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M The impact of border costs in the large-space limit

on the circle

This appendix derives the limit behavior (47) and (48) of the impact of border costs in the
P

case of trade costs given by 7 (d) = (1 + 40’ R? sin® %) 2. The corresponding expression

for G.,, is given in (44). G.,, is independent of the sign of n, and is a decreasing function

of |n|. The quantity Z, used frequently in this appendix, is defined as Z = 1/v/1 + 4a?R?.
M.1 Nonnegativity of (—1)2 g.,,
Let us show that (—1)2 g.,, > 0. The Fourier coefficients ., are given by (45). All g,

with odd n vanish. Also, §.o > 0 because g. () is nonnegative for any 6. This means that

it is sufficient to show that
(@)

Z LGC,Qerl (81)

(2m +1)* — n2

m=0

is nonpositive for even nonzero n. For this purpose, we can use the identity

n

i 1 RS 1 B 1 1S L
— (2m+1)2—n2_2nm20 2m+1—m 2m+1+n _2nm7_22m+1_
- 2

m=0

58To be used with the version of the main paper from the same date. This is not the final version of the
online appendix. The online appendix will be expanded over time to include significantly more material.
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to rewrite the term of interest (81) as

io: LGC,Zerl - LGc,n

— (2m+ 1> —n2

If 2m + 1 < n, both the numerator and the denominator are negative. If 2m + 1 > n,
they are both positive. This means that all contributions to the infinite sum are positive.

We conclude that (—1)2 g,,, > 0.

M.2 A lower bound on —y@ (%)

Plugging the expressions (41) for yf;) into the general formula for Fourier series expansion
(37) gives
(P) (m 00 no_
n (5 1 (P) inT _ O 20 —1 (=1)2 Gen
y(()P) - y(()p) n;m Yin€ 2 = —79e0 + -1 evenzmmem T+ (o0—1)LC.y

We know from Subsection 5.4 that LGy = 1/0 and from Subsection M.1 that (—1)% Gen =
0. Equation (82) combined with 0 < LG,,, < 1/0 and (—1)% Gen > 0 implies

(
Yy ) g no_
B lyép) > o7 2 (0 e

n even

Taking into account the symmetry between the two countries, the fact that [ G, () dL (6) =
LG.o = 1/0, and the definition (24) of g., we see that

This leads to the following lower bound on —yip) (g)

w6
®) =
Yo

1 1
20 —1"
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M.3 An upper bound on —y@ (%)

Equation (82) may be used to derive also an upper bound on —y§P) (%). Using LG.,, > 0

and (—1)2 Gen > 0 leads to

(P) (=
y (%) . 20 — 1 n
- 1y(()P)2 S _gc,O + o — 1 E (_1)2 gc,n-

Omitting the first term on the right-hand side and simplifying the second term using (83)

gives
u” (3) J20-1 1

yép) - 20 o-—-1

(85)

M.4 A lower bound on —limp_, ng) (0) for § < %

This subsection contains the derivation of a lower bound on —limp_, yip) (0). To sim-
plify notation, the limit symbol limg .., will be omitted, but its presence is implicitly
understood.

M.4.1 The asymptotic form of G, for § < %

For arbitrary R, the expression (44) for G, is

n Z?
Gop = 21 i (132 )

oL (1=0), Py (5F)

In the large R limit the expression simplifies to

1 (9,
Gen =T (1—-9) (86)

This asymptotic form can be verified using the definition of the Pochhammer symbol

_T(0+n) X))
h=Tre SV Tae
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and the equation 8.766(1) on p. 971 of Gradshteyn and Ryzhik (2007), which states that
for |z > 1,

B =) = {\/;FI(‘IJ(V—_Z%-Z he T 2V+1F\/(%_FV(:E)— u)z_y_l} (1 e (%)) |

M.4.2 The Fourier series expansion of yip) (0)

(P)

