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Abstract

This study characterizes role assignments in maximizing a group’s winning probability

under the influence of the complementarity of group members’ efforts in a group contest, in

contrast to prize and multiple resource allocations. We use a CES effort aggregator function

to parameterize the complementarity. While the prize and resource allocation rules depend

on the complementarity, the assignment rule does not when multiple roles are assignable to

a single group member: All roles are assigned only to the most productive group member.

However, when only a single role per group member is assignable, the assignment rule de-

pends on the complementarity: Roles from greater to less importance are assigned to group

members in descending order of their productivity under strong complementarity; only the

most important role is assigned to the most productive group member and the others have

no effect under weak complementarity.
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1 Introduction

Group contests, in which individuals join a group to compete for economic rents called a prize, are

common in society, such as R&D races, lobbying, military conflicts, and pro-sport games. Usually,

group members play roles in their group and exert effort to win a contest. In a soccer team, each

team member plays the role of forward, midfielder, defender, or goalkeeper. In a military unit,

soldiers play the roles of battle, communication, transportation, scout, etc. In an R&D division,

division members play roles of searching for compounds, identifying substances, generating knock-

out mice, etc. In all these examples, there is also a complementarity among the group members’

efforts. A group manager who wants to maximize the group’s winning probability assigns these

roles to group members with consideration of their productivity and the complementarity among

their efforts. In addition to the role assignment, the group manager allocates resources such as

equipment and computers for their roles and promises rewards that are distributed to the group

members after they win the competition. While previous studies in the group contest literature

have focused on prize allocation, they did not focus on role assignment and resource allocation

issues, despite their significant effect on groups’ winning probability. In this study, we theoreti-

cally clarify the influence of effort complementarity on the group manager’s role assignment rule,

in contrast to their prize and resource allocation rules,1 using a stochastic group-contest model.

Regarding complementarity among group members’ efforts in assigned roles, each effort may

be essential in that an entire collaboration fails if a group member does not contribute. Tasuku

Honjo, who won the Nobel Prize in Physiology and Medicine in 2018, would not have identified

the function of the gene “PD-1” (which they had already discovered) if his group member had

not exerted additional effort to generate targeted knockout mice. The discovery and identification

of Honjo’s group paved the way for a breakthrough in cancer medicine through the inhibition of

1In organizational literature, Bendor and Page (2019), whose model is not a contest model, focus on resource

allocations and role assignments in a team.
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negative immune regulation, which led him to win the Nobel Prize.2 The efforts in the roles of

discovery and identification were essential for winning the Nobel Prize. We use a CES effort ag-

gregator function to introduce such complementarity among group members’ efforts in their roles,

following Kolmar and Rommeswinkel (2013). They showed the relationship between effort com-

plementarity and aggregated effort level by first using a CES production function as an aggregator

of group members’ efforts in group contest literature.

Regarding the assignment of roles in contests, there are three realistic options: (1) Each role

is tied up with each group member; (2) the group manager can assign multiple roles to a single

group member; and (3) the group manager can assign only a single role per group member. In (1),

each group member has a specialized, licensed, or qualified skill related to a role and the group

manager cannot change their roles. The group manager only allocates the prizes and resources.

In (2), role assignment is unlimited. In (3), each group member has a certain capability and

cannot take multiple roles. We considered these options during role assignments to cover realistic

variations.

By using the share function approach of Cornes and Hartley (2005), we concisely show the

existence and uniqueness of the Nash equilibrium group members’ effort profile. Based on this, we

characterize the rules of role assignments and prize and resource allocations as follows: First, for

non-assignable roles, high productivity gives a high share of prize and resource to the group mem-

ber with it under weak complementarity and a low share under strong complementarity. Multiple

allocatable resources promote this characteristic. Second, once multiple roles are assignable to a

single group member, all roles are assigned and full prizes and resources are allocated only to the

most productive group member in any effort complementarity, even in effort essentialness. This

property is different from that of the prize and resource allocation rules. Third, the assignment

rule depends on complementarity when only a single role per group member is assigned. The more

important roles are assigned to group members with higher productivity and the less important

2See “Facts” and “Biographical” of Tasuku Honjo on the website of Nobel Prize organization (2018).
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roles are assigned to those with less productivity under strong complementarity; only the most

important role is assigned to the group member with the highest productivity and the other roles

have no effect under weak complementarity. This means that the group manager prioritizes the

concentration of prizes and resources on the most productive group members by giving up less

important and substitutable roles. These results were attained by clarifying the rules of role as-

signment and prize and multiple resource allocations, contrary to previous studies that focused

only on prize allocation (Nitzan and Ueda 2014; Trevisan 2020; Kobayashi and Konishi 2021).

The remainder of this paper is organized as follows. Section 2 discusses related literature.

Section 3 presents the proposed model. Section 4 presents the allocation rules of the prize and

resources to maximize the group’s winning probability without role assignments. Section 5 demon-

strates the role assignment rules in two cases: A group manager can assign multiple roles, and

only a single role per group member. Section 6 concludes the study and discusses future research

possibilities. All proofs are provided in the Appendix.

2 Literature

Previous studies of group contests have analyzed the prize allocation issue. A prize allocation

rule comprises the weighted mean of a group member’s effort share and equal allocation among

group members (Nitzan 1991; Nitzan and Ueda 2011; Gupta 2021). These studies focused on the

influence of changing the weight before the contest on each group member’s motivation. Under

such a prize allocation rule, effort needs to be verifiable, owing to its dependence on each group

member’s effort share. This is applicable to cases such as group members’ pecuniary donations

to politicians in rent-seeking competitions among interest groups. However, it is not applicable

to cases in which group members’ efforts are unverifiable in contests, such as R&D races, pro-

sport games, or large litigation among firms, sports teams, or lawyer teams. In such cases, a

fixed-prize allocation rule is promised to each group member before the contest and allocated in

5



accordance with the promise after winning the contest. Nitzan and Ueda (2014) clarify whether the

expanding disparity in prize allocation to group members improves a group’s winning probability.

Trevisan (2020) shows a prize allocation rule to maximize a group’s probability of winning. In

these two studies, when the group members’ marginal effort cost is convex, allocating a fixed

prize to all group members improves the winning probability. When the marginal cost is concave,

allocating the entire prize to a single member improves the probability of winning. This condition

is identical to Olson’s (1965) group-size paradox. The convexity (concavity) of the marginal

effort cost is replaceable with the elasticity of the effort cost presented by Esteban and Ray

(2001). These studies used a linear sum of group members’ efforts as the group’s effort aggregator.

Kobayashi and Konishi (2021) extend this condition to the relative sizes between group members’

effort complementarity and elasticity of effort cost with a CES function, and show a conflict

of interest between the group manager and the group member. Kobayashi, Konishi, and Ueda

(2022) endogenize the prize depending on the amount of total effort in the contest and characterize

the prize allocation with a homothetic effort-aggregator function following Hartley’s (2017) cost

minimization approach. Our study aims to clarify the rules of role assignment and prize and

resource allocation, characterized by complementarity among group members’ efforts in a CES

function.

