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Abstract

Under standard prior distributions, fitted probabilities from Bayesian multinomial

probit models can depend strongly on the choice of a base category, which is used

to identify the model. This paper proposes a novel identification strategy and prior

distribution for the model parameters that makes the prior symmetric with respect

to relabeling the outcome categories. Further, our new prior allows for an efficient

marginal data augmentation Gibbs sampling algorithm that samples rank-deficient co-

variance matrices without resorting to Metropolis-Hastings updates.

Keywords: Base category, Discrete choice, Gibbs sampler, Marginal data augmentation,

Sum-to-zero identification

1 Introduction

In multinomial probit (MNP) models of discrete choices, parameters are typically identified

by selecting a base category relative to which the choice parameters are defined. From

the point of view of identification, the choice of base category is immaterial. However, in

a Bayesian framework, previously developed priors can be sensitive to the base category
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specification — sometimes strongly so. Hence, when practitioners choose a base category

in the MNP analysis, they are unwittingly making a decision about the prior specification

for their model.

In this paper, we propose sum-to-zero restrictions on the latent utilities and regression

parameters that define the MNP model. In this novel identification framework, we are able

to define a prior which is symmetric with respect to relabeling of the outcome categories.

Even so, this model preserves the favorable computational aspects of other, recent Bayesian

MNP models (Imai and van Dyk, 2005a; Burgette and Nordheim, 2012).

1.1 Multinomial probit models of discrete choice

Multinomial probit (MNP) models are popular in studies involving discrete choice data

(McFadden, 1974; Train, 2003). They have applications in marketing (Rossi et al., 2005),

politics (Rudolph, 2003), transportation studies (McFadden, 1974; Garrido and Mahmas-

sani, 2000), and beyond. The MNP is more flexible than standard multinomial logit models,

as it need not make an assumption of independence of irrelevant alternatives (IIA). This

means that the ratio of selection probabilities for two outcome categories can depend on the

characteristics of another category. Further contributing to the popularity of the MNP is a

series of advances in Bayesian computation, starting with Albert and Chib (1993), that has

made it increasingly computationally manageable (McCulloch and Rossi, 1994; McCulloch

et al., 2000; Imai and van Dyk, 2005a,b).

The MNP requires two normalizations in order to identify the model. These models

can be derived through the assumption that agents construct latent Gaussian utilities and

select the category that corresponds to the largest utility. Since the ordering of the utilities

is maintained by an additive shift or multiplicative rescaling, identifying assumptions on

the scale and location are needed.

In order to set the scale, it has been standard to fix an element on the main diagonal of

the covariance matrix at one. Burgette and Nordheim (2012) demonstrated that the choice

of which element one fixed could have a meaningful impact on posterior predictions, when
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using the popular prior of Imai and van Dyk (2005a). To avoid this problem, they proposed

a model that identifies the scale of the model by fixing the trace of the covariance matrix,

which makes the prior covariance invariant to joint permutations of the rows and columns.

This paper will build upon such a trace-restricted prior, resolving the location identification

issue as well.

Previous MNP models have set the location of the latent utilities by specifying a base

(or reference) category for the model. The base category’s utility is then subtracted from all

of the other utilities for each observation, removing the indeterminacy of the location. But,

Burgette and Nordheim (2012) noted that Bayesian MNP predictions can be sensitive to

the specification of the base category, though they did not provide a satisfactory solution for

this issue. This problem arises because instead of specifying a prior for the original utilities

and inducing a prior on the base-subtracted utilities, it has been standard to specify a prior

directly on base-subtracted utilities.

Rather than selecting a reference category whose utility is assumed to be equal to zero,

we enforce a sum-to-zero restriction on the latent utilities. If respondents choose from

p categories, other MNP methods transform the utilities to (p − 1)-space. Instead, we

constrain our utilities to exist in a (p− 1)-dimensional hyperplane in p-space.