Using the expressions (46) for y;,/ in the general formula for Fourier series expansion (38)

gives

() 11 T i LG ami

o) 201 wo—1~ 2m+1)
4 20 —1 Z ( 1)% i LG, 2m+1
7T2 o= 1 N even nonzero 1 + ( 1) LGC’” 0 2m + 1 - n2 '
This relation may be rewritten as
P o0
w1 a1
@ 2% 72 5 [E - em
y() m=0 ( m+ )
20—1 (1 4 & 1
9~ 2 QLGC 2m—+1
co—1\20 7 (2m + 1)
420 —1 5 LGeomsit
DRI e
o= 1 M even nonzero m=0 (2m + ]-) —n

oo

425 —1 (—1)2 (0 — 1) LG, LG omi1
tS— Z Z 2 2
™ o 1 1+ (O’ ) LGc,n o (2m —+ 1) —n

T, even nonzero

The first term on the right-hand side is just —g.o due to (45). The terms on the second

and third line add up to 22=1G,.(0), as implied by the Fourier series expansion formula,
o—19 Yy

(37) with the Fourier coefficients (45):

~ 1 4 ﬂ it LG02m+1
(0= ———= —1)FS . 87
g.(0) 2 (2m+1) 2 _p2 (87)

n even m:O
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The Fourier series expansion of yip) (0) can now be written as

(P) z oo
v, (0) . 20—1_ 420 —1 (—=1)2 (0 — 1) LG, LG ami1
T = ot G (O 5 ——— > - > PE—
i o—1 m™o—1 &h 1+(0—1)LG, “= (2m+1)"—n

nonzero

(88)
The rest of this subsection analyzes the properties of the terms on the right-hand side in

the large-space limit. The analysis then leads to an asymptotic lower bound on —y%P) 0).

M.4.3 Evaluating limg , 7. (0)

The expression (87) for §.(0) with the asymptotic form (86) of G, is

14 1 o 1 (0),
0G.(0)=—=-—— —1)2 mt+l
! ( ) 2 7T2 neven( ) n;) (2m + 1>2 - TLQ (1 - 6)2m+1
The identity
5 4(-1)° 3 1 (a1
n even m? m=0 (2m + 1>2 —n? (]' - 6)2m+1

- l_gr(l—_é)p 1,1_5;§;_1
5) 2 2

then leads to the following compact result for . (0):

L T(1-9) 1 3
agc(O)—QmF(ﬁ,l—&T 1). (89)

M.4.4 An alternative way of evaluating of limg ., . (0)

An alternative way of deriving (89) is to work directly with the definition (24) of g.(9),
which implies

9c(0) = 2pr, /7T G.(0)db.

jus

»

Substituting the expression (42) for G. (), we get

LT 6)ds

Ge (0) = o TT )0
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For the functional form (43) of T'(0) this is

1 [z (2% cos® & + sin? g)fﬁ do
_ Y3

9. (0) = -
o f07r (22 cos? g + sin? g) ° 40

The large-space limit R — oo corresponds to Z — 04, and in this limit

| Josin®8do | [T (1 —cos0)°db

o (0) = ——2— — .
5. (0) o [ sin™* £do ol —cos) "’ db

To find an explicit expression for the integrals, we can use the substitution ¢ = HCTOS@, df =

—ltr (1 —t) 72 dt,
-0
. (90)

The second equality® here follows from the definition of the incomplete beta function,®

B, (p,Q)Z/ (1 —6)T dt.
0

This special function should not be confused with the primary impact function (19). The

result (90) for g. (0) matches the expression (89) derived by summing up the infinite series.

M.4.5 Evaluating limg_, gc0
Now let us look at g.o. The expression for g.o in (45) with the asymptotic form (86) of

G.,n becomes
1 (6)2m+1

4 [o¢]
m? n;) (2m + 1)2 (1= )ape1

N —

O-g c,0 —
59Note that B; (5, 5 — 5) may be written in terms of the (complete) beta function as B (%, % — 5) or
1L 5) can be expressed in terms of

in terms of the gamma function as /7L (3 — &) /T'(1 — ). B (3.1
L 1—}—5;%;%) or as 2F(%,1—5;%;—1).

the Gauss hypergeometric function as v/2F (5, 5
60See, for example, equation eq. 8.391 on p. 910 of Gradshteyn and Ryzhik (2007).
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The sum can be expressed in terms of the generalized hypergeometric function 5F},

1 46 11,1 5. 5
090’0:§+ﬁm5ﬂ 575,1>§+§>1+§a

M.4.6 Positivity of the last term

Consider now the last term in (88):

420 —1 Z (—1)2 (0 = 1) LGen o LGegmis

=T 1+ (0 = 1) LGen “= (2m +1)% — n2’

