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Abstract

We study the effect of a large-scale anti-malaria campaign on an unprecedentedly
rich set of human capital outcomes in 27 countries in Sub-Saharan Africa. Using pre-
campaign malaria risk as a proxy for treatment probability, we first run a standard
difference-in-differences strategy that exploits and synthesizes the period and cohort
dimensions of our survey data. We then develop a more sophisticated empirical strat-
egy that takes advantage of individuals’ continuous exposure to campaign timing and
disbursements. The estimates reveal a globally positive impact of health aid. A conser-
vative interpretation shows that the campaign reduces infant mortality (5.2 percentage
points) and fertility (0.4 births) and increases adult labor supply (5.3 percentage points)
and educational attainment (0.5 years), although this average treatment effect hides
variation by demographic characteristics and age groups. Our results underscore the
importance of understanding how the effects of large-scale efforts to reduce disease
extend beyond health outcomes.
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1 Introduction

Despite decades-long efforts, malaria remains a life-threatening disease. In 2015 alone, there
were roughly 214 million cases of malaria, resulting in an estimated 584,000 deaths.! Malaria
has long been a topic of importance in the economics literature due to its deleterious re-
lationship with economic growth. At a microeconomic level, reducing malaria leads to im-
provements in infant mortality and early childhood health (Lucas, 2013; Pathania, 2014).
In turn, these changes have the power to substantially influence household decision-making.
Empirical evidence from historic eradication campaigns shows that reductions in malaria can
increase live births (Lucas, 2013), improve educational attainment, literacy, and cognition
(Cutler et al., 2010; Lucas, 2010; Venkataramani, 2012; Barofsky, Anekwe and Chase, 2015;
Burlando, 2015) and lead to greater incomes, consumption and labor productivity (Bleakley,
2010; Cutler et al., 2010; Hong, 2013; Barofsky, Anekwe and Chase, 2015). This paper is
the first to study the response of an unprecedentedly rich set of human capital outcomes to
malaria control efforts in 27 Sub-Saharan African countries.

In 1998, the World Health Organization (WHO) launched a new campaign to halve
malaria deaths worldwide by 2010 (Nabarro and Tayler, 1998). With this goal came the
need to establish a global framework for coordinated action against malaria — and the
Roll Back Malaria (RBM) Partnership was born.? RBM serves as a conduit to harmonize
resources and actions among the many national, bilateral and multilateral actors engaged
in malaria control. By 2010, targeted funding from external actors had reached nearly $2
billion annually (Pigott et al., 2012). Sponsored control efforts focus on prevention and
treatment among the most at-risk populations through artemisinin-combination therapies.?
They also limit malaria transmission from mosquitoes to humans with insecticide treated
nets and indoor residual spraying.* By 2014, just over a decade after the scale-up of these

control efforts, worldwide malaria deaths had been cut in half.

1See the World Health Organization’s website: http://www.who.int/mediacentre/news/releases/
2015/report-malaria-elimination/en/. Accessed on 05/31/2016.

2More information can be found at the website of the Roll Back Malaria Partnership: http://www.rbm.
who.int/.

3 Artemisinin and its derivatives produce the most rapid action of all current drugs against P. falciparum
malaria.

4These approaches are sometimes combined with larval control which eliminates mosquitoes at their larval
stage. However, due to its detrimental environmental effects and poor cost-effectiveness, larval control is
recommended only for specific settings.
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This massive reduction in malaria-related mortality may have effects that reach beyond
health. Improving early childhood health paves the way for greater educational attainment.
But it also raises the opportunity cost of education by increasing a child’s potential wages
on the labor market (Bleakley, 2010) and efficiency at completing domestic tasks. This, in
turn, can influence adult fertility and labor decisions by modifying the cost of each additional
child (Vogl, 2014). To untangle the relationship between malaria control campaigns and
these outcomes, we construct a simple theoretical framework of a household’s human capital
production. We then estimate the impact of the RBM campaigns on infant mortality, fertility,
adult labor market participation, and children’s education from 2003 to 2014.

Our empirical strategy proceeds stepwise. Using pre-campaign malaria risk as a proxy for
treatment probability, we first run a standard difference-in-differences strategy that exploits
the period and cohort dimensions of our survey data. Doing so allows us to synthesize
econometric approaches previously restricted to single dimensions. We then develop a more
sophisticated empirical strategy that takes advantage of individuals’ continuous exposure to
campaign timing and disbursements. More precisely, we compare the outcomes of individuals
with a continuous combination of time, cohort and country characteristics that command (or
would command) high and low treatment intensities in the treated (highly malarious) and
untreated (less malarious) groups. To do so, we combine geocoded household microdata from
the Demographic and Health Surveys (DHS) with detailed maps of malaria risk generated by
the Malaria Atlas Project (MAP) and country-year disbursements from the RBM campaign’s
largest donors. This innovative temporal and spatial structure allows us to cover a much
larger range of countries than previously studied, which is important not only for statistical
power but also for internal and external validity. Figure 1 displays the 27 countries in our
sample.

Though similar in principle to other empirical studies, we make several departures from
the standard difference-in-differences framework. First, to assign individuals to treated or
untreated groups, we make use of the fact that RBM targeted areas with the highest burdens
of malaria, a feature determined largely by geographic and climatic characteristics. This
measure differs from previous studies relying on similar household data which tend to use
possibly endogenous household control strategies to proxy for treatment. An area’s pre-

treatment (i.e. pre-RBM) malaria risk can therefore proxy for the likelihood that a given



area was treated or untreated. Based on a respondent’s geocoded cluster, we assign to each
individual a pre-campaign malaria risk ranging between 0 and 1. This assignment, which is
independent of survey year, determines a respondent’s treated or untreated status.

Yet assigning treatment purely by an area’s pre-treatment malaria risk would be reduc-
tionist in this context. Treatment depends predominantly on the timing and intensity of
RBM campaigns across cohorts in a given country. This implies that two treated individuals
surveyed in two different years in the same country receive different degrees of exposure to
anti-malaria campaigns over their respective lifetimes. While we do not observe the same
respondent in multiple surveys, we observe similar individuals — those in the same age co-
hort — across time. All members of a single age cohort in a given country-year experience
the same intensity of RBM treatment, conditional on being treated, which we compute as
the yearly amount per capita disbursed by RBM campaigns during an individual’s lifetime.
The chief innovation of this strategy is that it exploits several layers of variation in exposure,
relying not only on cohort dates of birth but also the distribution of DHS surveys across
time. Introducing differential treatment intensity within clusters has another, more practical,
advantage: it allows us to control for cluster fixed effects as well as country-by-cohort-by-
survey year fixed effects. These demanding restrictions help us to isolate an estimated effect
of RBM that is driven by rich identifying variation in assignment to treatment at the cluster
level and intensity of treatment at the country-cohort-survey year level.

A conservative interpretation of our results, which are not driven by pre-campaign catch-
up effects between treated and untreated populations, show that RBM campaigns reduce
infant mortality (by a probability of 5.2 percentage points) and fertility (by 0.4 births), while
increasing adult labor supply (by a probability of 5.3 percentage points) and educational
attainment (by 0.5 years). The magnitude of these effects is in line with existing evidence.
Furthermore, our results hold in falsification tests and alternative sub-samples as well as
other robustness checks.

Other notable studies implement more standard microempirical analyses to estimate the
effects of malaria control on various socioeconomic factors and find similar results. Bleakley
(2010) analyzes malaria eradication in the United States (1920) and in Brazil, Colombia and
Mexico (1950) to assess the impact of childhood exposure to malaria on labor productivity.

Cutler et al. (2010), Lucas (2010), and Venkataramani (2012) estimate this impact on educa-



tional and /or cognitive outcomes in India, Paraguay and Sri Lanka, and Mexico, respectively.
Lucas (2013) uses a difference-in-differences approach to study the effect of malaria elimina-
tion on fertility and child survival rates using the case of Sri Lanka. In Uganda, Barofsky,
Anekwe and Chase (2015) find that malaria eradication raised educational attainment by
about half a year for both males and females, increased girls’ primary school completion and
generated an almost 40% increase in the likelihood of male wage employment. Finally, in
Ethiopia, Burlando (2015) shows that education levels are lower in areas with more adverse
disease environments.

Our approach complements these contributions in at least four ways. First, due to our
empirical strategy, the scope of our analysis (millions of individuals from 27 countries) is
unprecedented. While one of the advantages of a quasi-experimental approach over a ran-
domized experiment is that it can be replicated over a larger population, the maximum
number of countries covered by previous quasi-experimental studies is four (Bleakley, 2010).
Second, contrary to most previous studies, we do not focus on the malaria periphery, i.e. the
set of countries characterized by species of Plasmodium (P. vivaz, P. ovale and P. malariae)
relatively less harmful to health. We concentrate instead on Sub-Saharan Africa where P.
falciparum, the most aggressive of all species, is dominant. Third, we study contemporane-
ous, international control efforts which are relevant to ongoing policy decisions. This allows
us to make an important distinction from previous analyses that focus on historic malaria
eradication efforts in the early to mid-1900s (Bleakley, 2010; Cutler et al., 2010; Lucas, 2010;
Venkataramani, 2012; Barofsky, Anekwe and Chase, 2015). In this way, we complement the
existing literature on the role of vertical, single-disease health aid in reducing the burden
from tropical diseases. As one of the few studies to identify aid effects at a sub-national
level, this paper also contributes to the literature on health aid and economic development.
Finally, we focus on a rich set of outcomes: health, fertility, labor market participation
and educational attainment. Our findings highlight the importance of evaluating large-scale
health interventions with respect not only to their primary health outcomes but also to their
secondary effects. As such, they shed further light on the benefits of subsidizing health in-
terventions (Miguel and Kremer, 2004; Cohen and Dupas, 2010; Dupas, 2014; Tanaka, 2014;
Cohen, Dupas and Schaner, 2015).

The paper proceeds as follows: Section 2 describes a simple theoretical model which



clarifies the relationship between child health, fertility, adult labor supply and education.
In Section 3, we provide background on malaria risk and control strategies in Sub-Saharan
Africa. We also present our outcomes of interest. We outline our empirical strategy in
Section 4. Section 5 displays our results, robustness checks and discussion. Finally, Section

6 summarizes our conclusions and highlights avenues for future research.

2 Theoretical framework

Major malaria control efforts like RBM aim to target children under five and pregnant women
(WHO, 2015). This is because acquired immunity, even in highly endemic areas, does not
play an efficient protective role until the age of five. RBM, if effective, should therefore
decrease younger children’s mortality and morbidity. Existing micro-level evidence suggests
that this is indeed the case: Bhattarai et al. (2007) show that RBM-sponsored interventions
allowed for such a decrease in Zanzibar. These interventions also led to a significant drop
(33%) in postneonatal mortality (death in the first 1-11 months of life) in malarious regions
of Kenya (Pathania, 2014).

Such improvements to child survival and health can improve future educational outcomes
(Bharadwaj, Loken and Neilson, 2013) and alter the costs of raising children.” They may
thus affect household decisions to have children, to participate in the labor force, and to
invest in offspring’s human capital. We develop a simple, unified framework to illustrate
the interplay between fertility, adult labor supply and educational choices. We then examine
comparative statics when infant survival and early childhood health improve. Section 1 of the
Supplemental Appendix describes this model in full. In what follows, we summarize its key
predictions which, while not strictly novel, provide a structured framework for understanding
our results.