We apply our new prior to two consumer choice datasets, as well as a series of simulated

datasets based on the consumer choice studies. In doing so, we see that the symmetric

MNP (sMNP) model defines a more sensible model, produces better predictions, and has

favorable computational properties compared to previous MNP models.

1.2 Preliminaries

Assume that agent i = 1, . . . , n is choosing among p mutually exclusive alternatives. The

MNP can be derived by assuming that there exist vectors of latent Gaussian utilities Wi =

{wij} of length p, and that each agent selects the alternative with the highest utility, so

that we observe Yi = arg maxj wij .
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It is standard to assume that the utilities take the form

Wi = Xiβ + εi. (1)

Xi is a matrix of covariates, β is a vector of regression parameters, and εi
iid∼normal(0,Σ)

capture variations in taste across agents. We will assume Xi contains intercept terms,

kd covariates that vary by decision-maker (e.g., a buyer’s age), and ka alternative-specific

covariates (e.g., product prices). We assume the covariates are arranged in that order (from

left to right) so that

Xi =

[
Ip x>i,d ⊗ Ip xi,a

]
. (2)

The kd-vector xi,d is the collection of covariates that vary by individual; xi,a is a p × ka

matrix whose columns contain the values of the variables that vary by alternative.

The standard identifying approach is to transform Wi to W ∗i = TbcWi where

Tbc =

[
−Jp−1 Ip−1

]
(3)

with Jp−1 a column vector of ones with length p−1. Then we would assume W ∗i = X∗i β
∗+ε∗i

where

X∗i =

[
Ip−1 x>i,d ⊗ Ip−1 Tbcxi,a

]
(4)

and ε∗i
iid∼normal(0,Σ∗ = TbcΣT

>
bc).

Albert and Chib (1993) had the key insight that data augmentation (Tanner and Wong,

1987) would greatly ease the estimation of the MNP. If we treat the latent W ∗i as parame-

ters to be updated in the MCMC algorithm, then under a normal prior, the full conditional

distribution of β∗ is normal. Further, the full conditional distribution of each W ∗i is trun-

cated multivariate normal, which can be updated one component at a time as univariate

truncated normals (McCulloch and Rossi, 1994).

It then remains to sample Σ∗, the (p−1)-dimensional covariance over the base-subtracted

utilities. Up to a constraint and the normalizing constant, the priors for both the Imai and
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van Dyk and the Burgette and Nordheim models are the same:

p(Σ∗) ∝ |Σ∗|−(ν+p)/2[tr(SΣ∗−1)]−ν(p−1)/21{cond}, (5)

where 1{cond} is equal to one if {cond} is a true statement, and zero otherwise. For Imai

and van Dyk, this condition is {σ∗11 = 1}; for Burgette and Nordheim the condition is

{tr(Σ∗) = (p− 1)}. Further, the working parameter is given the joint prior

p(Σ∗, α2) ∝ |Σ∗|−(ν+p)/2 exp{−1/(2α2) tr(SΣ∗−1)}(α2)−[ν(p−1)/2+1]1{cond}, (6)

after which Σ∗ can be sampled in a Gibbs step through a draw of Σ̃ = α2Σ∗.

1.3 Asymmetries of currently-used MNP priors

Later in this paper, we will demonstrate empirically that switching from one base category to

another can result in substantial differences in estimated (posterior) purchase probabilities

in marketing applications that appear elsewhere in the literature. To motivate this work,

we begin by highlighting differences in the prior purchase probabilities under two base

category specifications, conditional on a range of values of the structural portion of the

utilities, X∗i β
∗. In what follows, we consider a simple case with p = 3 categories and focus

on one of the three outcome categories, which we will refer to as the category of interest.

First, we specify this category of interest as the base category (corresponding to Yi = 0),

and then we reparametrize so that the category of interest is the first non-base category

(corresponding to Yi = 1). Our experience indicates that sensitivity to the base category

primarily comes from the prior on Σ∗ (rather than β∗), so we will condition on β∗ in order

to clarify the issue.