T, even nonzero

With G.,, given by (86), the inner sum can be evaluated explicitly. For n even and

nonzero,

f: 1 (6)2m—|—1
—~ (2m+ 1)? —n2(1—90)
J 1
2(1=9)n(n?—-1)
((n_l) Py (1,1+n,1+5,1+5;3+n’1_§ §_§.1)
2 2 2 2
l-n 1446 140 3—n d3 4§ ))

2m—+1

1) JF (1
+("Jr)4‘°’(’2’2’2’2 22 3

: . . LG :
Let us now restrict attention to |n| even and nonzero. The expression Y ~_, ﬁ is

negative, and its absolute value is a decreasing function of |n|. Note also that %

is a positive decreasing function of |n|. The factor (—1)% is just an alternating sign, which
is negative for the lowest terms, i.e. for |n| = 2. These facts imply that the last term in

(88) is positive. Omitting this term in (88) leads to a lower bound on —ygp) (0).

(P)
Y 0 . 20 — 1.
- 1(P()) > gc,0+ 190(0)
Yo -
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M.4.7 The resulting lower bound on limpg_, yip) (0)

Substituting the expressions for §.o and g.(0) into the last inequality, we get

Loy () 4r(—o) F(11_5-§-—1)
PN N A
1 4 4 11 1 6. 633 63 4
S L 2 =TT IR I S D
2 w21—55‘4<2’2”2*'2"+2’2’2’ 2’2 2’)

The function on the right-hand side is concave, takes value of % at 0 = 0, and vanishes at
0= % It is therefore never smaller than % — 0. This leads to the result

(P) 1
y (0) _53-0
_J1 ) Z 2 ) (91)

Yo o

M.5 An alternative derivation of the bounds (84) and (85) in

o . 1
the large-space limit for 6 > 5
M.5.1 The large space limit of G, for § > %

Consider again the expression (44) for G, :

n PP <1+Z2)
1 (-1 5—1
o= = (—=1) 27

oL 1=0), Pry (B2)

with the goal of understanding the R — oo (i.e. Z — 0.) limit when § > L. The

2
definition®! of P* (z) is

w
z+1\2 =~ 1—2z
Plf‘(z):(z_l) QFI(—V,I/—i-l;l—,u; 5 ),

where oF) is the regularized hypergeometric function. In order to apply this relation

directly to the expression for G.,, we need to choose

T Tz 0 T2 17 -1

14722 1-z (1-2° z+1 (14 2)°
B 1-zZ) "~

61See http://functions.wolfram.com/07.09.02.0001.01
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The Fourier coefficients G,, become

g 1-27)2
a. -t (=" (1+Z)” o (1—6,6;1—77,;—( 4z)>
en (TL(l—&)n 1-7 2F1 (1—5,5;1;_(1—2)2>

4z

Since G, = G.,_,, we know that the expression on the right-hand side does not depend
on the sign of n. It is therefore sufficient to focus on non-positive n. In this case one
can use the ordinary hypergeometric function 5 F) instead of the regularized one. These
functions are related® by o F} (a,b, ¢, z) = oF} (a,b,¢,2) /T (¢), where T' () is the gamma

function.

+ 1-2)°
Gepn = L (=1)° (1 Z)n 1 2 I <1_5,5;1—n;—(4z))
” r(

S oL(1-9),\1-2Z 1—n) 2F1<1_6’6;1;_(12ZZ)2)

For convenience, define the rescaled Fourier mode number® w as

w=—-7n.

In terms of w, the Fourier coefficients of G, are

1 1+ 7 - (_1)% 76-1 2 I <1 —0,0; 1+ %; _(1;ZZ) )
Gc,% = 7 (—) X o) < 2\ (92)
cL\1-27 1=06)_oT(1+%)  zi-1,pm (1 —6,6;1; =42 )

The right-hand side has been split into three factors. Let us look at the Z — 04 limit
(holding w fixed) of each of them separately.
The first factor in (92) has a very simple limit. The definition of the exponential

1 /1+2\" 7 1
lim — (L) = e,

Z—0 oL

function implies

To evaluate the limit of the second factor in (92), recall the definition of the Pochham-

