators of mortality:

neonatal (if death occurred within the first month of life); post-neonatal (if death occurred

within months 1-11); infant (if death occurred within first year of life) from the Child Recode

of children under five.

Total births (women): Total number of children ever born to eligible women (ages 15 to

45) in the Individual Recode.

Age at first birth (women): Age at first birth of eligible women (ages 15 to 45) in the

Individual Recode.

Total years of education (all): Education in single years for all individuals in the DHS

Person Recode.

Completed primary education (all): From the DHS Person Recode, we use total years

of education to compute an indicator for all respondents who have completed at least the

full number of years of primary education (five, six or seven) in their country’s educational

system.

Employed in last 12 mo. (adults): Binary variable equal to one if respondent (ages

15 to 59) was employed within last 12 months for all eligible respondents in Individual and

Male Recodes.

Paid in cash for employment (adults): Binary variable equal to one if respondent

(ages 15 to 59) is paid at least partly in cash while employed for all eligible respondents in

Individual and Male Recodes.
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2.2 RBM disbursements

Source(s): According to Pigott et al. (2012), the three largest funders of anti-malaria

campaigns to date, aside from governments, are the Global Fund to Fight AIDS, Tuberculosis

and Malaria (since 2003), the President’s Malaria Initiative (since 2005), and the World Bank

Booster Program for Malaria Control in Africa (since 2006). We focus on external aid, using

fixed effects and robustness checks to address the question of malaria-specific government

expenditure. We extract GFATM disbursements on malaria, tuberculosis, and HIV/AIDS by

year from individual country files available at the International Aid Transparency Initiative

website (http://iatiregistry.org/). We transcribe PMI expenditures by country and

year from the PMI Ninth Annual Report to Congress (2005-2014). Finally, we rely on data

kindly provided by David Pigott to compile disbursements from the World Bank Booster

Program. We total RBM disbursements by country and year following studies on malaria

expenditure (Snow et al., 2010; Pigott et al., 2012). Because these disbursements are at the

country-year level, we merge them with each DHS recode by country-year. In a handful

of cases, negative disbursements indicate corrupt or inefficient use of funds that donors

requested for return.

Exposure to RBM campaigns: Exposure captures the yearly amount per capita (at the

country level)7 disbursed by the three main RBM funders during a respondent’s lifetime.

A respondent’s lifetime is defined as the difference between the DHS survey year and this

individual’s year of birth, from which we subtract one year. We consider a respondent’s

exposure to begin in utero (though defining the beginning as the year after birth does not

alter our results). To illustrate the construction of this variable, we take the example of

Ethiopia. As reported in Figure 1, RBM campaigns in Ethiopia started in 2003. Moreover,

three DHS surveys years are available (in 2000, 2005 and 2010). Consider an individual born

in 1999. If this individual is surveyed in 2000, he experiences no exposure since the RBM

disbursements were to begin only in 2003. If he is surveyed instead in 2005, he experiences

three years of exposure to RBM disbursements. His exposure will therefore be equal to the

sum of the RBM disbursements per capita during these three years, divided by his lifetime,

hence 2005-(1999-1)=7 years. If he was exposed, for example, to $1 per capita each year, he

7Yearly population data come from the World Development Indicators.
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would therefore receive $3/7=$0.43 per capita per year over his lifetime. Similarly, if this

individual is surveyed in 2010, he experiences eight years of exposure to RBM disbursements.

His exposure will therefore be equal to the sum of RBM disbursements per capita during

these eight years, divided by his lifetime, hence 2010-(1999-1)=12 years. In this case, if he

received $1 per capita for each year of exposure, he would therefore receive $8/12=$0.66 per

capita per year over his lifetime.

2.3 Malaria risk and control programs

Source(s): We obtain data on malaria prevalence and control strategies from the Malaria

Atlas Project (http://www.map.ox.ac.uk/). Data on insecticide treated net (ITN) use

and access to artemisinin combination therapies (ACTs) from over one million households

were combined with national malaria control programme data on ITN and ACT provision

to develop time-series models of coverage at the country level (Bhatt et al., 2015). We use

the DHS to provide complementary measures of control strategies from microdata.

Malaria risk (2000-2015): We proxy for malaria risk by relying on the P. falciparum

parasite rate (PfPR) computed for each DHS cluster. For a given year, PfPR describes the

estimated proportion of individuals in the general population aged 2 to 10 years old who are

infected with P. falciparum at any given time. These estimates are generated by a geosta-

tistical model that relies on parasite rate surveys as well as bioclimatic and environmental

characteristics. The PfPR is a commonly reported index of malaria transmission intensity.