We model a unitary household of one adult and his/her potential surviving offspring. The
household cares about its own consumption and leisure, as well as about the number and
human capital of its children, since human capital in childhood is an important determinant
of future earnings (Becker, 1975; Currie and Madrian, 1999; Currie, 2009; Hong, 2013). The

human capital of a surviving child depends on his/her education and health. A lower (resp.

5We test fertility outcomes with our preferred empirical strategy as well as with a mother-year panel of
birth events.



higher) elasticity of substitution between these two inputs means that they have greater
complementarity (resp. substitutability).

Solving the model supports a well-documented quality-quantity trade-off (Becker and
Lewis, 1973; Rosenzweig and Zhang, 2009; Bleakley and Lange, 2009). An increase in child
health raises a child’s wage rate. Consistent with Bleakley (2010), this increases the opportu-
nity cost of additional education. A parent must allocate his/her time between working and
raising children. If each additional child costs less, a parent may reduce his/her own labor
supply and increase his/her preferred number of children because a lower labor supply allows
the parent to raise more children. Concomitantly, parents should invest less in schooling if
education and health are substitutes.

But the relationship between health and education is complex, not only within an in-
dividual’s lifecycle but also through intergenerational dynamics (Vogl, 2014). Providing a
child with one more unit of education should in fact generate a bigger increase in human
capital when this child is healthy (Hazan and Zoabi, 2006). In our context, we expect the
complementarity between health and education to be high, since reducing malaria can also
improve learning through biological means. First, contracting malaria during pregnancy
may cause foetal growth retardation which produces physical and cognitive impairments in
children (Barreca, 2010). Second, complicated forms of malaria often develop rapidly during
early childhood. Numerous studies quantify the detrimental effects of severe malaria, better
known as cerebral malaria, on children’s physical and cognitive abilities (see Mung’ala-Odera,
Snow and Newton (2004) for a literature review). Even during late childhood, the protection
conferred by acquired immunity is only partial. Clinical as well as asymptomatic malaria
hampers educational achievement notably via school absenteeism and cognitive deficiencies
(Clarke et al., 2008; Thuilliez et al., 2010; Nankabirwa et al., 2013).

If better health improves the returns to education, parents may invest more in schooling.
This outcome can occur if the complementarity between education and health is sufficiently
high. The cost of each additional child increases, and a parent’s labor supply increases as
his/her preferred number of births decreases.

These relationships illustrate important lesson — a decline in malaria can generate a wide
range of outcomes, many of them potentially positive. Provided that the complementarity

between health and education is strong enough, a drop in malaria risk does not only improve



child survival rates and health. It also affects fertility, adult labor supply and educational
investments in a way that is conducive to human capital accumulation. The effect of RBM
on each of these outcomes is thus an empirical question, one that we address in the remainder

of the paper.

3 Background and data

In this section, we provide some background to our empirical strategy. As described in the
introduction, we estimate the effect of RBM on human capital outcomes based on variation
in assignment to treatment at the cluster level and variation in intensity of treatment at the
country-cohort-survey year level.

We select our sample countries from those which were surveyed at least once post-
campaign, which received RBM disbursements, and which include geocoded clusters and
all of our outcome variables.® DHS uses a stratified two-stage cluster design. This design
first draws enumeration areas from national census files, followed by a sample of households
drawn from each enumeration area.

We first present our measure of malaria risk and the evolution of malaria risk over time in
our sample, paying careful attention to the change in malaria risk in areas with the highest
burdens of malaria prior to RBM. We then briefly describe past and present malaria control
efforts in Sub-Saharan Africa. Finally, we outline our main outcomes of interest. Further
details on the construction of all variables are available in Section 2 of the Supplemental

Appendix.

3.1 Malaria risk

Campaigns targeted areas with the greatest initial burden of malaria. Though information
is not available about the specific treatment received by each cluster, evidence is consistent

with the assumption that campaigns targeted regions with the highest pre-campaign malaria

SThe absence of one or more of these characteristics prevents us from including additional countries,
particularly those in less malarious regions which might serve as additional controls. In previous versions
of this paper, we relied on countries with at least one pre-campaign round and one post-campaign round.
Our current estimates are still robust using this sub-sample. We provide these results in the Supplementary
Appendix.



risk.”

Our analysis takes advantage of newly available data on malaria risk from the Malaria
Atlas Project (MAP). Our proxy for malaria risk is the P. falciparum parasite rate (PfPR)
from the MAP (Bhatt et al., 2015).® For a given year, PfPR describes the estimated pro-
portion of individuals in the general population aged 2 to 10 years old who are infected with
P. falciparum at any given time. These estimates are generated by a geostatistical model
that relies on parasite rate surveys as well as bioclimatic and environmental characteristics.”
The MAP subjects this model to a high number of site-date specific reality checks.! We
also complement our results with treatment probabilities based on the coverage of specific
malaria control strategies in our robustness checks.

We use MAP estimations of malaria risk in 2000 for grids of 5 km x5 km over the African
continent, assigning a pre-campaign malaria risk measure to each geocoded DHS cluster.!!
This procedure allows us to cover 25,827 DHS clusters scattered over 27 Sub-Saharan African
countries. Table A1l reports descriptive statistics for PfPR in 2000. Figure 2 provides the
spatial distribution of these DHS clusters and the level of malaria risk in 2000. All four Sub-
Saharan African sub-regions, as defined by the United Nations geoscheme, are represented:
Central Africa (Cameroon, DRC and Gabon), Eastern Africa (Burundi, Ethiopia, Kenya,
Madagascar, Malawi, Mozambique, Rwanda, Tanzania, Uganda, Zambia and Zimbabwe),
Southern Africa (Namibia and Swaziland) and Western Africa (Benin, Burkina Faso, Cote
d’Tvoire, Ghana, Guinea, Liberia, Mali, Nigeria, Senegal, Sierre Leone and Togo).

We run several checks of the evolution of malaria risk over the 2000-2014 period for the
27 countries in our sample. First, we show that malaria risk declined and the application of
control strategies increased, particularly from 2003 when the majority of RBM campaigns

began. Figure 3a shows a precipitous decrease in mean malaria risk, particularly from 2003

"We could equally assume that the greatest effects of the campaign occurred in the highest risk areas,
either due to targeting or due to the fact that the most malarious areas stood to gain the most from
anti-malaria campaigns.

8We sincerely thank Peter Gething for providing the yearly data (from 2000 to 2012) through personal
communication for an earlier version of this paper.

9Gething et al. (2011) and Bhatt et al. (2015) describe the estimation process.

10See http://www.map.ox.ac.uk/explorer/.

"UNote that DHS displaces urban clusters up to two kilometers and rural clusters up to five kilometers. A
further randomly selected 1% of clusters is displaced up to 10 kilometers. Since this displacement is white
noise, it should not compromise our identification strategy. Regardless, results (available upon request) are
robust to using different cluster radii (5 km, 10 km, 20 km) to calculate average malaria risk.

10
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when the majority of RBM campaigns launched. Similarly, in Figures 3b to 3d, we examine
the evolution of standard malaria control strategies, all of which increased over this time
period.

Second, we show that these trends were strongest in areas with comparatively higher
malaria risk prior to the scale up of anti-malaria campaigns. We create a panel of the 244
regions in our sample. To show the clear contrast between the pre-RBM period (2000-2002)
and the post-RBM period (2003-2005 and 2003-2014), we plot the change in PfPR against
the mean initial value of PfPR in 2000. Consistent with Bhatt et al. (2015), Figure 4 shows
that initial PfPR and the change in malaria risk have a weakly negative correlation prior
to 2002, a correlation which becomes more pronounced as the pre-RBM period passes and
the post-RBM period begins. Conditioning the use of malaria control techniques on initial
malaria risk produces a similar result. The higher the level of malaria risk in 2000, the greater
the increase in insecticide treated net usage in Figures 5a and 5b (which use two different
bednet measures from the DHS and MAP, respectively). In Figures 5¢ and 5d, we examine
the trade-off between drugs administered for fever to children under five. Due to its lower
effectiveness, chloroquine waned in popularity as a first-line treatment, and the prescription
of ACTs increased instead (Flegg et al., 2013).'? Though our panel of countries with drug
information is more limited, we see that, consistent with this substitution, the popularity of
chloroquine decreased in the most malarious regions while the use of artemisinin combination
therapies grew weakly.

Taken together, these plots provide suggestive evidence that treatment probability, mea-
sured by PfPR or by control strategies, depends on an area’s initial burden of malaria. We

will refer to PfPR as malaria risk for the remainder of the paper.

3.2 Malaria control efforts in Sub-Saharan Africa

The WHO launched the first worldwide malaria eradication program in 1955. Malaria re-
duction strategies revolved primarily around vector control (surveillance and spraying) and
antimalarial drug treatments. However, many of the most malarious areas, such as the

newly-independent states of Sub-Saharan Africa, did not see any benefits (Alilio, Bygbjerg

12Malawi was the first African country to replace chloroquine in 1993, followed by Kenya in 1998 and
Tanzania in 2000 (see Mohammed et al. (2013)).
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and Breman, 2004). As described in 2002 by the final report of the External Evaluation of
Roll Back Malaria:

“Prior to RBM’s launch, a series of unsuccessful initiatives to curb the grow-
ing burden of malaria contributed to a sense of skepticism and disillusionment
among international health experts. The WHO Malaria Eradication Programme
(1955-69) resulted in widespread disappointment and failure, after 15 years of a
coordinated, multinational effort. On a more modest national scale, the WHO-
sponsored vector control projects in Cameroon, Nigeria and elsewhere in Africa
in the 1960s were also largely ineffective. During the 1980s and 90s, especially in
Africa, malaria control programmes fell into disrepair or were abandoned entirely.
Problems were compounded by growing resistance to insecticides and drugs, gen-
eral weaknesses in the health care infrastructure, and economic shocks that reduced
government spending per capita on health care. The malaria situation worsened,

and fatalism and resignation towards the disease became widespread.”

The RBM Partnership formed in reaction to the deteriorating state of malaria control
efforts. Encouraged by the discovery of new and efficient first-line treatments — artemisinin-
based combination therapies — RBM’s first major disbursements occurred in 2003, driven
by the Global Fund to Fight AIDS, Tuberculosis and Malaria following its establishment
in 2002. There is a general consensus that RBM-sponsored efforts have been achieving a

measure of success. As the WHO expert group Malaria Policy Advisory Committee notes:

“The scale-up of malaria control efforts in recent years, coupled with major
tmvestments in malaria research, has produced impressive public health impact in
a number of countries, and has led to the development of new tools and strategies

aimed at further consolidating malaria control goals.”

Sub-Saharan Africa, home to the heaviest burden of malaria, saw malaria cases decrease
by 42%, with death rates dropping by 66%, between 2000 and 2015. Bhatt et al. (2015) es-
timate that malaria control interventions have averted 663 million clinical cases since 2000,

of which 68%, 22% and 10% are attributable to insecticide treated nets, artemisinin combi-
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nation therapies, and indoor residual spraying, respectively.'®> Studying countries impacted
by the President’s Malaria Initiative, Jakubowski et al. (2017) estimate that the under-5
mortality rate decreased from 28.9 to 24.3 (per 1,000 person-years) within the period of
1995 to 2014. Finally, Wilde et al. (2014) use the rapid distribution of bednets to identify
improvements in infant mortality and fertility.

