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ABSTRACT 
 

This paper describes an estimator of the additive components of a nonparametric additive 
model with an unknown link function.  When the additive components and link function are twice 
differentiable with sufficiently smooth second derivatives, the estimator is asymptotically 
normally distributed with a rate of convergence in probability of .  This is true regardless of 
the (finite) dimension of the explanatory variable. Thus, the estimator has no curse of 
dimensionality.  Moreover, the asymptotic distribution of the estimator of each additive 
component is the same as it would be if the link function and the other components were known 
with certainty.  Thus, asymptotically there is no penalty for not knowing the link function or the 
other components. 
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ORACLE-EFFICIENT NONPARAMETRIC ESTIMATION OF AN ADDITIVE MODEL 
WITH AN UNKNOWN LINK FUNCTION 

 
 
1.  Introduction 

 This paper is concerned with nonparametric estimation of the functions F  and  

in the model  

1,..., dm m

(1.1) , 1
1[ ( ) ... ( )]d

dY F m X m X U= + + +
 
where jX  (j = 1, …, d) is the j’th component of the random vector dX ∈\  for some finite 

, 2d ≥ F  and  are unknown functions, and U  is an unobserved random variable 

satisfying  for almost every 

1,..., dm m

( | ) 0U X x= =E x .  Estimation is based on an iid random sample 

 of ( .  We describe estimators of { , : 1,..., }i iY X i n= , )Y X F  and  that converge in 

probability pointwise at the rate  when 

1,..., dm m

2 / 5n− F  and the ’s are twice differentiable and the 

second derivatives are sufficiently smooth.  Only two derivatives are needed regardless of the 

dimension of 

jm

X , so asymptotically there is no curse of dimensionality.  Moreover, the estimators 

of the additive components  have an oracle property.  Specifically, the centered, scaled 

estimator of each additive component is asymptotically normally distributed with the same mean 

and variance that it would have if 

jm

F  and the other components were known. 

 Model (1.1) is attractive for applied research because it nests nonparametric additive 

models and semiparametric single-index models.  In a nonparametric additive model 

(1.2) , 1
1( | ) ( ) ... ( )d

dY X m X m X= + +E

where the ’s are unknown functions.  In a single-index model jm

(1.3) ( | ) ( )Y X H Xθ ′=E , 

where θ  is a  dimensional vector and  is an unknown function.  Models (1.2) and (1.3) 

are non-nested.  Each contains conditional mean functions that are not contained in the other, so 

an applied researcher must choose between the two specifications.  If an incorrect choice is made, 

the resulting model is misspecified, and inferences based on it may be misleading.  Model (1.1) 

nests (1.2) and (1.3), thereby avoiding the need to choose between additive and single-index 

specifications.  Model (1.1) also nests the multiplicative specification 

1d × H

1 2
1 2( | ) [ ( ) ( )... ( )]d

dY X H m X m X m X= � � �E , 
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where  and the ’s are unknown functions.  This model can be put into the form (1.1) by 

setting 

H jm�

( ) ( )vF v H e=  and . ( ) log ( )j j
j jm X m X= �

 A further attraction of (1.1) is that it provides an informal, graphical method for checking 

additive and single-index specifications (1.2) and (1.3).  One can plot the estimates of F  and the 

’s.  Approximate linearity of the estimate of jm F  favors the additive specification (1.2), 

whereas approximate linearity of the ’s favors the single-index specification (1.3).  Linearity 

of 

jm

F  and the ’s favors the linear model jm ( | )Y X Xθ ′=E . 

 There is a large literature on estimating the ’s in (1.1) nonparametrically when jm F  is 

known to be the identity function.  As is discussed by Carrasco, Florens, and Renault (2005), the 

identifying relation of an additive model is a Fredholm equation of the second kind, and 

estimating the model presents an ill-posed inverse problem.  Stone (1985, 1986) showed that 

 is the optimal  rate of convergence of an estimator of the ’s when they are twice 

continuously differentiable.  Stone (1994) and Newey (1997) describe spline estimators whose 

 rate of convergence is .  Breiman and Friedman (1985); Buja, Hastie, and Tibshirani 

(1989); Hastie and Tibshirani (1990); Opsomer and Ruppert (1997); Mammen, Linton, and 

Nielsen (1999); and Opsomer (2000) investigate the properties of backfitting estimators.  Newey 

(1994); Tjøstheim and Auestad (1994); Linton and Nielsen (1995); Chen, Härdle, Linton, and 

Severance-Lossin (1996); and Fan, Härdle, and Mammen (1998) investigate the properties of 

marginal integration estimators.  Horowitz, Klemelä, and Mammen (2006), hereinafter HKM, 

discuss optimality properties of a variety of estimators for nonparametric additive models with 

identity link functions.  Estimators for the case in which 

2 / 5n− 2L jm

2L 2 / 5n−

F  is not necessarily the identity 

function but is known have been developed by Linton and Härdle (1996), Linton (2000), and 

Horowitz and Mammen (2004).  Using arguments like those of Carrasco, Florens, and Renault 

(2005), it can be shown that the identifying relation for an additive model with a link function can 

be written as a nonlinear integral equation.  The linearization of this equation is a Fredholm 

equation of the second kind, and estimation of the model presents an ill-posed inverse problem.  

This argument carries over to the case of an unknown link function.  The statistical properties of 

the nonlinear model (e.g., rates of convergence and oracle properties) are similar to those of the 

linear model, but the technical details of the nonlinear problem are different from those of the 

linear case and, consequently, require a separate treatment.   
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Estimators for the case of an unknown F  have been developed by Horowitz (2001) and 

Horowitz and Mammen (2007).  Horowitz’s (2001) estimator is asymptotically normal, but its 

rate of convergence in probability is slower than .  Moreover, it requires 2 / 5n− F  and the ’s to 

have an increasing number of derivatives as the dimension of 

jm

X  increases.  Thus, it suffers from 

the curse of dimensionality.  Horowitz and Mammen (2007) developed penalized least squares 

estimators of F  and the ’s that have  rates of convergence of  and do not suffer from 

the curse of dimensionality. However, the asymptotic distributions of these estimators are 

unknown, and carrying out inference with them appears to be very difficult.  The estimators 

presented in this paper avoid the curse of dimensionality and are pointwise asymptotically normal 

at an  rate when 

jm 2L 2 / 5n−

2 / 5n− F  and the ’s are twice continuously differentiable.  Therefore, 

(asymptotic) inference based on these estimators is straightforward.  Moreover, the estimators of 

the ’s are asymptotically equivalent to those of Horowitz and Mammen (2004) for the case of 

a known 

jm

jm

F .  Therefore, asymptotically there is no penalty for not knowing F .   

 The estimators described in this paper are developed through a two stage procedure.  In 

the first stage, a modified version of Ichimura’s (1993) estimator for a semiparametric single-

index model is used to obtain a series approximation to each  and a kernel estimator of jm F .  

The first-stage procedure imposes the additive structure of (1.1), thereby avoiding the curse of 

dimensionality.  The first-stage estimates are inputs to the second stage.  The second-stage 

estimator of, say,  is obtained by taking one Newton step from the first-stage estimate toward a 

local nonlinear least-squares estimate.  In large samples, the second-stage estimator has a 

structure similar to that of a kernel nonparametric regression estimator, so deriving its pointwise 

rate of convergence and asymptotic distribution is relatively easy.   

1m

The theoretical concept underlying our procedure is the same as that used by HKM for 

estimating a nonparametric additive model with a known, identity link function.  HKM showed 

that each additive component can be estimated with the same asymptotic performance as a kernel 

smoothing estimator in a model in which the link function and all but one additive component are 

known.  Here, we show that the same approach works in the considerably more complex case of 

an additive model with an unknown, possibly nonlinear link function.  The procedure in HKM, 

like the one in this paper, has two stages.  The first consists of obtaining an undersmoothed, 

nonparametric pilot estimator of each additive component.  This estimator has an asymptotically 

negligible bias but a variance that converges to zero relatively slowly.  The second-stage 

estimator is obtained by using a single backfitting step to update each component while setting 
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the others equal to their first-stage (pilot) estimates. The oracle property of the second-stage 

estimator follows because the bias of the first stage estimator is negligible and the rate of 

convergence of the variance is accelerated by the smoothing that takes place in the second stage. 

We conjecture that this method can be used to obtain oracle efficient estimators for a large class 

of other smoothing approaches.  We also conjecture that if the ’s and jm F  are  times 

differentiable, then estimators of the ’s can be obtained that are oracle-efficient and 

asymptotically normal with  rates of convergence.  However, we do not attempt to 

prove these conjectures in this paper.  

2r >

jm

/(2 1)r rn− +

 The remainder of this paper is organized as follows.  Section 2 provides an informal 

description of the two-stage estimator.  The main results are presented in Section 3.  Section 4 

discusses the selection of bandwidths.  Section 5 presents the results of a small simulation study, 

and Section 6 presents concluding comments.  The proofs of theorems are in the appendix.  

Throughout the paper, subscripts index observations and superscripts denote components of 

vectors.  Thus, iX  is the i ’th observation of X , jX  is the j ’th component of X , and j
iX  is 

the i ’th observation of the j ’th component. 