PfPR reaches a peak after about two years and remains fairly constant in older children

until age ten before declining throughout adolescence and adulthood. The 2-10 age group

has been suggested as the more informative to describe malaria risk and is therefore used.

Gething et al. (2011) and Bhatt et al. (2015) describe the estimation process.

Insecticide treated net coverage (MAP): Calculated at the household level as the

proportion of individuals who slept under a net.

Artemisin combination therapies coverage (MAP): Percentage of fever cases in chil-

dren under five treated with ACT.

Insecticide treated net usage (DHS): Proportion of households per region that had

an ITN for sleeping and that always use an ITN for children under five (DHS Household
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Recode).

Artemisin combination therapies usage (DHS): Proportion of children under five per

region treated for fever with ACT during past 2 weeks (DHS Child Recode).

Chloroquine usage (DHS): Proportion of children under five per region treated for fever

with chloroquine during past 2 weeks (DHS Child Recode).

2.4 Public expenditure

We obtain expenditure on public education as a percentage of GDP from the World Bank

EdStats, Education Statistics: Core Indicators. To compute total public expenditure per

capita in each of these categories, we rely on GDP in current USD and total population

(both from WDI).
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3 Figures

Figure A1: Example - The Global Fund funding process and steps

Notes: We obtained this figure from http://www.theglobalfund.org/en/fundingmodel/

process/.
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Figure A2: Frequency distributions of date of birth, age and Roll Back Malaria exposure

by year of survey
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4 Tables

Table A1: Descriptive statistics

Mean SD Min Max N

(1) (2) (3) (4) (5)

Explanatory variables

Malaria risk (PfPR in 2000) 0.351 0.236 0.000 0.964 25,827

Exposure to Roll Back Malaria 0.570 0.787 -0.162 8.918 2,857,253

Dependent variables

Child survival and health

Infant mortality 0.065 0.247 0 1 353,650

Neonatal mortality 0.032 0.176 0 1 353,650

Post-neonatal mortality 0.033 0.179 0 1 353,650

Fertility

Total number of births 2.757 2.722 0 18 646,208

Age at first birth 19.095 3.779 12 45 487,700

Adult labor supply

Employed in last 12 months 0.684 0.465 0 1 896,887

Paid in cash if employed 0.680 0.466 0 1 607,668

Education

Number of years of education completed 3.220 4.137 0 26 2,850,793

Primary education completed 0.262 0.440 0 1 2,850,793

Socioeconomic controls

Male 0.489 0.500 0 1 2,866,372

Age 16.837 12.930 0 53 2,866,431

Wealth 2.969 1.427 1 5 2,866,431

Notes : The variables are measured at the individual level, with the exception of PfPR

in 2000 which is computed at the DHS cluster level.
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Table A2: Descriptive statistics for exposure to Roll Back Malaria disbursements

Date of birth Mean SD Min Max N Age Mean SD Min Max N

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1965 0.119 0.148 0.000 0.705 25,475 0 1.190 1.093 -0.162 4.251 112,882

