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Abstract : We empirically examine the distortionary impact of an attribute-based regulation

on technical change, in the context of new product launches in the Japanese automobile

industry. Under the Japanese regulation, fuel economy standards are a step function of

curb weight, and their stringency levels vary substantially over time across weight bins of

di¤erent sizes. We explicitly exploit these quasi-experimental variations in the di¤erence-in-

di¤erence-in-di¤erences framework to control for confounders that may be correlated with

regulatory assignment. We �nd strong evidence in support of our theoretical prediction: An

attribute-based regulation distorts technical change when it creates trade-o¤s between the

targeted and secondary attributes that di¤er from technically feasible trade-o¤s. We also

demonstrate that bunching behavior reported elsewhere was evident only in reporting to the

government, but not in product o¤erings in the market.
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1. Introduction

Since Porter (1991), economists have long been interested in empirically examining the

e¤ect of environmental regulation on technical change [e.g., Newell, Ja¤e, and Stavins (1999);

Popp (2002); and Calel and Dechezleprêtr (2016)]. The literature to date, however, has

primarily focused on the direct (or intended) e¤ect of environmental regulation: i.e., the

e¤ect of a regulation-induced increase in the implicit price of pollution on technical change

in sectors that use pollution as a factor of production [Copeland and Taylor (1994)]. Real-

world environmental regulation, however, often entails design features that o¤er �loopholes�

that may not be necessarily ideal in �rst-best settings [Anderson and Sallee (2011), Sallee

and Slemrod (2012), and Ito and Sallee (forthcoming)]. These design features may create

misguided incentives for innovation, the e¤ects of which can potentially persist over time via

the market size e¤ect of technical progress [Acemoglu (2002), Acemoglu and Linn (2004),

Acemoglu et al. (2012), and Aghion et al. (2016)].

We empirically examine �attribute-basing�in fuel economy regulation for automobiles as a

primary example of such (unintended) e¤ect of regulatory loopholes on technical change. Fuel

economy regulation is often attribute-based (Ito and Sallee, forthcoming): i.e., it relies on a

secondary attribute that is not the direct target of the regulation. For example, fuel economy

standards are a function of vehicle footprint (the U.S.) or curb weight (Japan and the EU).1

In theory, an attribute-based regulation can distort �rm�s incentives in product o¤erings,

for it may create trade-o¤s between the attributes that di¤er from �rm�s technically feasible

trade-o¤s. This distortion in product o¤erings can also translate into distorted technical

change because �rms may need to choose the level of technical upgrade in either of these

attributes when the attributes of the products chosen to be o¤ered lie outside the currently

feasible technology set.2

To test this economic prediction, we exploit the unique quasi-experimental setup cre-

ated due to the Japanese weight-based fuel economy regulation. Under the regulation, the

fuel economy standards are a step function (or notched function) of curb weight: i.e., ve-

hicles are classi�ed into discrete weight bins with varying levels of fuel economy standards.

Importantly, when revising the standards in 2007, the regulatory authority chose narrower

weight bins, creating two or more weight bins within each of the old weight segments. Con-

sequently, we have substantial variation, in terms of stringency and width, across weight

bins. We translate this variation into the variation in attribute trade-o¤s by computing the

1To be precise, the EU standards target carbon emissions per kilometer of driving distance rather than
fuel economy per se, but the former is a direct function of the former.

2By design, fuel economy regulation requires �rms to o¤er vehicles outside their currently feasible tech-
nology set.
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�slope�of each weight bin, de�ned as a decrease in the fuel economy standard per unit of

weight increase. These slopes of the regulation are a convenient measure of the attributes

trade-o¤s imposed by the fuel economy regulation. In principle then, we should be able to

test our hypothesis by comparing the outcomes of car models assigned to di¤erent regulatory

slopes. The key here is how to control for vehicle-level unobservables as well as market-level

confounders.

To that end, we employ a di¤erence-in-di¤erence-in-di¤erences (DDD) research design,

exploiting the variation in regulatory slope and stringency across weight bins. Our control

structures are three-hold: (a) cross-sectional with models assigned to low-slope weight bins

as a control group, (b) temporal with the pre-2007 period as a control period, and (c)

within-group cross-sectional with models assigned to non-stringent segments as an additional

control. This last control serves two purposes. First, our estimate would be unbiased under a

milder assumption than the conventional common-trend assumption. Second, it allows us to

compare outcomes of comparable groups that faced roughly the same regulatory stringency,

but di¤erent regulatory trade-o¤s. This way, we are able to attribute the di¤erence in

outcomes solely to the di¤erence in attribute trade-o¤s (rather than in stringency levels

per se) created under the fuel economy regulation. We implement this DDD strategy using

vehicle characteristics data for all domestic passenger vehicles o¤ered between 2004 and 2012,

excluding electric, diesel, and hybrid cars as well as those launched in the interim regulatory

period 2007-2009.

Our DDD estimate indicates a sizable, statistically signi�cant distortionary e¤ect on

technical progress. The TPF for those assigned to high-slope weight bins would have lied

strictly above the observed TPF if they had not been assigned to these weight bins. With

the Cobb-Douglas speci�cation for the TPF, this translates to a slowdown of fuel economy

improvements by roughly 20 percentage points. The economic signi�cance of this impact

can be cast in light of the work by Knittel (2011). Using variant-level data from the U.S.

automobile industry, Knittel estimates that U.S. passenger cars could have improved fuel

economy by roughly 60% over the 25-year period between 1980 and 2006 if their curb weights

(and other attributes) had stayed at the 1980 level. Employing a similar exercise along with

our DDD estimate suggests that the Japanese passenger cars would have improved fuel

economy by roughly 60% just over the 8-year period between 2004 and 2012 if they had not

been assigned to the high-slope bins and their vehicle weight had stayed the same at the

2004 level � the size of technical progress comparable to that over the 25-year period in the

U.S.

Our results have important implications for attribute-basing in technology regulation

as well as for other institutional arrangements that utilize several attributes for standard-
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setting. Energy e¢ ciency regulations around the world are often attribute-based. For exam-

ple, fuel economy regulations in China, EU, and Japan as well as energy e¢ ciency labels and

standards for buildings, consumer electronics, and home appliances have similar features.

Attribute-based regulations are often preferred over uniform regulations in the regulatory

arena for e¢ ciency as well as equity concerns.3 Our analysis demonstrates that design fea-

tures of such technology regulations matter, not only for product di¤erentiation but also for

technical progress. Our policy advice in this case is clear. On one hand, to assure no bias

in technical progress, regulators need to make regulatory trade-o¤s between targeted and

secondary attributes as close as technically feasible trade-o¤s. On the other hand, regulators

could manipulate the regulatory trade-o¤s in a way to favor or disfavor a particular direction

for technical progress. This advice is useful both when credit trading is available and when

it is not. Furthermore, our results can be cast more broadly in light of other institutional

arrangements that use two or more attributes for standard-setting. For example, admissions

screening for secondary and higher education often entails trade-o¤s between test scores on

multiple subjects. In some cases, only the overall test scores matter so that a test score on

one subject (say, English) can be traded one-to-one with a test score on another subject (say,

Mathematics). In other cases, the passing test score for one subject may be a function of the

test scores on other subjects. The admissions standards then e¤ectively create trade-o¤s for

test takers. By manipulating these trade-o¤s, institutions can favor or disfavor the level of

students�e¤orts toward one subject over others. Other examples include multiple-attribute

considerations in auctions, hiring, and other business contracts.