2.  Informal Description of the Estimators 

Assume that the support of X  is .  This can always be achieved by, if 

necessary, carrying out monotone transformations of the components of 

[0,1]d≡X

X .  For any x∈X  

define , where 1
1( ) ( ) ... ( )d

dm x m x m x= + + jx  is the j’th component of x .  Observe that (1.1) 

remains unchanged if each  is replaced by jm jm a j+  for any constants  and ja ( )F ν  is 

replaced by 1*( ) ( ... )dF F a aν ν= − − − .  Similarly, (1.1) is unchanged if each  is replaced by 

 for any  and 

jm

jcm 0c ≠ ( )F ν  is replaced by *( ) ( / )F F cν ν= .  Therefore, location, sign, and 

scale normalizations are needed to make identification possible.  Under the additional assumption 

that F  is monotone, model (1.1) is identified if at least two additive components are not constant 

(Horowitz and Mammen 2007, Proposition 3.1).  This assumption is also necessary for 

identification.  To see why, suppose that only  is not constant. Then the regression function is 

of the form .  It is clear that this function does not identify 

1m

1
1[ ( ) constant]F m x + F  and . In 

this paper we use a slightly stronger assumption for identification.  We assume that the 

derivatives of two additive components are bounded away from 0.  The indices 

1m

j  and  of these 

components do not need to be known for the implementation of our estimator. They are needed 

k
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only for the statement the result of the first estimation step (Theorem 1).  We suppose for this 

purpose that  and . j d= 1k d= −

We achieve location normalization by setting 

(2.1) .  
1

0
( ) 0; 1,...,jm v dv j d= =∫

To describe our sign and scale normalizations, let { : 1,2,...}kp k =  denote a basis for smooth 

functions on [  satisfying (2.1).  A precise definition of “smooth” and conditions that the basis 

functions must satisfy are given in Section 3.  The conditions include: 

0,1]

(2.2) ; 
1

0
( ) 0kp v dv =∫

(2.3)  
1

0

1 if 
( ) ( )

0 otherwise;j k
j k

p v p v dv
=⎧

= ⎨
⎩∫

1( ) 12( 1/ 2)p ν ν= − , and 

(2.4)  
1

( ) ( )j j
j jk k

k
m x p xθ

∞

=

=∑

for each , each , and suitable coefficients {1,...,j = d [0,1]jx ∈ }jkθ .  We achieve sign and scale 

normalization by setting 1 1dθ = .  This works because, to ensure identification, we assume that 

there is a finite constant  such that  for all 0MC > ( )dm Cν′ ≥ M [0,1]ν ∈ .  Under this assumption, 

1dθ  is bounded away from 0 and can be normalized to equal 1.  To see why 1dθ  is bounded away 

from 0, use integration by parts to obtain 

( )

1 1
10 0

11 2
0 0

( ) ( ) 12 ( )( 1/ 2)

12 / 2 ( ) ( 1) ( )( )

d d

d d

m p d m d

m m

ν ν ν ν ν ν

dν ν ν ν ν ν ν

= −

⎡ ⎤′= − − −⎢ ⎥⎣ ⎦

∫ ∫

∫

 

( ) 1 2
0

12 / 2 ( )( )

/ 12.

d

M

m d

C

ν ν ν′= − −

≥

∫ ν

 

Now, for any positive integer κ , define  
1 1 2 2

1 1 1( ) [ ( ),..., ( ), ( ),..., ( ),..., ( ),... ( )]d dP x p x p x p x p x p x p xκ κ κ κ ′= . 

Then for , dκ
κθ ∈\ ( )P xκ κθ′  is a series approximation to .  Section 3 gives conditions that 

 must satisfy.  These require that 

( )m x

κ κ →∞  at an appropriate rate as . n→∞
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 We now describe the two-stage procedure for estimating (say) .  We begin with the 

first-stage estimator.  Let  be a kernel function (in the sense of nonparametric regression) on 

, and define  for any real, positive constant .  Conditions that  and h  

must satisfy are given in Section 3.  Let 

1m

K

[ 1,1]− ( ) ( / )hK v K v h= h K

ˆ ( )iF κθ  be the following estimator of [ ( ) ]iF P Xκ κθ′ : 

{ }
1

1ˆ ( ) ( ) ( )
ˆ ( )

n

i j h i
i j

j i

F Y K P X P
nhgκ κ

κ
jXκ κθ θ

θ =
≠

⎡ ⎤′ ′= −⎣ ⎦∑ , 

where  

{ }
1

1ˆ ( ) ( ) ( )
n

i h i j
j
j i

g K P X P X
nhκ κ κ κθ θ

=
≠

⎡ ⎤′ ′= −⎣ ⎦∑ . 

To obtain the first-stage estimators of the ’s, let {jm , : 1,..., }i iY X i n=  be a random 

sample of .  Let ( , )Y X n̂κθ  be a solution to 

(2.5) 1 2

1

ˆminimize ( ) ( )[ ( )]
n

n i h i
i

S n I X Y F
κ

κ
θ

iθ θ−

∈Θ =

≡ ∈ −∑ A , 

where  and  are sets that are defined in the next paragraph.  The series estimator of  

for any  is 

κΘ hA ( )m x

hx∈A

ˆ( ) ( ) nm x P xκ κθ′=� . 

The estimator of  is the product of ( )j
jm x 1[ ( ),..., ( )]j jp x p xκ  with the appropriate components 

of n̂κθ .   

 We now define the sets  and .  To ensure that the estimator obtained from (2.5) 

converges to  sufficiently rapidly as , 

κΘ hA

m n→∞ ( )P Xκ κθ′  must have a bounded probability 

density whose value is sufficiently far from 0 at each κ κθ ∈Θ  and each .  We choose 

 and  so that this requirement is satisfied.  To do this, define the vectors 

hX ∈A

κΘ hA 1( ,..., )dν ν ν=  

and .  Define 1( ,..., )dν ν ν− = 1d−
j jk kk

m pκ*
1

( ) ( )j jν θ ν
=

=∑ ( 1,..., )j d=

)d jk kj k
m κ

  and 

1*
1 1

( ) (dd jpν θ ν
−−

− = =
=∑ ∑ X.  Let f  denote the probability density function of X .  

Then the density of  is * *
d dm m m−≡ + *
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(2.6) *

* 1 *

* 1* *

{ [ ( )], }
( )

{ [ ( )]}

d d
X dd

m d
d dd

f m z m x x df z d
m m z m x

− − −
− x−

− −
−

−
=

′ −∫ . 

The function mf  has the desired properties if *
dm ′  is bounded and bounded away from 0, *

dm ′  is 

Lipschitz continuous, and the Lebesgue measure of the region of integration in (2.6) is 

sufficiently far from 0.  To ensure that these properties hold, we assume that the basis functions 

 are continuously differentiable.  We set kp

1 1[ ,1 ] [ (log ) ,1 (log ) ]d
h h h h h− −= − × − +A 1−

d d
d dz m x m x−

−= + hx

. 

The Lebesgue measure of the region of integration in (2.6) is bounded from below by a quantity 

that is proportional to  whenever , 1(log )h −− * *( ) ( ) ∈A , and  

for some constant  and all 

*
2( )dm cν′ ≥

2 0c > [0,1]ν ∈ . 

 To specify κΘ , let Cθ  be a constant that satisfies assumption A5(iv) in Section 3.  Let 

, , and  be the constants defined in assumptions A3(i), A3(iii), and A3(vi).  Let , , 

and  be any finite constants satisfying 

1C 2C 3C 1c 2c

3c 2 20 c C< < ,  and .  Set 1c C≥ 1 3

h

3c C≥

* *
1 2

* *
2 1 3 2 1 1 2

{ [ , ] : | ( )| , | ( ) | ,

| ( ) ( ) | | | for all , , }.

d j d
j d

d d d d
d d

C C m x c m x c

m x m x c x x x x x

κ
κ θ θθ ′Θ = ∈ − ≤ ≥

′ ′− ≤ − ∈A

 

 To obtain the second-stage estimator of  at a point 1
1( )m x 1 ( ,1 )x h h∈ − , let iX�  denote 

the ’th observation of i 2( ,..., )dX X X≡� .  Define , where  

is the first-stage estimator of .  For a bandwidth 

2
1 2( ) ( ) ... ( )d

i i dm X m X m X− = + +�� � � i jm�

jm s  define  

0 1

2
0 1 0 1, 1

ˆ ˆ[ ( ), ( )] arg min ( ){ [ ( ) ]} [ ( ) ]
n

i i j h j j s jb b j
j i

b b I X Y b b m X K m Xν ν ν
=
≠

= ∈ − − −∑ � �A ν− . 

Define the local-linear estimators 0
ˆ( ) ( )i iF bν ν=��  and 1

ˆ( ) ( )i iF bν ν′ =�� .  Let  be a symmetrical 

(about 0) probability density function on [

H

1,1]− .  For a bandwidth t , define ( ) ( / )tH H tν ν= , 

   , 1 1 1
1 1 1 1 1

1
( ) 2 ( ){ [ ( ) ( )]} [ ( ) ( )] ( )

n

n i h i i i i i t
i

S x I X Y F m x m X F m x m X H x X− −
=

′= − ∈ − + + −∑ � �� � � �� � � �A 1 1
i

1 1
i

and 

1 1 2
2 1 1

1
( ) 2 ( ) [ ( ) ( )] ( )

n

n i h i i t
i

S x I X F m x m X H x X−
=

′= ∈ + −∑ �� �� �A . 
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The second-stage estimator of  is 1
1( )m x

(2.7) 
1

1 1 1
1 1 1

2

( )ˆ ( ) ( )
( )

n

n

S xm x m x
S x

= −� . 

The second stage estimators of  are obtained similarly.   2
2 ( ),..., ( )d

dm x m x

 The estimator (2.7) can be understood intuitively as follows.  If  and  were the true 

functions 

iF�� 1m−�

F  and , then a consistent estimator of  could be obtained by minimizing 1m−
1

1( )m x

(2.8) . 1 2
1 1

1
( , ) ( ){ [ ( )]} ( )

n

n i h i i i t
i

S x b I X Y F b m X H x X−
=

= ∈ − + −∑ �� ��A 1 1
i

/ 5

The estimator (2.7) is the result of taking one Newton step from the starting value  

toward the minimum of the right-hand side of (2.8).   

