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Abstract

This paper formulates proportional representation in a parliamental election as a multi-prize contest

among political parties. In particular, we analyze the performance of commonly-used list rule, and

investigate what the optimal list rule is when candidates di¤er in their abilities to contribute. We show

that, in order to maximize the aggregated e¤ort exerted by the party candidates, each party should

assign the highest ability candidates to the middle of the list, while the top priority ranks and low

priority ranks should be assigned to lower ability candidates under the optimal list rule. Turning to the

optimal mechanism, we can show that the optimal list rule is indeed the optimal monotonic rule when

individual e¤ort cost function is not too convex and the complemantarities of individual e¤orts are not

too strong. We also consider a situation in which some of the party members get extra bene�ts by the

party�s winning the majority of the parliament seats, and show that the party leader may place the

highest ability group at the top of the list so that both the highest and the middle-level ability party

members to exert the maximum e¤orts as the whole.

�Incomplete Draft. We thank Junichi Itaya, Dimitar Simeonov, Kaoru Ueda, Utku Unver, Bumin Yenmez, Huseyin
Yildirim for their comments.
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1 Introduction

There are countries of which parliament seats are allocated proportionally by the number of votes each party

collected. Each party announces a list of candidates with a priority order (a list rule), who compete as a

team with other party candidates. Obvious questions that come up in our mind are: Is a list rule a desirable

way to allocate prizes to the team members�e¤orts to collect votes for the party? If so, what is the best way

for a party to order heterogeneous ability candidates in its list rule?

Crutzen and Sahuguet (2017) and Crutzen, Flamand, and Sahuguet (2017) are the �rst to analyze the

incentive structure of the list rule in a parliamental election, or more generally in a contest between teams

that compete for multiple indivisible prizes. They set up a multi-prize contest model with a CES team-e¤ort

aggregator function, and compare di¤erent electoral systems and di¤erent intra-team prize allocation rules.

Their main analyses are on ex ante symmetric two party case with homogeneous candidates. In this paper,

we extend this basic model, allowing for heterogeneous abilities of candidates in order to see the performance

of the list rule and how a party leader should allocate heterogenous candidates on the priority list. More

generally, this paper analyzes competition by the parties by employing a party-optimal rule that maximize

the party�s winning probability given other parties�e¤ort levels.

Our basic model is to analyze each party�s two stage decision problem: in stage one, a party decides which

allocation rule to use, then in stage two, each party member (candidate) chooses his/her e¤ort level to enhance

the party�s popularity, which improves the expected number of seats the party can win in the parliament.

The equilibrium e¤ort levels by the party members are characterized by the �rst-order conditions, and the

second-order conditions are analyzed. Interestingly, with a CES e¤ort aggregator function, the allocation

characterized by the �rst-order best-response conditions is unique, but the second-order conditions for the

allocation are not necessarily satis�ed for an arbitrary seat assignment rule the party may adopt. However,

we later show that the second-order conditions are likely to be satis�ed under the optimal list rule.

We say a list rule the optimal list rule if and only if the expected seat maximizing rule among the family

of list rules. We show that under the optimal list rule, the highest ability candidate is placed in the middle
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of the list whose probability of going to the parliament is more or less �fty-and-�fty. Then, the second and

third highest ability candidates are placed before or after the highest ability candidate in a single-peaked

manner. The lowest ability candidates are assigned to the top or the bottom of the optimal list rule which

maximizes the aggregate e¤ort exerted by all candidates. This is because the top of the list candidate does

not have a strong incentive to make e¤ort, since he/she will be able to go to the parliament without much

e¤ort, so it is not a good idea for the party leader to place the high ability candidate in such a position.

We also analyze the party-optimal rule without restricting the family of assignment rules to list rules.

This analysis provides a good understanding about the properties of the optimal list rule. We show that the

optimal rule is deterministic when individual e¤ort cost function is not too convex and the complementarities

of individual e¤orts are not too strong: i.e., when any k seats are won by a party, then the party assigns

the seats to certain k candidates. We provide an algorithm to calculate the optimal mechanism in this

case (weaker complementarity and not too convex cost function). The optimal rule assigns the highest

ability candidate to about probability one half to get a parliament seat. This is to encourage highest ability

person to exert more e¤ort for the party. Note that the optimal (e¤ort-maximizing) rule is not necessarily

monotonic� even if a candidate could go to the parliament in the case that the party gets k seats, it does

not mean that the same candidate can go to the parliament in the case of k + 1 seats are won by the party.

If the expected number of winning seats exceeds one, the lowest ability candidate may go to the parliament

when only one seat is won in the realized state, exerting no e¤ort. Then, we impose a natural monotonicity

requirement on the mechanism (if a candidate goes to the parliament when k seats are won, then she will

go to the parliament when more than k seats are won). This monotonicity requirement assures that all

candidates exert e¤ort to their parties. We show that the optimal monotonic rule is the optimal list rule

when individual e¤ort cost function is not too convex and the complementarities of individual e¤orts are not

too strong. That is, in such a situation, the particular list rule has a very solid support from theoretical point

of view. In contrast, when individual cost function is strongly convex or the complementarities of individual

e¤orts are strong, the probabilities of candidates�going to the parliament are ranked by their abilities under

the optimal assignment rule, and a deterministic rule is no longer optimal.

3



The readers may wonder that in many party list in proportional representation elections, well-known and

powerful candidates are listed high on the lists. We may say that for those core party members, there may

be additional incentives to make e¤orts other than just going to the parliament. For example, if a party

has a good/reasonable chance to get power by winning the majority of the seats, then some top group party

members would see a chance to become a member of the cabinet. Then, these member may work hard to

win the majority of the parliament seats in addition to win a seat in parliament for him/her. Indeed, if

there are such additional incentives for some candidates, it would make sense to bring up the highest ability

candidates to the top of the list. The top group members make e¤ort for the party to win the majority, and

the middle group members do their best to secure their seats in the parliament. This can be the way to

maximize the (expected) number of seats for the party.

For the above analysis, we need a mild regularity condition, requiring that an increase in a party�s winning

probability of each seat increases the party�s aggregate e¤ort. This is an intuitively reasonable condition,

and it appears to be satis�ed, unless the party leader use an assignment rule that is far from the optimal

rule (say, the highest ability candidates are assigned to the highest ranks).

Finally, we consider J party case in which each party tries to choose the optimal assignment rule in

the �rst stage simultaneously, foreseeing an e¤ort contribution equilibrium by individual candidates across

parties in the second stage. This extension is more complicated than the above analysis, since the above

analysis assumes that a party assumes that other parties� e¤ort levels are �xed. That is, the analysis is

best response analysis. In contrast, if all parties choose their e¤ort levels, then the problem becomes an

equilibrium analysis, which is signi�cantly more complicated. It turns out that we can replicate the same

results in this general case, but under a stronger condition. We need to strengthen the regularity condition

imposed above� the winning-probability elasticity of the aggregate e¤ort needs to be more than just positive:

we need it to be between zero and unity for all parties. This condition can be regarded as a stability condition,

since if the elasticity exceeds unity then an increase in the party�s winning probability enhances its aggregate

e¤ort even more, resulting in further increase in its winning probability. By strengthening the regularity

condition, all the results previously obtained goes through.
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To be completed.

1.1 Related Literature

(*)To be completed. Include references in the above two papers.

2 The Model

In the basic model, we analyze a party j�s e¤orts to increase the expected number of seats in the parliament.

There are n parliament seats (indivisible prizes), and each party j has n candidates who di¤er in their

abilities (e¤ectiveness) in contributing to her party by making e¤ort. Candidate i in party j has ability aij

and she decides how much e¤ort eij to contribute to her party j. Party j�s winning number of seats is a

random variable through a Tullock-style contest among the parties based on the ratios of parties� e¤orts

Ejs. We assume that the sum of other parties�aggregate e¤orts is given as E�j ,1 and assume that party

j�s winning probability of each seat is statistically independent with binary distribution described by each

seat�s winning probability pj :

pj =
Ej

Ej + E�j
:

Party j�s aggregated e¤ort is determined by a CES function

Ej =

 
nX
i=1

aije
1��
ij

! 1
1��

;

where 0 < � < 1 is elasticity of substitution parameter, and aij > 0 represents member ij�s ability in making

e¤ort eij for all i = 1; :::; n. Each candidate i�s individual e¤ort cost is speci�ed as 1
� e

�
ij .