We begin by considering Pr(Yi = 0 | X∗i β∗ = (−v,−v)>) and Pr(Yi = 1 | X∗i β =

(v, 0)>). These probabilities are marginal to the trace-restricted variant of the Imai and van

Dyk prior for Σ∗ with ν = 2 degrees of freedom, and centered at S = .5J2J
>
2 + .5I2. These

hyperparameters correspond to a default prior for a model of p = 3 outcome categories.
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Figure 1: Plot of Pr(Yi = 0 | X∗i β∗ = (−v,−v)>) (solid line) and Pr(Yi = 1 | X∗i β∗ =
(v, 0)>) (dotted line) marginal to Σ∗ for the Imai and van Dyk prior, as a function of v.
Notice that these probabilities — which correspond to a change in base category — are
very similar.

(Using S = I2 would result in stronger asymmetries with respect to the base category.) As

seen in Figure 1, we find that the implied selection probabilities under the two base category

specifications are actually very close to one another across all v.

Although Figure 1 might hint that changing from one base category to another does

little to impact the model, a closer analysis displayed in Figure 2 shows that this is not

the case. In short, marginalization over Σ∗ is obscuring the differences induced by re-

parametrizing the base category. In Figure 2, we examine the distribution Pr(Yi = 0 |

X∗i β
∗ = (−v,−v)>,Σ∗)p(Σ∗) at v = 1, and the analogous distribution for the case when

the category of interest corresponds to Yi = 1. Stated symbolically, we find that

∫
Pr(Yi = 0 | X∗i β∗ = (−1,−1)>,Σ∗)p(Σ∗)dΣ∗ ≈

∫
Pr(Yi = 1 | X∗i β∗ = (1, 0)>,Σ∗)p(Σ∗)dΣ∗
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Figure 2: Density histogram of Pr(Yi = 0 | X∗i β∗ = (−1,−1)>,Σ∗)p(Σ∗) (solid line) and
Pr(Yi = 1 | X∗i β∗ = (v, 0)>,Σ∗)p(Σ∗) (dotted line). Although the means are very similar
(as indicated by the v = 1 slice of Figure 1), the distributions themselves are quite different.

but

∫
(Pr(Yi = 0 | X∗i β∗ = (−1,−1)>,Σ∗))2p(Σ∗)dΣ∗ <

∫
(Pr(Yi = 1 | X∗i β∗ = (1, 0)>,Σ∗))2p(Σ∗)dΣ∗.

Because the differences in prior probabilities appear primarily to be of second and higher

moments, an ad-hoc solution to the problem of base category dependence (such as spec-

ifying alternative values of the hyperparameters, or by specifying a different p(β∗|Σ∗) to

compensate) may be difficult. Further, even though the prior differences are obscured by

averaging over draws of Σ∗, this often is not the case after conditioning on observed data.

Although we expect the impact of the prior to fade as the sample size increases, information

in multinomial models accrues slowly relative to standard models of a continuous outcome,

which means that asymmetries in the prior for an MNP model may persist in the posterior

for sample sizes that are typical in business and economics applications. Hence, we pursue
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a prior that is identically invariant to relabeling the outcome categories.

2 A symmetric prior for MNP regressions

We now propose a symmetric MNP (sMNP) model that is invariant under relabeling or

reordering of the outcome categories. Rather than identifying the locations of the latent

utilities by subtracting one from the others, we instead require that they sum to zero. (This

assumes that the choice-specific covariates have mean zero for each observation, which

is a convenient but inessential standardization.) Further, we assume that the regression

parameters that correspond to each agent-specific covariate sum to zero, which gives the

same degrees of freedom as the standard MNP, where (in a sense) the regression parameters

related to the base category are set equal to zero.

With this sum-to-zero restriction on the utilities, we require a covariance for Wi that is

symmetric and positive-semidefinite with p−1 positive eigenvalues, and constrained in some

way in order to set the scale of the model. Rather than directly specifying a distribution on

p× p matrices, we build it up with a mixture of trace-restricted positive-definite matrices.