A CES function was used as an effort aggregator3 in the group contest literature (Kolmar

and Rommeswinkel 2013; Brookins, Lightle, and Ryvkin 2015; Choi, Chowdhury, and Kim 2016;

Cheikbossian and Fayat 2018; Konishi and Pan 2020; Crutzen, Flamand, and Sahuguet 2020;

Kobayashi and Konishi 2021). Kolmar and Rommeswinkel (2013) examined several variables

using the CES function (
∑n

k=1 ake
σ
k)

1
σ , where ek is a group member’s effort, σ is a complementarity

parameter, ak is a weight, and n is the population of the group. Other studies use a symmetric CES

function, such as ak = 1 or 1/n in Kolmar and Rommeswinkel’s (2013). Epstein and Mealem (2009)

3In addition to the linear sum and CES functions, a discrete aggregator function is also available as an effort

aggregator in group contests (Kobayashi 2019).
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used a similar form,
∑n

k=1 e
σ
k . Our study uses an asymmetric CES function, in which each group

member’s skill parameter is added to Kolmar and Rommeswinkel’s (2013). We show how the skill

works in the rules for prize and resource allocations and role assignment on every complementarity

level. In particular, our study demonstrates a role assignment rule that has not been discussed in

previous studies, with the CES function covering a wide range of complementarities.

3 The model

We consider a contest in which m ≥ 2 groups compete for a prize, focusing on a representative

group i = 1, 2, ...,m. The population of group i is denoted as ni ≥ 2. Group members choose

their effort levels eik, k = 1, 2, . . . , ni, which contribute to their group’s probability of winning

simultaneously and non-cooperatively. Group members’ efforts ei = (ei1, . . . , eini
) are aggregated

using the CES function Xi = [
∑ni

k=1 aik(sikeik)
σi ]

1
σi , where −∞ < σi ≤ 1 indicates the degree of

effort complementarity.4 sik > 0 is group member k’s skill level, which converts their efforts into

contributions to group i. aik ∈ [0, 1] is the weight of k’s contribution, which is viewed as either a

role assigned to k or inherently tied up with k within the group, and we assume
∑ni

k=1 aik = 1, so

that the higher the aik, the more important the role. The CES aggregator becomes a linear function

when σi = 1, a Cobb-Douglas function when σi = 0 in the limit, and a function with greater effort

complementarity among group members than the Cobb-Douglas function when σi < 0. 5 In the

latter two cases, each group member’s effort is essential, in that if a group member contributes no

effort, the aggregate effort Xi is zero.

4Kolmar and Rommeswinkel (2013) call this effort aggregator the impact function.
5This CES function converges to the Leontief function of min{si1ei1, . . . , sinieni} with perfect complementarity

as σi → −∞. We did not consider this form in this study because it required a different analysis. The perfect

complementarity of efforts creates multiple Nash equilibria with positive effort levels and coordination problem

among them, as Lee (2012) shows. However, our analysis is valid for Xi with sufficiently small σi < 0, where Xi is

close to the Leontief form.
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The winning probability of group i is described by the Tullock-form contest success function

Pi = Xi/X where X =
∑m

f=1 Xf (Tullock 1980). We assume Pi = 0 (or Pi = 1/m) when X = 0.

The prize comprises divisible private goods that are shared among members of the winning group,

and the value of the prize is normalized to 1. We denote the prize share of member k of group

i by vik ∈ [0, 1]. The share is allocated to each member such that
∑ni

k=1 vik = 1 in the winning

group after the contest. Members of the losing group obtain nothing. The effort cost function of

group member k has constant elasticity βi > 1, that is, eβi

ik/(βicik). cik = Πt−1
h=1c

i
hk when t ≥ 2 is

a composite of the limited resources allocated to group member k to reduce k’s effort cost, such

as IT equipment. When t = 1, only the prize is allocated; there is no allocatable resource for cost

reduction, and we assume that each group member has cik = 1 inherently. t is a common value

among all the groups.6 We assume cihk ∈ [0, 1] and
∑ni

k=1 c
i
hk = 1 for h = 1, . . . , t − 1. If at least

one type of cihk = 0, k’s marginal effort cost becomes infinite and they do not contribute to their

group. Thus, each limited resource cihk is essentially complementary for each group member. The

expected payoff for member k in group i is Uik = Pivik−eβi

ik/(βicik). We assume that there is a group

manager who wants to maximize their group’s winning probability Pi in each group. The group

manager allocates the prize vi = (vi1, . . . , vini
) and cost reduction resources cih = (cih1, . . . , c

i
hni

)

for all 1 ≤ h ≤ t− 1 (when t ≥ 2) in cik = Πt−1
h=1c

i
hk and assigns the role ai = (ai1, . . . , aini

) to each

group member. We consider three variations of allocation and assignment, which are explained in

the following sections. We assume that each group member k regards all variables except for eik

as given and that the above information is common knowledge among all players.

We consider a two-stage game played by group managers and group members. In Stage 1,

each group manager chooses the rules of prize and resource allocations (vi and cih for all h) and

role assignment (ai) simultaneously (we analyze these rules in the following sections). The group

manager allocates resources and assigns roles to group members according to their rules. In Stage

2, each group member determines their effort levels simultaneously, and a contest is conducted.

6Although each group may have a different t, we assume this for simplicity.
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Only one group becomes the winner in the contest. The manager in the winning group allocates

the prize to their group members following the prize-allocation rule. We employ a subgame perfect

Nash equilibrium.

In Stage 2, group member k determines their effort level eik ≥ 0 to maximize their expected

payoff Uik given the other group members’ efforts eil, l ̸= k, and the aggregate effort of the other

groups X − Xi. The first-order condition of any member k of group i, using Pi = Xi/X and

∂X/∂eik = ∂Xi/∂eik = [
∑ni

k=1 aik(sikeik)
σi ]

1
σi

−1
aiks

σi
ike

σi−1
ik = X1−σi

i aiks
σi
ike

σi−1
ik , is as follows:

∂Uik

∂eik
=

1

X2

(
∂Xi

∂eik
X −Xi

∂X

∂eik

)
vik −

eβi−1
ik

cik

=
1

X2
(X −Xi)X

1−σi
i aiks

σi
ike

σi−1
ik vik −

eβi−1
ik

cik

=
Pi(1− Pi)

Xσi
i

aiks
σi
ike

σi−1
ik vik −

eβi−1
ik

cik
= 0. (1)

We transpose eβi−1
ik /cik to the other side in (1), multiply both sides of this expression by cik/e

σi−1
ik ,

raise it to the power of σi/(βi − σi), and multiply it by aiks
σi
ik . We have(

Pi(1− Pi)

Xσi
i

) σi
βi−σi

(a
βi
σi
ik s

βi

ikcikvik)
σi

βi−σi = aik(sikeik)
σi . (2)

We add all the group members’ (2) to aggregate all first-order conditions in group i:(
Pi(1− Pi)

Xσi
i

) σi
βi−σi

ni∑
k=1

(a
βi
σi
ik s

βi

ikcikvik)
σi

βi−σi =

ni∑
k=1

aik(sikeik)
σi (= Xσi

i ).