The probability of party j�s winning k seats is:

P kj = C(n; k)p
k
j (1� pj)

n�k
:

1This E�j can be regarded as E�j =
P
h6=j Eh: that is, party j candidates make their e¤or decisions assuming that other

party members�decisions as given.
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It is not always the case that P kj increases with an increase in pj . This can be seen by imagining P
0
j . It

is obvious that the probability of winning no seat would decrease as pj increases. Di¤erentiating P kj with

respect to pj , we obtain

dP kj
dpj

= C(n; k)pkj (1� pj)
n�k

�
k

pj
� n� k
1� pj

�
= C(n; k)pk�1j (1� pj)n�k�1 (k � npj)

for k = 1; :::; n� 1, and
dPnj
dpj

= npn�1j

That is, the probability of party j�s winning k seats decreases with an increase in pj for k < k� = bnpjc+ 1

(or k < npj), and increases for k � k� (or k > npj), if k < n, and is increasing in pj if n = k. This aspect of

proportional representation problem generates complications in incentive problem.

3 General Seat Allocation Rule

Party j decides how to allocate the number of seats won in a parliament election to the party candidates.

One rule that is often used in a parliament election is a list rule: party announces the priority ordering

of its candidates, and depending on the number of seats it wins, the highest priority candidates go to the

parliament. In the basic model, we analyze this list rule, then later we investigate what the optimal rules

are.

We can analyze each party�s e¤ort-maximizing rules by using a more general framework. A general

(stochastic) seat allocation rule is a list of functions (qk)nk=1 such that q
k : S(k) ! [0; 1] such that

S(k) � fS � Nj : jSj = kg and
P

S2S(k) q(S) = 1 for all k = 1; :::; n. A general seat allocation rule assigns

probabilities to which subset of k candidates go to the parliament when k seats are won in the election.
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When a general allocation rule is used, the member i of team j has the following bene�t function

Bij = V
nX
k=1

X
S2Si(k)

q(S)P k(pj);

where Si(k) = fS 2 Si(k) : i 2 Sg.

A list rule is a simple and commonly used rule in proportional representation parliament elections in

many countries. Party j�s candidates�names are listed with priority order, and if party j wins k seats then

the top k candidates on the list go to the parliament. That is, the mth candidate on the list will go to

the parliament with probability
Pn

k=m P
k
j (pj). Clearly, a list rule is a special general seat allocation rule.

Let m : Nj ! f1; :::; ng be an onto mapping that describes the list of priority ordering of each candidate:

that is, for each i 2 Nj , m(i) 2 f1; :::; ng is the priority that candidate i is assigned. That is, for each k,

let Sk = fi 2 Nj : m(i) � kg 2 S(k) and let qk(Sk) = 1 and qk(S) = 0 for all S 2 S(k)nfSkg, and all

k = 1; :::; n.

There is an alternative way to describe general seat assignment rule by using a matrix representation.

Let ri = (rki )
n
k=1 be a vector where r

k
i denotes the probability of candidate i�s going to the parliament when

the party wins k seats for each k = 1; :::; n. That is, an n � n assignment matrix R = (rki )i=1;:::;n; k=1;:::;n

with rki 2 [0; 1] and
P

i2Nj
rki = k for all k = 1; :::; n, describes allocation rule fully. It is easy to see that

every general seat assignment rule can be represented by a matrix R by setting rki =
P

S2Si(k) q(S) for each

i 2 Nj and k = 1; :::; n. However, the converse is not obvious: for any assignment matrix R, is there a

general seat assignment rule q that achieves R? The following lemma provides a positive answer.

Lemma 1. Any n�n assignment matrix R such that (i) rki 2 [0; 1] for all i; k = 1; :::; n, and (ii)
Pn

i=1 r
k
i = k

for all k = 1; :::; n, can be achieved by some allocation rule q : S ! [0; 1] with
P

S2S(k) q
k(S) = k for all

k = 1; :::; n.

Remark. In the matching literature, random assignments of indivisible goods often use the property known
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as the Bircho¤=Newmann theorem (Bircho¤ 1946, and von Neumann 1953): any bistochastic matrix can be

written as a convex combination of permutation matrices. Our lemma appears to be related to this theorem,

but our problem has an aspect of public indivisible goods unlike their problem, and it is not clear if there is

a formal relationship between the two.

Obviously, a list rule can be represented by an assignment matrix as well. Let R be such that rki = 1 if

and only if k � m(i) for all i 2 Nj . This is the assignment matrix that represents list rule m. In the next

section, we show how party j�s winning probability pj a¤ects each candidate�s payo¤. Thus, without any

loss of generality, we can work on assignment matrix to design a seat allocation rule.

3.1 Intra-Party Equilibrium E¤ort Allocations under Assignment Rule R

With this assignment matrix R = (rki )i2N;k=1;:::;n, we can rewrite candidate i�s bene�t function as:

Bij = V

nX
k=1

rki P
k(pj):

First note that each player ij�s bene�t is a¤ected by her exerting e¤ort eij through an increase in pj .

The impact of an increase in candidate i�s e¤ort on party j�s aggregate e¤ort is

@Ej
@ehj

= ahj

 
nX
i=1

aije
1��
hj

! �
1��

e��hj = ahjE
�
j e

��
hj ;

thus, the impact of an increase in eij on pj is written as:

@pj
@eij

=
E�j

(E�j + Ej)
2

@Ej
@eij

= pj (1� pj)
1

Ej

@Ej
@eij

= pj (1� pj)
 

aije
��
ijPn

h=1 ahje
1��
hj

!
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Di¤erentiating P k(pj), we obtain

dP k

dpj
= C(n; k)

n
kpk�1j (1� pj)n�k � (n� k) pkj (1� pj)

n�k�1
o

= C(n; k)pk�1j (1� pj)n�k�1 (k � npj)

Notice that the sign of the above is not necessarily positive. This can be seen by noting the special case of

k = 0. If pj increases, it is obvious that P 0(pj) decreases. As the above formula says, dP
k

dpj
R 0 if and only if

k R npj .

Taking the derivative of Bij = V
Pn

k=1 r
k
i P

k(pj) with respect to eij , we obtain,

@Bij
@eij

= V
nX
k=1

rki
dP k

dpj

@pj
@eij

= V
nX
k=1

rki C(n; k)
n
kpk�1j (1� pj)n�k � (n� k) pkj (1� pj)

n�k�1
o
(1� pj) pj

 
aije

��
ijPn

h=1 ahje
1��
hj

!

= V

 
aije

��
ijPn

h=1 ahje
1��
hj

!
nX
k=1

rki C(n; k)p
k
j (1� pj)

n�k
(k � npj)

Thus, with e¤ort cost function c(eij) = eij , the �rst order condition assuming an interior solution is

@Bij
@eij

� c0(eij) = V
 

aije
��
ijPn

h=1 ahje
1��
hj

!
nX
k=1

rki C(n; k)p
k
j (1� pj)

n�k
(k � npj)� e��1ij = 0; (1)

or

eij =

"
V

 
aijPn

h=1 ahje
1��
hj

!
nX
k=1

rki C(n; k)p
k
j (1� pj)

n�k
(k � npj)

# 1
�+��1

=

"
V

 
aijPn

h=1 ahje
1��
hj

!
nX
k=1

rki �
k(pj)

# 1
�+��1
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where

�k(pj) � C(n; k)pkj (1� pj)
n�k

(k � npj)

=
dP k(pj)

dpj
pj (1� pj)

= P k(pj) (k � npj)

denotes the impact of an increase in pj on P k. Note that the above solution for ej through the �rst

order condition makes sense only when
Pn

k=1 r
k
i �

k(pj) > 0, since this expression means how candidate i�s

probability to go to the parliament is a¤ected by an increase in pj . If this is negative in its sign, then

candidate i�s making e¤ort worsens her payo¤ and eij = 0 must hold. Thus, formally, we can write

eij =

"
V

 
aijPn

h=1 ahje
1��
hj

!
max

(
nX
k=1

rki �
k(pj); 0

)# 1
�+��1

Let candidate ij�s (proxy of) e¤ective contribution share to party j be

�ij �
aijeij(pj)

1��Pn
h=1 ahjehj(pj)

1�� :

The following lemma summarizes the above results.