1
1( )b m x= �

 Section 3 gives conditions under which  and 

 is asymptotically normally distributed for any finite  when 

1 1 2
1 1ˆ ( ) ( ) ( )pm x m x O n−− =

2 / 5 1 1
1 1ˆ[ ( ) ( )]n m x m x− d F  and the 

’s are twice continuously differentiable.  The second-stage estimator of jm F  is the kernel 

nonparametric mean-regression of Y  on 1ˆ ˆ ˆ... dm m m= + + .  It is clear, though we do not prove 

here, that this estimator is -consistent and asymptotically normal. 2 / 5n−

3.  Main Results 

 This section has two parts.  Section 3.1 states the assumptions that are used to prove the 

main results.  Section 3.2 states the results.  The main results are the -consistency and 

asymptotic normality of the ’s.   

2 / 5n−

ˆ jm

 The following additional notation is used.  For any matrix , define the norm A
1/ 2[ ( )]A trace A A′= .  Also define [ ( )]U Y F m X= − , ( ) ( | )V x Var U X x= = ,  

2{ ( ) [ ( )] ( ) ( ) }hQ I X F m X P X P Xκ κ′ ′= ∈E A κ

1

,  

and  
1 2{ ( ) [ ( )] ( ) ( ) ( ) }hQ I X F m X V X P X P X Qκ κ κ κ κ

− −′ ′Ψ = ∈E A   

whenever the latter quantity exists.  Qκ  and κΨ  are ( ) ( )d dκ κ×  positive semidefinite matrices, 

where .  Let ( )d dκ κ= ,minκλ  denote the smallest eigenvalue of Qκ .  Let  denote the  ,ijQκ ( , )i j
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element of .  Define Qκ sup ( )x P xκζ ∈= X κ .  Let { }jkθ  be the coefficients of the series 

expansion (2.4).  For each  define κ 11 1 21 2 1( ,..., , ,..., ,..., ,..., )d dκ κ κ κθ θ θ θ θ θ θ ′= . 

 3.1  Assumptions 

 The results are obtained under the following assumptions.  None of the constants 

appearing in these assumptions needs to be known for implementation of our estimator. 

 A1:  The data, {( , ) : 1,..., }i iY X i n= , are an iid random sample from the distribution of 

, and ( , )Y X ( | ) [ ( )]Y X x F m x= =E  for almost every x∈X . 

 A2:  (i) The support of X  is .  (ii) The distribution of X X  is absolutely continuous with 

respect to Lebesgue measure.  (iii) The probability density function of X  is bounded away from 

zero and twice differentiable on X  with a Lipschitz-continuous second derivative.  (iv) There are 

constants  and  such that 0Vc > VC < ∞ ( | )V Vc Var U X x C≤ = ≤ x∈X

! ( )j
UU C j U−≤ < ∞E E

 for all .  (v) There is a 

constant  such that  for all . UC < ∞ 2 2| | j 2j ≥

 A3:  (i) Each function  is defined on [ , and jm 0,1] 1| ( ) |jm v C≤  for each , all 

, and some constant .  (ii) Each function  is twice continuously differentiable 

on  with derivatives at 0 and 1 interpreted as one-sided.  (iii)  There is a finite constant  

such that  and  for all 

1,...,j d=

[0,1]v∈ 1C < ∞ jm

[0,1] 2C

2( )dm v C′ ≥ 1| ( ) |dm v C−′ ≥ 2 [0,1]v∈ .  (iv)  There are constants 1FC < ∞ , 

, and  such that 2 0Fc > 2FC < ∞ 1( ) FF v C≤  and 2 2( )F Fc F v C′≤ ≤  for all .  

(v) 

{ ( ) : [0,1] }dv m x x∈ ∈

F  is twice continuously differentiable on { ( .  (vi) There is a constant ) : [0,1] }dm x x∈ 3C < ∞  

such that 2 1 3 2| ( ) ( ) | |d dm m C 1 |ν ν ν′′ ′′− ≤ −ν 1] for all 1 2, [0,ν ν ∈  and 

2 1 3 2| ( ) ( ) | | 1 |F v F v C v v′′ ′′− ≤ −  for all . 2 1, { ( ) : [0,1]dv v m x x∈ ∈ }

 A4:  (i) There are constants QC < ∞  and  such that 0cλ > ,| |ij QQ Cκ ≤  and ,min cκ λλ >  

for all  and all .  (ii) The largest eigenvalue of κ , 1,..., ( )i j d κ= κΨ  is bounded for all . κ

 A5:  (i) The functions {  satisfy (2.2), (2.3), and }kp 1( ) 12( 1/ 2)p ν ν= − .  (ii) There is a 

constant  such that 0cκ > cκ κζ ≥  for all sufficiently large κ .  (iii)  as .  

(iv) There are a constant C

1/ 2(Oκζ κ= ) κ →∞

θ < ∞  and vectors 0κ κθ ∈Θ  such that 

 as 2
0sup | ( ) ( ) | ( )

hx m x P x Oκ κθ κ −
∈ ′− =A κ →∞ .  (v) For each κ , κθ  is an interior point of κΘ .   

 9



 A6:  (i) 4 /15C n ν
κκ +=  for some constant Cκ  satisfying 0 Cκ< < ∞  and some ν  

satisfying 0 1/ 30ν< < .  (ii)  and  for some constants  and  

satisfying .  (iii)  for some constant 

1/ 5
hh C n−= 1/ 5

tt C n−= hC tC

0 h tC C< < < ∞ 1/ 7
ss C n−= sC  satisfying . 0 hC< < ∞

A7:   and  are supported on [H K 1,1]− , symmetrical about 0, and twice differentiable 

everywhere.   and  are Lipschitz continuous.  In addition,  H ′′ K ′′

1

1

1if 0
( )

0 if 1 3
j j

v K v dv
j−

=⎧
= ⎨ ≤ ≤⎩∫  

 Differentiability of the density of X  (Assumption A2(iii)) is used to ensure that the bias 

of our estimator converges to zero sufficiently rapidly.  Assumption A2(v) restricts the thickness 

of the tails of the distribution of U  and is used to prove consistency of the first-stage estimator.  

Assumption A3 defines the sense in which F  and the ’s must be smooth.  A3(iii) and A3(iv) 

are used for identification.  The need for higher-order smoothness of 

jm

F  depends on the metric 

one uses to measure the distance between the estimated and true additive components.  Horowitz 

and Mammen (2007) show that only two derivatives of F  are needed to enable the additive 

components to achieve an  rate of convergence in the  metric.  However, Juditsky, 

Lepski, and Tsybakov (2007) show that when 

2 / 5n− 2L

2d = , three derivatives are needed to achieve this 

rate with the uniform metric.  This follows from the lower bound in the first part of the proof of 

their Theorem 1.  This lower bound is stated for another model but it also applies to an additive 

model with unknown link and two unknown additive components.  A4 ensures the existence and 

non-singularity of the covariance matrix of the asymptotic form of the first-stage estimator.  This 

is analogous to assuming that the information matrix is positive definite in parametric maximum 

likelihood estimation.  Assumption A4(i) implies A4(ii) if U  is homoskedastic.  Assumption 

A4(vi) requires higher-order smoothness of only one additive component.  We conjecture that this 

condition can be weakened.  Assumptions A5(iii) and A5(iv) bound the magnitudes of the basis 

functions and ensure that the errors in the series approximations to the ’s converge to zero 

sufficiently rapidly as .  These assumptions are satisfied by spline and (for periodic 

functions) Fourier bases.  We use B-splines in the Monte Carlo experiment reported in Section 5.  

Assumption A6 states the rates at which 

jm

κ →∞

κ →∞  and the bandwidths converge to 0 as .  

The assumed rates of convergence of  and  are well known to be asymptotically optimal for 

one-dimensional kernel mean-regression when the conditional mean function is twice 

continuously differentiable.  The required rate for 

n→∞

h t

κ  ensures that the asymptotic bias and 
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variance of the first-stage estimator are sufficiently small to achieve an  rate of convergence 

in the second stage.  The  rate of convergence of a series estimator of  is maximized by 

setting , which is slower than the rates permitted by A6(i) (Newey (1997)).  Thus, A6(i) 

requires the first-stage estimator to be undersmoothed.  Undersmoothing is needed to ensure 

sufficiently rapid convergence of the bias of the first-stage estimator.  We show that the first-

order performance of our second-stage estimator does not depend on the choice of  if A6(i) is 

satisfied.  See Theorem 2.  Optimizing the choice of 

2 / 5n−

2L jm

1/ 5nκ ∝

κ

κ  would require a rather complicated 

higher-order theory and is beyond the scope of this paper, which is restricted to first-order 

asymptotics. 

 3.2  Theorems 

 This section states two theorems that give the main results of the paper.  Theorem 1 gives 

the asymptotic behavior of the first-stage estimator.  Theorem 2 gives the properties of the 

second-stage estimator.  Define [ ( )]i i iU Y F m X= −  ( 1,...,i n= ) and 0 0( ) ( ) ( )b x m x P xκ κ κθ′= − .  

Let v  denote the Euclidean norm of any finite-dimensional vector v .   