We raise both sides of the expression to the power of 1/σi, multiply it by X
σi

βi−σi
i , and finally raise

it to the power of βi − σi. Using Xi = PiX, the aggregate effort Xi of any group i at the Nash

equilibrium in Stage 2 is described implicitly as follows:

P 1−βi

i (1− Pi)Ai = Xβi , (3)

where

Ai =

[
ni∑
k=1

(a
βi
σi
ik s

βi

ikcikvik)
σi

βi−σi

]βi−σi
σi

≥ 0. (4)
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Ai comprises the exogenous variables for group member k. All variables that group i’s manager

determined in Stage 1 are aggregated into Ai, so that those variables affect the Nash equilibrium in

Stage 2 via Ai. Ai is a CES function form7, which converges to a Cobb-Douglass form as σi → 08:

Ai → Πni
k=1(aiks

βi

ikcikvik)
aik . Group i’s winning probability Pi is the share function of group i. We

base the existence of a unique profile of aggregate effort (X1, . . . , Xm) in a Nash equilibrium in

Stage 2 of this group contest game on the share function approach of Cornes and Hartley (2005).

By totally differentiating (3) with regard to Pi and X and substituting Ai of (3) into it, we obtain,

recalling βi > 1,

dPi

dX
=

βiPi(1− Pi)

[(1− βi)(1− Pi)− Pi]X
< 0 (5)

when 0 < Pi < 1 and X > 0. Pi is then monotonically decreasing in X. In (3), limX→0 Pi(X) = 1

and limX→+∞ Pi(X) = 0 when Ai > 0 in addition to (5). Thus, limX→0

∑m
f=1 Pf (X) = m and

limX→+∞
∑m

f=1 Pf (X) = 0. There is then a unique X∗, where
∑m

f=1 Pf (X
∗) = 1, implying the

existence of a unique (X∗
1 , . . . , X

∗
m) with all X∗

i > 0 in a Nash equilibrium in Stage 2 from the

share function approach. Therefore, we obtain the following lemma immediately.

Lemma 1. There is a unique profile of aggregate effort (X∗
1 , . . . , X

∗
m) with all X∗

i > 0 in a Nash

equilibrium when Ai > 0 for any group i in Stage 2 of the group contest game.

From Lemma 1, we have the following lemma.

Lemma 2. For any group i, there is a unique effort profile e∗
i ̸= 0 that supports X∗

i > 0 in a

Nash equilibrium when Ai > 0 in Stage 2 of the group contest game.

All proofs are provided in the Appendix. Even when all the groups’ σi differ, Lemmas 1 and 2

hold because (1) holds. Lemma 1 does not guarantee the existence of a unique Nash equilibrium.

Let us consider the case of σi ≤ 0, including σi = 0 in the limit (a Cobb-Douglass function), in

7This is a form of the CES function in McFadden (1963). See also the section 3 in Blackorby and Russell (1989).

8(a
βi
σi

ik )
σi

βi−σi = a
βi

βi−σi

ik → aik as σi → 0 in Ai, and recall
∑ni

k=1 aik = 1. Therefore, Ai converges to a Cobb-

Douglass function.
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Xi. When the other group members’ efforts are eil = 0, any group member k’s best response is

eik = 0 because Xi = 0 for any eik > 0. Then, ei = 0 is also a Nash equilibrium effort profile, in

addition to e∗
i ̸= 0 supporting X∗

i > 0 in Lemmas 1 and 2. Hereafter, we focus only on the effort

profile e∗
i ̸= 0.9

We must also consider the subgame at Ai = 0 10 in Stage 2. Although (3) does not hold at

Ai = 0 when X > 0, it holds in Pi → 0 as Ai → 0. Instead, we consider the subgame in Pi → 0

as Ai → 0 in (3). Pi → 0 is Xi → 0 when X > 0. Then e∗
i → 0.

Before considering Stage 1, we characterize Pi with respect to Ai in (3). By totally differenti-

ating (3) with regard to Pi and Ai for a given X, we obtain, recalling βi > 1,

dPi

dAi

=
−Pi(1− Pi)

[(1− βi)(1− Pi)− Pi]Ai

> 0, (6)

when 0 < Pi < 1 and Ai > 0. For any Ai < Âi and X∗ with the profile in Lemma 1, Pi(X
∗;Ai) <

Pi(X
∗; Âi) from (6). From this, 1 =

∑
f ̸=i Pf (X

∗) + Pi(X
∗;Ai) <

∑
f ̸=i Pf (X

∗) + Pi(X
∗; Âi), and

1 =
∑

f ̸=i Pf (X
∗∗) + Pi(X

∗∗; Âi). Then, X∗ < X∗∗ from (5) and X∗∗ comprises the profile of

aggregate effort in the Nash equilibrium when Âi. Therefore, Pi(X
∗∗; Âi) = 1−

∑
f ̸=i Pf (X

∗∗) >

1 −
∑

f ̸=i Pf (X
∗) = Pi(X

∗;Ai). The last inequality implies that an increase in Ai determined in

Stage 1 increases the share Pi (group i’s winning probability) in the Nash equilibrium in Stage 2

for any group i.

We consider Stage 1. Any change in the other groups’ Al, l ̸= i, affects Pi via X −Xi in Stage

2 and does not affect Pi directly in Stage 1. Recall that all the variables that group i’s manager

determines in Stage 1 are aggregated into Ai without any variables that the other group managers

determine. From the characterization of Pi with respect to Ai, an increase in Ai increases Pi in

9If we allow βi = 1, we must consider the possibility of inactive groups: Pi = 0 when X ≥ Ai in (3). In addition,

we must consider the possibility of multiple Nash equilibria with Xi > 0 and the coexistence of active and inactive

group members in Stage 2. We assume βi > 1 to exclude these complexities. Our main focus is on the rules of

prize and resource allocations and role assignment.
10For example, when σi = 0 in the limit, one vik = 0 causes Ai = 0.
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the Nash equilibrium in Stage 2. Therefore, the best response of group i’s manager, who wants to

maximize their winning probability Pi, to the other group managers’ Al is to maximize their own

Ai. In other words, the maximization of Ai is the group manager’s dominant strategy in Stage 1.

We summarize this as a lemma.

Lemma 3. The strategy of group i’s manager in Stage 1 of the subgame perfect equilibrium is to

maximize Ai.

While the group managers’ equilibrium strategy is to maximize Ai, we have not yet shown

what rules of prize and resource allocations and role assignment maximize Pi. These rules de-

pend on the type of controllable variables of the group manager. We consider three cases about

group managers’ control variables. In particular, we show that role assignments have different

characteristics from prize and resource allocations.

4 Prize and cost reduction resource allocation

In this section, we consider a case in which the group manager can choose the rules of prize

allocation11 vi and cost-reduction resource allocation cih for all h in Stage 1 but cannot choose

a rule of role assignment ai. Each role is tied to each group member, and aik > 0 for any k.