Proposition 1 (solution for the �rst-order conditions). For each pj 2 (0; 1), and each assignment

matrix R = (rki )i2Nj ;k=1;:::;n, there is a unique e¤ort vector e
�
j (pj) � (e�ij(pj))i2Nj that is consistent with

the candidates��rst order conditions: for all i 2 Nj,

e�ij(pj) = V
1
�

a
1

�+��1
ij

�
max

�Pn
k=1 r

k
i �

k(pj); 0
	� 1

�+��1�Pn
i=1 a

�
�+��1
ij

�
max

�Pn
k=1 r

k
i �

k(pj); 0
	� 1��

�+��1

� 1
�
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the resulting party j�s aggregated e¤ort is

Ej(pj) = V
1
�

0@ nX
i=1

a
�

�+��1
ij

"
max

(
nX
k=1

rki �
k(pj); 0

)# 1��
�+��1

1A
�+��1
�(1��)

and candidate i�s e¤ective e¤ort share is

�ij �
aijeij(pj)

1��Pn
h=1 ahjehj(pj)

1�� =
aijeij(pj)

1��

Ej(pj)1��
=

a
�

�+��1
ij

�
max

�Pn
k=1 r

k
i �

k(pj); 0
	� 1��

�+��1Pn
i=1 a

�
�+��1
ij

�
max

�Pn
k=1 r

k
i �

k(pj); 0
	� 1��

�+��1

Before moving on, we need to check whether or not the above solution generated from the �rst order

conditions for candidates�payo¤ maximization satisfy the second order conditions as well. Since an increase

in eij corresponds to pj This involves checking the above solution eij(pj) is indeed the best response to

e�ij(pj) and E�j for each ij. Recall (1)

@Bij
@eij

� c0(eij) = V

 
aije

��
ijPn

h=1 ahje
1��
hj

!
nX
k=1

rki �
k(pj)� e��1ij

=
aijV

aijeij + e�ij
P

h6=i ahje
1��
hj

�

24 nX
k=1

rki �
k(pj)�

0@e�ij + 1

aij
e�+��1ij

X
h6=i

ahje
1��
hj

1A35
To analyze the second order conditions, let us introduce the following functions:

fij(pj) = V
nX
k=1

rki �
k(pj)

and

gij(pj) = (eij(pj))
�
+
1

aij
(eij(pj))

�+��1X
h6=i

ahje
1��
hj ;
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where eij(pj) is an inverse function of

pj(eij ; e�ij ; E�j) =

�P
h6=i ahje

1��
hj + aije

1��
ij

� 1
1��

�P
h6=i ahje

1��
hj + aije

1��
ij

� 1
1��

+ E�j

Since fij(pj) = gij(pj) holds with the �rst order condition for candidate ij, the second order condition

is satis�ed when f 0ij(pj) < g0ij(pj) holds, regarding pj is implicitly determined by eij . We write this as a

lemma.

Lemma 2 (the second-order conditions). The unique solution e� of the system of the �rst order

conditions of candidates�e¤ort optimization satis�es the second order conditions if f 0ij(pj) < g
0
ij(pj) holds

for all i 2 Nj. Moreover, we have

g0ij(pj) =
gij(pj)

pj (1� pj)

�
(� + � � 1) 1

�ij
+ (1� �)

�

The calculations for the last derivative can be found in the appendix. Unfortunately, unlike the movement

of g0ij(pj), the movement of f
0
ij(pj) is not easy to analyze, since each �

k(pj) function changes its sign of the

slope twice, and weighted sum of �ks can be a very complicated function in general. However, as is seen

below, if the allocation rule is a list rule, it turns out to be rather well-behaved. In the next section, we

discuss list rules and the optimal list rule.

4 Optimal List Rules

In this section, we focus on list rules. In order to analyze the family of list rules, the following weight is

useful:

!m(pj) �
nX

k=m

�k(pj):

We can rewrite this mth ranked candidate�s weight as follows:
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Lemma 3 (weights on list rule). Under a list rule, the mth-rank candidate�s (e¤ort) weight is denoted

by

!m(pj) = mC(n;m)p
m
j (1� pj)

n�m+1
= mPm(pj)� (1� pj) > 0:

and !m(pj) R !m+1(pj) if and only if npj R m. That is, weight distribution over the ranking is single-peaked

at m = npj.

Besides tractable formula in the lemma, there is an additional important implication:
Pn

k=1 r
k
i �

k(pj) =Pn
k=m(i) �

k(pj) > 0. Proposition 1 shows eij(pj) > 0 as long as
Pn

k=1 r
k
i �

k(pj) > 0. Using Lemma 3, we

can show that fij(pj)s can be written simply:

fij(pj) = V !
m(i)(pj):

Note that fij(pj) is not a¤ected by the identity of candidate i or party j. It is determined solely by the

ranking of candidate i, m(i). Thus, under a list rule, f 0ij can be written as

f 0ij(pj) =
fij(pj)

pj (1� pj)
(m(i)� (n+ 1) pj) :

Using Lemma 2, we have the following.

Proposition 2 (the second-order conditions for a list rule). Suppose that a list rule m : Nj ! f1; :::; ng

is adopted: that is candidate i is ranked m(i) among n candidates. Then, the system of the �rst order

conditions has a unique solution (eij(pj))i2Nj
, and the second order conditions are satis�ed if

(m(i)� (n+ 1) pj) < (� + � � 1)
1

�ij(pj)
+ (1� �)

holds for all i 2 Nj.

Remark. The above condition shows that if candidates ranked low in the list (large m(i)) have small e¤ective

contribution shares �ijs. If � and � are large, the condition is easier to be satis�ed. The condition says that
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high ranked candidates (m(i) < (n + 1)pj) has no problem in satisfying the second order condition, but for

low-ranked candidates to satisfy the condition, her e¤ective e¤ort share �ij(pj) should not be too large.

We will assume the following natural regularity condition.

Regularity Condition. dEj(pj)
dpj

> 0

Remark. Since Pm(pj) = mC(n;m)pmj (1� pj)
n�m+1, dPm(pj)

dpj
= Pm � 1

pj(1�pj) (m� (n+ 1) pj) holds.

Even if a list rule is used, the rank m candidate�s e¤ort is increased (or decreased) by an increase in pj

i¤ dPm

dpj
> 0 or pj > m

n+1 (
dPm

dpj
< 0 or pj < m

n+1). If the highest ability candidates are assigned to top

ranks and if their abilities are much higher than others, then the regularity condition may be violated. (In

such cases, high ability candidates get negative marginal incentives with high weights. Thus, the high ability

candidates reduce e¤orts and Ej(pj) > Ej(p0j) may happen for pj < p
0
j.)

Under this assumption, Proposition 1 implies implications on the optimal list rule.

Proposition 3 (the optimal list rule). Under the regularity condition, candidates should be assigned to

the list according to their weights in a descending order. That is, if candidates are ordered by their abilities

in a descending order, the optimal list rule satis�es !m(1)(pj) � !m(2)(pj) � ::: � !m(n)(pj).

Remark. By Lemma 3, this proposition shows that candidates should be assigned by their abilities in a

single-peaked way peaked at m = npj (with appropriate integer treatments).

Note that m = npj means that the mth ranked candidate�s chance to go to parliament is more or less

�fty-�fty. This implies that he/she needs to work really hard to open the door to the parliament. In contrast,

the top-ranked candidate does not have a strong incentive to work hard since he/she is almost guaranteed to

go to the parliament (though he/she still makes a positive e¤ort by Lemma 3). Moreover, if the candidates

are ranked according to the optimal list rule, then Proposition 2 and the regularity conditions are likely to

be satis�ed (see the remarks).
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5 Party-Optimal Assignment Rules

In this section, we explore the optimal assignment rule without being restricted by list rules. Although such

optimal assignment rules are unrealistic, this analysis sheds light on the properties of list rules. The purpose

of the section is to get insights of the optimal rule, we ignore the second-order conditions. Party j maximizes

its aggregate e¤ort Ej by setting an assignment matrix R:

Ej =

8><>:V
0@ nX
i=1

�ij

"
max

(
nX
k=1

rki �
k(pj); 0

)# 1��
�+��1

1A
�+��1
1��

9>=>;
1
�

where rki is the probability of candidate i goes to the parliament when party j wins k seats, and
P

i2Nj
rki = k

for all k = 1; :::; n.

Party j�s maximization problem is:

max
(rki )

nX
i=1

a
�

�+��1
ij

"
max

(
nX
k=1

rki �
k(pj); 0

)# 1��
�+��1

s.t.
nX
i=1

rki = k for all k = 1; :::; n

where �k(pj) = dPk

dpj
(1� pj) pj with �k(pj) R 0 if and only if k R npj since �k(pj) � C(n; k)pkj (1� pj)

n�k
(k � npj).

Notice that the bracket in the above formula has power 1��
�+��1 . It turns out to be essential whether this

power is more than unity (� < 2 (1� �): a convex function), or less than unity (� > 2 (1� �): a concave

function). We will analyze these two cases separately.

5.1 Convex case: � < 2 (1� �)

In this case, we have the following results.

Lemma 4. Suppose that R is an optimal rule, and that � < 2 (1� �) holds. Then, for any i and i0 with

aij > ai0j with
Pn

k=1 r
k
i �

k(pj) > 0,
Pn

k=1 r
k
i �

k(pj) �
Pn

k=1 r
k
i0�

k(pj) holds.

Lemma 5. Suppose that � < 2 (1� �) holds. There is no optimal rule R = (rki )i;k in which r
k0

i 2 (0; 1)

for all i with
Pn

k=1 r
k
i �

k(pj) > 0:
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We will consider deterministic assignment rule R with rki 2 f0; 1g for all i; k = 1; :::; n, since we assume

� � 2 (1� �) (by Lemma 2). Rename candidates by their abilities in a descending order: a1j � a2j � ::: �

anj . By Lemma 3, we need to assign the highest of the following sum of weights to i = 1, and the second

highest to i = 2, and so on:
nX
k=1

rik�
k(pj)

in order to maximize Ej (thus, to maximize pj given E�j).