We present the increasing trend of RBM disbursements in our sample from 2000 to 2014
in Figure 6. To do so, we use disbursements from the three primary external funders of the
RBM campaigns: the Global Fund' (since 2003), the President’s Malaria Initiative (since
2006), and the World Bank Booster Program for Malaria Control in Africa (since 2006). We
observe disbursements at the level of the country-year. We use this information to compute
a respondent’s exposure as the yearly amount per capita'® disbursed at the country level
during an individual’s lifetime by these three primary funders. An individual’s lifetime is
defined as the difference between the DHS survey year and his or her year of birth, from
which we subtract one year. We consider exposure to begin in utero (though defining the
start of exposure with the year after birth does not alter our results). (See the Supplemental
Appendix for further details.)

An individual’s exposure depends on his or her date of birth which is difficult to predict.
Furthermore, we use in many cases multiple surveys per country, the timing of which is
also difficult to systematically anticipate with respect to high-level DHS, organizational, and
national priorities. This produces an exposure to treatment which varies from —0.162'¢ to
8.918 with a standard deviation of 0.787. Table A1 presents these descriptive statistics, and
Table A2 presents descriptive statistics for exposure separately for age, date of birth, country
and survey year. We include the latter table to illustrate the variability of exposure, which
is substantial, across these dimensions. We also present frequency distributions of date of

birth, age and exposure by survey year in Figure A2.

13The authors note that “these proportional contributions do not necessarily reflect the comparative effec-
tiveness of different intervention strategies but, rather, are driven primarily by how early and at what scale
the different interventions were deployed.”

14\We show the funding process and steps, downloaded from the Global Fund’s website, in Figure Al.

15Yearly population data come from the World Development Indicators. Using disbursement per capita
may reduce the magnitude of the impact since anti-malaria campaigns aim to target certain segments of the
population.

16Negative values are possible in a small number of cases of young children when a country was required
to return disbursed funds.
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It is important that the timing and intensity of the RBM disbursements were not antic-
ipated by the target population. If households anticipated better child health outcomes, for
example, they could have modified decisions on fertility, labor supply or educational invest-
ments prior to the campaign’s start. But the likelihood that the average citizen would have
predicted the scale-up of RBM campaigns is low. The establishment of the Global Fund in
2002 marked RBM scale-up. The Global Fund itself evolved out of a series of high-level dis-
cussions between donors and multilateral agencies that began toward the end of 1999. These
discussions notably culminated with the sixth of the eight Millennium Development Goals
established following the Millennium Summit of the United Nations in 2000: “To combat
HIV/AIDS, malaria, and other diseases.” Moreover, it was only in 2011 that the Global
Fund began to advertise its activities in countries of operation.’” It is thus doubtful that
the establishment of this Global Fund and its subsequent disbursements were anticipated by

the general population of beneficiary countries.

3.3 Outcomes of interest

The DHS provide our outcomes of interest. In the Supplemental Appendix, we report de-
scriptive statistics in Table A1 as well as outline the DHS source data. Following Pathania
(2014), we use infant mortality events (death within the first year of life among live births)
as a proxy for child survival rates and health. We construct this variable based on the
questionnaire conducted among women of reproductive age (15-49) which includes complete
reproductive history and childhood mortality. More precisely, we define infant mortality only
for cohorts born at least one year before the survey date since it is undefined for cohorts
younger than one year. Moreover, in order to avoid recall bias, we restrict the sample to live
births that took place at most 5 years before the date of interview. We complement infant
mortality with two additional indicators: neonatal mortality and post-neonatal mortality
which represent the probability of death within the first month and within months 1-11
respectively. The resulting data forms a pseudo-panel of death events for each year of birth
cohort.

To measure fertility, we rely on two questions from the women’s questionnaire: the

17A green leaf logo is printed on Global Fund-provided malaria treatments from the Affordable Medicines
Facility-malaria program to highlight negotiated price reductions from artemisinin combination therapy
manufacturers.
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number of children ever born and the age of the respondent at first birth. While existing
evidence emphasizes maternal health (Lucas, 2013) as a driving force behind fertility changes,
additional mechanisms, such as opportunity costs, may be at play (Soares, 2005). As we
show in our theoretical framework, mothers face a trade-off between working and raising
children depending on the cost of each additional child. We also use two questions from
the women’s and men’s questionnaires to proxy for adult labor supply: (i) whether the
respondent has been employed in the last 12 months (self-employment included) and, if so,
(ii) whether he or she was paid in cash. We use the latter information as a proxy for the
probability of being involved in market-oriented rather than subsistence labor. Finally, for
all individuals in the person-level recode, we compute education in single years. We also use
this variable to identify whether the respondent has completed at least the full number of
years of primary education (5, 6 or 7) in her country’s educational system. For all dependent
variables, we pool surveys for each country to create pseudo-panels by year of birth cohort.
Additionally, for a follow-on analysis, we create a panel of birth events by mother-birth year.
In this panel, the dependent variable is a binary indicator for a birth event in a given year,

which is similar to our panel of infant mortality events.

4 Empirical strategy

4.1 Econometric specifications

We aim to isolate the treatment effect by comparing the outcomes of individuals with char-
acteristics that command high and low treatment intensities in the treated and untreated
groups. Without a standard panel structure, we adapt a difference-in-differences approach
to our context. We build our strategy stepwise. First, we use the period dimension of our
survey data, relying on pre-campaign malaria risk as a proxy for treatment probability. We
then incorporate binary and continuous cohort intensity of treatment that takes advantage
of individuals’ exposure to anti-malaria campaign timing and disbursements. In this way,

we synthesize the period and cohort dimensions of our dataset.
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4.1.1 Period model

We begin with a simple period model, similar in spirit to Lucas (2013), which computes the

difference-in-differences estimator from Equation 1:

Vije = B1 + Bohighmalariaggg, + Fzpost, + fs(highmalariaggg; x post,) + € (1)

where y;;; is an outcome of individual ¢ in DHS cluster j surveyed in year t. The variable
post, is a binary indicator denoting a respondent interviewed after the start of the cam-
paign. The coefficient 8, is the treatment effect.’® Low versus high malaria risk is defined
within countries with respect to median pre-campaign risk, while post, captures whether an
individual’s year of survey falls before or after the start of major malaria control efforts.
While we provide these simple differences when introducing our results, our preferred mod-
els incorporate continuous malaria risk and exposure to treatment. Relying on continuous
measures allows us to move beyond a simple period model in order to exploit the full range

of variability among cohorts in our data.

4.1.2 Cohort model

One of the simplest cohort versions of Equation (1) changes the definition of post, to account
for a respondent’s year of birth cohort c. Instead of basing post, on a respondent’s date of
survey, this approach defines a new posty, as an indicator for being born after the start of

the campaign in a given country. Equation (2) describes this model:

yijct = ﬁl + 5gposth + 63(Hla1aria2000j X postNC) + Xijct’.F + 5Nc =+ 5]' + eijct (2)

We regress a respondent’s individual outcome on an interaction term between the probability
of belonging to the treated group and the treatment intensity (post,,). Instead of a binary

indicator, the former assigns a continuous probability of pre-campaign malaria risk (from 0

18In this equation, the time dimension, the date of interview, is similar to a period analysis. In this case,
the coefficient 8, = [(highmalaria,, post;) - (highmalaria,, posty)] - [(highmalaria,, post;) - (highmalaria,,
posty ).
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to 1) to individuals at a localized geographic level. More precisely, malariaggg; measures the
level of the PfPR in 2000 in DHS cluster j, hence its pre-campaign malaria risk. Finally, the
vector Xjjer includes individual covariates gender and wealth!® To control for each element
of the interaction term and its correlates, we introduce DHS cluster fixed effects 9, as well
as country-by-cohort fixed effects, dpe.

However, this approach has two drawbacks: First, we can only test this model on depen-
dent variables measured in cohorts encompassing respondents born both before and after
the campaign start date. In other words, this approach is relevant only for infant mortality
and child educational outcomes. Indeed, we observe fertility outcomes only among women
ages 15 to 45. If the campaign’s start date is 2003 at the earliest and DHS surveys reach
2014 at the latest, a woman born in the post-RBM period will be too young to have given
birth by 2014.This limitation does not apply to a panel of birth events by mother-birth
year. The same reasoning applies to employment variables measured among adults ages 15
to 59. Second, a simple binary measure of campaign exposure does not account for the
wide variation in respondents’ experience with anti-malaria programs. In other words, this
simple approach captures the extensive margin of anti-malaria campaigns, and we move to

the intensive margin with the following specifications.

4.1.3 Duration model (period-cohort)

We can therefore build on Equation 2 by comparing the outcomes of individuals with a
continuous combination of time, cohort and country characteristics that command high and
low treatment intensities in the treated (highly malarious) and untreated (less malarious)
groups. As before, malariasgy; represents a respondent’s probability of belonging to the
treated group. However, treatment intensity now exploits the variation in the timing of
RBM disbursements relative to respondents’ birth cohorts (¢), DHS survey year (t), and
country (). Interacting these variables allows us to identify a causal pathway from RBM

campaigns to human capital outcomes.?’ We present this new specification below:

19Results from this equation and those that follow are also robust when excluding the wealth index.

20To focus on a post-colonization time frame, and therefore avoid concurrent shocks to health and edu-
cational policies, we restrict respondents to those born after 1960. However, we show in Table 7 that our
baseline results hold when this restriction is lifted.
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Yijet = o+ B.(malariagoogj X durationth) + Xijct’.I‘ —+ 5th —+ (5]- + €ijet (3)

where y;jc; is an outcome of individual 7 in DHS cluster j, belonging to cohort ¢ and surveyed
in year t. In this model, durationy. measures in a given country N the proportion of an
individual’s life spent post-campaign. As a function of country N, year of birth cohort c,
and DHS survey year t, durationy. is defined by substantial variability. Relative to one
another, births, DHS surveys, and campaign start dates are difficult to predict or anticipate.
As the coefficient of the interaction term between malariasyy,; and durationy., 3 identifies
the treatment effect. As before, we include covariates Xjjet, country-by-cohort-by-DHS year
fixed effects dnct, and DHS cluster fixed effects 9;.

Yet durationy,. fails to account for the intensity of RBM disbursements. As described in
Section (3), RBM funding streams varied significantly within and between countries as well
as over time. Our preferred specification replaces durationy.; with exposurey,,. This new
measure of treatment intensity accounts for the yearly amount per capita disbursed during

an individual’s lifetime by the three primary external funders of the RBM campaigns.