This manuscript nicely complements the large literature investigating the e¤ects of reg-

ulatory �loopholes�(e.g., Anderson and Sallee, 2011; Sallee and Slemrod, 2012; and Ito and

Sallee, forthcoming). While they di¤er in their research focus and design, they all provide

evidence that �rms do exploit the loopholes when they reduce (marginal) costs of compli-

ance. The regulatory loopholes can take a variety of forms, including notches (e.g., Sallee

and Slemrod, 2012), a special exemption (e.g., Anderson and Sallee, 2011), and a secondary

attribute (e.g., Ito and Sallee, forthcoming), of which taxes/subsidies or technology stan-

dards are scheduled. Sallee and Slemrod (2012) examine a notched schedule in the U.S. Gas

Guzzler Tax and show that automakers manipulated fuel economy ratings so as to qualify for

lower tax rates. Our empirical strategy does exploit a similar behavioral response we observe

for the notched schedule of the Japanese weight-based fuel economy standards. Our point,

3For example, engineering estimates suggest that fuel economy ratings of vehicles decline with vehicle
footprints. The U.S. CAFE standards are calibrated based upon this property. As a result, the marginal
costs of compliance with the standards are likely to be close to each other over all vehicle footprint levels.
Furthermore, precisely because the costs of compliance are similar across segments, the footprint-based
standards are intended to avoid unequal distribution of costs on �rms and consumers.
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however, is that such an incentive to exploit the notches is constrained by trade-o¤s that

are technically feasible, and hence, the variation in the trade-o¤s can be used to identify the

distortionary impact of the regulatory loophole. Anderson and Sallee (2011) estimate the

marginal cost of compliance with the U.S. CAFE regulation, exploiting the fact that �rms

can e¤ectively relax the CAFE constraint by equipping a vehicle with �exible-fuel capacity,

and applying insight that �rms equalize their marginal costs of compliance across di¤erent

compliance strategies. Our results add to their discussion another important dimension:

Such distortion may have an second-order impact on technical change.

Our work is most closely related to the work by Ito and Sallee (forthcoming). They

examine attribute-based regulations both theoretically and empirically, using model-level

data on Japanese passenger cars. They demonstrate that signi�cant bunching occurred at

the weight cuto¤s and that the bunching resulted in a large welfare loss. Our work o¤ers

three important contributions related to their work. First, while Ito and Sallee estimate

the incidence of bunching in the vehicle weight distribution, we focus on its distortionary

impact on the technical progress in trade-o¤s between fuel economy and vehicle weight.

This di¤erence is important since �bunching�in the weight distribution can occur without

any distortion in technical frontiers. In this sense, their estimated welfare loss due to the

regulation is only of the �rst order impact; Ours o¤er evidence on the second-order impact

on technical change.

Second, we construct a new data set using the web catalogue of one of the largest car

dealers, Carsensor, in Japan. The catalogue data are reported at the variant level far �ner

than those used in Ito and Sallee. They used the fuel economy data published each year by

the Ministry of Land, Infrastructure, and Transportation (MLIT). The MLIT data report

vehicle attributes only at the model/con�guration level, with only the range (i.e., minimum

and maximum) of curb weights for most of the vehicle con�gurations. The weight range

can be as large as 200 kg, averaging at around 35 kg. In contrast, the web catalogue

contains all vehicle o¤erings at the variant level and each vehicle variant is reported with

an exact and unique curb weight. We demonstrate that the incidence of bunching largely

disappears once we construct the weight distribution using these actual vehicle o¤erings. Our

analysis suggests that what Ito and Sallee �nd is most likely the evidence of manipulation

by automakers in reporting their vehicle weight ranges, but not necessarily the evidence of

weight manipulation in their actual vehicle o¤erings. We do, however, report on the evidence

in support of Ito and Sallee � our results indicate that vehicle models assigned to high-slope

weight bins increased their weights more than those assigned to low-slope bins.

Third, our three-fold control structures enable us to isolate the impact of the fuel economy

regulation from that of the tax incentives o¤ered during the same study period. During the
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study period (2009-2012), the tax incentives were, in fact, based on the old 2001 standards,

not the new 2007 standards. Hence, the automakers faced double standards during this

period in their product o¤erings: the 2001 standards for eco-car subsidy/tax credits and

the 2007 standards for the fuel economy regulation. We demonstrate that the incidence of

bunching in the MLIT reporting data indeed correspond to the weight cuto¤s of the 2001

standards, instead of the 2007 standards. Unlike Ito and Sallee, we use this regulatory setup

explicitly in our identi�cation � by constructing comparable subsamples within each of the

2001 weight categories, we get around the confouding e¤ect of tax incentives, which should

a¤ect these subsamples the same way.

The paper proceeds as follows. The next section revisits the theory of attribute-based

regulation, and sets up our empirical research, introducing the concept of technology possi-

bility frontiers. Section 3 describes the regulatory background, introduces our data set, and

highlights the distinction between ours and the data used in Ito and Sallee (forthcoming).

Section 4 discusses our identi�cation and estimation strategy. The results are discussed in

Section 5. Section 6 discusses the welfare implications of our empirical �ndings, highlighting

important di¤erences from the previous studies. The last section concludes.

2. Empirical Framework

2.A. Revisiting the Theory of Attribute-based Regulation

Using a static model of attribute-based regulation, Ito and Sallee (forthcoming) demon-

strate that (1) in the presence of (e¢ cient) credit trading, no attribute-basing (i.e., a �at

standard) is optimal, but (2) some attribute-basing (i.e., a sloped standard) is optimal in its

absence. Most importantly, their model clari�es that it is not optimal to perfectly equalize

the marginal costs of compliance, highlighting the importance of striking a balance between

marginal cost harmonization versus bias minimization in �rm�s attribute choice.

We introduce the concept of a technology possibility frontier (TPF) into the analytical

framework. The concept is somewhat implicit in Ito and Sallee and other related literature,

yet has not been explicitly addressed. The concept originates from Knittel�s work (2011),

which shows that technical trade-o¤s exist between fuel economy and other vehicle attributes

for automobiles in the U.S. market and that the technical trade-o¤s change over time as

�rms� technologies improve over time. Indeed, we see a similar, remarkable shift in the

technical trade-o¤s in the Japanese automobile industry over the last 25 years. In 1990, the

(unweighted) average fuel economy of all Japanese passenger cars was roughly 13.1 km/L.

In 2015, that number increased by more than 70% to 22.3 km/L. This improvement in fuel
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economy did not come from downsizing vehicle weight. Indeed, the average curb weight

increased by roughly 10% from 1,169 kg in 1990 to 1,293 kg in 2015. Following Knittel

(2011), Figure 1 exhibits technical trade-o¤s between fuel economy and curb weight for
Toyota�s passenger vehicles o¤ered between 1990 and 2015, demonstrating its substantial

technical change over the last 25 years.

From this empirical regularity, it seems natural to de�ne the technology possibility set

(TPS) as the set of technically feasible trade-o¤s between product attributes, and each �rm

can choose its vehicle o¤erings only from this set in the short run. The TPF is then the

upper envelope of the TPS. Note that the TPF does not describe technical trade-o¤s that

induce the same production cost or pro�t level.4 The TPF, instead, gets at attributes trade-

o¤s that are technically feasible when technical inputs are used most e¢ ciently given the

technology capital. Hence, the TPF is analogous in spirit to the conventional production

possibility frontier (PPF). While the PPF is a set of (most e¢ cient) input combinations that

are feasible to produce one unit of a product, the TPF is a set of (most e¢ cient) attribute

combinations that are feasible to design a product. Of course, �rms may design a product

that lies strictly below this frontier, just like �rms may produce a product below the PPF.

But under some regularity condition, no pro�t-maximizing �rms would design a product

that lies in the interior of the technology possibility set. Therefore, the TPF in any given

period can be estimated using its vehicle o¤erings because demand-side factors (e.g., fuel

prices, preferences, and tax incentives) can only a¤ect the locations of these o¤erings along

the TPF in the short run. Technical change can then be identi�ed by changes in either the

shape or the level of the TPF. In what follows, we demonstrate the importance of the TPF

in understanding the distortionary impact of attribute-based regulation.

Our model follows the empirical industrial organization literature, which substantiates the

importance of imperfect competition, not only for markup pricing, but also for endogenous

product choice and technology upgrade. Consider an automobile industry consisting of M

�rms. Each �rmm produces a unique product, which we treat as �xed. We assume away the

multi-product nature of the automobile manufacturer to maintain our focus. Each product

can be fully described by two-dimensional product attributes (f; w), where f represents �fuel

economy�and w represents �vehicle weight� for ease of interpretation. Consider the two-

period decision of �rm m choosing the next-period product attributes (f 1; w1) conditional

on the current-period product attributes (f 0; w0). All of the economic rents that result from

the current-period choice (f 0; w0) are treated as �sunk�at the time of choosing next-period

4Knittel (2011) de�nes technically feasible trade-o¤s as the iso-cost curve in the attribute space. However,
marginal cost of production (or pro�t per unit) should, in principle, di¤er substantially along this technology
frontier, as evident in studies that estimate product-level marginal costs in Japan or the U.S. [see Konishi
and Zhao (2017) on the former and Berry, Levinsohn, and Pakes (1995) on the latter].
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attributes (f 1; w1).