We can describe an assignment rule by the following n � n matrix R such that (i) each row represents

candidate i = 1; 2; :::; n, and each column k represents the number of seats won in the election, (ii) each (i; k)

argument rik is either 1 or 0, representing whether or not candidate i goes to the parliament when k seats

are won, and (iii) for each column k = 1; :::; n, the elements in the kth column sum up to k. In order to

describe the optimal (deterministic) mechanism, we will introduce some notations. Consider k = 1; :::; n be

the number of seats won by party j. For each k = 1; :::; n, party needs to send k candidates to the parliament.

Let �(i) = (�1(i); :::; �k(i); :::; �n(i)) be the number of seats available for each case k, and let �(i) be the

number of candidates left to be assigned when candidate i is going to be assigned: i.e., �(i) = n � i + 1.

We will assign seats to candidates in order starting from the highest ability candidate i = 1 in a descending

order. LetM(i) � fk 2 f1; :::; ng : �k(i) > 0g be the set of cases k in which candidate i can be sent to the

parliament, and let L(i) � fk 2 f1; :::; ng : �k(i) = �(i)g be the set of cases k in which candidate i must

be sent to the parliament (for feasibility: if not, k candidates cannot be sent to the parliament when k

seats are won). Denote the e¤ort-maximizing set of cases in which candidate i is sent to the parliament by

�(i) � f1; :::; k; :::; ng. Let �(i+1) = (�1(i+1); :::; �k(i+1); :::; �n(i+1)) be such that �k(i+1) = �k(i)� 1

if k 2 �(i), and �k(i + 1) = �k(i) otherwise. Initially, �(1) = (�1(1); :::; �k(1); :::; �n(1)) = (1; :::; k; :::; n),

�(1) = n, M(1) � f1; :::; ng, and L(1) � fng hold. The optimal set of cases for candidate i to go to the

parliament is de�ned by

�(i) = arg max
L(i)�K�M(i)

X
k2K

�j(k)

for i = 1; :::; n. This �(i) gives candidate i the largest aggregate weights
P

k2�(i) �j(k) available for her. The
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matrix is completed by setting rik = 1 if and only if k 2 �(i) for all i = 1; :::; n and all k = 1; :::; n.

From Single-Crossingness on Winning Probabilities, it is clear that �(1) = fk�; k� + 1; :::; ng, since this

set collects all positive �k(pj)s without having no negative �k(pj)s. How about �(2)? It is still �(2) =

fk�; k� + 1; :::; ng as long as k� � 2 (�k�(2) � 1), sinceM(2) � f1; :::; ng. We consider two cases: (Case 1)

k� � n+1
2 , and (Case 2) k� > n+1

2 .

(Case 1: k� � n+1
2 ) In this case, we can assign the top k� candidates to fk�; k� + 1; :::; ng = �(1) = ::: =

�(k�). After that, as long as i < n � k� + 2, we assign �(i) = fi; i + 1; :::; ng. When i = n � k� + 2 comes,

we assign �(i) = fk� � 1g [ fi; i+ 1; :::; ng, and for i = n� k� + 3, �(i) = fk� � 2; k� � 1g [ fi; i+ 1; :::; ng,

and so on. When i = n, �(n) = f1; :::; k� � 1g [ fng.

(Case 2: k� > n+1
2 ) In this case, we can only assign the top n � k� candidates to fk�; k� + 1; :::; ng =

�(1) = �(n � k�). Since �k��1(n � k� + 1) = �n(n � k� + 1) = n � (n � k� + 1) + 1 = �(n � k� + 1),

�(n� k� +1) = fk� � 1; k�; :::; ng. Similarly, up to i = n� k� +1, �(i) = fn� i+1; :::; ng is assigned. After

that �(i) = fn� i+ 1; :::; k� � 1g [ fi; :::; ng.

Note that if
P

k2�(i) �j(k) � 0, then eij = 0 holds. The outcome of this algorithm is an e¤ort-

maximizing rule. This implies that the highest ability candidate 1 goes to the parliament if and only

if party j wins k� = bnpjc+1 seats or more. That is, the highest ability candidate gets the same assignment

between the optimal assignment rule and the optimal list rule.

Proposition 4 (the optimal assignment rule). Suppose � � 2 (1� �). Then, the optimal assignment

rule is described by matrix R with rik = 1 if and only if k 2 �(i) for all i = 1; :::; n and all k = 1; :::; n.

In order to illustrate the optimal assignment rule, we provide an example below.

Example 1. Suppose n = 7. We consider three cases: k� = 3, k� = 5, and k� = 1. The optimal assignment

17



matrix is described by R�3, R
�
7, and R

�
1 in the following:

R�3 =

0BBBBBBBBBBBBBBBBBBBBBB@

0 0 1 1 1 1 1

0 0 1 1 1 1 1

0 0 1 1 1 1 1

0 0 0 1 1 1 1

0 0 0 0 1 1 1

0 1 0 0 0 1 1

1 1 0 0 0 0 1

1CCCCCCCCCCCCCCCCCCCCCCA

R�7 =

0BBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 1 1 1

0 0 0 0 1 1 1

0 0 0 0 1 1 1

0 0 0 1 1 1 1

0 0 1 1 1 1 1

0 1 1 1 0 1 1

1 1 1 1 0 0 1

1CCCCCCCCCCCCCCCCCCCCCCA
When k� = 3 (pj is not high), the lowest ability candidate 7 goes to the parliament only when party j

wins k = 1; 2; 7 seats, and candidate 6 goes to the parliament when party j wins k = 2; 6; 7 seats. When

k� = 7 (party j is a dominating party: high pj), then the highest ability candidates 1, 2, and 3 can go to

the parliament only when party j wins 5 or more seats. This is because the party wants the highest ability

candidates work very hard to be elected.

5.2 Monotonic Allocation Rules

One desirable property we may impose on the assignment matrix is monotonicity. A rule described by an

assignment matrix R is monotonic if and only if rk+1i � rki for all i = 1; :::; n and k = 1; :::; n. As is seen

in Example 1, the optimal assignment matrix R does not necessarily satisfy monotonicity when k� > 1.

However, monotonicity is a very reasonable requirement. A particularly appealing property of a monotonic

rule is that everybody exert a positive e¤ort. This can be seen easily by rewriting
Pn

k=1 r
k
i �

k(pj):

nX
k=1

rki �
k(pj) = r

1
i

nX
k=1

�k(pj) +
�
r2i � r1i

� nX
k=2

�k(pj) + :::+
�
rni � rn�1i

�
�n(pj)
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By the �rst order stochastic dominance,
Pn

k=m �
k(pj) > 0 for allm = 1; :::; n. By monotonicity, rki �rk�1i � 0

for all k = 1; :::; n (rk0 = 0). Thus, monotonicity implies:

max

(
nX
k=1

rki �
k(pj); 0

)
=

nX
k=1

rki �
k(pj) > 0

Proposition 5. Under any monotonic rule, every candidate exerts e¤ort.

Under deterministic rules, monotonicity requires that if candidate i is sent to the parliament when m

seats are won, she will be sent to the parliament if more than m seats are won. Then, the mth candidate�s

e¤ort incentive is

Mm(pj) =
nX

k=m

�k(pj)

Order Mm(pj)s by their values, and de�ne a one-to-one mapping m� : Nj ! f1; :::; ng such that

Mm�(1)(pj) � :::: �Mm�(i) � ::: �Mm�(n)

The following result is straightforward.

Proposition 6. Suppose � � 2 (1� �). Then, the list rule m� : Nj ! f1; :::; ng is the optimal monotonic

assignment rule.

Note that m�(1) = k�. Thus, the top candidate�s assignments are exactly the same in the optimal

deterministic rule and the optimal list rule. Under the single-crossingness, it is easy to see that m�(2) is

either k� + 1 or k� � 1, and m� orders candidates in such a way that it forms a single-peaked way at peak

m�(1) = k�. An interesting special case is k� = 1. Since �k(pj) > 0 for all k = 1; :::; n by single-crossingness,

we have m�(i) = i for all i = 1; :::n. We have the following result.
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Corollary 1. Suppose � � 2 (1� �). When k� = 1, the optimal assignment rule is the list rule according

to candidates�abilities.

If we con�ne our attention to the class of deterministic rules (i.e., rki 2 f0; 1g for all i; k), we do not need

convexity condition to show that the list rule m� : Nj ! f1; :::; ng is the optimal monotonic rule.

Proposition 7. If we con�ne or attention to the class of deterministic rules, then the list rule m� : Nj !

f1; :::; ng is the optimal monotonic assignment rule.