4.1.4 Full exposure model (period-cohort-disbursements)

Our preferred specification thus makes full use of period, cohort and disbursement dimensions

of our survey data, as well as continuous measures of probability and intensity of treatment:

Vijer = @ + B.(malariagg; X exposurey,,) + Xijet -I' + Oner + 0 + €ijer (4)

Adopting this restrictive parameterization isolates a treatment effect based on assignment
to treatment at the cluster level and a rich identifying variation in treatment intensity by a
respondent’s country, cohort and survey year. We further amend Equation (4) with several

terms to combat the potential for bias due to omitted variables.
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4.2 Potential threats to validity
4.2.1 Straightforward omitted variables bias

By definition, an individual’s exposure to RBM campaigns depends negatively on age (i.e.
the difference between DHS survey year and the respondent’s date of birth).?! Pre-campaign
malaria risk may also be correlated to pre-campaign outcomes. For instance, there is surely
a correlation between (malariagg; X exposurey,) and the interaction term between pre-
campaign educational outcomes at the cluster level and exposurey,. But initially more
educated individuals are more likely to adopt malaria prevention strategies (see Nganda et al.
(2004); Rhee et al. (2005); Hwang et al. (2010); Graves et al. (2011)).?? Similarly, an area’s
pre-campaign malaria risk may induce mothers to postpone or anticipate birth decisions.
Therefore, the impact of exposure to malaria control campaigns may vary depending on
pre-campaign characteristics.

To mitigate these potential omitted variables biases, our tables display three columns of
results per dependent variable. They report coefficient § (i) when Equation (4) is estimated;
(ii) when the interactions between age,, and region fixed effects are included;** (iii) and when,

additionally, the interactions between exposure,,, and region fixed effects are added.?

4.2.2 Pre-campaign trends

Before proceeding to results, we first rule out the possibility that changes in our outcome
variables between more and less exposed individuals began prior to RBM scale-up. Other-
wise, we will be unable to ascertain if 5 in Equation (4) captures the impact of the RBM
campaigns or if it simply reflects pre-campaign trends.

To test for pre-campaign catch-up effects, we perform a falsification test. We estimate
Equation (4) over individuals who were exposed to the campaign but whose outcomes could

not be affected by the campaign. We examine the following outcomes: infant mortality for

2'Younger cohorts are more heavily treated than older cohorts in each treated cluster. If these cohorts
have positive spillovers on older cohorts (by reducing malaria risk), we will underestimate the effects of RBM
campaigns on the outcomes of older cohorts.

228ee also Kenkel (1991) and Dupas (2011) for the relationship between education and health behavior.

23We rely on region rather than cluster fixed effects to avoid multicollinearity. However, our results remain
substantively unchanged if we rely instead on interactions between age. and cluster fixed effects or age,,
and malariagoooj.

24We obviously cannot control for the interaction term between exposure y,, and cluster fixed effects since
this would drop the main variable of interest in our analysis, i.e. (malariasgog; X exposure ;).
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infants born prior to 2002 (where exposure is zero for those who die before the age of one
and positive for those who die after the age of one or are still alive at the time of survey),
height-for-age z-scores based on WHO reference standards, a proxy for health conditions
during childhood, among individuals who had completed their growth at the campaign’s
start date (above age 25), total births (above age 40 at the campaign start date), and years
of education completed as well as whether the respondent completed primary school (both
above age 25 at the campaign’s start).

Table 1 reports the results of this test. We introduce both age-by-region and exposure-
by-region fixed effects. For infant mortality, the coefficient g is negative but not significant.
Height-for-age z-scores is also negative and not significant. Educational attainment variables
are marginally significant but never positive. Finally, the coefficient of total births to older
mothers is positive but not significant. In other words, prior to the RBM campaigns, the
difference in health and educational outcomes between more and less exposed individuals
is not greater in treated relative to untreated areas. It is, in fact, lower. If anything, the
pattern observed during the pre-campaign period runs against us, finding a positive impact
of the RBM campaign on human capital accumulation. Figure 7 provides a complementary

graphical view using binary pre-/post-campaign malaria risk.

5 Results

5.1 Preliminary results
5.1.1 Correlations

Table 2 presents a preliminary view of the relationship between our outcomes and malaria
risk. We regress these outcomes on regional variation in malaria prevalence and incidence as
well as population coverage by standard control strategies — artemisinin combination thera-
pies and insecticide treated nets. These correlations face several limitations. First, changes
over time may be endogenous. An increase in antibiotic treatments, for example, might
serve as a bellwether of greater malaria risk, rather than the reverse. Second, bednet usage
faces potential issues of household selection. Third, the MAP provides coverage estimates

with limited variation at the regional level (especially for ACTs) while DHS surveys do
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not always include questions related to malaria treatment. This restricts the data available
for identification. Despite these challenges, a clear pattern emerges: variations in malaria
prevalence and incidence are positively (resp. negatively) correlated with infant mortality
and total births (resp. adult labor supply, age at first birth, and education). The reverse is
true for the variations in coverage by malaria control methods. These results are globally
consistent with the story that the RBM campaign is conducive to human capital accumula-
tion. There are some minor inconsistencies — total births, age at first birth and probability
of paid employment show signs opposite of expectations when regressed on ACTSs, though

these coefficients are likely due to the challenges mentioned above.

5.1.2 Period, cohort and period-cohort models

Our period model from Equation (1) supports this interpretation. Table 3 reports the results
of this analysis, comparing the changes in outcomes in highly or less malarious DHS clusters
between pre- and post-campaign time periods. A highly (resp. less) malarious DHS cluster is
defined as having an above (resp. below) median level of malaria risk in 2000. Pre-campaign
surveys occur prior to 2003 and post-campaign surveys occur in 2003 or later.?® Table 3
shows that the decrease (resp. increase) in infant mortality (resp. adult labor supply and
education) between the post- and pre-campaign periods is greater in DHS clusters that show
high rather than low pre-campaign malaria risk. For the total number of births, there is
an increase in both treated and untreated areas but the increase in treated areas is more
modest, as expected. Similarly, for age at first birth, there is a decrease in both treated and
untreated areas but the decrease in the treated areas is more modest.

In Figure 8, we plot the average of each dependent variable by age cohort at the time
of survey (pre- and post-2003) between high and low levels of malaria risk. Prior to the
start of anti-malaria campaigns, cohorts in highly malarious areas face a higher probability
of infant mortality, higher birth rates, lesser probability of paid employment and lower
number of years of education completed relative to their counterparts in less malarious
areas. After the campaign start date, we observe a decrease in the distance between line

plots in high and low malaria risk cohorts as well as a shifting of the curves - downward for

250ur results are also robust to defining pre- and post-campaign relative to when the campaign began in
each individual country.
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infant mortality and total fertility and upward for the probability of paid employment and
years of education completed. However, Table 3 and Figure 8 do not account for individual
exposure to campaign disbursements.

We further investigate these preliminary findings by estimating Equations (2) and (3).
The former is a cohort model with continuous treatment probability while the latter combines
both period and cohort dimensions by additionally incorporating continuous intensity of
treatment. Table 4 reports these results. Equation (2), due to its dependence on respondents
born after the campaign, presents results only for infants and children. Being born after the
initiation of RBM leads to a decrease in the probability of infant, neonatal and post-neonatal
mortality and an increase in both the years of education completed and the probability of
completing primary education. Regarding Equation (3), we observe in columns 1 through
3 that a marginal increase in the lifetime duration of anti-malaria campaigns is negatively
related to the likelihood of infant, neonatal and post-neonatal mortality, but not significantly
so for the two latter measures. However, this type of specification is not necessarily well-
suited to investigating infant mortality, for which there can be only limited variation in
lifetime RBM duration. Moving to adult outcomes, we observe a negative and significant
relationship between lifetime campaign duration and a woman’s total number of births.
Consistent with this finding, an increase in the relative duration of RBM campaign produces
a positive effect on age at first birth. Moreover, the effect is also positive for the remaining
dependent variables: the probability of adult employment and being remunerated in cash,
and the number of years of education and probability of completing primary education.
These results suggest that increasing the proportion of a respondent’s life under anti-malaria
campaigns brings about an overall improvement in human capital outcomes. Nevertheless,
we can be more precise about the effect of an individual’s exposure to RBM by taking
into account country- and year-specific disbursements and interpreting the magnitude in the

following section.

5.2 Main results

Our main results rely on Equation (4), which supplements the period and cohort dimensions
of the previous specifications with information on RBM disbursement intensity throughout

a respondent’s lifetime.
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5.2.1 Infant mortality

For children, their dates of birth relative to the start of the campaign as well as the timing
and intensity of disbursements over the period of their lives exposed to RBM contribute
to identify the effect. These characteristics depend on the date of DHS interview and the
program timing per country. Columns 1 through 6 of Table 5 report the OLS estimates of
Equation (4) for infant mortality, without (odd columns) and with (even columns) exposure-
by-region fixed effects. We omit controls for age (in months)-by-region in our baseline due
to the fact that this information is missing for some infants and causes a reduction in sample
size control. However, results are robust to their inclusion in Panel D of Supplemental
Appendix Table A3.

A marginal increase in the interaction term reduces the probability of infant mortality
by 15 percentage points and postneonatal mortality by 10 percentage points. We observe
no effect on neonatal mortality, which is consistent with evidence that neonates possess
some degree of clinical protection from malaria in the medical and economic literature (see
Pathania (2014)). At first glance, these coefficients seem high, but they are not straight-
forward to interpret. Therefore, in Table 5, we also include a row to provide the treatment
effect. In this row, we multiply the resulting coefficients by the mean level of malaria risk
in 2000 (0.351). For an incremental increase in exposure to RBM?® at this average level of
pre-campaign malaria risk in 2000, the resulting reduction in infant mortality is roughly 5
percentage points. As a comparison, BenYishay and Kranker (2015) find that the proba-
bility of a child’s survival to 60 months increased by approximately 2.4 percentage points
for cohorts treated by the Measles Initiative campaigns in Sub-Saharan Africa. Hookworm
disease has also been the subject of particular attention in the economic literature, but this
disease is rarely lethal (Bleakley and Lange, 2009). In Kenya, Pathania (2014) finds that
malaria control induced a decrease in post-neonatal mortality of 33%. In their analysis of
the effects of the President’s Malaria Initiative, Jakubowski et al. (2017) estimate a 14-16%
reduction in under-five mortality. While similar in magnitude to our results prior to the
treatment effect transformation, this study uses coarser treatment measures: an indicator

for whether a country received funding in a given year and per-capita disbursements at the

26We show in subsequent sections that this incremental increase is equivalent to one additional dollar per
capita, per year of RBM disbursements.
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country-year level. Effectiveness could run not only through the reduction in malaria burden
but through additional channels, such as health systems strengthening or better childhood
resilience to other diseases, thereby increasing the magnitude of the observed effect. We
further interpret these results in Sections 5.4 and 5.5.

In the Supplemental Appendix, we subject this baseline specification to further tests.
Table A3 presents mortality results when we control for additional mother-specific charac-
teristics (age and length of preceding birth interval), mother fixed effects, age-by-region, and
age-by-malariagg;. We can control for mother fixed effects given that a mother typically
has more than one child in the 5 years preceding the survey. Our results are robust to these

alternative specifications.