Suppose that �rms compete in three steps. In the �rst stage, each �rm chooses the level

of investment in technical capital s � 0, which shifts up the technology possibility frontier:

f = T (w; s):

In the second stage (at the beginning of the next period), they compete in product choice

(f; w). Then in the third stage, �rms compete in prices in the Bertrand manner given the

consumer demand and the second-stage product pro�les ffm; wmgm=1;:::;M . Let us simplify
our analysis by assuming that a unique (pure-strategy) Bertrand-Nash equilibrium of the

third-stage price competition exists.5 We describe the third-stage product-speci�c pro�t

for each �rm m by �(f; w; 
) given 
;where 
 denotes a collection of other �rms�product

strategies. Note that the cost of producing a product with attributes (f; w) is already part

of �. Then in the second stage, each �rm m chooses (f; w) so as to maximize:

�(f; w; 
)� c(s); subject to f � T (w; s);

where c is the �xed cost of investment, which is sunk at the time of choosing product

attributes. The current-period technology capital is normalized to zero, so the level of

investment is conveniently identi�ed with the next-period technology capital s. The regulator

sets an attribute-based regulation R, which mandates f � R(w), in stage �zero�before �rms
engage in this three-stage competition. Our interest lies in understanding the distortionary

impact of attribute-based regulation on �rm�s choice on (f; w) and s.

To that end, we make further simplifying assumptions on �; c; T andR. (A1) The technol-

ogy possibility function T is (locally) linear and strictly decreasing in w, with @2T=@w@s = 0.

That is, technical upgrade does not a¤ect the shape of the TPF. (A2) The pro�t function

� is increasing in both f and w at the decreasing rate, and the iso-pro�t curve f(f; w) :
�(f; w; 
) = ag is strictly convex in (f; w). (A3) The cost of technical upgrade c is increas-
ing in s at the increasing rate. (A4) R is (locally) linear and decreasing in w.

The linearity of the TPF and the regulatory constraint in (A1) and (A4) is not as re-

strictive as it may appear. As discussed in the subsequent sections [and in Knittel (2011)],

linear regression is surprisingly well �t to observed attributes in logged values. Moreover,

�rms are likely to face approximately linear technical trade-o¤s in the neighborhood of the

pre-existing car model. In theory, it is known that (A2) may not hold in general. With-

out it, however, one cannot solve for or characterize the equilibrium. Assumption (A3) is

5We are fully aware that, unfortunately, such a unique Nash equilibrium may not exist. Nonetheless, we
make this assumption to focus on the essence of our analysis.

8



a standard regularity condition. Under these assumptions, we obtain the proposition that

characterizes the distortionary nature of attribute-based regulation (its proof is available in

the appendix).

Proposition: Suppose (A1)-(A4) hold. Then an attribute-based regulation does not
distort �rms�incentives neither on technical upgrade s nor attribute choice (f; w) if and only

if the slope of the regulatory constraint is the same as that of the technology possibility

frontier. The �rms have incentives to increase vehicle weight w if the slope of the regulatory

constraint is larger than that of the technology possibility frontier and to decrease vehicle

weight w if the reverse holds. The �rms have incentives to invest less in technology capital

s in either case.

The proposition states that (1) not every attribute-basing is distortionary, but (2) the

distortionary incentives depend on the slope of the regulation relative to that of TPF, and (3)

the distortion translates into the distortion in technical change. Figure 2 helps us illustrate
the idea behind this proposition. The current product o¤ering, denoted O, is on the solid

black line, which represents the current-period TPF. The blue dashed lines represent �rm�s

third-stage iso-pro�t curves, holding 
. Without the regulation, any pro�t-maximizing �rm

should choose (f 1; w1), labeled A, at the tangency between an iso-pro�t curve and the next

period�s TPF (the solid green line). Hence, (f 1; w1) is uniquely pinned down given s and


. The �rm should choose the level of technical upgrade s such that the marginal cost of

doing so equals the marginal increase in pro�ts. Now, let us see the impact of the regulation.

Let the solid red line represent the attribute-based regulation. We draw the case where R is

steeper than T , and hence, by regulatory design, R must cut through T from the above. The

�rm must choose the product attributes (f 1; w1) that lie on R. (This assumes the regulation

is binding, which would not be the case if the intersection B lies to the left of A, in which

case the �rm would continue to choose A). Let pick a point B that lies on the intersection

of R and the TPF that would be realized under no regulation. It is easy to see that the

�rm would never pick this attribute bundle B under the regulation. To see this, let us draw

another iso-pro�t curve that goes through B. Then by construction, this iso-pro�t curve lies

below the iso-pro�t that goes through A, and hence. This means that bundle B achieves

lower pro�ts at the same cost of technical upgrade. In other words, the constrained pro�t is

always lower at every technology level s. This lowers the incentive to invest in s. The �rm

must achieve the optimal bundle with lower investment in s while also meeting the regulation

(i.e., along R). It is clear then that such a bundle lie to the right of A, like C. The reverse

holds when R is �atter than the TPF.
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2.B. From Theory to Empirics

Our approach to testing the theory presented in the previous subsection is primarily

data-driven. Japan�s fuel economy standards are set at a variant level whereas their enforce-

ment is based on sales-weighted averages at a manufacturer level (see Subsection 3.A. for
a more detailed account of the regulation). Since the regulation is enforced at the manu-

facturer level, we would ideally model manufacturers�strategic incentives to o¤er di¤erent

variants of di¤erent car models in di¤erent years explicitly, fully endogenizing both pric-

ing and product choice (e.g., Seim, 2006; Hitsch, 2006, Fan, 2013, Crawford et al., 2015,

Wollmann, forthcoming). However, such structural modeling of endogenous product choice

requires demand-side information that is far more detailed than we have at hand. Since

we are interested in the e¤ect of the fuel economy standards that are imposed at a variant

level, we need demand-side information that can vary at a variant level. With more than

1,000 variants o¤ered each year, we lack enough sources of variation to separately identify

the in�uences of variant-level demand factors from those of the regulation in the structural

framework.

We take a simpler approach, and focus on the reduced-form estimate of the impact of

the standards on �rms�technology possibility frontiers, exploiting policy-induced variations

across weight segments over time in the di¤erence-in-di¤erence-in-di¤erences (DDD) research

design. Following Knittel (2011) (in spirit), we de�ne TPF as follows. Fuel economy f of

vehicle variant i of manufacturerm of vehicle model j in time t is a function of vehicle weight

w, a vector of other observable product attributes x, and a variable s that expresses the level

of technology capital:

fimt = T (wimt;ximt; sjmt): (1)

The function is allowed to vary by �rm and year to incorporate di¤erences in technical

e¢ ciency across �rms and over time.

This empirical model relies on three identifying assumptions. First, we are assuming that

in the short run (i.e., in each year), �rms can only choose variants of their car models on their

technology possibility curves given their technology capital and engine type. This assumption

enables us to recover the TPF for each manufacturer in each year from the variant-level

vehicle characteristics data without the need to explicitly model �rm�s or consumer�s choices.

Empirical regularities found in Knittel (2011) and our data seem to support the validity of

this assumption. Given a combustion engine type (i.e., diesel, electric, fuel, and hybrid),

the technical attributes trade-o¤s seem rather stable over time � the curves that represent

the technical trade-o¤s show persistent patterns over time, with changes in the level of the

curves over time.
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Our second assumption is that technology capital exists at the car-model level. Firms

often delegate development of a car model to a speci�c group of engineers in the form of a di-

vision or a team, and the group of engineers apply and accumulate the knowledge/technology

capital in designing the car. Hence, �rm�s technology frontier can vary at the model level, at

least in the short run, though the technology capital acquired through developing a model

will be shared across car models that share the same platform in the intermediate term,

and eventually across all car models within the �rm in the long run. Toyota, for example,

developed a hybrid system through development of its famous Prius (debut in 1997), yet it

was only four years later Toyota used that system in another car model, Estima, in 2001. For

the same token, we presume that it generally takes a few years for a superior fuel combustion

system to be applied in other car models. We emphasize here this assumption neither imply

nor require that technology capital does not exist at the �rm level or segment level. All we

require is the existence of some technology capital at the model level.6 Given this nature of

technical progress, we posit that �rms choose the level of model-speci�c technology capital

in response to model-level regulatory assignment. For example, if a �rm sees that many

variants of a car model fall in a very tight fuel economy standard, then it makes variant-level

choices for that car model in the subsequent period. Such a �rm may decide to eliminate

all grades for the car model entirely, or change the characteristics of car grades, or re-design

the platform, or o¤er a completely new model under a di¤erent name.