Conditionally, we assume that a positive-definite matrix of dimension p − 1 describes the

covariance of all but one of the dimensions of Wi. We denote the left-out category with

the parameter b, and refer to it as the faux base category indicator. In contrast to previous

MNP models, b is learned according to Bayes rule.
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The proposed model is as follows:

b ∼ unif({1, . . . , p}) (7)

Σ−b ∼ pTR(Sb, νb) (8)

R−b = [chol(Σ−b)]
> (9)

R =


R1:(b−1)

R∗b

Rb:p

 (10)

β−b ∼ normal(0, B−1−b ) (11)

β = f0(β−b) (12)

Wi
ind∼ normal(Xiβ,RR

>) (13)

Yi = arg max
j

Wi. (14)

In this formulation, pTR is the trace-restricted variant of the Imai and van Dyk (2005a)

prior in (5). Its hyperparameters Sb and νb may change with b but we recommend using

common hyperparameters in most cases, since Sb = diag{(1 + c, . . . , 1 + c)} − cJJ> for all

b and a common νb will yield a prior covariance structure that is symmetric with respect to

the outcome categories. As a default, we recommend using c = 1/(p− 1). This corresponds

to the first p − 1 rows and columns of a symmetric p × p covariance matrix P with p − 1

positive eigenvectors that is symmetric with respect to relabeling the rows and columns.

This matrix has the property that vectors drawn from the normal(0, P ) distribution sum to

zero almost surely, which is a natural center for our relabeling invariant, sum-to-zero MNP.

Using c = 0 means roughly that we expect p − 1 of the dimensions of the utilities to be

independent, with the remaining dimension strongly anti-correlated. Using c = 1/(p− 1) is

a more neutral prior, and seems to lead to better mixing in the MCMC.

R−b is the transposed Cholesky decomposition of Σ−b such that R−bR
>
−b = Σ−b. R

∗
b is a

row vector inserted into R−b at the bth row such that the sum of each column of R is zero.

In this formulation, β−b has dimension (p− 1)(kd + 1) + ka (assuming that intercept terms
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are included). The function f0 acts on β−b such that for each sub-vector of length p − 1

that corresponds to an agent-specific covariate (or the intercepts), β is equal to β−b with

an extra dimension inserted at the bth position in the sub-vector. This inserted element is

chosen so that the sub-vector sums to zero.

With this model specification, we induce a prior distribution on the set of positive-

semidefinite matrices of dimension p that have exactly p− 1 positive eigenvalues. It would

also be possible to work with a matrix decomposition like Σ = ADA′, where A is a p×(p−1)

orthogonal matrix and D is diagonal. One could then define a prior on the Stiefel manifold

that contains A (Hoff, 2009). This would be a more direct definition on positive semidefinite

matrices, but inducing a prior in the manner implied by our model is conceptually simple

and guarantees favorable computational properties.

To make the motivation of this new set of identifying restrictions explicit, we note that

they result from transforming the unnormalized utilities not by Tbc as in (3), but rather

multiplying them by a p-dimensional square matrix Ts that is defined to have ones on the

main diagonal, and entries of −1/(p− 1) elsewhere. Note that arg maxWi = arg maxTsWi,

while the elements of TsWi sum to zero. This transformation also induces the proposed

identifying restrictions on β. If we partition β = (βd, βa), where βa corresponds to the

covariates that vary by outcome category, we have

TsXiβ = Xi

(I ⊗ Ts)βd

βa

 . (15)

This transformed version of β (i.e., the second factor on the right-hand side of the above

equation) conforms to the proposed identifying restrictions. Similarly, a normal distribution

with mean zero and covariance TsΣT
>
s results in draws that sum to zero almost surely. (Note

that Ts is almost idempotent in the sense that TsTs = cTs for some scalar c. The first p− 1

rows and columns of Ts therefore serve as our default for Sb since this corresponds to the

transformed variance of εi if its variance in the unnormalized scale is proportional to the

identity.)
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We emphasize that there is nothing inherently wrong with using the asymmetric identi-

fying transformation Tbc. If we do not wish for our inferences to depend on the base category,

however, the prior must compensate for the asymmetries in the transformation. This seems

quite difficult to achieve, especially if we hope to have a computationally tractable model.