62See http://functions.wolfram.com/07.24.26.0003.01
63Not to be confused with the notation for different varieties of goods.
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mer symbol

Er(1—<5—§)

1= =—Fai -9

With the help of the gamma function identity® T' (1 — z) T (z) sin 7z = 7, this is

1 1
"7 T(1—=0)T(6+%)sinm (0 +2)

1 1 T
F(l—é)F((5+%) sin7d’

where the second equality follows from the periodicity properties of the sine function with

2 € Z. The desired limit is

-1 -Z Zéfl : Zéflr 5+ w .
lim (=1) — = sin li ( = 7) =T(1-9) MM‘S_I.
704 (1 — 5)_% r (1 + 7) T Z-s0, T (1 + 7) T

The second equality may be verified using Stirling’s formula.
To find the limit of the third factor in (92), we need two identities. The first one®
reads

lim oF, (a,a—b—i—l;c;l—E) = 2U (a,b, 2) .
c—00 z
64

The correct version of the second one® is

1 1 z
Ula,2a,z) = ﬁzi_aeiKa_% (g) :
The function U is the confluent hypergeometric function of the second kind, and K is
the modified Bessel function of the second kind. Combining the two identities, and using
K, (z) = K_, (x) yields

. C 1 1
lim 2F1 <a,1 —&;C;l— ;) = ﬁZQG

c— 00

[ IR

K1 (f)
274\ 9

The choice
w
e 1 — (5’ = 1 = ey 4
a c +Z z w

64See, for example, equation 8.334(3) on p. 896 of Gradshteyn and Ryzhik (2007).

65 Available at http://functions.wolfram.com/07.33.09.0001.01

66 Available at http://functions.wolfram.com/07.33.03.0007.01
Note that the graphical version of the formula is wrong on the website, but its Mathematica version is
correct.

90



in this formula leads to

. w (1-2) _ w dw—1 1
Zh—{& 2 F (1—5,5,1+§7—T = Zh_{& 2 F1 1_6’671+E’T_E
2
= ﬁe%JW%K&_% (2&)) .

For the denominator of the third factor in (92), asymptotic properties of hypergeometric

functions imply

: 5-1 Lo =2\ L T(20-1)
Jm 202k (1 0.0 =7 | =4 r2(s)

We have ,
y o F1 (1—(5,5;14-%;—(1222) ) B %ewa%Ké_% (2w)
Zg& S—1 4. a-22\ g1-5L(20—1)
Z 2F1 1—5,6,17—7 F2(5)

Applying these three results to (92) gives

1 2%711(6) sin 76
a_L\/%F(Q(S—l)F(l_(S)F((S) T

G. wé_%K(;_% (2w) .

NIE

Using the gamma function identities®”

T (1—8)T(5) ~1

and
22017 (§) 2

VAT (20 -1) T (6—13)

the Fourier coefficients simplify to

12
oLT (5-1)

2

Gey =

67See, for example, equations 8.334(3) and 8.335(1) on p. 896 of Gradshteyn and Ryzhik (2007).
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We conclude that for arbitrary w, in the large-space limit the Fourier coefficients become

S 2 e
3= orrp o M ey @D (93)

2

Notice that the properties of the modified Bessel function of the second kind imply
that the expression on the right-hand side approaches 1/ (¢L) when w — 0, as expected

from the general relation o LG, = 1.

M.5.2 The limit of y) (%) for § > §

The general formula for Fourier series expansion (38) together with the expressions (46)
P)

for yin implies
P) (x o
(B 1A S 0LGeam
IR P Sy
. Z 20 —1 i i LGeomy1
T, even nonzero 1 + (O- - 1) LGCJZ 7T2 m=0 (2m + 1)2 - n2 .

The R — oo limit, or equivalently the Z — 0, limit, of the first line on the right-hand
side vanishes.®® We have
(P) (= o0
. Y1 (5) . 20 — 1 4 LGC 2m+-1
—(c—1) lim —===—1 — | .
TV T 2 T NI 2y B 1 -

T, even nonzero m=0

In the Z — 0, limit the sums can be faithfully approximated by integrals. Symbolically,

- 1
Z f@2m+1) — o / f (W) dw', for an even function f,

m=0

Z %%/dw.