Third, the model presented in Subsection 2.A. tells us that attribute-basing leads to
distortion in product choice and technical change, as long as the regulatory trade-o¤s between

attributes di¤er from technically feasible trade-o¤s �rms face. In other words, the distortion

occurs both when the regulatory slope is higher and when it is lower than the TPF slope.

This poses a challenge in identifying the regulatory impact because we do not observe the

TPF in the absence of regulation, and hence, we cannot directly compare the regulatory

slope with the TPF slope. In the case of automobiles, however, it is known to be extremely

costly for the �rm to decrease weight given the vehicle�s platform design. Hence, in the

present context, we assume that the distortionary incentives are unidirectional. Hence, the

hypothesis to be tested in our empirical context is, The weight-based fuel economy regulation

distorts technical change if the regulatory slope is higher than the slope of the (average) �rm�s

TPF. This unidirectional nature helps us use policy-induced variations for identifying the

distortionary impact of the regulation.

Under these assumptions, we should be able to identify the impact of the fuel economy

6Nowadays, it is very common for automakers to share technologies and platform designs across di¤erent
models. Hence, technology capital does exists at a higher level than the model level. However, there is still
likely to be a di¤erence between the level of technology capital at the model level versus that at the �rm or
the shared-model level. That di¤erence is all that is required for our empirical strategy.
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regulation, in principle, by comparing di¤erences in the observed TPFs across di¤erent vehi-

cle models assigned to di¤erent weight segments. The challenge, of course, is how to control

for other confounders that might have a¤ected the TPFs. The theory presented in the pre-

vious section indeed motivates this strategy. We discuss our identi�cation and estimation

strategies in more detail in Section 4.

3. Background and Data

3.A. Regulatory Background

The Japanese fuel economy regulation is based on what is know as theTop-runner system.

The system was �rst introduced under the 1999 Amendments to the Energy Conservation

Act for all manufacturing products that consume energy in utilization. Under the Top-runner

system, the government �rst classi�es all vehicles according to their curb weights, and then

chooses the highest observed energy e¢ ciency level as the standard for that product category.

This results in the fuel economy standards that are a step function of curb weights. The �rst

weight-based fuel economy standards under this system were adopted in 2001 with a target

year 2010. Since then, the standards were revised twice, in 2007 and 2013. Like the Corporate

Average Fuel Economy (CAFE) standard in U.S., the Japanese fuel economy standards are

enforced only at the �rm level, based on the sales-weighted corporate average. Figure 3
depicts the 2001 standards and the 2007 standards. The Ministry of Land, Infrastructure,

Transport and Tourism (MLIT) adopted a new fuel economy rating method, known as JC08

Mode, for the new standards. Hence, the �gure reports the new standards in both the

old measure (known as 10.15 Mode) and the new measure (JC08 Mode). The method of

conversion between the two measures is described in Subsection 3.B. in more detail.
There are three important di¤erences between the Japanese fuel economy standards and

the U.S. CAFE. First, no credit trading is allowed, either across �rms or segments. Hence,

the marginal costs of compliance are not equalized across weight segments and �rms. Second,

the Japanese fuel economy regulation is somewhat close to voluntary regulation. Fines for

non-compliance are only 1 million JPY (� $10; 000) per �rm, much smaller than �nes under
the U.S. CAFE.7 Moreover, the Japanese standards are not enforced every year, and instead,

�rms are expected to meet the standards only by the (respective) target years. Despite the

voluntary nature of the standards before the target year, Japanese �rms take them seriously.

All �rms met the 2001 standards by 2005 well ahead of its target year 2010. Hence, the new

7Under the U.S. CAFE, �nes are $55 per vehicle. A recent study by the NHTSA shows the U.S. automobile
industry has been paying roughly $20 million annually since 2010.
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standards were adopted in July 2007. The �rms again met the 2007 standards by 2012 before

its target year 2015. Hence, the Japanese government again adopted the latest standards in

March 2013 with a target year 2020.8 Figure A1 in the Appendix demonstrates that at
the beginning of the new standards, all domestic car makers were behind the required fuel

economy standards, and hence, are likely to have made some e¤orts to meet the standards

during the post-2007 period. Ito and Sallee (forthcoming) provide more direct evidence of the

binding nature of the Japanese fuel economy standards.9 Third, the Japanese government

also introduced a series of tax/subsidy incentives since 2009. Interestingly, these incentives

were tied to the 2001 standards, rather than the 2007 standards, until 2012 [for details, refer

to Konishi and Meng (2017)]. Hence, �rms faced the same tax incentives within each old

weight segment until 2012. For this reason, we constrain our main empirical analysis up to

year 2012. This allows us to isolate the confounding impact of the tax/subsidy incentives

o¤ered discontinuously since 2009.

The new 2007 standards created an interesting regulatory setup, and thus, is a focus of

our study. The government chose a smaller bin width to de�ne each product category. As a

result, each old weight segment was divided into two or more segments, resulting e¤ectively in

16 weight bins in total under the new standards in contrast to 9 under the old standards. For

some reason (not transparent in regulatory documents), the bin width di¤ered substantially

across weight bins. Furthermore, because the fuel economy performance of the top-runner

relative to the peers in the same weight bin di¤ered substantially across di¤erent weight bins,

the required fuel economy improvement relative to the old standard also di¤ered substantially

across these bins. Consequently, there are bins that are relatively steeper in slope than others

relative to the old standards (�slope�as in a decrease in the fuel economy standard per unit

of weight increase [see formula (2) in Subsection 3.D.]. We expect that this variability in
slope and stringency levels across weight bins distorts economic incentives for �rms�product

o¤erings.

To illustrate our point, let us take an old weight segment 970-1,265 kg and focus on three

new weight bins on this segment as an example for our exposition. In Figure 4, both old and
new fuel economy standards are drawn (red and blue lines, respectively). The �rst point to

note is that under the Top-runner system, the government chooses the highest fuel economy

rating that was achieved for each weight bin as the standard for that bin. This means that the

8In this paper, we refer to the old standards as the "2001 standards" and the new standards as the "2007
standards" both for clarity and for economizing space, although they are often refered to as the 2010 and
the 2015 standards, respectively, in the Japanese regulatory context.

9In addition, a recent scandal on Mitsubishi Motors may suggest that the fuel economy regulation is indeed
binding for some brands. In April 2016, MLIT found that Mitsubishi Motors manipulated fuel economy data
for nearly 20 models over the last 10 years (Japan Times, Jun 17, 2016).
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standards approximately trace out the technology frontier of �the most fuel e¢ cient�vehicles

that were available as of 2007, which would presumably be substantially di¤erent from that

of a �typical�or average vehicle for each bin. Consider a line connecting the two endpoints

A and D of this segment. For the moment, this line represents the technical frontier of a

�typical�or average �rm. Then the slope of the regulatory standard is clearly steeper than

this technical frontier for some bins, and �atter for other bins. In Figure 4, the lightest bin
turns out to be the high-slope bin and the heaviest bin turns out to be the low-slope bin.

Then by virtue of our Proposition, we should expect the �rm to increase curb weight for

vehicles that lie in the high-slope weight bin and to decrease curb weight for vehicles that

lie in the low-slope bin, for then the required increase in fuel economy would be smaller. In

reality, however, it is generally much easier and less costly to increase than to decrease curb

weight given the platform design of a vehicle (Ito and Sallee, forthcoming). Provided that

this is true for all �rms, we expect that �rms respond to the new standards by increasing

curb weights and then investing in technical upgrade to improve fuel economy for vehicles in

high-slope weight bins, while investing in technical upgrade without decreasing curb weight

for vehicles in slow-slope weight bins. Consequently, vehicles that were assigned to the high-

slope bins are likely to lie on a lower technical frontier than those that were assigned to

the low-slope bins in the future model changes. That the standards are enforced on sales-

weighted averages is likely to simply accelerate this incentive to increase curb weight for

vehicles in the high-slope bins because it is easier for the �rms to meet the overall standards

if the �rms have more car variants in low-slope weight bins.

Note that our argument does not quite depend on the assumption that the line connecting

endpoints A and D of the old segment represents the technical frontier of a �typical��rm.