Theorem 1:  Let assumptions A1-A7 hold.  Then 

(a) 0
ˆlim 0nn κ κθ θ

→∞
− =  

almost surely, 

(b) 1/ 2 1/ 2 2
0

ˆ ( /n pO nκ κθ θ κ κ )−− = + , 

and 

(c) . 1/ 2 3/ 2sup | ( ) ( ) | ( / )
h

p
x

m x m x O nκ κ −

∈
− = +�

A

In addition,  

(d)  

1 1
0

1

1 1 2
0

1

ˆ ( ) [ ( )] ( )

( ) [ ( )] ( ) ( ) ,

n

n i h i i i
i

n

i h i i i n
i

n Q I X F m X P X U

n Q I X F m X P X b X R

κ κ κ κ

κ κ

θ θ − −

=

− −

=

′− = ∈

′+ ∈

∑

∑

A

A κ +

where 3/ 2 1/ 2( / )n pR O n nκ −= + .  ■  

 Now define 
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1
1

1 1
1 1 1 1

1

( , )

2 ( ){ [ ( ) ( )]} [ ( ) ( )] ( ),

n

n

i h i i i t i
i

S x m

I X Y F m x m X F m x m X H x X− −
=

=

′− ∈ − + + −∑ � �X 1 1

1

 

1 1 2
1 1( ) 2 [ ( ) ( )] ( , )XD x F m x m x f x x−′= +∫ � � dx�

dv

,   

1 2
1

( )KA v H v
−

= ∫ , 

1 2
1

( )KB H v dv
−

= ∫ , 

1 2 2 1 1 1
1 1 1 1 0

( , ) ( / ){ [ ( ) ( )] [ ( ) ( )]} ( , )Xq x x F m x m x F m x m x f x x
ζ

ζ ζ ζ− − =
= ∂ ∂ + + − + +� � � �

1

, 

1 2 1 1 1 1 1
1 1( ) 2 ( ) ( , ) [ ( ) ( )] ( , )t K Xx C A D x q x x F m x m x f x x dxβ −

−′= +∫ � � � �

1

, 

and 
1 1 1 2 1 1 2 1

1 1( ) 4 ( ) ( | , ) [ ( ) ( )] ( , )K t XV x B C D x Var U x x F m x m x f x x dx− −
−′= +∫ � � � � . 

The next theorem gives the asymptotic properties of the second-stage estimator.  We state 

the result only for the estimator of .  Analogous results hold for the estimators of the other 

components. 

1m

Theorem 2:  Let assumptions A1-A7 hold. Then 

(a)  1 1 1 1 1 2
1 1 1ˆ ( ) ( ) [ ( )] ( , ) ( )n pm x m x ntD x S x m o n− −− = − + / 5

1) ]

for each , and  uniformly over . 1 (0,1)x ∈ 1 1
1 1ˆ ( ) ( ) (1)pm x m x o− = 1

hx ∈A

(b) If , then .   1 (0,1)x ∈ 2 / 5 1 1 1 1
1 1 1 1ˆ[ ( ) ( )] [ ( ), ( )]dn m x m x N x V xβ− →

(c) If 1j ≠  and , then  and  are 

asymptotically independently normally distributed.  

1, (0,jx x ∈ 2 / 5 1 1
1 1ˆ[ ( ) ( )]n m x m x− 2 / 5 ˆ[ ( ) ( )j j

j jn m x m x−

■

 Theorem 2(b) implies that asymptotically,  is not affected by 

random sampling errors in the first stage estimator or lack of knowledge of 

2 / 5 1 1
1 1ˆ[ ( ) ( )]n m x m x−

F .  In fact, the 

second-stage estimator of  has the same asymptotic distribution that it would have if 1
1( )m x F  

and  were known and (2.8) were used to estimate  directly.  In this sense, our 

estimator has an oracle property.  Part (c) of Theorem 2 implies that the estimators of 

 are asymptotically independently distributed.  These results hold for any ’s 

and 

2 ,..., dm m 1
1( )m x

1
1( ),..., ( )d

dm x m x jm

F  that satisfy assumptions A1-A7.  No other information about these functions is needed. 
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1
1( )V x  and 1

1( )xβ  can be estimated consistently by replacing unknown population 

parameters with consistent estimators.  Alternatively, one can eliminate the asymptotic bias, 
1

1( )xβ , by setting tt C n γ−=  for 1/5 1γ< < .  Then . (1 ) / 2 1 1 1
1 1 1ˆ[ ( ) ( )] [0, ( )]dn m x m x N V xγ− − →

 Theorems 1 and 2 are proved by showing that the estimators presented here are 

asymptotically equivalent to the estimators of Horowitz and Mammen (2004), which assume that 

F  is known.  Therefore, the estimators presented here have the same asymptotic properties as the 

estimators of Horowitz and Mammen (2004).  

4.  Bandwidth Selection 

This section presents an informal method for choosing the values of  and the 

bandwidth parameters , 

κ

h s , and  in applications.  The asymptotic distributions of the second-

stage estimators of the ’s do not depend on the first-stage tuning parameters , h , and 

t

jm κ s .  As 

a practical consequence, the second-stage estimates are not highly sensitive to these parameters 

and it is not necessarily to choose them precisely.  Our method for choosing them consists of 

fitting an approximate parametric model to the data and choosing bandwidths that would be 

optimal if the approximate model were, in fact, correct.  The approximate parametric model is 

obtained by choosing κθ  to minimize 

2

1
{ [ ( ) ]

n

i i
i

Y P Xκ κψ θ
=

′−∑ }  

for some fixed value of , where κ ψ  is a function that is chosen by the analyst.  The specific 

form of the function ψ  and the value of κ  are not crucial.  They should be chosen to achieve a 

reasonable fit to the data as indicated by, say, a residuals plot, but it is neither necessary nor 

desirable to carry out elaborate specification searching or testing in this step.  Let κθ  denote the 

resulting value of κθ .  Next, consider the kernel nonparametric regression of  on iY ( )iP Xκ κθ .  

Use a standard method for bandwidth choice, possibly cross-validation, to estimate the optimal 

bandwidth for this regression.  This yields our proposed choice of .  Our choice of h s  is 

obtained by using the plug-in method to estimate the optimal bandwidth for local linear 

estimation of the derivative of the [ | ( ) ]Y P Xκ κθ′E .  Finally, the bandwidth t  can be chosen by 

using the plug-in method of Horowitz and Mammen (2004, Sec. 4).  Equation (4.1) of Horowitz 

and Mammen (2004) gives the formula for the optimal .  Theorem 5 of Horowitz and Mammen t
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(2004) shows how to estimate the required derivatives of the ’s.   Theorem 5 can also be used 

to estimate the required derivatives of 

jm

F . 

5.  Monte Carlo Experiments 

This section reports the results of a Monte Carlo experiment that illustrates the finite-

sample performance of .  The experiment consists of repeatedly estimating  in the binary 

logit model 

1m̂ 1m

1 2
1 2( 1| ) [ ( ) ( )]P Y X x F m x m x= = = + , 

where  

( ) 1/[1 exp( )]F v v= + −  

for any  and ( , )v∈ −∞ ∞

4
1 2( ) ( ) 0.25( 1)m z m z z= = +  

for any .  [ 1,1]z∈ − 1X  and 2X  are independent with the uniform distribution on [ .  This 

model is not a single-index or additive model.  The curvature of  provides a test of the 

performance of the estimator. 

1,1]−

1m

 We also carried out the experiment using the infeasible oracle estimator that assumes 

knowledge of F  and .  This estimator cannot be used in applications, but it provides a 

benchmark against which the performance of the feasible estimator can be compared.  The 

infeasible oracle estimator of , which we denote by , is 

2m

1
1( )m x 1

1,ˆ ( )ORm x

1 2
1, 2

1
ˆ ( ) arg min { [ ( )]} ( )

n

OR i i h i
i

m x Y F m X K x X
μ

μ
=

= − +∑ 2 1 1− . 

 All local-linear or kernel estimation steps in obtaining  and  used the kernel 

function 

1m̂ 1,ˆ ORm

2 215( ) (1 ) (| | 1)
16

K v v I v= − ≤ . 

The basis functions in the first estimation stage were B-splines.  The procedures described in 

Section 4 for selecting  and the bandwidths cannot be used in the Monte Carlo experiment 

because of the long computing times that are required.  Therefore, 

κ

κ  and the bandwidths were 

chosen through Monte Carlo experimentation to approximately minimize the integrated mean-

square error (IMSE’s) of .  This yielded 1m̂ 3κ = , 0.25h = , 1s = , and 0.6t = .  The sample size 

used in the experiment was n = 500.  There were 100 replications.  The experiment was carried 

 14



out in GAUSS using GAUSS pseudo-random number generators.  The function  was 

estimated over the interval [ , rather than [

1m

.5,.5]− 1,1]− , to reduce edge effects. 

 The results of the experiments can be summarized by the IMSEs of , , and the 

first-stage spline estimator, .  These are 0.137, 0.158, and 0.232, respectively.  As predicted by 

the theory, the infeasible oracle and second-stage estimators have approximately the same IMSEs, 

and the IMSEs of both are smaller than the IMSE of the first-stage spline estimator. 

1m̂ 1,ˆ ORm

1m�

 Figure 1 illustrates the estimates of .  The solid line in the figure shows the true 

function.  The dashed line shows the average of the 100 Monte Carlo estimates.  The circles, 

squares, and triangles show individual estimates of .  The circles show the estimate whose 

IMSE is at the 25th percentile of the IMSEs of the 100 Monte Carlo replications.  The squares 

and triangles show the estimates corresponding to the 50th and 75th percentiles of the IMSEs.  

The shape of the average of the Monte Carlo estimates is similar to the shape of the true , 

though some bias is evident.  The bias can be reduced at the expense of increased variance and 

IMSE by reducing .  As is to be expected, the shape of the individual estimate at the 25th 

percentile of the IMSE is close to the shape of the true , whereas the shape of the estimate at 

the 75th percentile is further from the truth. 

1m

1m

1m

t

1m

 Figure 2 illustrates the performance of the infeasible oracle estimator.  As in Figure 1, the 

dashed line shows the average of the 100 Monte Carlo estimates, the circles, squares, and 

triangles, respectively, show estimates of  at the 25th, 50th and 75th percentiles of the IMSE; 

and the solid line shows the true .  Figures 1 and 2 have a similar appearance, which illustrates 

the ability of the two-stage estimator to perform essentially as well as the infeasible oracle 

estimator. 