Using Ts, however, we can decouple prior specification and model identification, all while

preserving the favorable computational characteristics of existant MNP models.

2.1 Model estimation

We propose a Gibbs sampler to estimate the model. As with the algorithm described by Imai

and van Dyk (2005a), we sample the working parameter α at each step in the MCMC. Such

complete marginalization over working parameters can improve the mixing of the Markov

chains (van Dyk, 2010). The MCMC switches between working with parameters in the scale

defined by Σ−b, and the scale defined by Σ̃−b = α2Σ−b. Any parameter topped by a tilde

refers to parameters in the latter scale. For example, W̃i,−b
ind∼ normal(Xi,−bβ̃−b, Σ̃−b). Here,

Xi,−b indicates Xi with the bth row and the columns specific to the bth category removed.

We initialize the latent utilities Wi by sampling a standard normally-distributed vector

of length p and centering it at zero. We then permute its elements so that the maximum of

each Wi coincides with the observed Yi.

The sampler then repeatedly iterates through the following steps:

1. Gibbs through the Wi,−b elements. wi,b is known given b and Wi,−b. After dropping

the bth element of Wi and the corresponding elements in Xi and β, the full condi-

tionals of elements of Wi,−b are truncated univariate normal. The conditional means

and variances can be calculated as described by McCulloch and Rossi (1994). The

truncations are:

• If Yi = j 6= b, sample wij from a truncated normal so that wij > −.5
∑

k/∈{j,b}wik

and wij > max(wik : k /∈ {j, b}).

• If Yi 6= b and Yi = k 6= j, sample wij from a truncated normal so that wij < wik
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and wij > −
∑

l 6=bwil − wik.

• If Yi = b, sample wij from a truncated univariate normal such that

wij < min{−.5
∑

k 6∈{b,j}

wik,−1(max{W−{j,b}}+
∑

k 6∈{b,j}

wik)}.

2. Sample α2|all ∼ tr(SbΣ
−1
−b)/χ

2
νb(p−1).

3. Set W̃i = αWi for all i.

4. Sample (α, β−b|all) via

β̂−b = [
n∑
i=1

X>i,−bΣ
−1
−bXi,−b +B−b]

−1[
n∑
i=1

X>i,−bΣ
−1
−bW̃i,−b],

IP =
n∑
i=1

(W̃i,−b −Xi,−bβ̂−b)
>Σ−1−b(W̃i,−b −Xi,−bβ̂−b),

α2 ∼
IP + β̂>−bB−bβ̂−b + tr(SbΣ

−1
−b)

χ2
(n+νb)(p−1)

, and

β̃−b ∼ normal

(
β̂, α2

( n∑
i=1

X>i,−bΣ
−1
−bXi,−b +B−b

)−1)
.

Record β = α−1β̃.

5. Sample (b, Σ̃−b) via

OPb =
n∑
i=1

(W̃i,−b −Xi,−bβ̃−b)(W̃i,−b −Xi,−bβ̃−b)
>,

p(b|β̃, W̃ ) ∝ |Sb + OPb|−(n+νb)/2, and

p(Σ̃−b|b, β̃, W̃ ) ∼ inv-Wishart(n+ νb, Sb + OPb).

(See the Appendix.)

6. Make the following transformations:

• α2 = tr(Σ̃−b)/(p− 1)
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• Σ−b = α−2Σ̃−b

• β−b = α−1β̃−b

• Wi = α−1W̃i for all i

Iteration for iteration, this algorithm is only slightly higher in cost computationally than

the Imai and van Dyk (2005a) and Burgette and Nordheim (2012) algorithms. In particular,

calculating the p determinants in Step 5 is necessary for the proposed sampler, but does

not enter into the previous algorithms. Since the dimension of the matrices (p − 1) will

typically be modest, this is not a great increase in computational cost. Further, we will see

that the excellent mixing in the resulting Markov chains more than makes up for this extra

computation, to say nothing of the desirable symmetry of the new model.