5.2.2 Fertility, adult labor supply and education

The remainder of Table 5 reports the OLS estimates of Equation (4) for fertility, adult
labor supply and education. In our identification strategy, if the rationale is the same for
adults as for children, the variation in the duration of exposure for adults will be relatively
smaller within their longer lifetimes. Moreover, we note that, as shown in Table 1, the
effects will be driven by the younger cohort of adults. We introduce age-by-region fixed
effects and exposure-by-region fixed effects sequentially. Table 5 confirms the preliminary
results from Tables 3 and 4 and Figure 8: the RBM campaign reduces total fertility and
increases adult labor force participation as well as the probability of being involved in market-
oriented activities. More precisely, at an average level of malaria risk in 2000, an incremental
increase in RBM spending reduces the total number of live births by 1.3, and increases the
probability of being employed and of being paid in cash by roughly 17 and 6 percentage
points respectively. The effect on age at first birth is strongly significant and positive until
the final column, in which we control for both age- and exposure-by-region. Exposure to
RBM also improves educational outcomes, increasing the probability of completing primary
school by 8 percentage points and the number of years of education completed by 0.8. An
alternative, and more conservative, approach to the treatment effects consists in computing
the treatment effect individually for each year of birth cohort exposed to RBM, since cohorts
have varying degrees of exposure to RBM, and taking the average of these effects. Averaging

is more conservative because it weights all cohorts equally, even those minimally exposed
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to the campaign, whereas most of the effect is likely concentrated in those cohorts most
exposed to the campaign. With this approach, exposure to RBM reduces total births by 0.4,
increases the probability of employment by 5.3 percentage points, increases the probability
of paid employment by 1.9 percentage points, increases educational attainment by 0.5 years
and increases the probability of completing primary school by 4.4 percentage points.

These results are consistent with a model of household production in which health and
education operate as complementary inputs. In Supplemental Appendix Table A4, they are
furthermore largely robust to specifications which include household fixed effects (possible be-
cause respondents are nested in households) and an alternative age control (age-by-malaria).
Adult labor outcomes lose significance, likely due to limited variation at the household level.
We further interpret the magnitude of Table 5’s baseline results in Section 5.5 by incorpo-
rating more specific assumptions as to the precise definition of an “incremental” increase in
RBM exposure.

Our results on education are comparable to similar studies. For example, using a
difference-in-differences strategy based individuals born in pre- and post-eradication areas
in Uganda, Barofsky, Anckwe and Chase (2015) show that malaria eradication led to an in-
crease in educational attainment by 0.5 years. Barreca (2010) finds that schooling decreases
by 0.4 years with just ten more malaria deaths per 100,000 individuals. Similarly, Bleakley
(2010), Lucas (2010), and Venkataramani (2012) find positive effects of malaria reduction or
eradication on educational outcomes.

Our results on fertility are consistent with results from Bleakley and Lange (2009), but
differ from other studies. For example, outside Africa, Lucas (2013) demonstrates that a
decline in malaria caused an increase in fertility and a younger maternal age at first birth,
while Fortson (2009) shows little impact of HIV/AIDS on fertility. The increase in education
is consistent with the increased years of educational attainment and literacy found in several
studies (Lucas, 2010; Barofsky, Anekwe and Chase, 2015; Bleakley, 2010). In Appendix
Table A5, we also test a panel of mother birth events similar to our mortality estimations.
This panel captures whether a birth occurred or did not occur for each woman-year for all
eligible women in our sample as well as for those women with at least one child. The former
allows us to examine fertility choices while the latter may capture mother health. For both

samples of women, the analysis shows that the RBM campaign decreases the probability of
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a birth event.

Though our results on labor participation differ from evidence focusing on worms (Bleak-
ley and Lange, 2009), they are consistent with studies on malaria (Hong, 2013). This di-
vergence may be explained by the fact that there exist stronger complementarities between
education and health when it comes to malaria. Our results are lower in magnitude compared
to Barofsky, Anekwe and Chase (2015), who find an increase in the probability of male wage
employment by 40%. However, we study a contemporary time period and multi-country
sample while Barofsky, Anekwe and Chase (2015) present historical evidence from Uganda.

These differences may influence the divergence of magnitude.

5.3 Robustness
5.3.1 Concurrent public policies

During the early 2000s, the Millennium Development Goals led many governments to draft
sweeping anti-poverty plans. Government expenditures on social services increased. If these
increases correlate closely to RBM disbursements, we risk that our results pick up the effects
of increases in public expenditure, leading us to overestimate the purported effects of RBM
campaigns. We obtain expenditure on public education as a percentage of GDP from the
World Bank EdStats, Education Statistics: Core Indicators. Health and military expenditure
data come from the World Development Indicators. To compute total public expenditure
per capita during a respondent’s lifetime in each of these categories, we rely on GDP in
current U.S. dollars and total population (both from the World Development Indicators).
In this way, exposure to public expenditure mirrors our measure of exposure to the RBM
campaign. Finally, to account for expenditure from non-governmental sources, we also draw
data from the Global Fund’s disbursements allotted to HIV/AIDS.*

In Table 6, we control for exposure to concurrent expenditure on education, health,
military, and HIV /AIDS interacted with malariagggg; for all outcome variables. We then add
all expenditures simultaneously. We also control for the percentage of a respondent’s life
elapsed since the start of Free Primary Education. Our baseline results hold, though the

magnitudes decrease slightly, as we net out the spillovers of government policies. Results

2TWe exclude PEPFAR disbursements, for which records begin relatively late in our period of interest.
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controlling for HIV/AIDS expenditure are less robust for adult labor outcomes and age
at first birth, likely due to the fact that adults are more likely to suffer from this disease
(Azomahou, Boucekkine and Diene, 2016). (However, it is important to note that not
necessarily all HIV/AIDS-burdened countries are highly malarious. For example, Mali faces
a high incidence of malaria but a low incidence of HIV/AIDS, while the reverse is true
for Namibia.) Otherwise, the effects of the RBM campaign are robust to controlling for

significant concurrent policies.

5.3.2 Sample restrictions

In Table 7, we place various restrictions on our sample population beyond those tested in
Tables A3 and A4. First, to account for the possibility of migration, we restrict our sample to
individuals (or, in the case of infants, mothers) who lived in the same DHS cluster for at least
five years. This information is available only for subset of DHS surveys which drastically
reduces our sample size. A further concern is that migration can be endogenous to initial
malaria conditions. Nevertheless, we observe that results hold for the majority of dependent
variables, though the probability of paid employment is negative but not significant. We
then lift the restriction requiring all respondents to have been born post-1960. We also
impose a restriction that all individuals must be above the age of five. Censoring the sample
makes little difference in the statistical significance or the magnitude of the coefficients.
Finally, we estimate our baseline equation over two major geographical regions represented
in our sample, West and East Africa, in case regional differences in malaria patterns have
implications for our results. Results in both regions are globally consistent. Infant mortality
is negative but not significant in West Africa, remaining negative and significant in East
Africa even for neonatal mortality. The reduction in total births is slightly higher in West
Africa, while the increase in age at first birth is substantially higher in East Africa. Labor
and educational outcomes are similar in both regions, with West Africa home to greater
effects.

In a slightly different sub-sample check we test the robustness of our baseline results
by dropping potential outlying countries from the sample. These countries include those
with large populations (DRC, Ethiopia, Kenya, Nigeria, Tanzania), those which experienced

serious conflict (Cote d’Ivoire, Liberia, Sierra Leone), and one country nearing malaria erad-
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ication (Zambia). We also restrict our attention to countries with at least two DHS survey
rounds available. Our results, presented in Table A6, are not driven by any country or subset

of countries.?®

5.3.3 Alternative treatment probabilities and falsification tests

While our estimated measure of pre-RBM malaria risk is both spatially and temporally
precise, it is still an estimate. And, as an estimate, it is only as strong as the information
on which it is based. In Supplemental Appendix Tables A7a and ATb, we subject our
results to modifications of our treatment probability (the level of malaria risk in 2000) in
case of measurement error. Specifically, we exploit variation in malaria risk, artemisinin
combination therapies, and insecticide treated nets between surveys. We focus our attention
on these two curative and preventative measures since others, like indoor residual spraying,
may be limited to specific geographic areas. We substitute each of these measures for the
fixed value of pre-campaign malaria risk in our baseline estimation. However, as these
changes can be endogenous, we instrument each of them by malaria risk in 2000.

Consistent with our baseline findings, our results show that the interaction term between
malaria risk and exposure positively affects infant mortality and fertility, while it negatively
affects labor and educational variables. On the contrary, when using variation in artemisinin
combination therapies and bednets, the interaction term negatively affects infant mortality,
fertility, and positively labor and educational variables. However, the point estimates relying
on artemisinin combination therapies are implausibly high. This is possibly due to the fact
that the artemisinin combination therapy coverage varies almost entirely at the national
level, and it is thus not ideally suited to serve as a proxy in our estimation.

We run two different types of falsification tests in Tables A8 and A9 of the Supplemental
Appendix which serve as an additional check on pre-trends. For infants, we exchange mor-
tality for two health outcomes which are the primary contributors to the under-five disease
burden after malaria: acute respiratory infections and diarrhea. Estimating Equation (4)
with these new dependent variables shows no effect of RBM exposure in Table A8. We
then substitute four dependent variables that capture the probability of an infant receiving

a full round of various vaccinations: Bacillus Calmette-Guérin (BCG), diphtheria, tetanus,

28Complementary analysis is available upon request.
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and pertussis (DPT), polio, and measles. While all negative, only the BCG is significant
at the 10% level. Routine childhood immunization has been one of the most successful and
cost-effective public health interventions, responsible for a considerable reduction in infant
morbidity in Africa (BenYishay and Kranker, 2015). But one perverse effect of vertical pro-
grams such as RBM could be a substitution for classical immunization programs, decreasing
vaccination coverage.

Replicating this approach for adults is not feasible. Instead, in Table A9, we create an
artificial RBM intervention by shifting the start date of disbursements to the left, first by
20 years and then by 30 years. In other words, we artificially expose a different subset of
individuals to RBM disbursements by pretending that campaigns began in 1983 or 1973.
In all cases, we observe a relationship that is either not significant or the opposite of what
would be expected between RBM disbursements and our outcome variables. The effect of

the RBM disbursements is, in other words, isolated to the post-2000 time frame.

5.4 Heterogeneous effects and non-linearity
5.4.1 Heterogeneous effects

In Table 8, we explore heterogeneous effects of the campaign on our outcomes. We look at
two different cross-sections of our sample: female versus male and Fulani versus non-Fulani.
The latter is an ethnic group that has been shown to exhibit partial immunity to malaria
(see Thuilliez et al. (2017) for a discussion).

The effect of anti-malaria campaigns on infant mortality is stronger for girls and, except
in the case of postneonatal mortality, not significant for boys. While the likelihood of being
employed is greater for males than females, females are much more likely to be engaged in
paid employment compared to males. Educational outcomes are roughly similar between
genders, though marginally larger for females. If sex ratios favor men, women might antic-
ipate an easier marriage market and respond by supplying less labor and investing less in
their education. The fact that sex ratios are, on average, more favorable to males in Africa
may explain why we observe catch-up effect. The comparatively larger decline in female
mortality could spur more investment in education and pursuit of paid employment.

The ethnicity tests should demonstrate no effect for the malaria-resistant group (Fulani),
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while those who are not partially immune (non-Fulani) should adhere closely to our baseline.
This is what we observe. The only deviation is that the probability of employment for Fulani

is negative and significant.