What matters for our empirical analysis is that di¤erent bins with di¤erent slopes relative

to this line are likely to give di¤erent economic incentives for technical progress. For that,

we simply assume that vehicle models that lie on the same old segment are likely similar

to each other. Given this assumption, the likelihood in which vehicle models have �atter

technical frontiers than this line is higher for the high-slope bins than for the low-slope bins.

This creates di¤erences in average incentives across weight bins.

3.B. Data

Our data come from Carsensor.com, one of the largest online car retailers in Japan. The

compiled data set contains variant-level information on observable attributes of virtually

all vehicles sold since 1991: e.g., model year/month, curb weight, displacement level, fuel

economy rating, horsepower, list price, size, torque, transmission and other available options.
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Importantly, because we have information on grade year/month at the variant level, we can

identify the year in which each vehicle variant was �rst o¤ered to the market. Our main

analysis covers a subsample vehicles launched during the 2004-2012 excluding observations in

2007-2009 because the new standards are implemented in July 2007 and we anticipate that it

takes at least a few years before the regulation in�uences �rm�s technical capital. Hence, we

use 2004-2006 as the pre-treatment control period and 2010-2012 as the treatment period.

More detailed justi�cations for this choice follow below.10 In our robustness analysis, we also

use observations from 2001 to 2003 and from 2013 to 2015.

We drop diesel, electric, and hybrid vehicles as well as commercial vehicles since they are

not subject to the same fuel economy regulation as outlined in Subsection 3.A.11 We also
drop observations on imported brands because foreign manufacturers can always choose to

sell a subset of their models to Japan, and thus, their TPFs are unlikely to fully respond to

the incentives created through the Japanese regulations. We also exclude vehicles produced

by Mitsubishi Motors because it might severely contaminate our results if included, since the

recent scandal revealed that their reported fuel economy ratings during our study period do

not meet the same regulatory guidelines as others (see footnote 8).
A complication arises in compiling fuel economy data. The Ministry of Land, Infrastruc-

ture, Transport and Tourism (MLIT) changed the method to measure fuel economy as an

e¤ort to align reported fuel economy with actual on-road fuel economy. As a result, all new

vehicles o¤ered after October 2010 must report fuel economy in a new measure, known as

JC08 Mode, while all vehicles o¤ered before October 2010 report in an old measure, known

as 10.15 Mode. These two measures are not directly comparable. Fortunately, however, the

MLIT also mandated that all old vehicles must also record fuel economy in JC08 Mode if they

are still sold in the market. Hence, the Japanese manufactures tend to report fuel economy

in both measures in our study period. We �t a regression of 10.15-mode fuel economy on

JC08-mode fuel economy on these observations, and then use the predicted fuel economy in

case of vehicles missing fuel economy data in 10.15 Mode.12 From here on, all fuel economy

data are reported in the 10.15 mode.

3.C. Reporting versus Product O¤erings

10The statistical signi�cance and direction of the regulatory impact are largely intact, though the magni-
tude of the impact does change, if we also include observations from 2008 and 2009.
11There is a separate weight-based fuel e¢ ciency regulation on diesel cars. The sales of diesel cars accounts

for a tiny portion of the overall sales in the Japanese market. Hence, to avoid unduly complications, we drop
diesel cars from our analysis. Hybrid vehicles are subject to the same regulation, but their fuel economy
ratings are well above the fuel economy standards, and therefore, weight category assignment should not
in�uence their technical progress.
12The regression is surprisingly well �t with R2 � 0.99.
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We clarify important di¤erences between our data and the data used in Ito and Sallee

(forthcoming). Their data come from the list of new cars reported at the end of each �scal

year by the MLIT. The list contains all cars sold as �new cars�as of the end of each �scal

year. This means that some car models are reported in multiple years in the MLIT data. For

example, Toyota Vitz 2010-model, which was sold as a new car between December 2010 and

April 2012, are reported twice in �scal years 2010 and 2011. Our data do not su¤er from this

double counting because we have information on model years and we count each observation

only once for the year it was �rst launched. Furthermore, the MLIT data are reported at

the car con�guration (or �Katashiki�) level, which is �ner than the car model level, but is

coarser than the car variant level like in our data. As a result, the MLIT data contain a

smaller number of observations in each year than our Carsensor data (despite their possible

double counting). For example, in 2010, approximately 1,200 car variants are available in

our Carsensor data whereas only 700 car con�gurations are reported in the MLIT data.

The most unappealing aspect of the MLIT data is that it reports only the range of curb

weights for each car con�guration (see Table A1 in the Appendix for the raw image of
the MLIT table). Of 2,012 observations in the MLIT data between 2010 and 2012, only 25%

are reported with exact weights. The remaining 75% of observations are reported only with

ranges (i.e., minimum and maximum weights).

These important di¤erences naturally lead to the question: Do the weight distributions

di¤er between the two data sets? Figure 5 demonstrates that they are indeed substantially
di¤erent. The top panel (a) of Figure 5 displays three vehicle weight distributions for
all car con�gurations reported between 2010 and 2012 in the MLIT data: (i) observations

reported with exact weights, (ii) minimum weights using observations reported with weight

ranges, and (iii) maximum weights using observations reported with weight ranges. The

�gure con�rms Ito and Sallee�s assertion � signi�cant bunching occurs at the weight cuto¤s

for fuel standards. The �gure, however, shows a few other points not discussed in their

paper.

First, the incidence of bunching is primarily driven by the observations reported with

ranges. Interestingly, the minimum weights are clustered at the right of the weight cuto¤s

while the maximumweights are clustered at the left of the weight cuto¤s. That is, automakers

report the maximum weights so as not to cross over to the heavier weight category while

they report the minimum weights so as not to cross over to the lighter weight category. This

mechanism is substantially di¤erent from that discussed in Ito and Sallee. This behavior

occurs because the regulatory agency assigns the car models to the lightest weight bin when

their weights range over two or more weight categories. Therefore, automakers have very

strong incentives not to cross over to the lighter weight bins.
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Second, the incidence of bunching mostly corresponds to the 2001 standards, not the 2007

standards. This can be most clearly seen in the weight cuto¤s around 1,500 kg. The 2001

weight cuto¤ around this segment was 1,515 kg whereas the 2007 weight cuto¤ was 1,530

kg. The bunching is occurring at 1,520 kg, i.e., to the right of the 2001 standard�s cuto¤

and to the left of the 2007 standard�s cuto¤. This behavior is consistent with the regulatory

background discussed in Subsection 3.A. During the 2010-2012 period, the tax incentives
were based on model�s fuel economy performance relative to the old 2001 standards, and

the government used the MLIT list in determining the amount of tax incentives for each car

model.

Lastly and most importantly, the incidence of bunching at weight cuto¤s largely disap-

pears once we use actual product o¤erings at the variant level. This is evident in the top
panel (b) of Figure 5. Spikes in counts of car variants do occur, but none of these spikes
corresponds to the weight cuto¤s for either the 2001 or the 2007 standards. We believe this

weight distribution is more consistent with �ndings in the empirical industrial organization

literature. For automakers, how best to serve consumer demand and to strategically posi-

tion and price their products against their market competitors in markets is of the �rst-order

importance. It would probably not be ideal for automakers to bunch up so many of their

vehicles at the weight cuto¤s even when they can reduce costs of compliance by doing so.

This is particularly so when they know that they don�t need to meet the standards until

much later, year 2015.

The question arises then: What explains the behavior in the MLIT data? Our explanation

is as follows. Automakers o¤er many di¤erent variants of the same car model/con�guration

at di¤erent weights within the weight range reported in the MLIT data. The automakers do

not know how well the new model performs in the markets, and thus, how many variants of

the model they wish to o¤er over the course of the model year, at the time of reporting the

new model data to the MLIT. Hence, they would like to keep the weight range as large as

possible while they would also like to avoid assignment of their models to the lighter weight

bin. The best strategy then is to report the minimum possible weight of their car models at

or above the lower weight cuto¤s.