3 Demonstrations

3.1 Clothes detergent purchases

Imai and van Dyk (2005a,b) apply their methods to a consumer choice model of clothing

detergent purchases. The data are available in their MNP package in R. We have records

of purchasing decisions along with available log-prices for shoppers choosing between All,

Era Plus, Solo, Surf, Tide, and Wisk brand detergents. There are 2657 observations

and only six regression parameters, so we typically do not see large differences in estimated

purchase probabilities based on the various base category fits. However, specifying the base

category to be All — which is rarely purchased despite its low price — does give somewhat

different predictions for All when its price is low. To see this, we set the prices for all other

brands at their brand-specific average, and consider predicted purchase probabilities across

a range of low prices for All. The predictions from five of the base categories (solid lines)

are very similar. The predictions when All is the base category (dashed line) are notably

higher. When we apply the sMNP to the data, we see that its predictions are intermediate

to those of the various base category fits (dotted line).
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Figure 3: Estimated purchase probabilities for All brand detergent, with all other brands’
prices fixed at the brand-specific mean observed price. The dashed line uses All as the
base category; the solid lines use all of the other possible base categories. The dotted line
results from an sMNP fit.

To interpret the β parameters, we know — by the sum-to-zero property of the intercept

terms — that a brand with an intercept coefficient that is persistently negative (All) is

less desirable than average, in a sense (Figure 5). EraPlus and Tide are estimated to

be more desirable. However, note that these intercepts do not reflect marginal purchase

probabilities, as less desirable brands may also have lower prices. As economic theory would

suggest, the price coefficient is strongly negative (Figure 6), which indicates that raising a

detergent’s price (relative to the competitors) will lower its estimated purchase probability.

Although these interpretations of the β parameters are accurate, we would argue that

summaries of MNP results are best phrased in terms of changes in posterior predicted

selection probabilities. For example, one might consider the effect of a proposed price

increase on the current purchase probabilities. We advocate this because predictions take

into account both β and Σ parameters, and the Σ parameters can be very difficult to

interpret on their own. If only the β parameters are of interest in an application, we would
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Figure 4: Trace plot and histogram of samples from the posterior distribution of faux base
parameters b for the detergent data. In the upper panel, points are plotted with 10%
intensity. The numbers 1 through 6 correspond to All, EraPlus, Solo, Surf, Tide, and
Wisk, respectively.

argue that a model that assumes IIA may be more appropriate.

We also highlight the mixing behavior of the sMNP algorithm. For example, the faux-

base parameter b mixes extremely well, as indicated by the near constant switching between

its six possible values (Figure 4). Further, the mixing of the price parameter in the sym-

metric MNP algorithm compares favorably to the base category MNP in fits of these data

(Figure 6). Imai and van Dyk (2005a) used these data to demonstrate improved mixing per-

formance of their model relative to earlier MNP models, so these results are a comparison

against the state of the art.
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Figure 5: Trace plots of samples from the posterior distributions of the intercept terms for
an sMNP fit of the detergent data.

3.2 Margarine purchases

We also consider a similar analysis of consumer purchases of margarine that are available

in the bayesm package in R. Again, our model only has intercepts and a price coefficient.

Following McCulloch and Rossi (1994), we limit our analysis to purchases of Parkay, Blue

Bonnet, Fleischmanns, House brand, Generic, and Shedd Spread tub margarines.

And, following Burgette and Nordheim (2012), we limit the analysis to the first purchase

of one of these brands for each household. This results in a dataset with 507 observations.

With the smaller sample size, there are larger differences in posterior estimated purchase

probabilities when one switches from one base category to another in standard MNP fits.