In this case, the group manager has t ≥ 1 types of allocatable variables vik and ci1k, . . . , c
i
t−1k in

cik = Πt−1
h=1c

i
hk for each group member k. When t = 1, the group manager only has an allocatable

prize, and cik = 1. From Lemma 3 in the previous section, group i’s manager chooses the rules

11This prize allocation rule is a promise (contract) between the group manager and each group member and is

implemented after their win. We assume that each group manager cannot form a contract with each group member

depending on either each group member’s effort level or the aggregated effort level. If such a contract is feasible,

the group manager can achieve their optimal effort level by offering a forcing contract to group members, as shown

by Holmstrom (1982); that is, a group member does not obtain anything if the aggregate effort level does not

achieve the optimal level.
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to maximize (4) with vik, c
i
1k, . . . , c

i
t−1k for k = 1, . . . , ni such that

∑ni

k=1 vik = 1 and
∑ni

k=1 c
i
hk = 1

for h = 1, . . . , t− 1. The allocation rules in the following proposition then hold.

Proposition 1. In the group contest among m groups, when the group manager can allocate the

share of prize vik and cost reduction resources ci1k, . . . , c
i
t−1k for k = 1, . . . , ni such that

∑ni

k=1 vik = 1

and
∑ni

k=1 chk = 1 for h = 1, . . . , t− 1 to their group members, the allocation rule in the subgame

perfect equilibrium (equilibrium strategy) is as follows:

1. When (t+ 1)σi < βi,

vij = ci1j = . . . = cit−1j =
(a

βi
σi
ij s

βi

ij )
σi

βi−(t+1)σi∑ni

k=1(a
βi
σi
ik s

βi

ik)
σi

βi−(t+1)σi

(7)

for j = 1, . . . , ni. Then, the maximized Ai, described as A∗
i , is

A∗
i =

[
ni∑
k=1

(a
βi
σi
ik s

βi

ik)
σi

βi−(t+1)σi

]βi−(t+1)σi
σi

. (8)

As σi → 0, vij = ci1j = . . . = cit−1j → aij for j = 1, . . . , ni and

A∗
i → Πni

k=1(a
t+1
ik sβi

ik)
aik . (9)

Then, all group members exert efforts.

2. When (t + 1)σi ≥ βi, vij = ci1j = . . . = cit−1j = 1 is allocated to the group member j

with the highest a
βi
σi
ij s

βi

ij . When (t + 1)σi = βi and there are multiple js with the highest

a
βi
σi
ij s

βi

ij , any allocation such that vij = ci1j = . . . = citj ∈ [0, 1] for each j and
∑

j vij = 1

and
∑

j c
i
hj = 1 is also allowed. Nothing is allocated to the other group members, that is,

vil = ci1l = . . . = cit−1l = 0 for l = 1, . . . , j − 1, j + 1, . . . , ni. A∗
i = a

βi
σi
ij s

βi

ij . Only the group

member j then exerts effort.

Let us consider the indications of the allocation rules. In case 1 of Proposition 1, σi is small,

that is, the group members’ efforts have strong complementarity. The allocation rule (7) becomes
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the share of (a
βi
σi
ik s

βi

ik)
σi

βi−(t+1)σi = (aiks
σi
ik)

βi
βi−(t+1)σi , which depends on each group member’s skill

weighted by their own role and represents their productivity. (8) is their aggregated productivity,

which represents group i’s competitiveness in the group contest (recall that a large A∗
i gives a high

winning probability to group i) and is a CES function form.

sσi
ik depends on the complementarity σi in (7). As σi > 0 becomes weak and close to βi/(t+1),

the share of the most productive group member goes to 112 and (8) goes to A∗
i in Case 2 of

Proposition 1. A high skill level gives a high share to the group member possessing it. On the

other hand, as complementarity becomes strong (σi = 0 in the limit), each share in (7) goes to

each role aik, and each skill sik has no effect on the allocation rule. When complementarity is

stronger (σi < 0), each sσi
ik becomes the reciprocal in (7). A high skill level gives a low share to

the group member possessing it. This means that the group manager motivates those with low

skills more than those with high skills. σi = 0 is the threshold for whether each group member’s

skill increases or decreases each share. An important role (a high aik) provides a high share to

the group member possessing it under any σi. Naturally, group managers motivate members

possessing important roles. However, each role’s impact in (7) and (8) fades as σi < 0 decreases.

In fact, vij = ci1j = . . . = cit−1j →
(1/s

βi
ij )

1
t+1∑ni

k=1(1/s
βi
ik )

1
t+1

and A∗
i → 1[∑ni

k=1(1/s
βi
ik )

1
t+1

]t+1 as σi → −∞.13 The

number t of each group manager’s allocatable variable promotes these effects in (7): When σi > 0,

12By letting zk(σi) ≡ (a
βi
σi

ik sβi

ik)/(a
βi
σi
ij sβi

ij ), the allocation rule (7) is
1∑ni

k=1 zk(σi)
σi

βi−(t+1)σi

. All terms of zk(βi/(t+

1)) < 1 go to 0 and those of zk(βi/(t+1)) > 1 go to +∞ as σi → βi/(t+1) because the power σi/(βi− (t+1)σi) →

+∞. In the share of the group member with the highest a
βi
σi
ij sβi

ij at σi = βi/(t + 1), any zk(βi/(t + 1)) ≤ 1, so its

share goes to 1. The shares of other group members include zk(βi/(t + 1)) > 1. Thus, their shares go to 0. If

multiple group members have the highest productivity, their shares are equal.
13This convergent value of A∗

i is not always the maximized Ai when Xi = min{si1ei1, . . . , sinieini}. By substi-

tuting (7) into Ai led from only (1) of the group member with the lowest productivity, we have a larger Ai than this

A∗
i . Besides, we face the coordination problem of multiple Nash equilibria with positive effort levels as mentioned

in footnote 5. However, the allocation rule in Proposition 1 is also valid for sufficiently small σi < 0, where Xi is

close to the Leontief form.
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the increase in t increases σi/(βi − (t + 1)σi) and the disparity in allocations between the most

productive group member and the least productive group member; when σi < 0, it reduces them.

In Case 2 of Proposition 1, namely, weak complementarity, the group manager allocates the

full prize and cost reduction resource to the most productive group member.14 When (t+1)σi = β

and there are multiple most productive group members, any allocation such that vij = cihj per

group member and
∑

j vij = 1 and
∑

j c
i
hj = 1 is also allowed. For example, vi1 = cih1 = 1/3 and

vi2 = cih2 = 2/3 for all h = 1, . . . , t− 1 between the two most productive group members 1 and 2.

This allocation means that the work done alone by the most productive group member may be

shared among those group members and is identical to their solo work.

The threshold condition (t+1)σi < (≥)βi
15 depends on the number t of each group manager’s

allocatable variables, while only the case t = 1 has been analyzed in previous studies, and its

effect on the allocation has not been clarified.16 Consider an example: When only the prize is

allocatable (t = 1), allocating it to all group members is the group manager’s equilibrium strategy

if 2σi < βi; when the prize and a single kind of ci1k are allocatable (t = 2), allocating the full

prize and cost reduction resource to the most productive group member is the group manager’s

equilibrium strategy if 2σi is close to βi and 3σi ≥ βi. As the group manager has more allocatable

cost reduction resources, solo work by the most productive group member tends to occur in the

equilibrium.