Table 1 reports weight distributions in the two data sets, and con�rms these points more
forcefully. The MLIT data set reports vehicle weights with range for 75% of the observations

whereas our data set reports exact weights for all observations. The range in the MLIT data

can be as large as 200 kg, averaging at around 35 kg. When we use observations reported

without range, we see, in both data sets, that vehicles are roughly equally distributed to

the right and to the left of the 2001 standards� cuto¤s, but reported more frequently to

the left than to the right of the 2007 standards� cuto¤s. The latter contradicts Ito and
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Sallee�s argument that �rms increase weights to move to lower standards. More importantly,

when we use observations reported with range (in the MLIT data), minimum weights are

reported more frequently to the right of the 2001 standards�cuto¤s for the 2001 standards,

yet maximum weights are reported more frequently to the left of the cuto¤s. Interestingly, at

the 2007 standards�cuto¤s, the frequencies stay the same between minimum and maximum.

We take these as suggesting that the MLIT data o¤ers the evidence of bunching in

�reporting�to the MLIT rather than actual �product o¤erings�in the market. Our empirical

analysis delivers more convincing evidence on the existence of an incentive to increase weights

in actual vehicle o¤erings. Unfortunately, however, the e¤ect of this incentive is obscured by

the other incentive to diversify product o¤erings, and hence, does not show up as vividly as

we wish as bunching at weight cuto¤s.

3.D. Constructing Treatment Variables

As discussed in Subection 3.A., some weight segments under the 2007 standard are
more stringent than others in terms of required improvements relative to the old standards.

Roughly, this di¤erence in stringency levels represents the di¤erence in costs of compliance

across weight segments. At the same time, some segments are narrower than others, resulting

in the di¤erence in the �slopes�of weight segments: i.e., the required increase in fuel economy

per unit of decrease in curb weight di¤ers substantially across segments. Combined, these

two variations are likely to create di¤erent marginal incentives across segments for �rms�

compliance strategies.

Table 2 reports the number of vehicle variants as well as the mean and standard deviation
of fuel economy ratings for each weight segment. Each row represents a new weight bin,

which we de�ne as the intersection of the old and the new weight segments. The solid

lines represent weight segments under the 2001 standards, and the dashed lines represent

those of the 2007 standards. For each bin, the table also reports the required fuel economy

improvement relative to the old standard, and the required fuel economy improvement per

unit of decrease in weight (i.e., slope) for each weight bin, which is calculated as follows:

� =

���� hb+1 � hbwb+1 � wb

���� ; (2)

where wb and hb are, respectively, the weight cuto¤ and the fuel economy standard for bth

weight bin under the new 2007 standards. From here on, we call a weight bin that requires

a large fuel economy improvement relative to the old standard as "high-(compliance) cost"

18



bin and a weight bin with a large slope as a "high-slope" bin. A detailed discussion on how

to de�ne "high" vs. "low" follows below.

The table indicates substantial variation in both compliance costs and slopes across

weight bins. To get a sense of variation in compliance costs, we classify weight bins into

quartiles with 1 denoting bins that fall in the lowest 25th percentile and 4 that fall in

the highest 25th percentiles. We also classify weight bins into high- versus low-slope bins

according to whether their slopes are steeper than the average slope of the joint segments

connecting all bins within each old segment as illustrated in Figure 4. By this, we are
assuming that vehicles within each old weight band faced roughly the same technical frontier

and that a new segment steeper than this average slope give more incentives to manipulate

on curb weight. The high slope, by de�nition, represents a larger decrease in the required fuel

economy improvement per unit of weight increase, but �rms would not be able to capture

that gain unless the slope is steeper than the technical frontier they face. An additional

bene�t of de�ning this way is that it allows us to have both treatment and control bins

within each old weight segment. We discuss this point in more detail in Section 4.
The table also shows substantial variation in the number of new o¤erings across weight

bins. There is some indication that �rms are avoiding new o¤erings in the high-cost/high-

slope weight bins. This is really an analogue of the �bunching�e¤ect Ito and Sallee (forth-

coming) point out.13 However, the tendency is not necessarily clear � there are high-

cost/high-slope weight bins that received roughly the same number of new o¤erings between

the pre-2007 and the post-2007 periods. This occurs presumably because �rms may strate-

gically o¤er models in the stringent weight segments as a way to avoid tough competition

in less stringent segments. This is one reason why we think our reduced-form approach

to identify only the TPFs is more viable than a structural approach. Another take-away

message from the table is that there is no high-slope weight bin that falls in either the 1st

quartile or the 3rd quartile of compliance costs. Ideally, we would like to compare outcomes

of vehicles assigned to the high slope bin with those of the low slope, conditioning on the

same compliance costs. Thus, for cleaner results, we drop vehicle models that fall in the 1st

and the 3rd compliance cost quartiles during the pre-2007 period. This also comes with an

added bene�t of being able to classify weight bins into high cost (4th quartile) and low cost

(2nd quartile) categories.

13In Section 7, we demonstrate that in our data, bunching does not occur at the weight cuto¤s, and explain
why that�s the case as well as why ours is likely to be a more accurate account of behavioral responses.
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Given the above, we de�ne two regulatory treatment variables Hj and Tj as follows:

Hj =

8><>: 1
if model j (or its ancestor) was

assigned to a high-compliance-cost segment in 2007;

0 otherwise.

Tj =

8><>: 1
if model j (or its ancestor) was

assigned to a high-slope segment in 2007;

0 otherwise.

Provided that there exists model-speci�c technology capital, these regulatory treatments

should in�uence the level of technology capital s in the future period.

Since there are many variants of each vehicle model, all of the variants of a model may

not necessarily fall in a single weight bin. We calculate the unweighted mean of curb weights

of all variants for each vehicle model during the pre-2007 period, and then classify the

vehicle model according to that mean.14 By this, we are implicitly assuming that �rms�

model-speci�c technical investment depends on their model-level average characteristics.

We also experimented several model-level moments. Although some variations do occur, the

results are largely intact. Figure A2 in the Appendix plots box diagrams describing the
distribution of variant-level curb weights for all vehicle models that were assigned into the

high-slope weight bins. The graph demonstrates that for virtually all models, the mean and

the median values lie within a single weight bin.

Lastly, we need to trace out model histories for these vehicles, so that all vehicle variants

o¤ered during the post-2007 period can be associated with our treatment variables. For

models that continue to exist, this is easy because they can be easily matched by model

name. For discontinued models, we search through publicly available articles and company

reports to see if there is any successor model for each retired model. Table A1 in the
Appendix reports the summary of model history for car models assigned to the high-slope
weight bins. Of the 30 models, 11 models did not introduce any new variants between 2010

and 2012, and thus, are classi�ed as �discontinued�. Of these 11 models, only 2 models had

clear successor models. Others either had no clear successor model or were merged to another

existing model.

3.E. Graphical Evidence

14Assignment based only on a single year, say, 2006 or 2007, is problematic in our setup because each
vehicle observation is recorded with the year in which that vehicle was �rst o¤ered. Because Japanese car
models typically run on a 3-4 year cycle, including all the three-year observations likely cover all variants of
models that are still produced as of 2006.
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Before moving to our main analysis, we take a glance at graphical evidence. Panel (a)
of Figure 6 displays an unconditional scatter plot of logged fuel economy ratings against
logged curb weights for vehicle grades introduced before the 2007 standards. As explained

in the previous sections, the �gure excludes imported cars, commercial vans and trucks,

diesel, electric, and hybrid cars as well as vehicles that fall in the 1st and 3rd quartiles of

compliance costs during the pre-2007 period. Variants of vehicle models that were assigned

to the high-slope weight bins are marked with circle; those assigned to the low-slope bins

are marked with �. The �gure indicates no sign of a signi�cant di¤erence in the technical
trade-o¤s between fuel economy and weight prior to the new standards. This supports our

identifying assumption that the regulatory assignment is not causally related to technical

e¢ ciency levels s prior to the standards � vehicle models assigned to the high-slope bins are

not those with lower technical capital to start with. In fact, the trend line for those assigned

to the low-slope bins lie slightly below, rather than above, those assigned to the high-slope

bins.

Panel (b) of Figure 6 displays the same scatter plot for those introduced between 2010
and 2012 under the new standards. In this �gure, variants of the successor models of those

assigned to the high-slope bins are also marked with circle. We now see a substantial di¤er-

ence in technical trade-o¤s between those assigned to the high-slope bins versus the low-slope

bins. Those assigned to the high-slope weight bands lie roughly the same technical frontier

as that prior to the new standards despite the fact that these are the new vehicles introduced

after the new standards. In contrast, new variants of those assigned to the low-slope bands lie

on a higher and steeper technical frontier. Our empirical strategy is designed to answer two

questions that arise naturally from this graph. The �rst question is, Can this di¤erence be

attributed to the regulatory assignment after controlling for all potential confounders? The

second question is, Why do we observe di¤erences not only in the level but also in the slope

of technical frontiers between the two groups, which may seem somewhat inconsistent with

our theory? Our analysis shows that these di¤erences arise due to di¤erences in regulatory

assignment, and thus, are indeed consistent with our theory.