1970 0.130 0.160 0.000 0.785 32,186 5 1.007 1.044 0.000 5.024 95,621

1975 0.154 0.185 0.000 0.885 39,127 10 0.604 0.655 0.000 3.139 107,579

1980 0.176 0.210 0.000 1.016 46,755 15 0.409 0.455 0.000 2.158 70,563

1985 0.211 0.250 0.000 1.191 54,222 20 0.293 0.336 0.000 1.644 70,973

1990 0.243 0.298 0.000 1.439 63,871 25 0.236 0.268 0.000 1.328 63,667

1995 0.331 0.377 0.000 1.817 77,621 30 0.202 0.225 0.000 1.114 63,188

2000 0.522 0.526 0.000 2.466 101,094 35 0.178 0.196 0.000 0.959 51,359

2005 1.108 0.768 0.000 3.793 88,740 40 0.162 0.174 0.000 0.842 43,139

2010 1.993 1.252 0.132 6.822 57,944 45 0.181 0.153 0.010 0.751 25,535

2014 1.498 0.558 0.000 1.835 8,280 50 0.246 0.152 0.091 0.677 12,095

Survey year Survey year

1999 0.000 0.000 0.000 0.000 22,263 2007 0.391 0.505 0.016 3.263 130,321

2000 0.000 0.000 0.000 0.000 148,225 2008 0.219 0.242 0.026 1.604 242,097

2001 0.000 0.000 0.000 0.000 94,699 2009 0.563 0.430 0.108 2.287 81,118

2002 . . . . . 2010 0.786 0.741 0.087 4.566 385,477

2003 0.005 0.008 0.000 0.050 133,568 2011 0.868 0.774 0.091 4.199 258,130

2004 0.008 0.018 0.000 0.107 83,450 2012 0.949 0.811 -0.162 3.519 219,140

2005 0.096 0.140 0.000 0.944 226,954 2013 1.026 1.171 0.000 8.918 453,016

2006 0.159 0.238 0.010 1.760 136,707 2014 0.971 0.609 0.000 2.598 251,266

Country Country

Benin 1.145 1.063 0.000 4.067 105,223 Mali 0.334 0.578 0.000 2.539 170,726

Burkina Faso 0.380 0.622 0.001 3.128 118,737 Mozambique 0.770 0.532 0.167 2.024 56,122

Burundi 0.517 0.371 0.116 1.676 38,501 Nambia 1.078 1.642 0.000 8.918 97,664

DRC 0.515 0.509 0.016 1.830 123,167 Nigeria 0.272 0.258 0.000 0.891 325,292

Cote d’Ivoire 0.476 0.373 0.091 1.794 44,616 Rwanda 1.058 1.227 0.028 4.566 92,345

Cameroon 0.362 0.603 0.002 3.381 107,951 Senegal 0.648 0.707 0.024 2.504 123,800

Ethiopia 0.170 0.256 0.000 1.238 178,991 Sierra Leone 0.451 0.346 0.046 1.467 103,122

Gabon 0.605 0.402 -0.162 1.387 34,729 Swaziland 0.089 0.076 0.020 0.352 18,776

Ghana 0.570 0.662 0.001 2.502 98,760 Tanzania 0.930 0.710 0.154 2.416 42,984

Guinea 0.396 0.541 0.011 2.630 70,528 Togo 0.493 0.315 0.000 1.154 42,056

Kenya 0.689 0.540 0.001 1.835 204,828 Uganda 0.432 0.490 0.000 1.740 107,516

Liberia 1.771 1.654 0.080 5.294 73,229 Zambia 1.335 0.889 0.130 3.670 108,573

Madagascar 0.540 0.419 0.096 1.604 75,111 Zimbabwe 0.184 0.298 0.000 1.588 94,030

Malawi 0.440 0.631 0.000 2.164 209,054

16



Table A3: Controlling for mother fixed effects and additional controls

(1) (2) (3) (4) (5) (6)

Dep. var. Infant Neonatal Post-neonatal

Panel A: Mother FE

malaria2000j × exposureNct -0.414*** -0.049 -0.195*** 0.013 -0.219*** -0.061

(0.041) (0.037) (0.024) (0.047) (0.023) (0.050)

R2 0.564 0.875 0.565 0.755 0.536 0.676

Observations 129,636 90,813 129,636 90,813 129,636 90,813

Age-by-Region no yes no yes no yes

Exposure-by-Region no yes no yes no yes

Mother FE yes yes yes yes yes yes

Panel B: Same sub-sample without mother FE

malaria2000j × exposureNct -0.450*** -0.085* -0.213*** -0.021 -0.237*** -0.064

(0.042) (0.034) (0.024) (0.052) (0.023) (0.057)

R2 0.230 0.792 0.213 0.569 0.200 0.453

Observations 129,636 90,813 129,636 90,813 129,636 90,813

Age-by-Region no yes no yes no yes

Exposure-by-Region no yes no yes no yes

Mother FE no no no no no no

Panel C: Full sample with additional controls

malaria2000j × exposureNct -0.470*** -0.065* -0.196*** 0.018 -0.274*** -0.083*

(0.037) (0.029) (0.020) (0.037) (0.022) (0.041)

R2 0.137 0.739 0.112 0.468 0.117 0.404

Observations 276,898 204,936 276,898 204,936 276,898 204,936

Age-by-Region no yes no yes no yes

Exposure-by-Region no yes no yes no yes

Mother FE no no no no no no

Panel D: Controlling for Age-by-Region

malaria2000j × exposureNct -0.453*** -0.061* -0.208*** 0.005 -0.245*** -0.066ˆa

(0.034) (0.023) (0.018) (0.034) (0.019) (0.036)