14When the large elasticity of effort cost βi > t+1, Case 2 vanishes. If there are multiple most productive group

members and (t+ 1)σi > βi, the group manager allocates all to one of them.

15The condition (t+1)σi ≥ βi, which brings the strict convexity of A
σi

βi−σi
i , is identical to the condition of Lemma

2.2 in MacFadden (1963).
16See Esteban and Ray (2001); Epstein and Mealem (2009); Cheikbossian and Fayat (2018); Trevisan (2020);

Kobayashi and Konishi (2021). Technically, this threshold condition is the extension of the condition regarding the

elasticity of effort cost in Esteban and Ray (2001) and Trevisan (2020).
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5 Role assignment

We consider the case in which any role aik is assignable in addition to the prize vik and cost-

reduction resources cihk. Each role is not tied to a group member. We consider the assignment

rules of multiple roles to a single group member and a single role per group member.

5.1 Assignment of multiple roles to a single group member

We assume that the group manager can assign aik ∈ [0, 1] continuously to each group member k

such that
∑ni

k=1 aik = 1. They may assign all the roles to a single group member k such as aik = 1.

aik is inside the CES aggregator Xi, whereas vik and cihk are outside it. This difference gives

different powers to the variables in (4). The group manager maximizes (4) by using t+1 types of

controllable variables vik, c
i
1k, . . . , c

i
t−1k, aik for k = 1, . . . , ni such that

∑ni

k=1 vik = 1,
∑ni

k=1 c
i
hk = 1

for h = 1, . . . , t−1, and
∑ni

k=1 aik = 1. Recall that (4) converges to the Cobb-Douglass function as

σi → 0. It is impossible to maximize (4) with these t+1 kinds of variables simultaneously for the

Cobb-Douglass function when we have the corner solution because it includes the indeterminate

form 00. Instead, we consider the maximization of A∗
i derived in Proposition 1 with aik; that is,

the group manager determines the role assignment rule, expecting the allocation rule that they

determine.17 We also allow the limit value as the solution. The assignment rule is described as

follows:

Proposition 2. In Proposition 1, suppose that role aik ∈ [0, 1] is continuously assignable for any

k = 1, . . . , ni such that
∑ni

k=1 aik = 1. The rules of assignment and allocation in the subgame

perfect equilibrium (equilibrium strategy) are then as follows: aij = 1 is assigned, vij = ci1j =

. . . = cit−1j = 1 is allocated to group member j with the highest sβi

ij , and ail = 0 is assigned,

vil = ci1l = . . . = cit−1l = 0 is allocated to group members l = 1, . . . , j − 1, j + 1, . . . , ni. When

(t + 1)σi = βi and there are multiple js with the highest sβi

ij , equal aij among js is also allowed

17The group manager determines the assignment rule first and the allocation rule second in Stage 1.
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and vij = c1j = . . . = cit−1j ∈ [0, 1] such that
∑

j vij = 1 and
∑

j c
i
hj = 1 is allocated. Nothing

is assigned and allocated to the other group members. The maximized A∗
i , described as A∗∗

i , is

A∗∗
i = sβi

ij .

Once any role aik is assignable, for any effort complementarity, the group manager assigns all

roles and allocates the full prize and cost reduction resources to the group member j with the

highest skill sβi

j in the subgame perfect equilibrium, while, under the strong complementarity of

group members’ effort, the prize and cost reduction resources are allocated to all group members

when roles are not assignable, as shown in Proposition 1. Even if each group member’s effort is

essential (σi ≤ 0), the group manager does so in the equilibrium. What makes such an assignment

and allocation possible is that the group manager gets the other group members with lower

skills not to participate in the contest by assigning no role to them. Subsequently, the CES

aggregator becomes Xi = sijeij for any σi > −∞. The role assignment brings about more

powerful productivity by the group member with the highest skill than that aggregated among all

group members, even under the strong complementarity of their efforts.18

In Proposition 1, the group manager allocates the prize and cost reduction resources to all

group members even under slightly weak complementarity if t is small. Suppose t = 0. Does the

group manager assign roles to all the group members? Even when the group manager can assign

only the roles and cannot allocate any prize or any cost reduction resources, that is, each group

member maintains its inherent prize share and cost reduction resource (cij = 1), the result of

Proposition 2 holds. The group manager then maximizes (4) for each aik.

Corollary 1. When only the roles are assignable (t = 0), aij = 1 is assigned to the group member

j with the highest sβi

ij vij, and the other ail = 0 for l = 1, . . . , j − 1, j + 1, . . . , ni. A
∗∗
i = sβi

ij vij.

Even in this case, the group manager assigns all the roles to the group member with the

18However, the role assignment is invalid under perfect complementarity because all assignable roles disappear

in the Leontief function, as shown in the footnote 5.
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highest sβi

ij vij for any effort complementarity in the subgame perfect equilibrium. The other group

members then completely free-ride this group member and receive their initial shares of the prize.

For the group manager, their prize shares are unavailable and become wasteful. Despite such

waste, it is best for the group manager to concentrate all roles on the most productive group

member and not assign roles to the other group members. The results of Proposition 2 and

Corollary 1 show the robustness of the concentration of all roles on the group member, regardless

of the strength of effort complementarity and the number of types of group managers’ allocatable

variables.

5.2 Assignment of a single role per group member

Thus far, we have considered the case in which the group manager could assign multiple roles

to a single group member. In reality, a case exists in which each group member takes only a

single role. We consider this situation as follows: We assume that there are ni different and

discrete roles ai1, ai2, . . . , aini
, which are ai1 > ai2 > . . . > aini

> 0 and
∑ni

k=1 aik = 1, instead of

continuously assignable roles. ai1 is the most important role and aini
is the least important. The

group manager can assign one role aik per group member. How does the group manager then

assign roles to group members in a subgame perfect equilibrium? Proposition 1 is useful in this

case. We have the following proposition:

Proposition 3. In Proposition 1, suppose that roles ai1, ai2, . . . , aini
in A∗

i are ai1 > . . . > aini
> 0

and assignable by the group manager, and suppose that the group manager can assign only a single

role per group member. The role assignment rule in the subgame perfect equilibrium is then as

follows:

1. When (t+ 1)σi < βi or σi = 0 in the limit, the group manager assigns the roles from ai1 to

aini
to the group members in descending order of their skill level sβi

ik for k = 1, . . . , ni.
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2. When (t + 1)σi ≥ βi, the group manager assigns to the highest role ai1 the group member j

with the highest sβi

j and assigns any other roles to the other group members.