5.4.2 Non-linearity

Table 9 reports the OLS estimates for non-linear effects in campaign exposure by age group.
We interact (malariaggg; X exposurey,) with dummies for five-year age groups. We report
each coefficient as the sum of the average effect of (malariasg; X exposurey,,) and the
marginal effect by each age group.

We provide the results for human capital outcomes (fertility, labor and education), omit-
ting age at first birth which will, by definition, decline as age progresses. For education,
for example, we expect that the earlier a respondent is exposed, the more he or she should
benefit from the campaign. But the timing of survey, especially whether near or far from
the start of the campaign, may also influence non-linear relationships.

We observe that the reduction in total births is relatively consistent across all age groups
but strongest for those women above age 40. The likelihood of employment is similar in
magnitude across all age groups but strongest in significance for younger cohorts. Finally,
educational outcomes improve most substantially for younger cohorts, ages 5-10 and 10-15.

These results fit to an explanation that earlier exposure leads to stronger effects.

5.5 Cost-effectiveness

Evaluating the cost-effectiveness of large-scale interventions is challenging. But it is an
important exercise, especially considering the number of campaigns launched against pre-
ventable diseases. To the best of our knowledge, RBM rigorously evaluated five insecticide
treated net programs (Eritrea, Malawi, Tanzania, Togo, Senegal) and two indoor residual
spraying programs (KwaZulu-Natal, Mozambique). The cost per death averted by bednet
programs ranged between $431-960. At $3,933-4,357, this figure is even higher for spraying
programs.? By international standards, these costs are high. However, such a high cost-

effectiveness is not surprising given that the proportion of deaths due to malaria represents

29Gee http://www.rollbackmalaria.org/files/files/partnership/wg/wg_itn/docs/rbmwindppt/
3-8.pdf
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only small part of the overall disease burden. For example, Bryce et al. (2005) find that
23 interventions aimed at eliminating 90% of global childhood deaths cost an average of
$887 per child life saved. BenYishay and Kranker (2015) estimate that countrywide measles
vaccination campaigns cost only $109 per child life saved.

The total cost of RBM campaigns in our 27 countries over our entire time period (proxied
by GFATM, PMI and WB disbursements) is $8.17 billion or roughly $690 million per year.
Given that the average population in our sample countries over this time period is just
under 700 million per year, disbursements amount to approximately $1 per capita per year.
With this disbursement rate, we use a back-of-the-envelope calculation to arrive at a cost-
effectiveness estimate for infant mortality. We compute the benefit as the difference between
the number of deaths of treated infants (those born during or after 2003) and untreated
infants (those born prior to 2003). Our estimates in Table 5 show that, for an average level
of malaria risk in 2000, an incremental increase in RBM spending reduces infant mortality
by 5.2 percentage points. We apply this treatment effect to averaged live birth and infant
mortality rates in 2000%° to obtain a cost of approximately $5,526 per additional life saved.
This figure is not at odds with existing RBM estimates.

Computing the cost-effectiveness of educational outcomes requires more detailed assump-
tions about population distributions. We compute for all treated cohorts (individuals born
in 1979 or later®!) a distinct treatment effect based on each cohort’s time exposed to RBM
campaigns and the average level of malaria risk in 2000. We use a rough estimate of the
population aged 0 to 24 averaged over 2003 to 2014 to compute the total years of education
resulting from RBM. This leads us to a cost of $1.63 per each additional year of schooling.
Restricting the population to ages 0 to 14 raises this estimate to $2.25.

Kremer and Holla (2009) review the cost-effectiveness of a wide range of targeted edu-
cational interventions. Large-scale health campaigns are certainly less efficient compared to
carefully controlled experiments. For instance, Miguel and Kremer (2004) found that each
additional year of schooling attributable to mass school-based deworming treatments cost
approximately $3.50. Even so, we use these interventions as a rough benchmark. RBM’s

educational cost effectiveness is low in absolute terms, and it is low relative to other health

30Data come from the United Nations Population Division World Population Prospects
31Consistent with DHS data, we assume that the maximum age possible for primary enrollment is 24.
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interventions aimed at improving education.

6 Conclusion

We document the effects of the RBM malaria control campaigns on human capital outcomes
in Sub-Saharan Africa using microeconomic data from 27 countries. Consistent with other
geographically-specific studies analyzing the effects of large-scale health interventions and
policies, we find a positive impact of campaigns on human capital (Jayachandran and Lleras-
Muney, 2009; Bleakley, 2010; Cutler et al., 2010; Lucas, 2010; Venkataramani, 2012). We
show that exposure to RBM improves infant survival, reduces fertility, and improves adult
labor force participation and children’s educational attainment.

Our findings highlight the importance of considering other outcomes in addition to health
when investing in large-scale health interventions. Furthermore, they fit to our theoretical
framework which allows increases in both early childhood health and education if health and
education are sufficiently complementary. Mass interventions can help to break intergen-
erational health-based poverty traps in which poor early childhood health impedes school
participation and performance, lowers labor participation and earnings, and increases the
need for health care. Sub-Saharan Africa is not only the last region to initiate the fertility
transition, but it has also experienced a weaker rate of decline in fertility relative to other
regions. Population growth due to lower mortality and sustained high birth rates threatens
the well-being of individuals and communities across Sub-Saharan Africa.

Our study shows that health is a key piece of this puzzle and that large-scale public health
programs have the potential to play a role in the transition to a modern demographic regime.
Documenting the additional effects of such interventions is not a trivial exercise given the
difficulty in estimating the medium-term effectiveness of programs aiming to reduce but not
eliminate health challenges (Miguel and Kremer, 2004; Ashraf, Fink and Weil, 2014; Baird
et al., 2016). Moreover, these results fit into the emerging literature on the successes of
vertical health programs in reducing the disease burden. This distinction is all the more
important given the poor results typically attributed to health aid at the macroeconomic
level. Certainly the secondary benefits from malaria interventions will never be large enough

to compete with the direct health benefits (Jamison et al., 2013), but they may be able to
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compete with or complement standard educational programs.

Our results do face some limitations. While we provide evidence that our effects may be
persistent, a more general analysis of the long-run, general equilibrium impacts induced by
RBM is left for further investigation. For example, population increases thanks to health
interventions may put pressure on social service provision. Similarly, how the labor market
reacts to rightward shifts in human capital has important implications for economic produc-
tivity and growth. Therefore, observing the net effect of the RBM on GDP per capita will
take time to come to fruition, and our understanding is limited to a transitory phase. It is
also important to note that we study a vertical health intervention that may have secondary
effects on health care provision itself. Because we are not able to distinguish the extent to
which RBM influences service delivery, we contribute instead to the body of evidence on how
improving health outcomes may have significant economic returns. Finally, we use RBM as
a catch-all for funding increases. However, a key component of RBM is its coordination ef-
forts. This institutional dimension of global health programs is difficult to assess but should
be the subject of careful evaluation in the future.

Nonetheless, we believe our analysis can inform the debate on the effect of large-scale
health programs in developing countries. Some question if policy-makers can promote ed-
ucation and economic development via public healthcare interventions (see Acemoglu and
Johnson (2007, 2014) and Bloom, Canning and Fink (2014) for a discussion). We provide
evidence that, at least in the case of malaria control efforts, the resulting improvements in

human capital must not be overlooked.
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Figure 1: Demographic and Health survey years and Roll Back Malaria start dates in our 27 countries

Country 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Country
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Notes: Vertical bars show the Demographic and Health survey years available for each country, and points mark the start of Roll Back Malaria disburse-

ments. Individual exposure to anti-malaria programs is a function not only of disbursement starting dates but survey timing and years of birth.
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Figure 2: Spatial distribution of DHS clusters and initial malaria risk (Plasmodium falciparum parasite rate) from Bhatt et al.

(2015) in our 27 countries
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Figure 3: Evolution of malaria risk (Plasmodium falciparum parasite rate) and coverage by malaria control strategies in our 27

sample countries
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Notes: Each line plots annualized indicators from the Malaria Atlas Project, totaled for all countries in our sample, over time. The vertical bar denotes
the scale-up of RBM disbursements. Figure 3a plots the mean malaria risk (Plasmodium falciparum parasite rate). Figure 3b plots the mean coverage of

artemisinin combination therapies. Figure 3c plots the mean coverage of insecticide treated nets. Figure 3d plots the mean coverage of indoor residual

spraying.
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Figure 4: Evolution of regional malaria risk conditional on initial malaria risk (Plasmodium falciparum parasite rate)
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Figure 5: Evolution of bednets and antimalarial use conditional on initial malaria risk (Plasmodium falciparum parasite rate)
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Notes: Each point represents a region. We obtain yearly malaria risk from the Malaria Atlas Project. The change in Figures 5a, 5c, and 5d is the difference between the first and last
DHS survey available in our sample. The change in Figure 5b is the difference between 2003 and 2015, the latest available year of MAP data. In a univariate regression of the change
in household bednet use for children under 5 (from the DHS) on initial malaria risk (in 2000), the coefficient of initial malaria risk is 0.148 and is statistically significant at the 10%
level (Figure 5a, N = 108). For the change in bednet use (from the Malaria Atlas Project), the coefficient of initial malaria risk is 0.586 and is statistically significant at the 0.1%
level (Figure 5b, N = 155). For the change in chloroquine use for fever in children under 5, the coefficient of initial malaria risk is -0.554 and is statistically significant at the 0.1%
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significant presumably due to the low number of observations (Figure 5d, N = 32).



Figure 6: Total Roll Back Malaria disbursements over time
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Notes: This graph plots Roll Back Malaria disbursements totaled over all countries in our sample for each

year. The vertical bar at 2003 marks the start of Roll Back Malaria scale-up.
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Figure 7: Ruling out pre-campaign catch-up effects
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Notes: This figure considers individuals belonging to two groups: those living in clusters where malaria risk
was above the median level in 2000 (solid line) versus where malaria risk was below the median level in
2000 (dashed line). We plot outcome variables against age for respondents above the age of 25 (above 40 in
the case of plot D) at the start of anti-malaria campaigns to demonstrate parallel trends in high versus low

exposure to malaria risk.
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Figure 8: Relationship of initial malaria risk with infant mortality, fertility, adult labor supply and education
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Notes: We plot the average of each dependent variable by age cohort at the time of survey (pre- and post-2003) between high and low levels of malaria risk.
A highly (resp. less) malarious area is defined as having an above (resp. below) median level of malaria risk in 2000. We note that the infant mortality
variable has been rescaled in order to adhere to a more traditional definition of infant mortality (calculated over 1,000 births). The order of magnitude

corresponds to key infant mortality figures in sub-Saharan Africa where the majority of mortality occurs during the first month of life.