R2 0.116 0.742 0.094 0.467 0.096 0.381

Observations 353,379 258,809 353,379 258,809 353,379 258,809

Age-by-Region no yes no yes no yes

Exposure-by-Region no yes no yes no yes

Mother FE no no no no no no

Panel E: Replacing Age-by-Region by Age-by-Malaria

malaria2000j × exposureNct -0.414*** -0.332*** -0.195*** -0.147* -0.219*** -0.185***

(0.041) (0.053) (0.024) (0.052) (0.023) (0.052)

R2 0.564 0.799 0.565 0.707 0.536 0.645

Observations 129,636 90,813 129,636 90,813 129,636 90,813

Age-by-Region no yes no yes no yes

Exposure-by-Region no yes no yes no yes

Mother FE no no no no no no

Notes: Each cell reports the OLS estimate of coefficient β in Equation (4). The regression controls for

gender and wealth as well as fixed effects for DHS clusters, country-by-cohort-by-DHS year, and exposure-

by-region. The additional controls in Panel C are mother’s age and length of preceding birth interval.

Standard errors (in parentheses) are clustered at the DHS cluster level. ˆ, *, ** and *** indicate signifi-

cance at the 10, 5, 1 and 0.1% levels.
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Table A4: Controlling for household fixed effects

(1) (2) (3) (4) (5) (6)

Dep. var. Tot. births Age at first birth Employed Paid in cash Years of ed. Completed primary ed.

Panel A: Household FE

malaria2000j × exposureNct -4.669*** 0.507 0.544*** 0.033 2.237*** 0.213***

(0.383) (1.245) (0.067) (0.094) (0.112) (0.011)

R2 0.847 0.588 0.614 0.675 0.743 0.653

Observations 302,473 112,936 636,443 352,967 2,773,967 2,773,967

Age-by-Region yes yes yes yes yes yes

Exposure-by-Region yes yes yes yes yes yes

Household FE yes yes yes yes yes yes

Panel B: Same sub-sample without Household FE

malaria2000j × exposureNct -4.616*** 0.477 0.517*** 0.110 2.358*** 0.222***

(0.037) (1.126) (0.062) (0.082) (0.113) (0.011)

R2 0.741 0.309 0.356 0.426 0.633 0.534

Observations 302,473 112,936 636,443 352,967 2,773,967 2,773,967

Age-by-Region yes yes yes yes yes yes

Exposure-by-Region yes yes yes yes yes yes

Household FE no no no no no no

Panel C: Replacing Age-by-Region by Age-by-Malaria

malaria2000j × exposureNct -1.800*** 1.606* 0.245*** 0.068 1.331*** 0.153***

(0.366) (0.810) (0.072) (0.090) (0.120) (0.012)

R2 0.664 0.228 0.333 0.412 0.628 0.532

Observations 646,169 464,336 896,857 607,572 2,850,716 2,850,716

Age-by-Malaria yes yes yes yes yes yes

Exposure-by-Region yes yes yes yes yes yes

Household FE no no no no no no

Notes: Each cell reports the OLS estimate of coefficient β in Equation (4). The regression controls for gender and

wealth as well as fixed effects for DHS clusters, country-by-cohort-by-DHS year, age-by-region, and exposure-by-

region. Standard errors (in parentheses) are clustered at the DHS cluster level. ˆ, *, ** and *** indicate significance

at the 10, 5, 1 and 0.1% levels.
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Table A5: Probability of post-RBM birth event in mother-year panel

(1) (2) (3) (4) (5) (6)

Dep. var. Probability of birth

All women All mothers

malaria2000j × PostNt -0.007* -0.002 -0.065*** -0.013*** -0.014*** -0.019***

(0.003) (0.004) (0.001) (0.004) (0.001) (0.004)

R2 0.020 0.020 0.051 0.015 0.044 0.056

Observations 9,151,265 9,151,265 9,151,242 8,193,551 8,193,529 8,193,309

Post-by-Country yes no no no no no

Post-by-Region no yes no yes no yes

Respondent Age-by-Region no no yes no yes no

Cluster FE yes yes yes yes yes no

Mother FE no no no no no yes

Notes: This table reports estimates using a panel of female birth events from sampled

women ages 15-45. Standard errors (in parentheses) are clustered at the DHS cluster level.