Note that the above result is speci�c to monotonic and deterministic rule. If we are trying to �nd the

optimal deterministic rule, then the relative sizes of � and � matter, and concave case will have di¤erent

result. With monotonicity under deterministic rule, there is no freedom in playing with. This is why we

have the above result.

5.3 Concave Case � > 2 (1� �)

With strong complementarity of team members�e¤orts, the reward should not be concentrated to small set

of members.

Thus, party j�s maximization problem becomes

argmax
(rki )

8><>:V
0@ nX
i=1

a
�

�+��1
ij

"
nX
k=1

rki �
k(pj)

# 1��
�+��1

1A
�+��1
1��

9>=>;
1
�

s.t.
nX
i=1

rki = k for all k = 1; :::; n

or

max
(rki )

nX
i=1

a
�

�+��1
ij

"
nX
k=1

rki �
k(pj)

# 1��
�+��1

s.t.
nX
i=1

rki = k for all k = 1; :::; n

The optimal mechanism is the solution of the above (rather complicated) problem when � > 2 (1� �) holds.

As k increases the set rki will face more strict constraints (when k = n, r
n
i = 1 must hold: every candidate

needs to be sent to the parliament). We know, however, that �k(pj) = dPk

dpj
(1� pj) pj < 0 for all k < k�
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and dPk

dpj
(1� pj) pj > 0 for all k > k�, and that what matters is just the weighted sum of the shares in the

bracket in achieving the optimal allocation. Intuitively, there will be a plenty of freedom using rks for low

ks to achieve unequal allocations.

Supposing that the sum of reward �R =
Pn

k=1 k
dPk

dpj
(1� pj) pj can be allocated freely to the candidates

according to their abilities, the optimal allocation is described by solving the following problem.

arg max
(Ri)ni=1

nX
i=1

a
�

�+��1
ij R

1��
�+��1
i s:t:

nX
i=1

Ri = �R =
nX
k=1

k
dP k

dpj
(1� pj) pj

The �rst order conditions generate the optimality conditions:

1� �
� + � � 1a

�
�+��1
ij R

1��
�+��1�1
i =

1� �
� + � � 1a

�
�+��1
hj R

1��
�+��1�1
h

or

Ri
Rh

=

�
aij
ahj

� �
��2(1��)

for all i; h = 1; :::; n.

Proposition 8. Suppose � > 2 (1� �). Then, whenever feasible, the optimal assignment rule tries to

allocate the chances of candidates to get a seat in the parliament proportionally to candidates�abilities (with

power �
��2(1��)).

Our Propositions 6 and 8 generate a generalized version of the result in Crutzen, Flamand, and Sahuguet

(2017) as a corollary. When candidates are homogenous, Ri = Rh holds for all i; h = 1; :::; n when � >

2 (1� �). Thus qik = k
n for all i; k = 1; :::; n, which generates the egalitarian rule.

Corollary 2. (Crutzen, Flamand, and Sahuguet, 2017) Suppose that all candidates have the same ability.

Then, if � � 2(1 � �) then the optimal monotonic rule is (any) list rule, while if � > 2(1 � �) then the

optimal rule is the egalitarian rule.
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6 Why Do Parties Assign Top Seats on the List to High Ability

Candidates?

It was our prediction that the candidates whose names are on top of the list are not highest ability ones.

The readers may say that the highest ranks in the list are usually occupied by highly quali�ed candidates

in the real world. We have two answers for this comment. First, the abilities we are focusing here are the

ones to attract voters to vote for the party she belongs to. Thus, these candidates are the ones who perform

very well in town hall meetings and the ones who make convincing speeches. They are not necessarily good

at proposing policies, working with bureaucrats, or negotiating with other party members. Second, even

if candidates�abilities/quali�cations are more or less unidimensional (various ability indicators are highly

correlated with each other), we can explain the concentration of high ability candidates at top ranks of the

list if top ranked candidates get some extra bene�ts from listed there.

In the following, we will consider the situation that the several top ranks on the list are special in the sense

that listed on the top of the list means to get a chance to join the cabinet if their party wins the majority of

the parliament�s seats. Let kM �
�
n
2

�
+1 be the number of seats needed for the majority of the parliament,

and let the top kC elected candidates would be invited to the cabinet if the party gets the majority of seats.

Note that we will be con�ning our attention to the class of list rules in this section. Candidate m whose

position on the list is also m has the following bene�t function:

Bmj =

8>><>>:
V
Pn

k=m P
k
j if m > kC

V
Pn

k=m P
k
j +W

Pn
k=kMaj P kj if m � kC

where W > 0 is the bene�t from selected to be one of the cabinet members.2 When m > kC , the incentive

is the same as before. We analyze e¤orts provided by candidates whose ranking m is less than kC . The �rst

2We can introduce even more di¤erentiated bene�ts depending on her ranking in the case of her party wins the majority
and is going to play di¤erent role in the cabinet.
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order condition for payo¤ maximization is:

@Bmj
@emj

� dCm
demj

=
amj
emj

�
eij
Ej

�1�� "
V

nX
k=m

�kj +W
nX

k=kM

�kj

#
� e��1mj = 0

This implies that for m � kC we have

emj =

"
amj

�
VMm

j +WMkM

j

�� 1

Ej

�1��# 1
�+��1

where

Mm
j =

nX
k=m

�kj

By substituting this into team production function, we have

Ej =

24 kCX
m=1

amj

(
amj

�
VMm

j +WMkM

j

�� 1

Ej

�1��) 1��
�+��1

+
nX

m=kC+1

amj

(
amjVM

m
j

�
1

Ej

�1��) 1��
�+��1

35
1

1��

=

�
1

Ej

� 1��
�+��1

24 kCX
m=1

amj

n
amj

�
VMm

j +WMkM

j

�o 1��
�+��1

+
nX

m=kC+1

amj
�
amjVM

m
j

� 1��
�+��1

35 1
1��

Solving with respect to Ej , we have

Ej =

264
8<:

kCX
m=1

�mj

�
VMm

j +WMkM

j

� 1��
�+��1

+
nX

m=kC+1

�mj
�
VMm

j

� 1��
�+��1

9=;
�+��1
1��

375
1
�

Since we know that Mm
j > 0 and MkM

j > 0, and MkM

j > Mm
j if m � kC < kM . Naturally, we can assume

that kC < k�. Then, if W is much more than V and MkM is not much smaller than Mk� , it is possible for

us to have

VMm
j +WMkM

j > VMk�

If this were the case, the kC highest candidates will be assigned to the top kC positions. Thus, the the
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highest ability candidates are listed at the top, and they also work very hard to attract voters to the party.

7 Some Equilibrium Analysis � J Party Case

Here, we show that our analysis can be generalized to J party case in which each party tries to maximize

its winning probability. There are J parties (teams) that are competing for n parliament seats (indivisible

prizes). Each party j has n candidates who di¤er in their abilities (e¤ectiveness) in contributing to her party

by making e¤ort. Candidate i in party j has ability aij and she decides how much e¤ort eij to contribute to

her party j. Party j�s winning number of seats is a random variable through a Tullock-style contest among

J parties based on the ratios of parties�e¤orts Ejs. In our basic model, we assume that seat allocation is

determined through "winning probability" of each party j:

pj =
Ej

E1 + :::+ EJ
;

and we assume that pj solely explain the number of seats party j wins as a random variable. The easiest

example is to assume that each of n seats is allocated to parties with probabilities (p1; :::; pJ), and winning

probabilities of each seat are i.i.d. random variables.

Formally, such a game can formulated as a two stage game. In the �rst stage, All party j = 1; :::; n

select party seat allocation rules Rj as assignment matrices simultaneously, then in the second stage all

candidates in all parties simultaneously decide their e¤ort levels. Let parties�winning probability vector be

p = (p1; :::; pJ), and consider the probability of party j = 1�s winning k1 seats. Let Pj = (P kj )
n
k=0 2 �n+1 be

probability distribution of party j�s number of winning seats: i.e., P kj is the probability of party j�s winning
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k seats with
Pn

k=0 P
k
j = 1. Since we assume that seat allocation is determined by i.i.d., we have

P k1 = V C(n; k1)p
k1
1

�
"
n�k1X
k2=0

C(n� k1; k2)pk22
n�k1�k2X
k3=0

C(n� k1 � k2; k3)pk33 � :::

�
n�k1�:::�kr�2X

kJ�1=0

C(n� k1 � :::� kJ�2; kJ�1)pkJ�1J�1 p
n�k1�:::�kJ�2�kJ�1
J

35

First note that (pi + pj)
k
=
Pk

`=0 C(k; `)p
`
ip
k�`
j for any k. Setting k = n� k1 � :::� kJ�2, we have

n�k1�����kJ�2X
kJ�1=0

C(n� k1 � :::� kJ�2; kJ�1)pkJ�1J�1 p
n�k1�:::�kJ�2�kJ�1
J = (pJ�1 + pJ)

n�k1�:::�kJ�2

Repeatedly applying this, we have

P k11 = C(n; k1)p
k1
1 (p2 + :::+ pJ)

n�k1

= C(n; k1)p
k1
1 (1� p1)

n�k1

Thus, even in J party case, party j�s probability of winning k seats can be written as for each k = 1; :::; n,

P kj = C(n; k)p
k
j (1� pj)

n�k

as long as probabilities of winning are statistically independent of each other.