Table 1: Ruling out pre-campaign catch-up effects

Coefficient of (malariasgoo; X exposure ;)

Dep. var. (1) (2)
Infant Mort. (born before 2002) -0.466 Years of ed. (>25 y.o0.) -4.189"
(0.639) (2.227)
R? 0.742 R? 0.566
Observations 62,844 Observations 565,214
Height-For-Age z-scores (>25 y.0.)  -24.070 Primary ed. (>25 y.o.) -0.488*
(136.370) (0.239)
R? 0.287 R? 0.477
Observations 191,293 Observations 565,214
Tot. births (>40 y.o0.) 8.369
(7.329)
R2 0.414
Observations 82,010
Age-by-region yes yes
Exposure-by-region yes yes

Notes: The unit of observation is the individual. For all dependent variables, each cell reports

the OLS estimate of coefficient § in Equation (4). The regression controls for gender, wealth,

and DHS cluster fixed effects as well as country-by-cohort-by-DHS year fixed effects. The co-

efficient for infant mortality without age-by-region controls is 0.731 (standard error=0.682;

N=73,382). Standard errors (in parentheses) are clustered at the DHS cluster level.

and *** indicate significance at the 10, 5, 1 and 0.1% levels.
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Table 2: Regressions of main outcomes on change in malaria prevalence, change in malaria incidence and change in coverage by antimalarial strategies

(1) 2) (3) (4) (5) (6)
A Risk A Incid. A Drugs (MAP) A Drugs (DHS) A Nets (MAP) A Nets (DHS)
Infant Mort. 0.042%*F*€  0.062%** -0.025%** -0.165%** -0.029%+* -0.038%+*
(0.003) (0.003) (0.003) (0.008) (0.002) (0.002)
R? 0.313 0.313 0.312 0.386 0.313 0.332
Observations 353,650 353,650 353,650 134,337 353,650 198,750
Neonatal Mort. ~ 0.011%%*  0.017*** -0.008*** -0.060*** -0.008*** -0.01 1%+
(0.002) (0.003) (0.002) (0.006) (0.001) (0.002)
R? 0.148 0.149 0.148 0.173 0.148 0.157
Observations 353,650 353,650 353,650 134,337 353,650 198,750
Postnatal Mort. — 0.031***  0.045*** -0.017*** -0.105%** -0.021%%* -0.027#4*
(0.002)  (0.002) (0.003) (0.006) (0.001) (0.002)
R? 0.154 0.154 0.154 0.196 0.154 0.164
Observations 353,650 353,650 353,650 134,337 353,650 198,750
Tot. births 0.422°%#F*%  (.595%** 0.290%** 0.052 -0.099%+* -0.215%4*
(0.028)  (0.037) (0.033) (0.083) (0.021) (0.029)
R? 0.575 0.575 0.574 0.568 0.574 0.569
Observations 646,208 646,208 646,208 228,972 646,208 357,848
Age first birth -0.258%**  _().525*** -1.142%** -0.302* 0.040 0.035
(0.059)  (0.074) (0.060) (0.153) (0.039) (0.054)
R? 0.072 0.072 0.073 0.067 0.072 0.077
Observations 464,412 464,412 464,412 167,274 464,412 257,954
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Table 2 (continued): Regressions of main outcomes on change in malaria prevalence, change in malaria incidence and change in coverage by

antimalarial strategies

1) @) 3) () (5) (6)
A Risk A Incid. A Drugs (MAP) A Drugs (DHS) A Nets (MAP) A Nets (DHS)
Employed -0.033*** -0.013 0.112%%* 0.135%** 0.083*** 0.058%**
(0.008)  (0.011) (0.010) (0.023) (0.006) (0.008)
R? 0.125 0.125 0.126 0.111 0.126 0.118
Observations 896,887 896,887 896,887 293,084 896,887 475,397
Paid in cash ~ -0.099%**  -0.123%** -0.233%%* 0.403%** -0.086%** 0.118%**
(0.012)  (0.016) (0.015) (0.030) (0.008) (0.012)
R? 0.077 0.077 0.080 0.099 0.077 0.082
Observations 607,668 607,668 607,668 194,245 607,668 317,430
Years of ed. -1.227%%% - 11.306%** 0.901*** 3.352%%* 0.152%** 1.372%**
(0.063)  (0.080) (0.062) (0.156) (0.044) (0.064)
R2 0.311 0.311 0.310 0.299 0.309 0.326
Observations 2,850,735 2,850,735 2,850,735 1,041,303 2,850,735 1,600,922
Primary ed.  -0.096*%**  _0.099*** 0.040%** 0.268*** 0.012* 0.111%**
(0.006) (0.008) (0.006) (0.018) (0.004) (0.006)
R? 0.246 0.245 0.245 0.231 0.245 0.265
Observations 2,850,735 2,850,735 2,850,735 1,041,303 2,850,735 1,600,922

Notes: The unit of observation is the individual. For each dependent variable listed on the left, each cell reports the OLS estimate of
the coefficient of the explanatory variable specified in the left-hand column. Changes in explanatory variables from the Demographic
and Health Surveys and Malaria Atlas Project are at the regional level. However, drugs (MAP) varies primarily at the national level.
Controls for gender, age and wealth are included. Standard errors (in parentheses) are clustered at the DHS cluster level. ~, * **

and *** indicate significance at the 10, 5, 1 and 0.1% levels.
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Table 3: Period analysis of human capital outcomes

Dep. var. (1) (2) (3) Dep. var. (1) (2) (3)
Post-RBM  Pre-RBM  Difference Post-RBM  Pre-RBM  Difference

Infant mortality Employed in last 12 mo. (adult)

Highly malarious 0.064 0.095 -0.031***  Highly malarious 0.706 0.649 0.057***

Less malarious 0.061 0.085 -0.024***  Less malarious 0.671 0.631 0.040***
-0.007*** 0.017%%*

Neonatal mortality Paid in cash when emp. (adult)

Highly malarious 0.031 0.042 -0.011***  Highly malarious 0.647 0.578 0.069***

Less malarious 0.031 0.039 -0.008***  Less malarious 0.719 0.715 0.004
-0.003%** 0.065%***

Post-neonatal mortality Years of ed.

Highly malarious 0.033 0.052 -0.019*%**  Highly malarious 3.038 2.014 1.024%%*

Less malarious 0.030 0.045 -0.015*%**  Less malarious 3.559 2.915 0.644%**
-0.004%** 0.380***

Tot. births Completed primary ed.

Highly malarious 2.935 2.637 0.299***  Highly malarious 0.245 0.138 0.107***

Less malarious 2.647 2.254 0.394***  Less malarious 0.296 0.227 0.069***
-0.095%** 0.380***

Age at first birth

Highly malarious 18.952 18.412 0.540%**
Less malarious 19.271 18.770 0.501***
0.039***

Notes: A highly (resp. less) malarious DHS cluster is defined as having an above (resp. below) median level of malaria risk in 2000. Pre-
campaign surveys occur prior to 2003 and post-campaign surveys occur in 2003 or later. Though we present the simplest results here, they

are robust to the inclusion of additional control variables.
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Table 4: Cohort and period-cohort analyses of the effect of the RBM campaign on human capital outcomes

(1) 2) 3) (4) (5) (6) (M) (®) 9)
Infant Neonatal Post-neonatal Tot. births  Age at first birth Employed Paid in cash  Years of ed. = Completed primary ed.
Panel A: Cohort model

malariagooo; X Post . -0.036* -0.018" -0.018" 1.457%** 0.142%**
(0.014)  (0.010) (0.011) (0.116) (0.011)
Treatment effect -0.013%* -0.006" -0.006" 0.511%** 0.050%**
R2 0.087 0.082 0.080 0.590 0.501
Observations 353,379 353,379 353,379 3,244,475 3,244,475

Panel B: Period-cohort model

malariagooo; X durationyes  -0.003"  -0.001 -0.002 -3.808% ¥ 1.628* 0.271%%% 0.202%%* 0.088**¥* 0.008***
(0.002)  (0.001) (0.001) (0.301) (0.646) (0.052) (0.060) (0.008) (0.001)
Treatment effect -0.001°  0.000 0.000 -1.368%% 0.571% 0.095%** 0.102%%* 0.031%%* 0.003%**
R2 0.087 0.082 0.080 0.660 0.219 0.329 0.410 0.586 0.498
Observations 353,379 353,379 353,379 670,113 487,633 950,792 651,475 3,153,218 3,153,218

Notes: The unit of observation is the individual. For all dependent variables, each cell reports the OLS estimate of coefficient 8 in Equations (2) and (3). The treatment effect
is obtained by multiplying the estimated coefficient by the mean level of malaria risk in 2000 (0.351). The regression controls for gender and wealth as well as fixed effects for
DHS clusters and country-by-cohort-by-DHS year. Standard errors (in parentheses) are clustered at the DHS cluster level. *, *, ** and *** indicate significance at the 10, 5, 1
and 0.1% levels.



Table 5: Effect of the RBM campaign on human capital outcomes

(1) (2) (3) (4) (5) (6)
Infant Neonatal Post-neonatal
malariaggoo; X exposurepy.; — -0.453***  -0.149%F  -0.208*** -0.048 -0.245*%**  _0.101**
(0.034) (0.047) (0.018) (0.039) (0.019) (0.035)
Treatment effect -0.052%* -0.017 -0.035%*
R? 0.116 0.279 0.094 0.183 0.096 0.176
Observations 353,379 353,379 353,379 353,379 353,379 353,379
Age-by-region no no no no no no
Exposure-by-region no yes no yes no yes
Tot. births Age at first birth
malariaggpo; X exposure ., — -3.951%FF  _3.242%Kk 3 g3k ] ggpHk 1.979%** 0.954
(0.213) (0.241) (0.291) (0.464) (0.568) (0.651)
Treatment effect -1.347%%* 0.335
R? 0.659 0.665 0.666 0.227 0.229 0.230
Observations 646,169 646,169 646,169 464,336 464,336 464,336
Age-by-region no yes yes no yes yes
Exposure-by-region no no yes no no yes

Employed last 12 mo. (adult)

Paid in cash for emp. (adult)

malariaggoo; X exposurepy,,  0.361%** 0.316%** 0.489*** 0.215%** 0.181* 0.175*
(0.040) (0.048) (0.057) (0.049) (0.059) (0.068)
Treatment effect 0.172%** 0.061%*
R? 0.328 0.333 0.334 0.409 0.411 0.412
Observations 896,857 896,857 896,857 607,572 607,572 607,572
Age-by-region no yes yes no yes yes
Exposure-by-region no no yes no no yes
Years of ed. Completed primary ed.
malariaggoo; X exposuren.; — 1.913%*%* 1.776%** 2.406*** 0.178%** 0.167%%* 0.224%**
(0.087) (0.082) (0.112) (0.008) (0.008) (0.011)
Treatment effect 0.845%** 0.079%**
R? 0.614 0.632 0.634 0.521 0.535 0.537
Observations 2,841,538 2,841,538 2,841,538 2,841,538 2,841,538 2,841,538
Age-by-region no yes yes no yes yes
Exposure-by-region no no yes no no yes

Notes: The unit of observation is the individual. For all dependent variables, each cell reports the OLS

estimate of coefficient 8 in Equation (4). The treatment effect is obtained by multiplying the estimated

coefficient by the mean level of malaria risk in 2000 (0.351). The regression controls for gender, wealth,

and DHS cluster fixed effects as well as country-by-cohort-by-DHS year fixed effects. Standard errors (in

parentheses) are clustered at the DHS cluster level.

and 0.1% levels.
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©, % F* and *** indicate significance at the 10, 5, 1
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Table 6: Controlling for exposure to concurrent public policies interacted with malaria risk in 2000