ˆ, *, ** and *** indicate significance at the 10, 5, 1 and 0.1% levels.
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Table A6: Removal of potential outlying countries

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

No CI No CD No ET No KE No LB No NG No SL No TZ No ZM Mult. surveys

Infant -0.148* -0.164*** -0.149* -0.122* -0.165* -0.133* -0.149* -0.156* -0.149* -0.183*

(0.048) (0.049) (0.047) (0.049) (0.053) (0.044) (0.047) (0.050) (0.048) (0.056)

R2 0.281 0.277 0.280 0.285 0.283 0.310 0.286 0.274 0.268 0.244

Observations 347,929 336,529 334,539 331,016 343,760 308,887 342,072 347,697 339,754 293,595

Tot. births -3.806*** -3.935*** -3.839*** -3.906*** -4.137*** -4.284*** -3.638*** -3.877*** -3.757*** -3.715***

(0.291) (0.298) (0.291) (0.312) (0.316) (0.297) (0.291) (0.296) (0.309) (0.317)

R2 0.667 0.667 0.664 0.666 0.667 0.668 0.667 0.666 0.665 0.672

Observations 636,453 619,683 604,825 599,616 630,320 568,333 622,339 636,438 622,933 537,894

Age at first birth 0.927 1.388* 0.944 0.202 1.227 1.110ˆ a 1.076 0.936 0.947 1.394*

(0.654) (0.666) (0.651) (0.702) (0.757) (0.656) (0.655) (0.664) (0.721) (0.706)

R2 0.231 0.232 0.233 0.229 0.231 0.224 0.232 0.230 0.230 0.232

Observations 457,099 444,924 438,131 430,300 451,552 410,038 446,421 457,308 446,828 385,247

Employed in last 12 mo. 0.470*** 0.470*** 0.488*** 0.519*** 0.509*** 0.586*** 0.430*** 0.525*** 0.422*** 0.497***

(0.057) (0.059) (0.057) (0.062) (0.062) (0.060) (0.057) (0.059) (0.062) (0.062)

R2 0.335 0.335 0.337 0.330 0.334 0.336 0.335 0.333 0.333 0.330

Observations 882,587 859,110 836,870 847,802 871,433 786,627 863,378 884,704 853,881 742,553

Years of ed. 2.347*** 2.267*** 2.406*** 2.554*** 2.331*** 2.539*** 2.281*** 2.416*** 2.310*** 2.290***

(0.114) (0.115) (0.112) (0.116) (0.117) (0.110) (0.111) (0.119) (0.118) (0.128)

R2 0.637 0.632 0.636 0.520 0.637 0.629 0.639 0.634 0.630 0.637

Observations 2,806,266 2,727,903 2,663,079 2,637,310 2,769,796 2,525,623 2,739,211 2,807,837 2,742,652 2,377,194

Notes: The unit of observation is the individual. For all dependent variables, each cell reports the OLS estimate of coefficient β in Equation (4). The re-

gression controls for gender and wealth as well as fixed effects for DHS clusters, country-by-cohort-by-DHS year and subcomponents, age-by-region (except

infant mortality), and exposure-by-region. Standard errors (in parentheses) are clustered at the DHS cluster level. ˆ, *, ** and *** indicate significance at

the 10, 5, 1 and 0.1% levels. Our results are not driven by any country or subset of countries. Complementary analysis to Table A5 is available upon request.
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Table A7a: Infant mortality estimates when substituting alternative treatment probabilities for initial malaria risk (Plasmodium

falciparum parasite rate)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Infant Neonatal Post-neonatal

Exposure*∆ Malaria 0.330* 0.106 0.224*

(0.106) (0.086) (0.175)

Exposure*∆ ACTs -2.430* -0.782 -1.647*

(0.854) (0.647) (0.617)

Exposure*∆ Bednets -0.737* -0.237 -0.500*

(0.244) (0.195) (0.178)

R2 0.278 0.266 0.270 0.182 0.180 0.180 0.175 0.164 0.169

Observations 353,379 353,379 353,379 353,379 353,379 353,379 353,379 353,379 353,379

Age-by-Region no no no no no no no no no

Exposure-by-region yes yes yes yes yes yes yes yes yes

Notes : The unit of observation is the individual. For all dependent variables, each cell reports the OLS estimate

of coefficient β in Equation (4). Malaria risk and bednets vary at the regional level, while ACTs vary primar-

ily at the national level. The regression controls for gender and wealth as well as fixed effects for DHS clusters,

country-by-cohort-by-DHS year and subcomponents, and exposure-by-region. Standard errors (in parentheses)

are clustered at the DHS cluster level. ˆ, *, ** and *** indicate significance at the 10, 5, 1 and 0.1% levels.
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Table A7b: Fertility, employment and education estimates when substituting alternative

treatment probabilities for initial malaria risk (Plasmodium falciparum parasite rate)

(1) (2) (3) (4) (5) (6)

Tot. births Age at first birth

Exposure*∆ Malaria 8.056*** -2.069

(0.640) (1.415)

Exposure*∆ ACTs -70.710*** 24.560

(7.992) (17.010)

Exposure*∆ Bednets -9.945*** 3.102

(0.826) (2.118)

R2 0.666 0.661 0.665 0.230 0.229 0.230

Observations 646,169 646,169 646,169 464,336 464,336 464,336

Employed last 12 mo. Paid in cash for emp.