Here, we will investigate how competition by the parties work. In particular, what each party tries to

maximize when parties are competing for the number of seats in the parliament. Since we assume that

(P k(pj))
n
k=1 is �rst-order stochastically dominated by (P

k(p0j))
n
k=1 for p

0
j > pj , each party j should try to

maximize pj . Since pj =
Ej

E1+:::+EJ
, it seems to make sense for party j to choose rule q = (qk)nk=1 in order

to maximize Ej given E�j . However, p = (p1; :::; pj ; :::; pJ) is actually determined in the interactions with

25



other parties in equilibrium, and it is important to check our intuitive approach makes sense.3

We start with existence of equilibrium. It is easy to observe that Ej depends only on pj � nothing else

(Ej = Ej(pj)). Thus, we can use the following �xed-point mapping to prove the existence of equilibrium.

Let p = (p1; :::; pJ) and

fj(p) =
Ej(pj)PJ
k=1Ek(pk)

for all j = 1; :::; J . Then f(p) = (f1(p); :::; fJ(p)) is a �xed point mapping from simplex�J �
n
p 2 RJ+ :

PJ
k=1 pk = 1

o
to itself, which is a continuous function. By Brouwer�s �xed point theorem, there exists a �xed point

p� = f(p�).

Proposition 9 (existence of an e¤ort pro�le that satis�es the system of the �rst-order condi-

tions). There exists an e¤ort strategy pro�le that satis�es the �rst order conditions of each candidate�s

e¤ort optimization problem for any pro�le of list rules a = (aj)Jj=1, where aj = (aj1; :::; ajn).

Let �ij = a
�

�+��1
ij . The following result is an immediate consequence of equilibrium condition.

Proposition 10 (winning probability ranking). In every equilibrium, the winning probabilities of

parties j and h satisfy the following:

pj R ph ()
nX
i=1

a
�

�+��1
ij

"
max

(
nX
k=1

rki �
k(pj); 0

)# 1��
�+��1

R
nX
i=1

a
�

�+��1
ih

"
max

(
nX
k=1

rki �
k(ph); 0

)# 1��
�+��1

We can justify that each party would try to maximize its aggregate e¤ort by conducting comparative

static analysis. However, we need more than the regularity condition we have assumed in the previous

sections. If �j =
pj
Ej

@Ej
@pj

2 (0; 1) is satis�ed for all j = 1; :::; n (naturally interpreted as stability of party

j�s e¤ort), then when a candidate i�s ability increases slightly, then Ej increases in equilibrium (a su¢ cient

3 In the general equilibrium framework (in trade theory), we see cases of transfer paradox and immiserizing growth occurring.
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condition). Without bounded above by unity, the system becomes unstable, and the comparative static

analysis generates unintuitive results.

Proposition 11 (comparative statics). Suppose that �j 2 (0; 1) for all j = 1; :::; J . Then, for any

i = 1; :::; n, dpj
d�ij

> 0 holds if and only if
Pn

k=1 r
k
i �

k(pj) > 0.

8 Conclusion

To be written.

Appendix (Proofs)

Proof of Lemma 1. We will prove the statement by induction. Let�s start with n = 3. In this case,

it is easy to see (i) if k = 1, then we can set q1(fig) = r1i for all i = 1; 2; 3, (ii) if k = 2, we can set

q2(Nnfig) = 1 � r2i for all i = 1; 2; 3, and (iii) q3(f1; 2; 3g) = 1 since r3i = 1 must hold for all i = 1; 2; 3.

Thus, for n = 3 we can �nd (qk)3k=1 for any feasible R.

Now, suppose that for n = m we can �nd (qk)mk=1 for any m � m R matrix with rki 2 [0; 1] andPm
i=1 r

k
i = k for all k = 1; :::;m and i = 1; :::;m. We will show that for n = m+ 1 we can �nd (qk)m+1k=1 for

any (m+1)� (m+1) R matrix with rki 2 [0; 1] and
Pm+1

i=1 r
k
i = k for all k = 1; :::;m+1 and i = 1; :::;m+1.

Let n = m + 1. As in the case of n = 3, we can see that for k = 1, 2, and m + 1, we can �nd qks. We

will show for all other k = 2; :::;m, we can �nd qk : S(k;Nj [ fm+ 1g)! [0; 1] with Nj = f1; :::;mg for all

(rk1 ; :::; r
k
m+1) with

Pm+1
i=1 r

k
i = k. Let i

� 2 argmaxi rki , and let rk�i� = (rk1 ; :::; rki��1; rki�+1; :::; rkm+1).

First, let �rk = rk�i� � k

jrk�i� j
. Since �rk has m arguments, we can �nd �qk : S(k;Nj)! [0; 1] with jNj j = m

which supports �rk by our induction hypothesis. Then, we can create q̂k : S(k;Nj [ fi�g) ! [0; 1] which

supports r̂k = ( �rk|{z}
�i�

; 0|{z}
i�

) by setting q̂k(S) = �qk(S) for all S 2 (k;Nj) with �qk(S) > 0, and q̂k(S) = 0 for

any other S 2 S(k;Nj [ fi�g).
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Second, let �rk�1 = rk�i� � k�1
jrk�i� j

. Since �rk�1 has m arguments and k � 2, we can �nd �qk�1 : S(k �

1; Nj) ! [0; 1] with jNj j = m which supports �rk�1 by our induction hypothesis. Then, we can create

�qk : S(k;Nj [ fi�g) ! [0; 1] which supports �rk = (�rk�1|{z}
�i�

; 1|{z}
i�

) by setting �qk(S [ fi�g) = �qk�1(S) for all

S 2 (k;Nj) with �qk�1(S) > 0, and q̂k(S) = 0 for any other S 2 S(k;Nj [ fi�g).

Clearly, rk = (rk�i� ; r
k
i�) can be written as a convex combination of r̂

k and �rk. This implies that rk can be

supported by a convex combination of q̂k and �qk. Thus, we proved the induction hypothesis for n = m+ 1.

We have completed the proof.�

Proof of Proposition 1. Thanks to the CES e¤ort aggregator function, we can solve the system of the

�rst order conditions. Substituting the above equation for each ij into Ej , we obtain

Ej =

(
nX
h=1

ahje
1��
hj

) 1
1��

=

8<:
nX
i=1

aij

"
V

 
aij

E1��j

!
max

(
nX
k=1

rki �
k(pj); 0

)# 1��
�+��1

9=;
1

1��

=

 
V

E1��j

! 1
�+��1

8<:
nX
i=1

a
�

�+��1
ij

"
max

(
nX
k=1

rki �
k(pj); 0

)# 1��
�+��1

9=;
1

1��

or

E
�

�+��1
j = V

1
�+��1

0@ nX
i=1

a
�

�+��1
ij

"
max

(
nX
k=1

rki �
k(pj); 0

)# 1��
�+��1

1A
1

1��

or

Ej = V
1
�

0@ nX
i=1

a
�

�+��1
ij

"
max

(
nX
k=1

rki �
k(pj); 0

)# 1��
�+��1

1A
�+��1
�(1��)
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Substituting the above back to eij , we have:

eij(pj) =

"
V

 
aijPn

h=1 ahje
1��
hj

!
max

(
nX
k=1

rki �
k(pj); 0

)# 1
�+��1

=

"
V aij

E1��j

max

(
nX
k=1

rki �
k(pj); 0

)# 1
�+��1

=

266664 V aij max
�Pn

k=1 r
k
i �

k(pj); 0
	

V
1��
�

�Pn
i=1 a

�
�+��1
ij

�
max

�Pn
k=1 r

k
i �

k(pj); 0
	� 1��

�+��1

��+��1
�

377775
1

�+��1

= V
1
�

a
1

�+��1
ij

�
max

�Pn
k=1 r

k
i �

k(pj); 0
	� 1

�+��1�Pn
i=1 a

�
�+��1
ij

�
max

�Pn
k=1 r

k
i �

k(pj); 0
	� 1��

�+��1

� 1
�

where �k(pj) = C(n; k)pkj (1� pj)
n�k

(k � npj) =
dPk

j

dpj
pj (1� pj), which is a change in P k(pj) when pj is

increased slightly. By using �ks and rki s, �ij can be written as:

�ij =
aijeij(pj)