In Case 1 of Proposition 3, the roles ai1, . . . , aini
are assigned to the group members in de-

scending order of their skills in equilibrium. This assignment rule has the properties of both the

allocation rule in Case 1 of Proposition 1 and the assignment rule in Proposition 2. While the

group manager assigns a role to each group member owing to strong complementarity, the group

manager wants to make the roles of the group members with low productivity as small as possi-

ble. However, in Case 2 of Proposition 3, the group manager assigns the most important role to

the most productive group member and the other roles to any group member in the equilibrium

because cost reduction resources and prizes are not allocated to the other group members owing

to weak complementarity. This means that the group manager prioritizes the concentration of

prizes and resources on the most productive group member by abandoning less important and

substitutable roles. The results of Proposition 3 come from the allocation rule depending not on

the assigned roles but on the condition of (t+ 1)σi < (≥)βi as shown in Proposition 1.

6 Concluding remarks

We characterizes role assignments in maximizing a group’s winning probability under the influence

of the complementarity of group members’ efforts in a group contest, comparing it with prize and

resource allocations. Previous studies in the group contest literature have not analyzed this issue

despite the significant effect of role assignment on groups’ winning probability. We clarified the

different properties of the role assignment rules from those of the prize and multiple resource

allocation rules. When the group manager can assign roles to their group members without

limitations, the assignment rule does not depend on complementarity: All roles are assigned

to the most productive group member. When the group manager needs to assign a single role

per group member, the assignment rule depends on complementarity: Roles from more to less
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importance are assigned to group members in descending order of their productivity under strong

complementarity; only the most important role is assigned to the most productive group member

and the others have no effect under weak complementarity.

If a group needs to conduct large-scale work in a contest, it is natural that its roles be shared

among all group members. Nevertheless, the rule under weak complementarity in the latter assign-

ment case appears strange. This is due to the fact that the prize and resources can be concentrated

on a single group member. We need to consider the allocation rules including consideration of

some types of capacity, which is a topic for future research.

Appendix: Proofs

Proof of Lemma 2. In (1), ∂Xi/∂eik > 0 and eβi−1
ik /cik = 0 when eik = 0 and eil > 0, l ̸= k.

0 ≤ ∂Xi/∂eik < +∞ and eβi−1
ik /cik = +∞ when eik = +∞ and eil > 0. The first-order condition

(1) for any k is continuous with regard to eik. Uik satisfies the second-order condition because Xi

is a CES function. Therefore, there is a unique and continuous best-response function, and there

is at least one fixed point e∗
i ̸= 0 for a given X −Xi.

Suppose that there are different e∗ik > 0 and êik > 0 that support X∗
i > 0 in (X∗

1 , . . . , X
∗
m)

in a Nash equilibrium. By Lemma 1, such X∗
i is unique. e∗ik and êik must satisfy the first-order

condition (1). Noting that Pi(1 − Pi)/X
σi
i in (1) is common for e∗ik and êik, (1) does not have

multiple solutions. This result contradicts the existence of e∗ik and êik. Therefore, e
∗
i ̸= 0 is unique.

■

Proof of Proposition 1.

We find the solution to maximize (4) by comparing the interior solution with the corner

solution, noting that (4) is a CES function form. First we find the interior solution. Let cihk = yhk

for h = 1, . . . , t − 1, vik = ytk, and σi

βi−σi
= ρ in (4) for simplicity of notation. Then Ai =
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[∑ni

k=1

(
a

βi
σi
ik s

βi

ikΠ
t
h=1yhk

)ρ] 1
ρ

. The Lagrange function is defined as

L =

[
ni∑
k=1

(
a

βi
σi
ik s

βi

ikΠ
t
h=1yhk

)ρ
] 1

ρ

+
t∑

h=1

λh

[
1−

ni∑
k=1

yhk

]
.

The first-order conditions are

∂L

∂ysj
=

[
ni∑
k=1

(
a

βi
σi
ik s

βi

ikΠ
t
h=1yhk

)ρ
] 1

ρ
−1

(a
βi
σi
ij s

βi

ijΠh ̸=syhj)
ρyρ−1

sj − λs = 0

∂L

∂λs

= 1−
ni∑
k=1

ysk = 0

for s = 1, . . . , t and j = 1, . . . , ni. From any ∂L/∂ysj and ∂L/∂ysl, we have

(a
βi
σi
ij s

βi

ijΠh ̸=syhj)
ρyρ−1

sj

(a
βi
σi
il s

βi

il Πh ̸=syhl)ρy
ρ−1
sl

= 1

⇐⇒ ysj
ysl

=

a
βi
σi
ij s

βi

ijΠh ̸=syhj

a
βi
σi
il s

βi

il Πh ̸=syhl


ρ

1−ρ

=

a
βi
σi
ij s

βi

ij (Πh ̸=s,uyhj)yuj

a
βi
σi
il s

βi

il (Πh ̸=s,uyhl)yul


ρ

1−ρ

.

By choosing any u among s = 1, . . . , t and substituting yuj/yul from ∂L/∂yuj and ∂L/∂yul into

ysj/ysl, we have

ysj
ysl

=

a
βi
σi
ij s

βi

ijΠh ̸=s,uyhj

a
βi
σi
il s

βi

il Πh ̸=s,uyhl


ρ

1−ρ−ρ

.

By repeating these choices and substitutions for all 1, . . . , t, we have

ysj
ysl

=

a
βi
σi
ij s

βi

ij

a
βi
σi
il s

βi

il


ρ

1−tρ

.

This expression is

ysl =

a
βi
σi
il s

βi

il

a
βi
σi
ij s

βi

ij


ρ

1−tρ

ysj.

21



By substituting ysl for all l = 1, . . . , ni into ∂L/∂λs and solving for ysj, we obtain the allocation

rule of (7):

∑
k ̸=j

a
βi
σi
ik s

βi

ik

a
βi
σi
ij s

βi

ij


ρ

1−tρ

ysj + ysj = 1

ysj

(a
βi
σi
ij s

βi

ij )
ρ

1−tρ

ni∑
k=1

(a
βi
σi
ik s

βi

ik)
ρ

1−tρ = 1

ysj =
(a

βi
σi
ij s

βi

ij )
ρ

1−tρ∑ni

k=1(a
βi
σi
ik s

βi

ik)
ρ

1−tρ

=
(a

βi
σi
ij s

βi

ij )
σi

βi−(t+1)σi∑ni

k=1(a
βi
σi
ik s

βi

ik)
σi

βi−(t+1)σi

for s = 1, . . . , t and j = 1, . . . , ni.