4. Identi�cation and Estimation

4.A. Identi�cation

The goal of our empirical study is to quantify the impact of model-level assignment to

high-slope weight bins on the rate of technical progress for fuel economy improvements. Iden-

tifying this impact requires us to control for any confounders that might have systematically
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in�uenced the technical progress of vehicles assigned to the high-slope weight segments. Even

after controlling for observable vehicle characteristics such as weight, horsepower, and man-

ufacturer �xed e¤ects, some unobservable factors may still remain that are correlated with

the regulatory assignment. For example, vehicle models assigned to the high slope segments

may be those that had attained high fuel economy ratings (due to the Top-runner system),

and therefore, might have experienced a systematically di¤erent technical progress anyway

even in the absence of the assignment. The direction of the bias is unknown a priori since

those vehicles may exhibit either faster or slower technical progress than their peers. Our

strategy is to employ a DDD research design, exploiting temporal as well as cross-sectional

variation in fuel economy standards across weight segments. Our three-fold control structure

is as follows:

(a) Cross-sectional between high-slope vs. low-slope segments (with low-slope

segments as control)

(b) Temporal over years (with years 2004-2006 as control)

(c) Cross-sectional within groups (with low-compliance-cost segments as control)

By using temporal variation with years 2004-2006 as an additional control, we are able

to control for any stationary di¤erences between high-slope and low-slope groups as well as

time-varying factors that are common to both groups. However, this di¤erence-in-di¤erences

(DD) structure is not su¢ cient to control for unobservables that a¤ect the two groups dif-

ferently over time. To take care of this concern, we use another within-group variation.

By construction, some of the high-slope segments also tend to be the high-compliance-cost

segments: i.e., they also require substantial improvements in fuel economy relative to the

old standards. Firms may face substantially higher incentives to manipulate vehicle char-

acteristics in these high-cost segments. This reasoning suggests that we can potentially use

cross-sectional variation in compliance costs within the same-slope segments as an additional

control. That is, we compare the fuel economy ratings of the treatment vehicles assigned

to the segments with high slopes and high compliance costs to the control vehicles assigned

to the same high-slope segments with low compliance costs. The resulting DDD estimate

is consistent under a weaker identifying assumption: i.e., unobservables that a¤ect the rate

of technical progress di¤erently between the high-slope and the low-slope segments do not

systematically di¤er between the high-cost and low-cost segments.

Besides the weaker condition for identi�cation, this DDD structure comes with an ad-

ditional bene�t. That is, any pairwise DD estimate, in addition to the DDD estimate, is
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also consistent if any pair of treatment/control groups satis�es the standard common-trend

assumption. For example, if the contemporaneous shocks that a¤ected the high-slope and

low-cost groups have the same trend over time, then the DD estimate on a subsample con-

sisting only of the high-cost segments is also consistent. Of course, this DDD estimate may

not get at the pure impact of the high-slope assignment if the high-slope assignment also

induced �rms to manipulate vehicles in the low-cost segments. We o¤er evidence in Section
5 that this is unlikely the case: in a DD regression on a subsample consisting only of the

low-cost segments, the impact of the high-slope is positive and statistically signi�cant. This

means that those assigned to the high-slope segments were associated with a faster, not

slower, fuel economy improvement in the low-cost segments. It follows then that the DD

estimate would be biased toward zero, and controlling for this bias is important.

Our control structure also helps us purge out the confounding e¤ect of tax incentives

o¤ered after 2009. As discussed in Subsection 3.A., the government o¤ered eco-car subsidy
and tax credits based on fuel economy improvements relative to the old 2001 standards,

despite that the new 2007 standards were already in e¤ect. In Subsection 3.C., we discuss
how �rms might have manipulated in reporting their car model weights to the government,

and the reported weights clearly responded to the 2001 standards, not the 2007 standards,

during the 2010-2012 period. It then follows that these tax incentives create the same

incentive for fuel economy improvements for car models that lie within the same old weight

category. Hence, any di¤erence in behavioral response across new weight bins within each

old weight category should be attributed to di¤erences in fuel economy standards, not to the

tax incentives.

To o¤er support for our identifying assumption, we plot (a) the means of fuel economy
ratings by year and by treatment (i.e., high-slope vs. low-slope groups) and (b) the ratios of
the mean fuel economy ratings of the high-cost groups relative to the low-cost groups by year

by treatment . Figure 7-(a) demonstrates that both groups showed a steady increase in
average fuel economy, yet the low-cost group increased fuel economy more sharply after 2009.

The �gure does seem to refute the concern that those assigned to the high-slope segments

tend to be those that attained high rates of technical progress prior to the assignment.

However, the temporal patterns between the two groups before 2007 do not appear quite

identical, suggesting there might be other confounders that a¤ect the two groups di¤erently

over time. In contrast, Figure 7-(b) demonstrates that the ratios of relative average fuel
economy between the two groups have roughly identical temporal patterns between the

high-slope and the low-slope groups. This boosts our con�dence in our DDD estimates.

The �gures also point to another complication we might take into account. They show that

changes in responses to the regulatory assignment are more discernible after 2009, rather
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than immediately after the regulatory change in 2007. This may be attributed to the fact

that it takes generally a few years for �rms to introduce new vehicle variants to fully respond

to the regulatory change or that �rms�incentives to respond to the new standards became

stronger after the Japanese government mandated reporting of fuel economy for all vehicles

in JC08 mode, with which the new standards are enforced, in April 2009. For this reason,

our main analysis uses only the observations between 2010 and 2012.

4.B. Raw DDD Estimate

Table 3 implements the unconditional DDD estimation of the e¤ect of weight assignment
on fuel economy ratings. Each cell reports the mean and standard errors of fuel economy in

km/L for the indicated period-segment group as well as the number of observations (= vehicle

variants) and the number of variants per model. The top panel A displays the statistics

during the pre-2007 control period (2004-2006) whereas the bottom panel B reports the

post-2007 treatment period (2010-2012). Each panel is further divided into the two layers

of treatment by weight assignment. The left panel 1 (the right panel 2) concerns vehicle

models assigned to high (low) compliance cost segments. The left panel 1 indicates that in

the high compliance cost segments, �rms improved fuel economy of vehicles assigned to the

low slope segments by 5.1 km/L, but those assigned to the high slope segments only by 1.4

km/L. These result in the DD estimate of the e¤ect of high�slope assignment by -3.7 km/L

(statistically signi�cant at 0.001). The right panel 2 repeats the same procedure, but for

the low compliance segments. The DD estimate is -0.06 km/L, but is statistically highly

insigni�cant. This is consistent with our argument that �rms may not face much incentive

to manipulate weight when it is relatively easy to comply with the new standards.

Although the results thus far are consistent with our theoretical prediction, the DD

estimate would be biased if there were some unobservable confounders that a¤ected the

treatment and control segments di¤erently over time. To take care of this concern, we

obtain the DDD estimate by taking the di¤erence between the two DD estimates in the left

and right panels. The DDD estimate is -3.6 km/L and is again highly statistically signi�cant

(at 0.001). Both DD and DDD estimates are of the same order of magnitude. This boosts

our con�dence in our identi�cation strategy. Moreover, because the DD estimate in the

left panel compares the outcomes between the high-slope vs. the low-slope segments in the

same high compliance cost segments, the results also support our claim that it is the slope,

a measure of ease with which to manipulate the second attribute, not the high compliance

costs per se, that induce �rms to manipulate on the second attribute. The DDD estimate

may be, however, imprecise (with a standard error of 0.7) since it fails to capture important
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vehicle-level variation within each weight segment. To improve the precision of the estimate,

we employ a regression framework below.

4.C. Estimation Strategies

As discussed in Section 2, a vehicle�s fuel economy is a function of its vehicle charac-
teristics such as weight and horsepower as well as model-level or �rm-level technical capital.

Presumably, di¤erent vehicles produced by di¤erent manufacturers with di¤erent design

features would respond di¤erently to regulatory assignment. For example, vehicles with rel-

atively superior fuel economy ratings, say, due to their design, size/weight, or technology

features, would respond di¤erently from those with relatively inferior fuel economy ratings.