1��

Ej(pj)1��

=

aijV
1��
�

a
1��

�+��1
ij [maxfPn

k=1 r
k
i �

k(pj);0g]
1��

�+��1 Pn
i=1 a

�
�+��1
ij [maxfPn

k=1 r
k
i �

k(pj);0g]
1��

�+��1

! 1��
�

V
1��
�

�Pn
i=1 a

�
�+��1
ij

�
max

�Pn
k=1 r

k
i �

k(pj); 0
	� 1��

�+��1

��+��1
�

=
a

�
�+��1
ij

�
max

�Pn
k=1 r

k
i �

k(pj); 0
	� 1��

�+��1Pn
i=1 a

�
�+��1
ij

�
max

�Pn
k=1 r

k
i �

k(pj); 0
	� 1��

�+��1

Substituting this into the above formulas, we obtain the results.�

Proof of Lemma 2. Since pj =
Ej

Ej+E�j
, we can describe eij as a function of pj explicitly given e�ij :

eij(pj) =

�
1

aij

� 1
1��

24� pj
1� pj

�1��
E1���j �

X
h6=i

ahje
1��
hj

35 1
1��
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Thus, we can rewrite gij(pj) as

gij(pj) =

�
1

aij

� �
1��

8><>:
24� pj

1� pj

�1��
E1���j �

X
h6=i

ahje
1��
hj

35
�+��1
1�� "�

pj
1� pj

�1��
E1���j

#9>=>;
and gij is de�ned over pj � pj , where

pj =

�P
h6=i ahje

1��
hj

� 1
1��

�P
h6=i ahje

1��
hj

� 1
1��

+ E�j

since candidate ij can only choose her e¤ort eij � 0.

Di¤erentiating gij(pj), we obtain

g0ij(pj) =

�
1

aij

� �
1��

�
� + � � 1
1� �

�24� pj
1� pj

�1��
E1���j �

X
h6=i

ahje
1��
hj

35
�

1�� "�
pj

1� pj

�1��
E1���j

#

� (1� �)
�

pj
1� pj

���
E1���j

1

(1� pj)2

+

�
1

aij

� �
1��

24� pj
1� pj

�1��
E1���j �

X
h6=i

ahje
1��
hj

35
�+��1
1��

(1� �)
�

pj
1� pj

���
E1���j

1

(1� pj)2

=

�
1

aij

� �
1��

8><>:
24� pj

1� pj

�1��
E1���j �

X
h6=i

ahje
1��
hj

35
�+��1
1�� "�

pj
1� pj

�1��
E1���j

#9>=>;
�

264(� + � � 1)
�

pj
1�pj

�1��
E1���j�

pj
1�pj

�1��
E1���j �

P
h6=i ahje

1��
hj

+ (1� �)

375� pj
1� pj

��1
1

(1� pj)2

=
gij(pj)

pj (1� pj)

�
(� + � � 1) 1

�ij
+ (1� �)

�

It is easy to recognize that the contents of the bracket is large when �ij and � are small. Thus, the slope of

gij(pj) is steep positive under the same condition. If the slope f 0(pj) is �atter than g0ij(pj) then the second

order condition for candidate i is satis�ed.�
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Proof of Lemma 3. A direct calculation shows

!m(pj) =
nX

k=m

C(n; k)pkj (1� pj)
n�k

(k � npj)

= pj

nX
k=m

C(n; k)
h
kpk�1j (1� pj)n�k � (n� k) pkj (1� pj)

n�k�1
i

= pj

nX
k=m

�
n!

(k � 1)! (n� k)!p
k�1
j (1� pj)n�k �

n!

k! (n� k � 1)!p
k
j (1� pj)

n�k�1
�

= mC(n;m)pmj (1� pj)
n�m+1

Calculating !m+1(pj), we obtain,

!m+1(pj) = (m+ 1)C(n;m+ 1)pm+1j (1� pj)n�m

=
(n�m) pj
m (1� pj)

!m(pj)

It is easy to see !m(pj) R !m+1(pj) if and only if npj R m.�

Proof of Lemma 4. Suppose
Pn

k=1 r
k
i �

k(pj) <
Pn

k=1 r
k
i0�

k(pj). Then by swapping (rki )
n
k=1 and (r

k
i0)
n
k=1,

the weights on the two candidates are swapped as well. Since 1��
�+��1 > 1 (convex function) and aij > ai0j ,

the desired inequality holds. We completed the proof.�

Proof of Lemma 5. Suppose not. Then, there is i0 and k0 such that rk
0

i0 2 (0; 1), and
Pn

k=1 r
k
i �

k(pj) > 0.

Since
Pn

i=1 r
k0

i = k0, there is another i00 with rk
0

i00 2 (0; 1). Without loss of generality, let i0 < i00 (i0 has a

weakly higher ability). There are two cases: (i) �k
0
(pj) > 0, and (ii) �k

0
(pj) < 0.

Consider case (i) �k
0
(pj) > 0. There are two subcases. First, suppose that �i0 > �i00 . Since R is an

optimal rule,
Pn

k=1 r
k
i0�

k(pj) �
Pn

k=1 r
k
i00�

k(pj) holds (Lemma 3). Then, since 1��
�+��1 > 1, increasing r

k0

i0 by

reducing rk
0

i00 by the same amount will improve Ej . This is a contradiction. Second suppose �i0 = �i00 . In this

case, without loss of generality assume that
Pn

k=1 r
k
i �

k(pj) �
Pn

k=1 r
k
i0�

k(pj) holds. Then, since 1��
�+��1 > 1,

increasing rk
0

i0 by reducing r
k0

i00 by the same amount will improve Ej . Again, this is a contradiction.

Next consider case (ii) �k
0
(pj) < 0. The argument is totally symmetric. When �i0 > �i00 , decreasing
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rk
0

i0 by increasing r
k0

i00 by the same amount will improve Ej . Similarly, when �i0 = �i00 , decreasing rk
0

i0 by

increasing rk
0

i00 by the same amount will improve Ej . We have completed the proof.�

Proof of Proposition 7. Under deterministic rules, monotonicity requires a rule to be a list rule. That

is, the optimization involves only assigning candidates to a list. The problem boils down to �nd m : Nj !

f1; :::; ng to maximize

max
Rdm

nX
i=1

�ij

"
nX
k=1

rki �
k(pj)

# 1��
�+��1

= max
m

nX
i=1

�ij
�
Mm(i)

� 1��
�+��1

By lettingMm(i) =
�
Mm(i)

� 1��
�+��1 , we haveMm(i) � Mm(i0) () Mm(i) � Mm(i0). Thus, the solution to

above is again m� : Nj ! f1; :::; ng since �1j � ::: � �nj . We have completed the proof.�

In the rest of the appendix, we provide an equilibrium analysis for J party case. In order to see how

a party�s rule choice a¤ects equilibrium probability of winning, we analyze how equilibrium probability

distribution responds to an increase in a party member�s ability. Then, party j�s aggregated e¤ort is written

as

Ej =

8><>:V
0@ nX
i=1

�ij

"
max

(
nX
k=1

rki �
k(pj); 0

)# 1��
�+��1

1A
�+��1
1��

9>=>;
1
�

;

An equilibrium is described by the following system of equations:4

0BBBBBBBBBBBBBB@

p1

...

pj

...

pJ

1CCCCCCCCCCCCCCA
=

0BBBBBBBBBBBBBB@

E1(p1)
E1(p1)+E�1(p�1)

...

Ej(pj)
Ej(pj)+E�j(p�j)

...

EJ (pJ )
EJ (pJ )+E�J (p�J )

1CCCCCCCCCCCCCCA
4This analysis is valid for any prize allocation rule and for any functional form of the e¤ort aggregator function.
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We will consider a comparative static exercise of increasing �ij . We drop the last equation from the system

since
PJ

j=1 pj = 1. Totally di¤erentiating the system, we obtain

0BBBBBBBBBBBBBB@

dp1

...

dpj

...

dpJ�1

1CCCCCCCCCCCCCCA
=

0BBBBBBBBBBBBBB@

@E1
@p1

E � E1
@E1
@p1

E2 � � � �
E1

@Ej
@pj

E2 � � � �
E1

@EJ�1
@pJ�1
E2

...
. . .

...
...

�Ej
@E1
@p1

E2 � � �
@Ej
@pj

E �
Ej

@Ej
@pj

E2 � � � �
Ej

@EJ�1
@pJ�1
E2

...
...

. . .
...

�EJ�1
@E1
@p1

E2 � � � �
EJ�1

@Ej
@pj

E2 � � �
@EJ�1
@pJ�1
E �

EJ�1
@EJ�1
@pJ�1
E2

1CCCCCCCCCCCCCCA

0BBBBBBBBBBBBBB@

dp1

...

dpj

...

dpJ�1

1CCCCCCCCCCCCCCA
+

0BBBBBBBBBBBBBBBBBBBBBB@

0

...