Furthermore, by substituting all ysj into Ai, we obtain:

Ai =

 ni∑
k=1


 (a

βi
σi
ik s

βi

ik)
ρ

1−tρ∑ni

k=1(a
βi
σi
ik s

βi

ik)
ρ

1−tρ

t

a
βi
σi
ik s

βi

ik


ρ

1
ρ

=
1(∑ni

k=1(a
βi
σi
ik s

βi

ik)
ρ

1−tρ

)t

[
ni∑
k=1

(
(a

βi
σi
ik s

βi

ik)
tρ

1−tρa
βi
σi
ik s

βi

ik

)ρ
] 1

ρ

=
1(∑ni

k=1(a
βi
σi
ik s

βi

ik)
ρ

1−tρ

)t

[
ni∑
k=1

(a
βi
σi
ik s

βi

ik)
ρ

1−tρ

] 1
ρ

=

[
ni∑
k=1

(a
βi
σi
ik s

βi

ik)
ρ

1−tρ

] 1−tρ
ρ

=

[
ni∑
k=1

(a
βi
σi
ik s

βi

ik)
σi

βi−(t+1)σi

]βi−(t+1)σi
σi

. (10)

Second, noting that (4) is a CES function form, the corner solution is ci1j = . . . = cit−1j = vij = 1

for j with the highest a
βi
σi
ij s

βi

ij and the other ci1l = . . . = cit−1l = vil = 0 for l = 1, . . . , j − 1, j +

1, . . . , ni. When σi > 0, the corner solution gives Ai = a
βi
σi
ij s

βi

ij . Then, (10) becomes

Ai =
a

βi
σi
ij s

βi

ij

a
βi
σi
ij s

βi

ij

[
ni∑
k=1

(a
βi
σi
ik s

βi

ik)
σi

βi−(t+1)σi

]βi−(t+1)σi
σi

= a
βi
σi
ij s

βi

ij

 ni∑
k=1

a
βi
σi
ik s

βi

ik

a
βi
σi
ij s

βi

ij


σi

βi−(t+1)σi


βi−(t+1)σi

σi

. (11)

The jth term in the summation in (11) is 1. When βi − (t + 1)σi > 0, the brackets in (11) are

greater than 1 and the interior solution yields a larger Ai than the corner solution. The corner
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solution gives limσi→0 Ai = Πni
k=1(aiks

βi

ikcikvik)
aik = (aijs

βi

ij )
aijΠk ̸=j(aiks

βi

ik0)
aik = 0 in (4) and when

σi < 0 it gives

Ai =
1[∑ni

k=1 a
βi

βi−σi
ik /(sβi

ikcikvik)
−σi

βi−σi

]βi−σi
−σi

=
1[

a
βi

βi−σi
ij /(sβi

ij )
−σi

βi−σi +
∑

k ̸=j a
βi

βi−σi
ik /(sβi

ik0)
−σi

βi−σi

]βi−σi
−σi

= 0.

When σi ≤ 0, the interior solution yields a larger Ai than does the corner solution. Therefore, we

obtain (7) and (8) in Case 1 in the proposition.

When βi − (t+ 1)σi < 0 (then σi > 0) in (11), the inside of the brackets is greater than 1 and

the brackets are the denominator, so the brackets are less than 1. The corner solution then yields

a larger Ai than the interior solution.

When βi − (t + 1)σi = 0 (then σi > 0), that is, σi/(βi − (t + 1)σi) = +∞, in (11), the inside

of brackets in (11) becomes 1 because all terms without the jth are 0 from (a
βi
σi
ik s

βi

ik)/(a
βi
σi
ij s

βi

ij ) < 1

for any k ̸= j. The brackets become 1 and the interior solution yields the same Ai as the corner

solution. When βi− (t+1)σi = 0 and there are multiple group members j with the highest a
βi
σi
ij s

βi

ij

in (4), any allocation such that ci1j = . . . = cit−1j = vij ∈ [0, 1] for each j and
∑

j c
i
hj =

∑
j vij = 1

also becomes a solution because

Ai =

[∑
j

(
a

βi
σi
ij s

βi

ij (Π
t−1
h=1c

i
hj)vij

) σi
βi−σi

]βi−σi
σi

= a
βi
σi
ij s

βi

ij

[∑
j

v
tσi

βi−σi
ij

]βi−σi
σi

= a
βi
σi
ij s

βi

ij

where tσi/(βi − σi) = 1 from βi = (t+ 1)σi. Therefore, Case 2 in the proposition is obtained.

Finally, we calculate (7) and (8) at σi = 0 in the limit. In (7), we immediately have vij = ci1j =

. . . = cit−1j →
aij∑ni

k=1 aik
= aij as σi → 0. In (8), logA∗

i =
1

σi/(βi−(t+1)σi)
log
∑ni

k=1(a
βi
σi
ik s

βi

ik)
σi

βi−(t+1)σi .

lim
σi→0

logA∗
i = lim

σi→0

1
σi

βi−(t+1)σi

log

ni∑
k=1

a
βi

βi−(t+1)σi
ik s

βiσi
βi−(t+1)σi
ik

= lim
σi→0

1
βi

(βi−(t+1)σi)2

∑ni

k=1

[
da

βi
βi−(t+1)σi
ik

dσi
s

βiσi
βi−(t+1)σi
ik + a

βi
βi−(t+1)σi
ik

ds

βiσi
βi−(t+1)σi
ik

dσi

]
∑ni

k=1 a
βi

βi−(t+1)σi
ik s

βiσi
βi−(t+1)σi
ik

.

Let Z = a
βi

βi−(t+1)σi
ik and T = s

βiσi
βi−(t+1)σi
ik . Then, logZ = βi

βi−(t+1)σi
log aik⇒ Z ′/Z = βi(t+1)

(βi−(t+1)σi)2
log aik⇔

Z ′ = a
βi

βi−(t+1)σi
ik

βi(t+1)
(βi−(t+1)σi)2

log aik, and log T = βiσi

βi−(t+1)σi
log sik ⇒ T ′/T =

β2
i

(βi−(t+1)σi)2
log sik
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⇔ T ′ = s
βiσi

βi−(t+1)σi
ik

β2
i

(βi−(t+1)σi)2
log sik. Substituting these into the above limit expression, we obtain:

lim
σi→0

1
βi

(βi−(t+1)σi)2∑ni

k=1

[
a

βi
βi−(t+1)σi
ik

βi(t+1)
(βi−(t+1)σi)2

(log aik)s
βiσi

βi−(t+1)σi
ik + a

βi
βi−(t+1)σi
ik s

βiσi
βi−(t+1)σi
ik

β2
i

(βi−(t+1)σi)2
log sik

]
∑ni

k=1 a
βi

βi−(t+1)σi
ik s

βiσi
βi−(t+1)σi
ik

=
1
1
βi

∑ni

k=1

[
aik

t+1
βi

log aik + aik log sik

]
∑ni

k=1 aik

=

ni∑
k=1

[
log a

(t+1)aik
ik sβiaik

ik

]
= logΠni

k=1(a
t+1
ik sβi

ik)
aik .

Therefore, we obtain (9) in Case 1 of the proposition. ■

Proof of Proposition 2.

Let aik < 1 for any k, which is a component of any interior point ai in each A∗
i in Proposition

1, and let sij = max{si1, . . . , sini
}. When σi

βi−(t+1)σi
> 0 in (8), σi > 0 and βi− (t+1)σi > 0. Then

βi

βi−(t+1)σi
> 1. Case 1 in Proposition 1 applies to this case. Noting that sβi

ik/s
βi

ij ≤ 1 and aik < 1,

(8) is

A∗
i =

sβi

ij

sβi

ij

[
ni∑
k=1

(a
βi
σi
ik s

βi

ik)
σi

βi−(t+1)σi

]βi−(t+1)σi
σi

= sβi

ij

 ni∑
k=1

(
a

βi
σi
ik

sβi

ik

sβi

ij

) σi
βi−(t+1)σi


βi−(t+1)σi

σi

≤ sβi

ij

[
ni∑
k=1

a
βi

βi−(t+1)σi
ik

]βi−(t+1)σi
σi

< ββi

ij .