In Figure 7, we see that sMNP predictions again tend to be between those of standard

MNP models when we consider all possible base categories, as was the case in Figure 3.
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Figure 6: Trace plots of samples from the posterior distributions of the price coefficients for
sMNP and standard MNP fits of the detergent data.

The observed House brand prices are between $0.19 and $0.64, so there is significant dis-

agreement across nearly the entire range of observed prices for that brand. (With the larger

sample size in the detergent data, we only saw meaningful differences when we extrapolated

out of the observed price range.) Although there is some Monte Carlo error in the estimates,

it is insignificant compared to the 19% difference between the low and high estimates of

House’s selection probability when it is priced at $0.20.

Thus, in both of these examples, we see that the sMNP gives predictions that are

between those of the standard MNP models that are fit alternately with each base. This is

compatible with the heuristic interpretation of the sMNP as a model that averages across

base categories in standard MNP models.

An alternative approach to handling dependence on the base category would be to fit

an Imai and van Dyk-style MNP model using each base category separately, and perform

a post-hoc average of the fitted probabilities. We find this to be unappealing from several

perspectives. First, the computation load is p times as large as it would be; the sMNP is
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brand as the base category.
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only slightly more expensive than a single base category MNP. More importantly, the sMNP

constitutes a proper Bayesian procedure, which automatically confers a range of theoretical

advantages.

3.3 A simulation study

Here we compare the fitted probabilities of MNP models that use each of the possible base

categories and the fitted probabilities that result from the base category-free sMNP. We

simulate 50 datasets that are loosely based on the consumer choice examples above. We

assume that n = 750 consumers are choosing from p = 6 products. The simulated product-

specific intercepts and mean prices have correlation 0.9 so that more desirable products

are more expensive, as one would expect. The price coefficient was drawn uniformly from

[−1.25,−.75] so that if a product is relatively less expensive, it will be more popular. Finally,

a p× p covariance matrix with expectation I is drawn from an inverse-Wishart distribution

with 50 degrees of freedom. The simulation parameters were chosen so that each “brand”

is chosen with high probability. Note that the data parameters were chosen without regard

to any set of identifying restrictions.

We measure performance via the total variation between the estimated and true purchase

probabilities, averaged over the first 10 sets of prices in each simulated dataset. We expect

that the sMNP will be less prone to making “extreme” predictions in the sense of Figure

7. The results are summarized in Figure 8, and are consistent with this notion. The plot

gives the average total variation from the true purchase probabilities for each of the base

category MNP models (hollow circles) and the sMNP (solid circles). Note that the sMNP is

never the worst among the various base category models. In nine of the 50 simulated cases,

sMNP outperformed all of the base category models. In 43 out of 50 of the simulations, the

sMNP performed better than the median base category performance.
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Figure 8: Simulation results. Points give the average percent total variation between true
and estimated purchase probabilities. Solid circles are from the sMNP. Hollow circles are
from MNP models that use each of the six possible base category identifying restrictions.
The sMNP is never worse than every base category model, and in 43 out of 50 cases, it
beats the median performance.
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4 Identification

A potential downside to our model is that it is not formally identified. In particular, the

model would be identified if we were able to restrict the trace of Σ, rather than the trace

of Σ−b. If one of the diagonal elements of Σ is estimated to be substantially larger than 1,

then the scale of β will depend on b. Although a fully identified model may be preferable,

we argue that little is lost in this case.

First — from the perspective of prior specification/elicitiation — the model is identified

conditional on the discrete parameter b. If the analyst wishes to specify an informative

prior, this can be done conditionally for each b = 1, . . . , p. If the model were only identified

conditional on a continuous working parameter, this process becomes more difficult. Second

— on the side of interpretation — we would argue that β parameters should be interpreted

while taking Σ into account, and vice versa. Since marginal summaries do not do this,

we feel that the best model summaries are changes of fitted probabilities as a function of

key outcome variables such as in Figure 7, which are not impacted by this identification

issue. If the analyst truly is interested in features of the marginal posterior distribution of

β or Σ, it is possible to post-process the results into a single, identified scale by re-scaling

the sampled values at each iteration of the MCMC such that, for example, the trace of Σ

is equal to p. However, the signs of the estimated β parameters are not impacted by the

under-identification of our model.