Exposure*∆ Malaria -1.027*** -0.357*

(0.123) (0.140)

Exposure*∆ ACTs 9.326*** 2.641*

(1.384) (1.048)

Exposure*∆ Bednets 1.302*** 0.412*

(0.158) (0.161)

R2 0.334 0.330 0.333 0.412 0.412 0.412

Observations 896,857 896,857 896,857 607,572 607,572 607,572

Years of ed. Completed primary ed.

Exposure*∆ Malaria -4.683*** -0.437***

(0.250) (0.024)

Exposure*∆ ACT 43.723*** 4.076***

(3.926) (0.369)

Exposure*∆Bednets 7.288*** 0.679***

(0.404) (0.039)

R2 0.631 0.615 0.631 0.535 0.522 0.535

Observations 2,850,716 2,850,716 2,850,716 2,850,716 2,850,716 2,850,716

Age-by-region yes yes yes yes yes yes

Exposure-by-region yes yes yes yes yes yes

Notes: The unit of observation is the individual. For all dependent variables, each cell reports the OLS estimate of

coefficient β in Equation (4). Malaria risk and bednets vary at the regional level, while ACTs vary primarily at the

national level. The regression controls for gender and wealth as well as fixed effects for DHS clusters, country-by-

cohort-by-DHS year and subcomponents, age-by-region, and exposure-by-region. Standard errors (in parentheses)

are clustered at the DHS cluster level. ˆ, *, ** and *** indicate significance at the 10, 5, 1 and 0.1% levels.
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Table A8: Alternative infant health variables

(1) (2) (3) (4) (5) (6)

Acute respiratory infection Diarrhea BCG DPT Polio Measles

malaria2000j × exposureNct 0.044 -0.003 -0.039ˆ -0.023 -0.030 -0.012

(0.063) (0.022) (0.021) (0.026) (0.028) (0.022)

R2 0.296 0.152 0.433 0.436 0.313 0.479

Observations 108,254 469,021 478,155 476,563 477,797 475,255

Age-by-Region no no no no no no

Exposure-by-Region yes yes yes yes yes yes

Notes: The unit of observation is the individual. For all dependent variables, each cell reports the OLS estimate of coefficient β

in Equation (4). The regression controls for gender and wealth as well as fixed effects for DHS clusters, country-by-cohort-by-

DHS year and subcomponents, and exposure-by-region. Standard errors (in parentheses) are clustered at the DHS cluster level.

ˆ, *, ** and *** indicate significance at the 10, 5, 1 and 0.1% levels.
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Table A9: Estimation of artificial treatments

(1) (2) (3) (4) (5) (6)

Tot. births Age at first birth Employed Paid in cash Years of ed. Completed primary ed.

20 years 1.851*** -5.111*** -0.306*** 0.005 -3.186*** -0.223***

(0.344) (0.820) (0.086) (0.097) (0.551) (0.063)

R2 0.595 0.211 0.296 0.419 0.593 0.507

Observations 521,530 441,686 717,674 531,953 1,274,398 1,274,398

30 years 1.735* 1.326 -0.235* -0.014 0.965 0.095

(0.695) (1.380) (0.108) (0.110) (0.837) (0.093)

R2 0.539 0.231 0.332 0.456 0.603 0.515

Observations 311,351 278,524 431,628 335,523 861,112 861,112

Age-by-Region yes yes yes yes yes yes

Exposure-by-Region yes yes yes yes yes yes

Notes: The unit of observation is the individual. For all dependent variables, each cell reports the OLS estimate of coefficient β in Equation (4).

The regression controls for gender and wealth as well as fixed effects for DHS clusters, country-by-cohort-by-DHS year and subcomponents, age-

by-region, and exposure-by-region. Standard errors (in parentheses) are clustered at the DHS cluster level. ˆ, *, ** and *** indicate significance

at the 10, 5, 1 and 0.1% levels.
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