Therefore, we obtain a corner solution of aij = 1 with the highest sβi

ij and the other ail = 0 for

l = 1, . . . , j − 1, j + 1, . . . , ni.

When σi

βi−(t+1)σi
< 0 and σi > 0, βi − (t + 1)σi < 0. Case 2 of Proposition 1 is applicable

to this case. The solution for maximizing A∗
i = a

βi
σi
ij s

βi

ij is identical to the corner solution when

σi

βi−(t+1)σi
> 0.

When σi

βi−(t+1)σi
< 0 and σi < 0, βi − (t+ 1)σi > 0. Then βi

βi−(t+1)σi
< 1. Case 1 of Proposition
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1 is applicable to this case. From (8) and sij ≥ sik, we have

A∗
i =

1[∑ni

k=1(aik/s
−σi
ik )

βi
βi−(t+1)σi

]βi−(t+1)σi
−σi

≤ 1[∑ni

k=1(aik/s
−σi
ij )

βi
βi−(t+1)σi

]βi−(t+1)σi
−σi

=
sβi

ij[∑ni

k=1 a
βi

βi−(t+1)σi
ik

]βi−(t+1)σi
−σi

< sβi

ij .

The last inequality comes from the brackets larger than 1 because βi

βi−(t+1)σi
< 1. Therefore, we

have the corner solution.

When σi

βi−(t+1)σi
= 0, σi = 0 and βi − (t+ 1)σi = βi > 0. Case 1 of Proposition 1 is applicable

to this case. The corner solution gives an indeterminate form for (9), 00. Instead, suppose that

we have the limit value as the corner solution of maximization: aij → 1 with the highest sβi

ij

and the other ail → 0 for l = 1, . . . , j − 1, j + 1, . . . , ni. Then, for every factor of l ̸= j in (9),

limail→0(a
t+1
il sβi

il )
ail = 1 because

lim
ail→0

log(at+1
il sβi

il )
ail = lim

ail→0

(t+ 1) log ail + βi log sil
1/ail

= lim
ail→0

(t+ 1)/ail
−1/a2il

= lim
ail→0

[−(t+ 1)ail] = 0.

Then A∗
i → sβi

ij (= A∗∗
i ). By contrast, for any interior point with 0 < aik < 1 for any k such that∑ni

k=1 aik = 1, if we let ail = max{ai1, . . . , aini
}, we have

A∗
i = Πni

k=1(a
t+1
ik sβi

ik)
aik

≤ Πni
k=1(a

(t+1)aik
il sβiaik

ij ) = at+1
il sβi

ij < sβi

ij .

Therefore, we have the corner solution as the limit value.

When σi

βi−(t+1)σi
= +∞, σi > 0 and βi = (t+1)σi. Case 2 of Proposition 1 is applicable to this

case. The solution maximizing A∗
i = a

βi
σi
ij s

βi

ij is identical to the above corner solution. If there are

multiple group members j with the highest sβi

ij , we have A∗∗ = sβi

ij by assigning equal aij to those
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js and assigning nothing to the others because A∗ = a
βi
σi
ij s

βi

ij is obtained from Proposition 1 by this

assignment.

By substituting the corner solution into (7) and (8), we have ci1j = . . . = cit−1j = vij = 1,

ci1l = . . . = cit−1l = vil = 0 and A∗∗
i = sβi

ij . Therefore, the message of the proposition holds true. ■

Proof of Corollary 1. Because only roles are assignable, by setting t = 0, replacing A∗
i with

Ai, and replacing sβi

ik with sβi

ikvik in the proof of Proposition 2, we have this corollary. ■

Proof of Proposition 3.

In Case 1 of Proposition 1, in which (t + 1)σi < βi, the parentheses in the brackets in A∗
i of

(8) are rewritten as (a
βi
σi
ik s

βi

ik)
σi

βi−(t+1)σi = a
βi

βi−(t+1)σi
ik s

βiσi
βi−(t+1)σi
ik . For any sβi

ik > sβi

il and any aik > ail,

when σi > 0, (
a

βi
βi−(t+1)σi
ik s

βiσi
βi−(t+1)σi
ik + a

βi
βi−(t+1)σi
il s

βiσi
βi−(t+1)σi
il

)
−
(
a

βi
βi−(t+1)σi
il s

βiσi
βi−(t+1)σi
ik + a

βi
βi−(t+1)σi
ik s

βiσi
βi−(t+1)σi
il

)
=

[
a

βi
βi−(t+1)σi
ik − a

βi
βi−(t+1)σi
il

] [
s

βiσi
βi−(t+1)σi
ik − s

βiσi
βi−(t+1)σi
il )

]
> 0. (12)

From this, by assigning the higher aik to the group member with the higher sβi

ik , A
∗
i becomes larger

than any other assignment because of the additive form in the brackets of A∗
i . Therefore, the

role assignment rule in 0 < (t + 1)σi < βi is to assign roles from ai1 to ain to group members in

descending order of their productivity sβi

ik .

When σi = 0 in the limit, A∗
i in (9) is Πni

k=1(a
1+t
ik sβi

ik)
aik = Πni

k=1(a
(1+t)aik
ik sβiaik

ik ) in Proposition 1.

For any sβi

ik > sβi

il and any aik > ail,

(
a
(t+1)aik
ik sβiaik

ik

)(
a
(t+1)ail
il sβiail

il

)
−
(
a
(t+1)ail
il sβiail

ik

)(
a
(t+1)aik
ik sβiaik

il

)
= a

(t+1)aik
ik a

(t+1)ail
il sβiail

ik sβiaik
il

[(
sβi

ik

sβi

il

)aik−ail

− 1

]
> 0.

From this, by assigning the higher aik to the group member with the higher sβi

ik , A
∗
i becomes
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larger than any other assignment. Therefore, the role assignment rule when σi = 0 in the limit is

identical to that when 0 < (t+ 1)σi < βi.

When σi < 0, the brackets in (8) are in its denominator. The inside of the brackets should be

minimized. Noting that −σi > 0 and −(t+1)σi > 0, the inside of the parentheses in the brackets

in (8) is a
βi

βi−(t+1)σi
ik /s

−σiβi
βi−(t+1)σi
ik . The rule identical to that in 0 < (t + 1)σi < βi and σi = 0 in the

limit minimizes the inside of the brackets in A∗
i , that is, maximizes A∗

i , from the same calculation

as (12).

When (t + 1)σi ≥ βi, in Case 2 of Proposition 1, A∗
i = a

βi
σi
ij s

βi

ij . To maximize A∗
i , ai1 should be

allocated to that group member j who has the highest sβi

ik , and the other roles ai2, . . . , aini
are

assigned to any other group members because there are no terms for them in A∗
i . In this case,

this maximization is possible because the complementarity is weak. ■
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