Post-processing in order to identify Bayesian MNP models was popularized by McCul-

loch et al. (2000), in the context of specifying a prior for Σ̃∗, rather than the identified Σ∗.

As an aside, we note that a related idea for solving the base category problem would be

to specify a full-rank inverse-Wishart prior for Σ, without worrying about the conditional

identifying restriction on the location of the Wi. However, this approach proves to be nu-

merically unusable. The p-dimensional inverse-Wishart prior pushes the sampled values of

Σ toward the edge of the parameter space, which quickly results in numerical problems that

result from sampling poorly-conditioned covariance matrices.
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5 Conclusion

The analyses in this paper demonstrate that careful handling of the prior is necessary in

order to obtain reliable predictions from the Bayesian MNP. As with any proper Bayesian

model, our estimates are biased, but they are not biased against any particular outcome

category in the prior. The same can not be said of previous MNP models that estimate the

covariance of the utilities.

With the prior for the regression coefficients centered on zero, the sMNP estimates

should be pulled toward more moderate estimates. Since multinomial data are quite coarse

(in the sense that each observation contributes little information compared to a multivariate

normal regression where the utilities are observed) we would argue that this prior-induced

regularization toward moderate predictions is highly desirable.

When building more advanced MNP models, symmetry may take on even greater im-

portance. For example, Cripps et al. (2010) proposed an MNP model that allows for a

sparse representation of the precision matrix of the latent utilities. However, they induce

sparsity in the precision of the base-subtracted utilities, not in the precision of the original

utilities. This seems very likely to exacerbate the problem of posterior estimates changing

across different specifications of the base category. Further, it is unclear that sparsity in

the base-subtracted precision corresponds to a meaningful data-generating process. That

said, it is likely that favorable bias/variance tradeoffs can be made by specifying a prior

that pulls the precision toward a well-chosen, sparse structure.

More broadly, the regularizing effect of a Bayesian prior distribution is at its most

powerful when the likelihood is poorly behaved in some way: when it is flat or spiky; when

identification is weak; when the number of parameters is large relative to the sample size.

However, in each of these situations, we should be worried that if our prior has undesirable

features, they may be preserved in the posterior. For example, MNP likelihoods can be

quite flat, and therefore the asymmetry of previously-proposed priors can propagate to the

posterior. Data analysts may hope that such undesirable features of the prior would be
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overwhelmed by the likelihood. This research suggests that while we cannot always count

on the data to cover flaws of our priors, we may be able to design priors that lack the flaw

in the first place, without giving up computational tractability.

Appendix: Proof

Conditional distribution of (b, Σ̃−b)

Computationally, the major change from the algorithm of Burgette and Nordheim (2012)

is the draw from (b, Σ̃b). From the full conditional, we have

p(b, Σ̃−b|all) ∝ exp{−.5
∑

(W̃i,−b −Xi,−bβ̃−b)
>Σ̃−1−b(W̃i,−b −Xi,−bβ̃−b)}

×|Σ̃−b|−n/2p(Σ̃−b|b)p(b)

∝ exp{−.5 tr(Σ̃−1(S−b +
∑

(W̃i,−b −Xi,−bβ̃−b)(W̃i,−b −Xi,−bβ̃−b)
>))}

×|Σ̃−b|−.5(n+ν0+p)

Then

p(b|β̃, W̃ ) ∝
∫
p(b, Σ̃−b|all)dΣ̃−b

∝ |S−b +
∑

(W̃i,−b −Xi,−bβ̃−b)(W̃i,−b −Xi,−bβ̃−b)
>|−(n+νb)/2

from the inverse-Wishart density. Conditional on b, Σ̃−b can be sampled from an inverse-

Wishart distribution as described by Imai and van Dyk (2005a).
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