N even nonzero

68As Z — 04, the coefficients G a,n+1 approach 1/ (¢L), and the convergence is uniform in the appro-
priate sense. Also, Y °_, (2m + 1) = 72/8.
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More precisely, the integral over w’ should be taken in the sense of the Cauchy principal
value (denoted p.v.). This gives
7 (3)

. yl 2 .
—(c—1) lim =——2%* = —— lim /
R—c0 y(()P) 212 Rooo J 14 (0 — 1) LG, 1w

2 — 1 LG, o
c p.v./i’zdw’dw.
w

w/2 _

Using the algebraic relation

1 1 1 1 1

5 —

w2 — w? 2ww—w  2ww+w

and the explicit expression (93) for GG, ., we obtain
' Z

(P) (=
.Y (5)
Sl
s—1
1 1 20 — 1 1 W7 K (2[w])
= p ((5 — l) S ST ;p.v. —— dw'dw.
2 L+ TF((;,%) |w‘ 2 K&—% (2 |(,d|)
The integral over w’ can be evaluated explicitly,
s—L1
p.v. [ ij/ |w'|° "2 K(;f% (2 |w']) do’
1 1
o 6l 2(1—20),3(3—20)
=gl og (), T 1
7(1=20),3(1-20),5(3—-25),—7(1—20)
ey |w\5*%G4’2 2 1(1—-20),1(3-20), $(1—-90),—16
270l 6.4 :

where G is the Meijer G-function. The outer integral over w most likely does not lead

to a closed form expression, but it can easily be evaluated numerically.
W P2, @)

2 dw' is positive, and ﬁ |w\57% Ks_1(2|w]) € (0,1), one
~3

1
Since Zp.v. [

w—w
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can immediately write the following bound on y§P> (g) in the large-space limit.

1 WK 12w/
/ pv/\ s—1 (2] de'dwg

0L7T2F w—w'
" (3)
<0—1>1%1330 )
Yo
1 1 o Ky 1 (2]w])
2 —1 .
O'L7T2F(§ ? / pv/ w—uw' dads

These integrals can be evaluated using the formula,%

/OO lp.V G )dw'dw:ﬂ2f(0),

/
o W —w

which leads to

This is, of course, consistent with the bounds (84) and (85) derived previously in a more

general context.

M.6 Evaluating limp_,., y*) (0) for § > %

The logic used above to evaluate the large-space limit of yip) (%) will be useful for finding
)

the same limit of 3" (0) . The Fourier series expansion of g\ (0) is

(P)

vy (0) 1 2 — 1 4 & (-1) LGCQm+1
— 1 = _ _
(0 —1) yiP 2 n;ﬂ 1+ (0 —1)LG., 7 Z ¢ (2m+ 1)* -

Again, in the R — oo limit, the n = 0 term in the sum cancels against the 1/2.

e}

(P) - e
—(O'— 1) lim Y1 (O) — _ lim Z 20 1 i Z ( 1) LGC,2m+1.

oo y(P) oo L+ (0 = 1) LGepm® £~ (2m + 1)* — n?

N even nonzero

69See, for example, equation (8.4.15) of Kanwal (1997).
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Splitting the sum into positive and negative contributions,

T U o LAy
— (o — = lim —
7 RLI};O y((]P) Rﬁoon even nonzero 1 + (U - ]') LGCV” 7T2 =0 (2m + 1>2 - TL2
n/2 odd m=
o [ee]
20 — 1 4
— 1 E - E
RLI)IOlO N even nonzero 1 + (O- - 1> LGC7n 7T2 m=0
n/2 even B

The first sum on the right-hand side becomes

11 20 — 1 LG, o
——— i v, | —Z_duw'd
22W2R1—I>20/1+(0—1)LGC,ZPV /oﬂ—w? e

while the second sum is

11 25 — 1 LG, v
————1i v. | —Z—du'dw.
227T2R£20/1+(0—1)LGC7EPV/w’Q—wQ W

These two, of course, cancel, leading to the conclusion that

M.7 Conclusion

For § < %, the inequalities (91) and (85) together imply

(P) _q
lim 28 (O) g

R—co y§P) (g) — 20—1

(1—26).

This is the result presented in (47). For 6 > 3, (94) and (84) give

(P)
0
I%im y(lp) (0) = 0.
“y (3)

This is the result (48).
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(2m+1)* —n2’

(94)