1m

1m

 We have also done limited experimentation with a model in which there are five 

covariates.  In this model, F , , and  are the same as in the two-covariate experiment, and 

 for , 4, and 5.  Because of the long computing times required to obtain the first-

stage spline estimates when there are 5 covariates, we have carried out only a few Monte Carlo 

replications.  These suggest that as in the two-covariate case, the second-stage estimate has a 

shape that is similar to that of the true  and an IMSE that is slightly less than the IMSE of the 

infeasible oracle estimator that assumes knowledge of 

1m 2m

( )jm x x= 3j =

jm

F  and all but one of the ’s. jm
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6.  Conclusions 

This paper has described an estimator of the additive components of a nonparametric 

additive model with an unknown link function.  When the additive components and link function 

are twice differentiable with sufficiently smooth second derivatives, the estimator is 

asymptotically normally distributed with a rate of convergence in probability of .  This is 

true regardless of the (finite) dimension of the explanatory variable. Thus, the estimator has no 

curse of dimensionality.  Moreover, the estimator has an oracle property.  The asymptotic 

distribution of the estimator of each additive component is the same as it would be if the link 

function and the other components were known with certainty.  Thus, asymptotically there is no 

penalty for not knowing the link function or the other components.  

2 / 5n−

 Computation of the first-stage estimator remains an important topic for further research.  

The optimization problem (2.5) is hard to solve, especially if θ  is high-dimensional, because the 

objective function is not globally convex.  Although the theory presented in this paper requires 

solving (2.5), in applications it may be possible to obtain good numerical results by using other 

methods.  The numerical performance of the second-stage estimator tends to be satisfactory 

whenever the first-stage estimates are good approximations to the true additive components.  

Thus, in applications it may suffice to obtain the first-stage estimates by using methods that are 

relatively easy to compute and perform satisfactorily in numerical practice, even though their 

theoretical properties in our setting are not understood.  The average derivative estimator of 

Hristache, Juditsky, and Spokoiny (2001) is an example of such a method.  The penalized least 

squares method of Horowitz and Mammen (2007) is another.  A further possibility is to use such 

a method to obtain an initial estimate of θ  and then take several Newton or other steps toward the 

optimum of (2.5).  Any first-stage estimator, including ours, must undersmooth the series 

estimator.  Otherwise, the bias of the first-stage estimator will not be asymptotically negligible, 

and the second-stage estimator will not have the oracle property. 

Appendix:  Proofs of Theorems 

 Assumptions A1-A7 hold throughout this section. 

 a.  Theorem 1 

This section begins with lemmas that are used to prove Theorem 1.  For any fixed κ , 

κθ ∈Θ , and , define iX ∈A h ( )j jZ P Xκ κ= ,  
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1

1ˆ ( ) [( ) ]
n

i j h i
j
j i

G Y K Z Z
nh κ κ jθ θ

=
≠

′= −∑ , 

1 1( , ) ( | )F z Y Z zκθ θ′= =E  

and  

( ) ( , )i iF F Zκθ θ θ′= . 

Let ( , )g z θ  denote the density of 1Zκ θ′  evaluated at 1Z zκ θ′ = .  Define ( ) ( , )i ig g Zκθ θ θ′= , 

( ) ( ) ( )i i iG F gθ θ θ= , and { : }i hi X= ∈I A .   

 Lemma 1:  There is a function  and constants , , and 1n 0a > 0C > 1 0ε >  such that 

2

,

ˆsup | ( ) ( ) | exp( )i i
i

F F C nha
κθ

θ θ ε ε
∈ ∈Θ

⎡ ⎤
− > ≤ −⎢ ⎥

⎢ ⎥⎣ ⎦
P

I
 

for 10 ε ε< <  and 1( )n n ε> . 

Proof:  If suffices to show that there are positive constants , , and  such that  1,a 2a 1C 2C

(A1) 2
1 1 1 1

ˆsup | ( ) ( ) | exp( )G G C nha
κθ

θ θ ε ε
∈Θ

⎡ ⎤
− > ≤ −⎢ ⎥

⎢ ⎥⎣ ⎦
P  

and 

(A2) 2
1 1 2 2ˆsup | ( ) ( ) | exp( )g g C nha

κθ
θ θ ε ε

∈Θ

⎡ ⎤
− > ≤ −⎢ ⎥

⎢ ⎥⎣ ⎦
P . 

Only (A1) is proved.  The proof of (A2) is similar. 

 Divide κΘ  into hypercubes (or fragments of hypercubes) of edge-length θA .  Let 

(1) ( ),..., M
κ κΘ Θ  denote the ( )(2 / )dL C κ

θ θ θ= A  cubes thus created.  Let jκθ  be the point the center 

of ( )j
κΘ .  The maximum distance between jκθ  and any other point in ( )j

κΘ  is , 

and .  Define 

1/ 2( ) / 2r d θκ= A

exp{ ( )[lL d C= og( / ) (1/ 2) log ( )]}r dθ θκ κ+

1 1 1 1
1
1

1ˆ ( ) { [( ) ] | }
n

j h j j
j
j

G Y K Z Z Z
nh κ κ κ κZθ θ θ

=
≠

θ′ ′ ′= −∑E E = . 

Define 1 1 1 1
ˆ ˆ ˆ( ) ( ) ( )G G Gθ θ θΔ = − E  and  

1
ˆsup | ( ) | 2 / 3nP G

κθ
θ ε

∈Θ

⎡ ⎤
= Δ >⎢ ⎥

⎢ ⎥⎣ ⎦
P

 
. 

Then 
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( )
1

1

ˆsup | ( ) | 2 /3
j

L

n
j

P G
θ

κθ
θ ε

∈Θ=

⎡ ⎤
≤ Δ >⎢ ⎥

⎢ ⎥⎣ ⎦
∑P . 

Now for ( )j
κθ ∈Θ  

1 1 1 1
ˆ ˆ ˆ ˆ| ( ) | | ( ) | | ( ) ( ) |j jG G G Gθ θ θΔ ≤ Δ + Δ − Δ θ . 

A Taylor series approximation gives 

1
1 1

2

( ) (1ˆ ˆ( ) ( ) ( )
n

i j
j i h i

i

Z Z
G G Y K

nh h
κ κ )θ θ

θ θ ξ
=

′− −′− = ∑ , 

where iξ  is between 1( )iZ Zκ κ θ′−  and 1( iZ Zκ κ ) jθ′− .  But 

222
1 1

2 2

[( ) ( )]

4 ,

i j iZ Z Z Z

r

κ κ κ κ

κ

jθ θ θ

ζ

′− − ≤ − −

≤

θ

 

and | ( ) | KK Cξ′ ≤  for some constant KC < ∞ .  Therefore, 

1 1 2
2

2ˆ ˆ| ( ) ( ) | |
n

K
j i

i

C rG G Y
nh

κζθ θ
=

− ≤ |∑ . 

Moreover, 1 1 1 1
ˆ ˆ| ( ) ( ) |j FG G C r κθ θ− ≤E E ζ .  Therefore, 

1 1 2
2

2

2ˆ ˆ| ( ) ( ) | (| | | |

| | .

n
K

j i
i

K
i F

C rG G Y Y
nh

C r Y C r
nh

κ

κ
κ

ζθ θ

ζ ζ

=

Δ − Δ ≤ −

+ +

∑ E

E

)i

2

 

Choose 2 /r h κζ= .  Then 2/ 3 [( ) /( ) | | ] / 6K i FC r nh Y C rκ κε ζ− +E ζ ε>  for all sufficiently large 

.  Moreover, κ

(A3) 2
32

2

2 (| | | |) / 6 2exp( )
n

K
i i

i

C r Y Y a n
nh

κ
κ

ζ ε ζ ε
=

⎡ ⎤
− > ≤ −⎢ ⎥

⎢ ⎥⎣ ⎦
∑P E  

for some constant  by Bernstein’s inequality.  Also by Bernstein’s inequality, there is a 

constant  such that 

3 0a >

4 0a >

(A4) 2 2
1 4

ˆ(| ( ) | / 3) 2exp( )jG a nhθ ε εΔ > ≤ −P . 

Therefore, 
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2 2 2
4 3

2 2
1 1

2[ exp( ) exp( )]

exp( )

nP L a nh a n

C a nh

θ κε ζ ε

ε

≤ − + −

≤ −

 

for suitable constants  and .  The proof is completed by observing that under 

assumption A3, 

1 0C > 1 0a >

( )P xκ θ′  has a continuous density.  Therefore, by A3 and the definition of κΘ , 

 uniformly over 1 1 1
ˆ| ( ) ( ) | (G G oθ θ− =E 1) κθ ∈Θ , so 1 1 1

ˆ| ( ) ( ) | /G G 3θ θ ε− <E  uniformly over 

κθ ∈Θ  for all sufficiently large .  Q.E.D. n

 For κθ ∈Θ , define 

2 1

1
( ) ( ) ( ){ [ ( )] ( )}

n

h i h
i

S U n I X F m X Fθ θ−

=

= + ∈ −∑E E A 2
i i  

and arg min ( )hS
κκ θθ θ∈Θ=� . 

Lemma 2:   

lim sup | ( ) ( ) | 0n hn
S S

κ

κ
θ

θ θ
→∞ ∈Θ

− =  

almost surely. 

 Proof:  It follows from Lemma 1 and Theorem 1.3.4 of Serfling (1980, p. 10) that as 

. n→∞ ˆ ( ) ( )i iF Fθ θ→  almost surely uniformly over i∈I  and κθ ∈Θ .  The conclusion of the 

lemma follows from this result and Jennrich’s (1969) uniform strong law of large numbers 

(Jennrich 1969).  Q.E.D. 

Define 
2

0 0( ) ( ){ [ ( ) ( )]}hS I X Y F P X b Xκ κθ θ′= ∈ − +E A κ

κ

 

and ( ) ( ) ( )kb x m x P xκμ θ′= + − .  Then 

0 0arg min ( )S
κ

κ κ
θ

θ θ
∈Θ

= . 

 Lemma 3:  As n , →∞ 0| |κ κθ θ 0− →� . 