Coefficient of (malariazpog; X exposure)

(1) (2) ®3) (4) (5) (6) (7 (®) 9)
Infant Neonatal  Post-neonatal Tot. births Age at first birth Employed Paid in cash  Years of ed. = Completed primary ed.
Education -0.711%%*  .(0.333%** -0.377%** -2.554%*x -0.194 0.290%** 0.193* 1.428%%* 0.133%**
(0.030) (0.018) (0.017) (0.343) (0.771) (0.069) (0.081) (0.100) (0.010)
R? 0.214 0.144 0.145 0.666 0.229 0.334 0.412 0.634 0.537
Observations 353,379 353,379 353,379 646,169 464,336 896,857 607,572 2,850,716 2,850,716
Health S0.574FKK 0. 274%F* -0.300%** -3.289%** 0.701 0.346%*** 0.203* 1.587%** 0.154%***
(0.027) (0.017) (0.016) (0.405) (0.906) (0.083) (0.100) (0.102) (0.010)
R? 0.351 0.218 0.206 0.666 0.230 0.334 0.412 0.634 0.538
Observations 353,379 353,379 353,379 646,169 464,336 896,857 607,572 2,850,716 2,850,716
Military -0.727F**-0.340%** -0.388*** -2.963*** 0.390 0.240%*** 0.278%** 1.505%** 0.140%***
(0.030) (0.018) (0.017) (0.322) (0.747) (0.067) (0.082) (0.088) (0.009)
R? 0.162 0.114 0.121 0.666 0.229 0.334 0.412 0.633 0.537
Observations 353,379 353,379 353,379 646,169 464,336 896,857 607,572 2,850,716 2,850,716
HIV -0.700%**  -0.326%** -0.374%** -3.445%** 0.179 0.329* 0.177 1.716%** 0.162%**
(0.030) (0.018) (0.018) (0.539) (1.221) (0.104) (0.126) (0.106) (0.010)
R? 0.147 0.109 0.113 0.666 0.229 0.330 0.414 0.627 0.525
Observations 350,004 350,004 350,004 606,996 435,362 858,180 580,924 2,717,679 2,717,679
All -0.378%*F*  _(0.164%** -0.214%%* -1.761% 0.635 -0.154 -0.081 1.417%%* 0.144%**
(0.026) (0.017) (0.016) (0.660) (1.529) (0.139) (0.170) (0.105) (0.010)
R? 0.334 0.204 0.201 0.667 0.229 0.330 0.415 0.629 0.526
Observations 350,004 350,004 350,004 606,996 435,362 858,180 580,924 2,717,679 2,717,679
FPE -0.147%* -0.047 -0.099* -2.093*** -1.145 0.532%** 0.181" 1.908%** 0.190%***
(0.048) (0.039) (0.037) (0.415) (0.900) (0.087) (0.104) (0.137) (0.013)
R? 0.280 0.183 0.176 0.667 0.231 0.335 0.413 0.635 0.539
Observations 353,379 353,379 353,379 646,169 464,336 896,857 607,572 2,850,716 2,850,716
Age-by-Region no no no yes yes yes yes yes yes
Exposure-by-region yes yes yes yes yes yes yes yes yes

Notes: The unit of observation is the individual. For all dependent variables, each cell reports the OLS estimate of coefficient 8 in Equation (4). We compute exposure

to expenditures (education, health, military, HIV/AIDS) with the same method as our main RBM exposure variable, using per capita expenditure during a respondent’s

lifetime. The regression controls for gender and wealth as well as fixed effects for DHS clusters, country-by-cohort-by-DHS year, age-by-region, and exposure-by-region.

Exposure incorporates the newly introduced expenditures. Standard errors (in parentheses) are clustered at the DHS cluster level.

at the 10, 5, 1 and 0.1% levels.

°, %, ** and *** indicate significance
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Table 7: Restricted sub-samples

1) 2 3) (4) (5) (6) (7 (8) 9)
Infant Neonatal Post-neonatal Tot. births Age at first birth Employed Paid in cash  Years of ed. = Completed primary ed.
Residents -0.129" -0.014 -0.115 -4.017%%* 1.951 0.674%** -0.033 1.913%** 0.185%**
(0.074) (0.072) (0.078) (0.788) (1.668) (0.113) (0.167) (0.224) (0.026)
R? 0.434 0.250 0.275 0.692 0.311 0.384 0.436 0.668 0.553
Observations 144,280 144,280 144,280 120,562 90,536 208,617 147,012 511,647 511,647
Born before 1960 -3.825%** 0.914 0.476*** 0.179* 2.244%** 0.204***
(0.291) (0.651) (0.056) (0.067) (0.105) (0.010)
R? 0.668 0.222 0.334 0.413 0.605 0.512
Observations 670,113 487,633 950,792 651,475 3,244,475 3,244,475
Above age 5 3.140%** 0.293***
(0.169) (0.017)
R? 0.597 0.512
Observations 2,313,954 2,313,954
West Africa -0.119 -0.027 -0.092 -4.007%** 0.100 0.613%** 0.382%** 3.080%*** 0.264***
(0.079) (0.062) (0.058) (0.464) (1.044) (0.091) (0.111) (0.211) (0.019)
R? 0.208 0.145 0.130 0.660 0.222 0.323 0.412 0.571 0.505
Observations 162,719 162,719 162,719 284,825 207,671 395,641 275,633 1,267,680 1,267,680
East Africa -0.240%** -0.147* -0.093" -3.T9THH* 2.562* 0.278%** 0.042 1.632%** 0.173%**
(0.061) (0.054) (0.054) (0.408) (0.879) (0.082) (0.095) (0.148) (0.015)
R? 0.341 0.220 0.210 0.682 0.239 0.336 0.404 0.671 0.546
Observations 144,623 144,623 144,623 272,662 193,844 371,280 253,332 1,202,972 1,202,972
Age-by-region no no no yes yes yes yes yes yes
Exposure-by-region yes yes yes yes yes yes yes yes yes

Notes: The unit of observation is the individual. For all dependent variables, each cell reports the OLS estimate of coefficient 8 in Equation (4). Note that the tests in

panels two and three do not apply to infant mortality variables, which are computed for the first year of life. The regression controls for gender, wealth, and DHS cluster

fixed effects as well as country-by-cohort-by-DHS year fixed effects. Standard errors (in parentheses) are clustered at the DHS cluster level. ", *, ** and *** indicate

significance at the 10, 5, 1 and 0.1% levels.
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Table 8: Heterogeneous effects in sub-populations

1) 2 3) (4) (5) (6) (7 ®) 9)

Infant Neonatal Post-neonatal Tot. births Age at first birth  Employed Paid in cash  Years of ed. = Completed primary ed.
Full sample -0.149%* -0.048 -0.101%* -3.837H*x 0.954 0.489%** 0.175* 2.385%** 0.222%**

(0.047) (0.039) (0.036) (0.291) (0.651) (0.057) (0.068) (0.113) (0.011)
R? 0.279 0.183 0.176 0.666 0.230 0.334 0.412 0.634 0.537
Observations 353,379 353,379 353,379 646,169 464,336 896,857 607,572 2,850,716 2,850,716
Female -0.200* -0.092" -0.108* 0.367*** 0.303%*** 2.463*** 0.251%%*

(0.065) (0.053) (0.051) (0.066) (0.086) (0.119) (0.012)
R? 0.324 0.235 0.234 0.352 0.481 0.642 0.538
Observations 173,494 173,494 173,494 629,082 397,783 1,457,314 1,457,314
Male -0.102 -0.014 -0.088" 0.644%** 0.086 2.264%** 0.189***

(0.064)  (0.053) (0.048) (0.088) (0.098) (0.118) (0.011)
R? 0.334 0.247 0.231 0.487 0.536 0.663 0.569
Observations 177,633 177,633 177,633 267,408 208,783 1,393,363 1,393,363
Fulani -0.050 -0.043 -0.007 0.321 0.584 -0.416* -0.094 -0.415 -0.121

(0.192) (0.184) (0.186) (1.123) (3.006) (0.200) (0.260) (0.943) (0.079)
R2 0.367 0.273 0.240 0.662 0.283 0.350 0.444 0.647 0.603
Observations 18,518 18,518 18,518 62,748 45,180 70,214 42,634 172,457 172,457
Non-Fulani -0.151%* -0.046 -0.104* -4.299%** 1.146° 0.549%** 0.188* 2.522%** 0.239%***

(0.048) (0.039) (0.037) (0.300) (0.659) (0.059) (0.070) (0.110) (0.011)
R? 0.279 0.183 0.178 0.669 0.228 0.339 0.415 0.637 0.535
Observations 334,065 334,065 334,065 582,712 418,386 825,975 564,187 2,677,659 2,677,659
Age-by-Region no no no yes yes yes yes yes yes
Exposure-by-region yes yes yes yes yes yes yes yes

Notes: The unit of observation is the individual. For all dependent variables, each cell reports the OLS estimate of coefficient 8 in Equation (4). The regression
controls for gender, wealth, and DHS cluster fixed effects as well as country-by-cohort-by-DHS year fixed effects. Standard errors (in parentheses) are clustered at the

DHS cluster level. ~, * ** and *** indicate significance at the 10, 5, 1 and 0.1% levels.



Table 9: Non-linear effects by five-year age groups

(1) (2) 3) (4) (5)

Non-linear age at survey Tot. births FEmployed Paid in cash Years of ed. Completed primary ed.

Ages 5 to 10 0.973*** 0.128%***
(0.125) (0.013)
Ages 10 to 15 0.646%** 0.101%**
(0.165) (0.018)
Ages 15 to 20 -2.621%*%  0.361*** 0.234" 0.028 0.016
(0.511) (0.109) (0.138) (0.262) (0.032)
Ages 20 to 25 -2.655%4* 0.331* 0.194 -0.594 0.032
(0.623) (0.134) (0.166) (0.396) (0.041)
Ages 25 to 30 -2.310%* 0.334* 0.262 -1.634* -0.058
(0.751) (0.163) (0.195) -(0.539) (0.053)
Ages 30 to 35 -2.529* 0.356" 0.304 -0.869 0.023
(0.884) (0.191) (0.227) (0.676) (0.066)
Ages 35 to 40 -2.325%* 0.359" 0.312 -0.687 0.052
(1.050) (0.218) (0.258) (0.795) (0.078)
Ages above 40 -3.904* 0.462" 0.473 1.464 0.235*
(1.241) (0.256) (0.300) (0.987) (0.095)
R? 0.666 0.334 0.412 0.635 0.538
Observations 646,169 896,857 607,572 2,850,716 2,850,716
Age-by-Region yes yes yes yes yes
Exposure-by-region yes yes yes yes yes

Notes: The unit of observation is the individual. For all dependent variables, each cell reports the OLS estimate of the sum of the average effect
of (malariaggpp; X exposure) and the marginal effect for each age group from a triple interaction term. The regression controls for gender, wealth,
and DHS cluster fixed effects as well as country-by-cohort-by-DHS year fixed effects and subcomponents of the triple interaction (including malaria
risk-by-age group and exposure-by-age group). Standard errors (in parentheses) are clustered at the DHS cluster level. ", *, ** and *** indicate

significance at the 10, 5, 1 and 0.1% levels.
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