0

@Ej
@�ij

0

...

0

1CCCCCCCCCCCCCCCCCCCCCCA

d�ij

Since
@Ej
@pj

E �
Ej

@Ej
@pj

E2 = 1
E
@Ej
@pj

� pj
E
@Ej
@pj
, we have

0BBBBBBBBBBBBBB@

1� 1
E
@E1
@p1

+ p1
E
@E1
@p1

� � � p1
E
@Ej
@pj

� � � p1
E
@EJ�1
@pr�1

...
. . .

...
...

pj
E
@E1
@p1

� � � 1� 1
E
@Ej
@pj

+
pj
E
@Ej
@pj

� � � pj
E
@EJ�1
@pJ�1

...
...

. . .
...

pJ�1
E

@E1
@p1

� � � pJ�1
E

@Ej
@pj

� � � 1� 1
E
@EJ�1
@pJ�1

+ pJ�1
E

@EJ�1
@pJ�1

1CCCCCCCCCCCCCCA

0BBBBBBBBBBBBBB@

dp1

...

dpj

...

dpJ�1

1CCCCCCCCCCCCCCA
=

0BBBBBBBBBBBBBBBBBBBBBB@

0

...

0

@Ej
@�mj

0

...

0

1CCCCCCCCCCCCCCCCCCCCCCA

d�mj

Let �i =
1
E
@Ej
@pj

=
pj
Ej

@Ej
@pj

be party i�s aggregated e¤ort elasticity of its probability of winning. We can prove

the following lemma.
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Lemma A1. Suppose that candidate i�s ability is increased slightly. Then, we have

dpj
d�ij

=

24�1� �j�+ (1� pj) �jPJ�1
i=1; i 6=j

�
(1�pi)�i
1��i

�
35�1 @Ej

@�mj

where @Ej
@�mj

= A
�
max

�Pn
k=1 r

k
i �

k(pj); 0
	� 1��

�+��1 for A > 0.

This technical lemma provides two important implications when the contents of the bracket is positive.

First, an increase in �ij increases party j�s winning probability as long as she makes positive e¤ort in

equilibrium, which is dictated by the sign of candidate i�s incentive term,
Pn

k=1 r
k
i �

k(pj). Second, the party

can increase Ej by adjusting q = (qk)nk=1 to shift weights
Pn

k=1 r
k
i �

k(pj) from low ability candidates to high

ability candidates.
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Proof of Proposition 11. Let the matrix in the left-hand side be D. Then, the determinant of D is

jDj =

��������������������

1� 1
E
@E1
@p1

+ p1
E
@E1
@p1

� � � p1
E
@Ej
@pj

� � � p1
E
@EJ�1
@pr�1

...
. . .

...
...

pj
E
@E1
@p1

� � � 1� 1
E
@Ej
@pj

+
pj
E
@Ej
@pj

� � � pj
E
@EJ�1
@pJ�1

...
...

. . .
...

pJ�1
E

@E1
@p1

� � � pJ�1
E

@Ej
@pj

� � � 1� 1
E
@EJ�1
@pJ�1

+ pJ�1
E

@EJ�1
@pJ�1

��������������������

=

����������������������������

1� 1
E
@E1
@p1

0 0 0 � p1
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
0 1� 1

E
@E2
@p2

0 0 � p2
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
...

. . .
...

...

0 0 1� 1
E
@Ej
@pj

0 � pj
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
...

. . .
...

...

0 0 � � � 0 � � � 1� 1
E
@EJ�2
@pJ�2

�pJ�2
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
pJ�1
E

@E1
@p1

pJ�1
E

@E2
@p2

pJ�1
E

@Ej
@pj

pJ�1
E

@EJ�2
@pJ�2

1� 1
E
@EJ�1
@pJ�1

+ pJ�1
E

@EJ�1
@pJ�1

����������������������������

=

����������������������������

1� 1
E
@E1
@p1

0 0 0 � p1
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
0 1� 1

E
@E2
@p2

0 0 � p2
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
...

. . .
...

...

0 0 1� 1
E
@Ej
@pj

0 � pj
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
...

. . .
...

...

0 0 � � � 0 � � � 1� 1
E
@EJ�2
@pJ�2

�pJ�2
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
pJ�1
E

@E1
@p1

pJ�1
E

@E2
@p2

pJ�1
E

@Ej
@pj

pJ�1
E

@EJ�2
@pJ�2

1� 1
E
@EJ�1
@pJ�1

����������������������������

+

����������������������������

1� 1
E
@E1
@p1

0 0 0 � p1
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
0 1� 1

E
@E2
@p2

0 0 � p2
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
...

. . .
...

...

0 0 1� 1
E
@Ej
@pj

0 � pj
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
...

. . .
...

...

0 0 � � � 0 � � � 1� 1
E
@EJ�2
@pJ�2

�pJ�2
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
pJ�1
E

@E1
@p1

pJ�1
E

@E2
@p2

pJ�1
E

@Ej
@pj

pJ�1
E

@EJ�2
@pJ�2

pJ�1
E

@EJ�1
@pJ�1

����������������������������
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=
J�1Y
i=1

�
1� 1

E

@Ei
@pi

�
+
J�1Y
i=1

�
1� 1

E

@Ei
@pi

� J�1X
i=1

pi
E
@Ei
@pi

1� 1
E
@Ei
@pi

=
J�1Y
i=1

(1� �i)
J�1X
j=1

�
1 +

pj�j
1� �j

�
;

where �i =
1
E
@Ej
@pj

=
pj
Ej

@Ej
@pj

is ith party�s aggregated e¤ort elasticity of its probability of winning. If we

impose stability on equilibrium, then it is natural to assume �i 2 (0; 1) for all i = 1; :::; J . Thus, under

stability, jDj > 0 is assured. Now, we can conduct a comparative static analysis:

dpj
d�mj

=
1

jDj

��������������������

1� 1
E
@E1
@p1

+ p1
E
@E1
@p1

� � � 0 � � � p1
E
@EJ�1
@pJ�1

...
. . .

...
...

pj
E
@E1
@p1

� � � @Ej
@�mj

� � � pj
E
@EJ�1
@pJ�1

...
...

. . .
...

pJ�1
E

@E1
@p1

� � � 0 � � � 1� 1
E
@EJ�1
@pJ�1

+ pJ�1
E

@EJ�1
@pJ�1

��������������������

=
1

jDj

����������������������������

1� 1
E
@E1
@p1

0 0 0 � p1
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
0 1� 1

E
@E2
@p2

0 0 � p2
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
...

. . .
...

...
...

pj
E
@EJ�1
@pJ�1

pj
E
@EJ�1
@pJ�1

@Ej
@�mj

pj
E
@EJ�1
@pJ�1

pj
E
@EJ�1
@pJ�1

...
...

. . .
...

...

0 0 � � � 0 � � � 1� 1
E
@EJ�2
@pJ�2

�pJ�2
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
pJ�1
E

@E1
@p1

pJ�1
E

@E2
@p2

0 pJ�1
E

@EJ�2
@pJ�2

1� 1
E
@EJ�1
@pJ�1

+ pJ�1
E

@EJ�1
@pJ�1

����������������������������
=

@Ej
@�mj

jDj

J�1Y
i=1;i 6=j

(1� �i)
J�1X

i=1;i 6=j

�
1 +

pi�i
1� �i

�
> 0
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Thus, by Cramer�s rule, we have

dpj
d�mj

=

QJ�1
i=1; i 6=j (1� �i)

PJ�1
i=1; i 6=j

�
1 + pi�i

1��i

�
@Ej
@�mjQJ�1

i=1 (1� �i)
PJ�1

i=1

�
1 + pi�i

1��i

�
=

PJ�1
i=1

�
1 + pi�i

1��i

�
� 1� pj�j

1��j�
1� �j

�PJ�1
i=1

�
1 + pi�i

1��i

� � @Ej
@�mj

=

QJ�1
i=1; i 6=j (1� �i)

PJ�1
i=1; i 6=j

�
1 + pi�i

1��i

�
QJ�1
i=1 (1� �i)

hPJ�1
i=1; i 6=j

�
1 + pi�i

1��i

�
+ 1 +

pj�j
1��j

i � @Ej
@�mj

=
1�

1� �j
� �
1 +

1+
pj�j
1��jPJ�1

i=1; i6=j

�
1+

pi�i
1��i

�� �
@Ej
@�mj

=

24�1� �j�+ (1� pj) �jPJ�1
i=1; i 6=j

�
(1�pi)�i
1��i

�
35�1 � @Ej

@�mj

Note that for all m = 1; :::; n and all j = 1; :::; J , we have

@Ej
@�mj

=
� + � � 1
� (1� �) Ej �

!j(m)Pn
m0=1 �m0j!j(m0)

> 0:

Thus, we obtained natural comparative static results.�
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