 Proof:  Standard arguments for kernel estimators show that as , n→∞

1
1( ) [ ( ) ... ( )]d

i i dF G X Xκθ → + +� A A i  for almost any iX  and some functions  and  that 

satisfy 

G 1,..., dA A

(A5)  1 1
1 1[ ( ) ... ( )] [ ( ) ... ( )]d d

d dG x x F m x m x+ + = + +A A

for almost every .  Taking the ratio of the derivatives of each side of (A5) with respect to x∈X

dx  and jx  for some  gives 1j >
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( ) ( )

( ) ( )

j j
j j

d d
d d

x m x

x m x

′ ′
=

′

A

A
 

and 

1 1

0 0

1 1( ) ( )
( ) ( )

j j
j j

d d
x dv m x dv

v m
′ ′=

′ ′∫ ∫A
A v

. 

Therefore,  

(A6) ( ) ( )j j
j jx m xγ′ ′=A  

for some constant 0γ >  and almost every jx .  Integrating (A6) yields 

( ) ( )j j
j jx m xγ η= +A , 

where η  is a constant.  Imposing the location and scale normalizations of Section 2 gives 1γ =  

and 0η = , so ( ) ( )j
j j

jx m x=A  for almost every jx .  A similar argument with  in place of 

 and  in place of  shows that 

2m

dm dm jm ( ) ( )d
d d

dx m x=A  for almost every dx .  The conclusion 

of the lemma follows from uniqueness of the Fourier representations of the ’s.  Q.E.D.  jm

Lemma 4:  ˆ 0nκ κθ θ− →�  almost surely. 

 Proof:  For each , let κ ( )d κ
κ ⊂ \N  be an open set containing κθ� .  Let κN  denote the 

complement of  in .  Define κN κΘ Tκ κ κ= Θ∩N .  Then ( )dT κ
κ ⊂ \  is compact.  Define 

min ( ) ( )h hT
S S

κ
κ

θ
η θ θ

∈
= − � . 

Let nA  be the event | ( ) ( ) | /n hS Sκ 2θ θ η− <  for all κθ ∈Θ .  Then  

ˆ ˆ( ) ( ) /n h n n nA S Sκ κ κ 2θ θ η⇒ < +  

and 

( ) ( ) / 2n n hA S Sκ κ κθ θ η⇒ < +� � . 

But ˆ( ) (n n nS Sκ κ κ κ )θ θ≤ �  by definition, so 

ˆ( ) ( ) / 2n h n nA S Sκ κ κθ θ η⇒ < +� . 

Therefore, 

ˆ ˆ( ) ( ) ( ) ( )n h n h h n hA S S S Sκ κ κ κθ θ η θ θ⇒ < + ⇒ −� � η<

κ

. 

So .  Since  is arbitrary, the result follows from Lemma 2 and Theorem 1.3.4 

of Serfling (1980, p. 10).  Q.E.D. 

ˆ
n nA κθ⇒ ∈N κN
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 Now define ( ) [ ( )] ( )i i h i iZ I X F m X P Xκ κ′= ∈A .  Define 1
1

ˆ n
i ii

Q n Z Zκ κ κ
−

=
′= ∑ .   

 Lemma 5:  
2 2ˆ ( /pQ Q O nκ κ κ− = ) . 

 Proof:  See Horowitz and Mammen (2004, Lemma 4).  Q.E.D. 

 Define ,min(n I cκ λ / 2)γ λ= ≥ , where  is the indicator function.  Let I 1( ,..., )nU U U ′= . 

 Lemma 6:  1 1/ 2 1/ 2 )ˆ / ( /n pQ Z U n O nκ κ
− ′ = n→∞γ κ  as . 

 Proof:  See Horowitz and Mammen (2004, Lemma 5).  Q.E.D. 

 Define 1 1
01

ˆ [ ( )] ( )n
n ii i iB Q n F m X Z b Xκ κ

− −
=

′= ∑ κ . 

 Lemma 7:  2(nB O κ −= )  with probability approaching 1 as . n→∞

 Proof:  See Horowitz and Mammen (2004, Lemma 6).  Q.E.D. 

 Proof of Theorem 1:  Part (a) follows by combining Lemmas 3 and 4.  To prove the 

remaining parts, observe that n̂κθ  satisfies the first-order condition ˆ( ) / 0n nS κ κθ θ∂ ∂ =  almost 

surely for all sufficiently large .  Define n ( )i iM m X=  and ˆ( )i i n iM P X Mκ κθ′Δ = −  

.  For 0 0
ˆ( ) ( ) ( )i n iP X b Xκ κ κ κθ θ′= − − κθ ∈Θ  define ˆ ˆ( ) ( ) [ ( ) ]i i iF F F P Xκθ θ ′Δ = − θ

0

.  Then a 

Taylor series expansion yields 

1 1
1 0 0 2

1 1

ˆ ˆ( )( ) ( ) ( )
n n

i i n n i i i n
i i

n Z U Q R n F M Z b X Rκ κ κ κ κ κθ θ− −

= =

′− + − + + =∑ ∑ , 

almost surely for all sufficiently large .  n 1nR  is defined by  

  

1
1

1

2

0

( ){ ( ) [ ( ) ( )] [(3/ 2) ( ) ( )

(1/ 2) ( ) ( ) (1/ 2) ( ) ( )( ) ]

[ ( ) ( ) (1/ 2) ( ) ( ) ( ) ( ) ( )]

n

n i h i i i i i i i
i

i i i i i i i

i i i i i i i

R n I X U F M U F M F M F M F M

F M F M M F M F M M M

F M F M F M F M F M F M b X bκ κ

−

=

′′ ′′ ′′ ′′ ′= ∈ − − − +

′′ ′′ ′′ ′′+ Δ + Δ Δ −

′′ ′ ′′ ′ ′′ ′′− +

∑ � �� �

� �� � � �

� �� � � � �

A

0

3

( )} ( ) ( )

,

i i

n

iX P X P X

R

κ κ ′

+

 

where  
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2 2

3
1

ˆ ˆ( ) ( ) ( ) ( )2 ˆ( ) 2[ ( )] 2 ( )

ˆ( ) ( ) ,

n
i i i

n i h i i i
i

i i

F F F FR I X Y F F
n

F F

iθ θ θ θ
θ θ

θ θ θ θ θ

θ θ
θ θ

=

⎧ ∂ Δ ∂Δ ∂ ∂⎪= ∈ − − + Δ⎨ θ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂⎪⎩

⎫∂ ∂Δ ⎪+ ⎬′∂ ∂ ⎪⎭

∑
� � �� �

� �

A
�

 

iM�  and iM��  are points between ˆ( )i nP Xκ κθ′  and iM , and θ�  is between n̂κθ  and 0κθ .  2nR  is 

defined by 

  

1
2

1

2
0 0

4

( ){ ( ) [ ( ) ( )]

[ ( ) ( ) (1/ 2) ( ) ( )] ( ) (1/ 2) ( ) ( ) ( ) } (

,

n

n i h i i i i i
i

i i i i i i i i

n

R n I X U F M U F M F M

0 )iF M F M F M F M b X F M F M b X b X

R

κ κ

−

=

′′ ′′ ′′= − ∈ + −

′′ ′ ′′ ′ ′′ ′′+ − −

+

∑ � �� �

� �� � � �

A

κ  

where 

0 0
4 0

1

ˆˆ ˆ( ) ( ) ( )2 ˆˆ ˆ( ) ( ) ( )
n

i i
n i h i i i n

i

F FR I X U F F
n

κ κ
κ κ

θ θθ θ
θ θ=

⎡ ⎤∂Δ ∂ ∂Δ
= ∈ + Δ + Δ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
∑ A i nF κθ

θ∂
. 

Lengthy arguments similar to those used to prove Lemma 1 show that  
2 2 2 3 2

3 0
ˆ(log ) /( ) [ ( ) ( )]n nR O n nh P x dxκ κ κκ θ θ −⎡ ⎤′= + −⎣ ⎦∫ 3κ+  

almost surely and  
2 2 4 2 3

4 [ (log ) /( ) ]n pR O n n hκ κ 3−= + .  

Now let either  
1ˆ( )hI X Q Z U nκ κξ − ′= ∈A /

κ +

 

or  

1 1 2
0 21

ˆ ( ) ( ) ( ) ( )n
i h i i i ni

Q n I X F M P X b X Rκ κξ − −
=

⎡ ⎤′= ∈⎢ ⎥⎣ ⎦∑ A . 

Note that 
2

1 2

1
( ) ( ) ( ) ( ) (

n

i h i i i i p
i

n I X U F M P X P X O nκ κ κ−

=

′′ ′∈ =∑ A / ) . 

Then 
2 21 1 1

1 1
ˆ ˆ ˆ ˆ[( ) ] ( )n n n n nQ R Q Q Q R Rκ κ κ κ 1γ ξ γ ξ− − −+ − = +  
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( )

2
1 1 1

2
1

2 2 22 2
0 03

2 2 22 3
03

ˆ{ [ ( ) ]}

(log ) ˆ ˆ( ) / [ ( ) ( )] sup | ( ) |

(log ) ˆ( ) / .

n n n n

p n

p p n n
x

p p

Trace R Q R R

O R

nO O n P x dx b x
nh

nO O n
nh

κ

κ κ κ κ κ κ

κ κ

γ ξ ξ

ξ

κξ ξ κ θ θ θ θ

κξ ξ κ κ θ θ κ

−

∈

−

′= +

′=

⎧ ⎫⎪ ⎪′ ′= + − + − +⎨ ⎬
⎪ ⎪⎩ ⎭

⎧ ⎫⎡ ⎤⎪ ⎪′= + + − +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫
X

2
0

 

Setting 1ˆ( )hI X Q Z U nκ κξ − ′= ∈A /  and applying Lemma 6 yields   

   
2 3 22 21 1 3 2 2

1 02 3
(log )ˆ ˆ ˆ[( ) ] / / 1/( )n p n

nQ R Q Z U n O n n
n n hκ κ κ κ κ
κ κκ θ θ− − κ

⎧ ⎫⎡ ⎤⎪ ⎪′+ − = + + − +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

. 

If , then applying Lemma 7, and 

using the result 

1 1 2
01

ˆ ( ) ( ) ( ) ( )n
i h i i i ni

Q n I X F M P X b X Rκ κξ − −
=

⎡ ⎤′= ∈⎢ ⎥⎣ ⎦∑ A 2κ +

21 2 4
2

ˆ [ (log ) /( )n pQ R O n n hκ κ− = 2 3 ]  yields  

   

2
1 1 1

1 0
1

5 6 42
04 6 3 3

ˆ ˆ[( ) ] ( ) ( ) ( )

(log ) ( log )ˆ .

n

n i h i i i
i

p n

Q R Q n I X F M Z b X R

n nO
n h n h

κ κ κ κ

κ κ
κ κθ θ

− − −

=

⎡ ⎤
′+ − ∈ +⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤
− +⎢ ⎥

⎢ ⎥⎣ ⎦

∑ A 2n =

i

κ +

 

It follows from these results that 

1 1
0

1

1 1 2

1

ˆ ˆ ( ) [ ( )] ( )

ˆ ( ) [ ( )] ( ) ( ) ,

n

n i h i i
i

n

i h i i i n
i

n Q I X F m X P X U

n Q I X F m X P X b X R

κ κ κ κ

κ κ

θ θ − −

=

− −

=

′− = ∈

′+ ∈

∑

∑

A

A

 

where 3/ 2 1/ 2( /n pR O n nκ −= + ) .  Part (d) of the theorem now follows from Lemma 5.  Part (b) 

follows by applying Lemmas 6 and 7 to Part (d).  Part (c) follows from Part (b) and Assumption 

A5(iii).  Q.E.D. 
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 b.  Theorem 2 

 This section begins with a lemma that is used to prove Theorem 2.  For any 

, set .  Define 2 1( ,..., ) [ 1,1]d dx x x −≡ ∈ −� 2
1 2( ) ( ) ... ( )d

dm x m x m x− = + +�

1
10

1 1
1 1 1 1

1

( )

2 ( ){ [ ( ) ( )]} [ ( ) ( )] ( )

n
n

i h i i i t i
i

S x

I X Y F m x m X F m x m X H x X− −
=

=

′− ∈ − + + −∑ � �� � � �A 1 1

1 1
i

 

and 

1 1 2
20 1 1

1
( ) 2 ( ) [ ( ) ( )] ( )

n

n i h i t
i

S x I X F m x m X H x X−
=

′= ∈ + −∑ �� �A . 

Let [ ( ), ( )] plim [ ( ), ( )]n i iF F F Fν ν ν ν→∞′ ′= � �� � , i iF F FΔ = −�� � , F F FΔ = − , i iF F F′′ ′Δ = −�� � , 

F F F′′ ′Δ = − , ,  and 1 1
1 1( , ) ( ) ( )i im x X m x m X−= +� �� � � 1 1

1 1( , ) ( ) ( )im x X m x m X−= +� �
i imΔ =  

.  By arguments like those used to prove Lemma 1,  

 and 

1 1( , ) ( , )im x X m x X−�� i
� [ ( )], [ ( )]i iF m x F m xΔ Δ� ��

1/ 2[( ) log ]o ns n−= 3 1/ 2[ ( )], [ ( )] [( ) log ]i iF m x F m x o ns n−′ ′Δ Δ =� �� almost surely uniformly over 

. hx∈A

 Lemma 8:  (a)  for each 1/ 2 1 1/ 2 1
1 10( ) ( ) ( ) ( ) (1)n nnt S x nt S x o− −= + p

1 [ ,1 ]x t t∈ − . 

In addition, the following hold uniformly over 1 [ ,1 ]x t t∈ − : 

 (b)  1 1 1 1
2 20( ) ( ) ( ) ( ) (1)n nnt S x nt S x o− −= + p

 Proof:  Only part (a) is proved.  The proof of part (b) is similar.  Write 

, where 
61/ 2 1 1/ 2 1 1

1 10 1
( ) ( ) ( ) ( ) ( )n n j
nt S x nt S x L x− −

=
= +∑ j

1
1

1/ 2 1 1 1 1

1

( )

2( ) ( ) [ ( , )] [ ( , )] ( ),
n

i h i i i t i
i

L x

nt I X F m x X F m x X H x X−

=

=

′∈ Δ −∑ � � �� �A

 

1
2

1/ 2 1 1 1 1

1

( )

2( ) ( ){ [ ( , )]} [ ( , )] ( ),
n

i h i i i i t i
i

L x

nt I X Y F m x X F m x X H x X−

=

=

′− ∈ − Δ∑ � � �� �A −
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1
3

1/ 2 1 1 1 1

1

( )

2( ) ( ) [ ( , )] [ ( , )] ( ),
n

i h i i i t i
i

L x

nt I X F m x X F m x X H x X−

=

=

′∈ Δ Δ −∑ � � �� �A

 

1
4

1/ 2 1 1 1 1

1

( )

2( ) ( ) [ ( , )] [ ( , )] ( ),
n

i h i i i i t i
i

L x

nt I X F m x X F m x X H x X−

=

=

′∈ Δ Δ −∑ � � � �� �A

 

1
5

1/ 2 1 1 1 1
1

1

( )

2( ) ( ){ [ ( , )]} [ ( , )] ( ),
n

i h i i i t i
i

L x

nt I X Y F m x X F m x X H x X−

=

=

′− ∈ − Δ∑ � �� �A −

 

and 
1

6

1/ 2 1 1 1 1

1

( )

2( ) ( ) [ ( , )] [ ( , )] ( ).
n

i h i i t i
i

L x

nt I X F m x X F m x X H x X−

=

=

′∈ Δ −∑ � �� �A

 

Standard properties of kernel estimators yield the results that  
1 1/ 2 1/ 2

1( ) [( ) ( ) log ] (1)L x O nt ns n o−= =  

and 
1 1/ 2 1/ 2 3 1/ 2 2

4 ( ) [( ) ( ) ( ) (log ) ] (1L x O nt ns ns n o− −= = )  

almost surely uniformly over 1 [ ,1 ]x t t∈ − .  In addition, it follows from Theorem 1(c) and the 

properties of kernel estimators that 
1 1/ 2 3 1/ 2

3( ) [( ) ( ) ]sup | ( ) ( ) |

(1).

p
x

p

L x O nt ns m x m x

o

−

∈
= −

=

�
X

 

1
5 ( )L x  and  can be written 1

6 ( )L x

1
5

1/ 2 1 1 1 1

1

( )

2( ) ( ){ [ ( , )]} [ ( , )] ( ) (1)
n

i h i i i i t i p
i

L x

nt I X Y F m x X F m x X m H x X o−

=

=

′′− ∈ − Δ −∑ � ��A +

 

and 
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1
6

1/ 2 1 2 1 1 1 1

1

( )

2( ) ( ) [ ( , )] [ ( , ) ( , )] ( ) (1).
n

i h i i i t i p
i

L x

nt I X F m x X m x X m x X H x X o−

=

=

′∈ −∑ � � ��A − +

 

1
5 ( ) (1)pL x o=  and  uniformly over 1

6 ( ) (1)pL x o= 1 [ ,1 ]x t t∈ −  now follow by the arguments 

used to prove Lemma 10 of Horowitz and Mammen (2004).   

Now consider .  For 1
2 ( )L x 1 [ ,1 ]x t t∈ − , a Taylor series expansion gives  

1 1 1
2 2 2 2( ) ( ) ( ) ( )a b cL x L x L x L x= + + 1

1
t i

1
t i

1
t i−

, 

where 

1 1/ 2 1 1 1
2

1
( ) 2( ) ( ){ [ ( , )]} [ ( , )] ( )

n

a i h i i i i
i

L x nt I X Y F m x X F m x X H x X−

=

′= − ∈ − Δ −∑ � � �A , 

1 1/ 2 1 1
2

1
( ) 2( ) ( ){ [ ( , )]} ( ) ( )

n

b i h i i i i i
i

L x nt I X Y F m x X F m m H x X−

=

′′= − ∈ − Δ Δ −∑ �� � �A , 

1 1/ 2 1 1
2

1
( ) 2( ) ( ) ( ) [ ( , )] ( )

n

c i h i i i i
i

L x nt I X F m F m x X m H x X−

=

′ ′= ∈ Δ Δ∑ � � �� �A  

and  is between  and .  Since  uniformly over im�� 1( , )im x X�� 1( , )im x X� 1/ 2( / )i pm O nκΔ =

1 [ ,1 ]x t t∈ − , we have  uniformly over 1 1/ 2 3 1/ 2 1/ 2
2 ( ) [( ) ( ) log ] (1)c p pL x O nt ns n n oκ− −= =

1 [ ,1 ]x t t∈ − .  Now consider .  Divide [  into  subintervals of length 1/2aL 0,1] 1/ 2(nJ O n= ) nJ .  

Denote the j ’th subinterval by jI  ( 1,..., nj J= ), and let 1
jx  denote the midpoint of jI .  Then for 

any 0ε > , 

1 1

1

1 1
2 2

[ ,1 ]

1 1
2 2 2

1 2

sup | ( ) | sup | ( ) |

| ( ) | / 2 sup | ( ) ( ) | / 2

.

j

j

a a
x t t x Ij

a j a a j
x Ij j

n n

L x L x

L x L x L x

P P

ε ε

ε ε

∈ − ∈

∈

⎧ ⎫⎡ ⎤⎡ ⎤ ⎪ ⎪> = >⎢ ⎥⎨ ⎬⎢ ⎥
⎢ ⎥⎣ ⎦ ⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫ ⎧
1

⎫⎡ ⎤⎪ ⎪ ⎪⎡ ⎤≤ > + − > ⎪
⎢ ⎥⎨ ⎬ ⎨⎣ ⎦ ⎬
⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩

≡ +

P P

P P

∪

∪ ∪
⎭
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We have  for each 1 1/ 2 3 3
2 ( ) [( ) ] ( )a jL x O nt nt s O n−= =E 3/ 7− 1,..., nj J= , and a straightforward 

though lengthy calculation shows that .  Therefore, it 

follows from Markov’s inequality that 

1 4 2
2[ ( )] [ /( )] (a jVar L x O t ns O n−= = 2 / 35 )

(n n
22 / 35

1 ( ) 1)O J n o−= = →∞ as n .  Now if 1
jx I∈ , P

      

{

}

1 1 1/ 2 1 1
2 2 1

1

1 1 1 1 1 1 1
1

( ) ( ) 2( ) [ ( , )] ( )

[ ( , )] ( ) [ ( , )] [ ( , )] ( ) ( ),

n

a a j i i i t i
i

i i i t i i i i t i j

L x L x nt U F m x X H x X

t U F m x X H x X F m x X F m x X H x X x x

−

=

−

′′− = Δ −

′ ′ ′ ′+ Δ − − Δ − −

∑ � � �� �

� � � � � � �� � � � � 1

where  and 1
1 [ ( , )]i i iU Y F m x X= − � 1x�  is between jx  and 1x .  But  

 and  

uniformly over 

1[ ( , )]i iF m x X′′Δ =� �

5 1/ 2 1/ 7[(log ) /( ) ] ( log )O n ns O n n−= 1 3 1/ 2[ ( , )] [(log ) /( ) ] ( log )i iF m x X O n ns O n n−′Δ = =� � 2 / 7

1 [ ,1 ]x t t∈ − .  Therefore, 

1 1 11/ 35
2 2

,
sup | ( ) ( ) | ( log )

j

a a j n
j x I

L x L x O J n n−

∈
− =  

almost surely.  It follows that .   2 (1)nP o=

 Now write  in the form , where 1
2 ( )bL x 1 1

2 2 1 2 2( ) ( ) ( )b b bL x L x L x= + 1

−

1
t i

=

1
2 1

1/ 2 1 1 1 1 1

1

( )

2( ) ( ){ [ ( , )] [ ( , )]} [ ( , )] ( ).

b

n

i h i i i i i t i
i

L x

nt I X F m x X F m X X F m x X H x X−

=

=

′− ∈ − Δ∑ � � � ��A

 

and 

1 1/ 2 1 1
2 2

1
( ) 2( ) ( ) [ ( , )] ( )

n

b i h i i i
i

L x nt I X U F m x X H x X−

=

′= − ∈ Δ −∑ � ��A . 

1/ 2 1/ 2 3 1/ 2
2 1 [( ) ( ) ] (1)bL O nt n ns oκ − −=  almost surely uniformly over 1 [ ,1 ]x t t∈ − .  Now let 

 be the version of  that is obtained by leaving observation i  out of the 

estimation of 

1( , )im x X� i 1( , )im x X�

θ  in the first stage.  Then  

(A7)  1 1/ 2 1 1 1
2 2

1
( ) 2( ) ( ) [ ( , )] ( ) (1)

n
i

b i h i i i t
i

L x nt I X U F m x X H x X o− −

=

′= − ∈ Δ − +∑ � ��A i p

uniformly over .  The first term on the right-hand side of (A7) has mean 0 and variance 

 for each 

x∈X

3 1[( ) ]O ns − 1 [ ,1 ]x t t∈ − , so .  In addition,  

uniformly over 

1
2 2 ( ) (1)bL x o= p

1/ 2 1
2 2( ) ( ) (1)b pnt L x o− =

1 [ ,1 ]x t t∈ − .  Q.E.D. 
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Proof of Theorem 2:  It follows from lemma 8 that 
1/ 2 1

1/ 2 1 1/ 2 1 10
1 1 1 1

20

( ) ( )ˆ( ) ( ) ( ) ( ) (1)
( ) ( )

n
p

n

nt S xnt m x nt m x o
nt S x

−

−= − +�  

for each .  Moreover,  1 (0,1)x ∈

1 1
1 1 10

1 1 1 1
20

( ) ( )ˆ ( ) ( ) (1)
( ) ( )

n
p

n

nt S xm x m x o
nt S x

−

−= − +�  

uniformly over 1 [ ,1 ]x t t∈ − .  Now proceed as in the proof of Theorem 2 of Horowitz and 

Mammen (2004).  Q.E.D. 

 

 

 28



REFERENCES 
 
Breiman, L. and Friedman, J.H. (1985).  Estimating optimal transformations for multiple 

regression and correlation.  Journal of the American Statistical Association, 80, 580-598. 
 
Buja, A., Hastie, T. and Tibshirani, R.J. (1989).  Linear smoothers and additive models.  Annals 

of Statistics,17, 453-510. 
 
Carrasco, M., J.-P. Florens, and E. Renault (2005).  Linear inverse problems in structural 

econometrics:  estimation based on spectral decomposition and regularization.  In Handbook of 
Econometrics, Vol. 6, E.E. Leamer and J.J. Heckman, eds, Amsterdam:  North-Holland, 
forthcoming.  

 
Chen, R., Härdle, W., Linton, O.B., and Severance-Lossin, E. (1996).  Estimation in additive 

nonparametric regression, in Proceedings of the COMPSTAT Conference Semmering, ed. by 
W. Härdle and M. Schimek, Heidelberg:  Phyisika Varlag. 

 
Fan, J. and Chen, J. (1999).  One-step local quasi-likelihood estimation.  Journal of the Royal 

Statistical Society B, 61, 927-943. 
 
Fan, J., Härdle, W., and Mammen, E. (1998).  Direct estimation of low-dimensional components 

in additive models.  Annals of Statistics, 26, 943-971. 
 
Hastie, T.J. and Tibshirani, R.J. (1990).  Generalized Additive Models, London:  Chapman & 

Hall. 
 
Horowitz, J.L. (2001).  Nonparametric estimation of a generalized additive model with an 

unknown link function, Econometrica, 69, 499-513. 
 
Horowitz, J.L. and Mammen, E. (2004).  Nonparametric estimation of an additive model with a 

link function, Annals of Statistics, 32, 2412-2443. 
 
Horowitz, J.L. and Mammen, E. (2007).  Rate-optimal estimation for a general class of 

nonparametric regression models with unknown link functions, Annals of Statistics, 
forthcoming.. 

 
Horowitz, J.L., Klemelä, J. and Mammen, E. (2006).  Optimal estimation in additive regression 

models, Bernoulli, 12, 271-298. 
 
Hristache, M., Juditsky, A., and Spokoiny, V. (2001).  Structure Adaptive Approach for Dimension 

Reduction, Annals of Statistics, 29, 1-32. 

Ichimura, H (1993).  Semiparametric least squares (SLS) and weighted SLS estimation of single-
index models.  Journal of Econometrics 58:  71-120. 

 
Jennrich, R.I. (1969).  Asymptotic properties of non-linear least squares estimators, Annals of 

Mathematical Statistics, 40, 633-643. 
 
Juditsky, A.B., O.V. Lepski, and A.B. Tsybakov (2007).  Nonparametric estimation of composite 

functions, working paper, University of Paris VI.   
 

 29



Linton, O.B  (2000).  Efficient estimation of generalized additive nonparametric regression 
models, Econometric Theory, 16, 502-523. 

 
Linton, O.B. and Härdle, W. (1996).  Estimating additive regression with known links. 

Biometrika, 83, 529-540. 
 
Linton, O.B. and Nielsen, J.P. (1995).  A kernel method of estimating structured nonparametric 

regression based on marginal integration, Biometrika, 82, 93-100. 
 
Mammen, E., Linton, O.B., and Nielsen, J.P. (1999).  The existence and asymptotic properties of 

backfitting projection algorithm under weak conditions, Annals of Statistics, 27, 1443-1490. 
 
Newey, W.K. (1994).  Kernel estimation of partial means and a general variance estimator, 

Econometric Theory, 10, 233-253. 
 
Newey, W.K. (1997).  Convergence rates and asymptotic normality for series estimators.  Journal 

of Econometrics, 79, 147-168. 
 
Opsomer, J.D. (2000).  Asymptotic properties of backfitting estimators.  Journal of Multivariate 

Analysis, 73, 166-179. 
 
Opsomer, J.D. and Ruppert, D. (1997).  Fitting a bivariate additive model by local polynomial 

regression.  Annals of Statistics, 25, 186-211. 
 
Serfling, R.J. (1980).  Approximation Theorems of Mathematical Statistics, New York:  Wiley. 
 
Stone, C.J. (1985).  Additive regression and other nonparametric models,  Annals of Statistics, 13, 

689-705. 
 
Stone, C.J. (1986).  The dimensionality reduction principle for generalized additive models.  

Annals of Statistics, 14, 590-606. 
 
Stone, C.J. (1994).  The use of polynomial splines and their tensor products in multivariate 

function estimation, Annals of Statistics, 2, 118-171 
 
Tjøstheim, D. and Auestad, B.H. (1994).  Nonparametric identification of nonlinear time series:  

projections,  Journal of the American Statistical Association, 89, 1398-1409. 
 

 30



 

 

m1

X

  
  

-.5 0 .5

-.5

0

.5

1

 
 

Figure 1:  Performance of Second-Stage Estimator.  Solid line is true , dashed line is average 
of 100 estimates of , small circles denote the estimate at the 25th percentile of the IMSE, 
squares denote the estimate at the 50th percentile of the IMSE, and diamonds denote the estimate 
at the 75th percentile of the IMSE.  
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Figure 2.  Performance of Infeasible Oracle Estimator.  Solid line is true , dashed line is 
average of 100 estimates of , small circles denote the estimate at the 25th percentile of the 
IMSE, squares denote the estimate at the 50th percentile of the IMSE, and diamonds denote the 
estimate at the 75th percentile of the IMSE.  
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