To further exploit this important source of variation, we employ parametric DDD regres-

sion in a manner analogous to Gruber (1994), augmenting the Cobb-Douglass speci�cation

of the technical possibility frontier à la Knittel (2011). Thus our regression equation takes

the following form:

ln fijt = �+ �1Hj + �2Rt + �3Tj

:::+ �4(Hj �Rt) + �5(Hj � Tj) + �6(Rt � Tj)
:::+ �7(Hj �Rt � Tj) +X 0

ijt + �ijst; (3)

where ln fijt is a logged fuel economy of vehicle i of model j assigned to segment s in 2007

in period t, Hj is a dummy, which equals 1 if j was assigned to a stringent (i.e., "high

cost") segment, Rt indexes a regulatory period and equals 1 during the post-2007 period,

Tj is our treatment variable and equals 1 if j was assigned to a high-slope segment, and

Xijt is a vector of observable vehicle characteristics including weight (w), horsepower (hp),

size (size), torque (tq) (all in logged values), transmission type as well as brand and year

dummies.

The standard argument shows that the OLS estimate of �7 captures the causal impact of

the regulatory assignment under the assumption that di¤erences in unobservable time trends

between the treatment and the control groups are the same across the high-cost and low-cost

segments. One advantage of this DDD regression is that it nests the DD structure. That

is, the DDD estimates are also consistent under the standard common-trend assumption

that makes the DD estimates consistent. There are, however, two disadvantages with the

DDD regression. First, it assumes that the steepness of the slopes does not a¤ect the TPF

for vehicles assigned to the low-cost segments: i.e., �7(Hj � Rt � Tj) = 0 if Hj = 0. If the
steepness of the slopes matters for the low-cost segments, the estimated impact is likely biased
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downward. To gauge the extent of the bias, we also run a DD regression on a subsample

where observations are restricted to those assigned to the low cost segments. Second, it

assumes that the slopes of the technical frontier stays constant over time. As Knittel (2011)

points out, the estimates of technical progress (and, hence, the DDD estimate) may be biased

downward if the technical trade-o¤s between fuel economy and other attributes are not as

large in later years. Of course, one could always allow slope coe¢ cients to vary, say, by

interacting them with our treatment variables. However, a priori, there is no obvious reason

for one set of coe¢ cients to vary while others do not.

An alternative strategy would be to use propensity score matching to control for the

e¤ects of these observable covariates. A disadvantage of the PSM estimator is that it requires

a stronger identifying assumption than the DDD regression. That is, the DDD regression

only requires that conditional on a set of covariates, di¤erences in trend for unobservables

between the treatment and the control groups stay the same between the high-cost and the

low-cost segments while the PSM requires that the unobservables have zero means conditional

on the set of covariates (i.e., conditional independence assumption). Because the PSM does

not control for di¤erences in unobservable time trend between the treatment and the control

groups, the PSM estimates may be biased upward if the control groups exhibit a larger change

in unobservable factors. Because the PSM is likely biased upward and the DDD is likely

biased downward, the true impact of the regulation is likely to fall somewhere inbetween.15

5. DDD Regression Estimates

5.A. Main Results

Table 4 reports the results of four regression models. The �rst model estimates DD
regressions on the pooled sample, with high-slope bins against low-slope bins as the primary

treatment. The coe¢ cients of this model would be biased downward if vehicles assigned

to the low-cost weight bins also respond to the high slopes, even if if the common-trend

assumption between the treated and the control groups is satis�ed. The second and the

third models estimate the same regressions, but on subsamples consisting only of those of

high-cost bins and low-cost bins, respectively. The last model estimates full DDD regressions

on the pooled sample. Each of these models is estimated with or without brand dummies.

All speci�cations include logged values of weight (w), horsepower (hp), size (size), torque

(tq) as well as AT/CVT dummy as covariates.

15Our earlier attempt to employ PSM estimator con�rms this prediction.
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The DD estimate of the impact of the high slope on the pooled sample is negative

and statistically signi�cant. The magnitude of the estimate gets much larger when the

same regression is run on a subsample consisting only of those assigned to the high-cost

weight bins. In contrast, the DD estimate turns positive on a subsample consisting only of

those assigned to the low-cost bins. Though the magnitude is quite small, the estimate is

statistically signi�cant. This implies, given our identifying assumption, that vehicles assigned

to the high-slope bins might have been those with a higher rate of technical progress in fuel

economy improvements. Hence, controlling for this confounding e¤ect is important for an

unbiased estimate of the regulatory impact, and gives support for our DDD design. The

DDD estimate �̂7 is negative and highly statistically signi�cant. Moreover, the magnitude is

quite large: With the Cobb-Douglas speci�cation, the estimate implies that the assignment

to high-slope weight bins slowed down fuel economy improvements by roughly 20%. Because

we control for all relevant covariates, this also implies that the TPF for those assigned to

high-slope weight bins would have lied strictly above the observed TPF if they had been

assigned to low-slope weight bins instead. Both the magnitude and statistical signi�cance of

these estimates are of the same order, with or without brand dummies.16

These results also explain why the observed TPFs seem �atter for those assigned to

high-slope bins than those assigned to low-slope bins after than before the 2007 in Figure
6-(b). As shown in Table 2, heavier weight bins tend to have less stringent standards (i.e.,
lower compliance costs). The assignment to high-slope bins in these heavier weight bins does

not induce quantitatively large impacts on technical progress, whereas it has large negative

impacts in lighter weight bins. Consequently, the observed TPF should look �atter. A scatter

plot of predicted fuel economy against weight (in logged values) con�rms this observation.

5.B. Robustness Check

We verify robustness of our regression results in two ways per conventional wisdom.

First, we arbitrarily perturb our weight bin assignment and see if our results continue to
16We also estimated the same regressions using translog speci�cation as well as year �xed e¤ects. The

results are virtually identical. The translog speci�cation improves the �t by a small margin, but it also
seems over-parameterized as in Knittel (2011). Since the Cobb-Douglas speci�cation is already well �t, we
do not report these alternative speci�cation. Moreover, because parametric DD regression is known for its
dependence to functional form assumptions (in particular with respect to changes in slope coe¢ cients), we
also tested propensity score matching estimators. We implemented the PSM estimation in the following
manner. We take variants o¤ered in 2004-2006 as a control group, and variants o¤ered in 2010-2012 as a
treatment groups. Then the treatment sample is further divided into two subgroups: variants of models
assigned to high-slope bins versus low-slope bins. We then run the PSM estimator to get the average
treatment e¤ect on the treated (ATT) separately for each subgroup against the control group. Then compare
the di¤erence between the two ATT estimates to obtain the impact of regulatory assignment. The results
were qualitatively similar to those reported here. These additional results are available upon request.
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hold. Speci�cally, we shift weight cuto¤s wb in (2) by an arbitrary number k and run the

same regressions as above. Because our estimate must capture the e¤ect of the factual weight

bin assignment, this �ctitious assignment should qualitatively alter the results.17 Top panel
A of Table 5 below reports the DD and DDD estimates when k = 25 in kg and all the same
covariates as in Table 3 (incl. brand dummies) are used.18 Both DD and DDD estimates on

the pooled sample (columns 1 and 4) are still negative and statistically signi�cant, yet their

magnitudes become much smaller. Furthermore, the DD estimate on a subsample consisting

only of high-cost bins turns positive and statistically highly insigni�cant. We take these

results as support for our main results � the placebo experiments make the impact of the

high-slope assignment smaller on the pooled sample and go away on the subsample in which

the distortionary e¤ect is expected to be strong. We suspect that the statistically signi�cant

estimates on the pooled sample are probably capturing the in�uence of some models that

fall in both actual and �ctitious high-slope weight bins.

Next, we perturb on temporal dimension, holding weight bin assignment. We use 2001-

2003 as the control period and our original control period (2004-2006) as the �ctitious treat-

ment period. Because our estimate must capture the impact of regulatory change that took

place in 2007, the DD or DDD estimate on this placebo treatment should be statistical

insigni�cant. Bottom panel B of Table 5 reports the results of the DD and DDD es-

timates on this placebo treatment. Unfortunately, both DD and DDD estimates are still

negative and statistically signi�cant. But their magnitudes are substantially smaller than

those reported in Table 4. In particular, the DD estimate on a subsample consisting only
of those assigned to high-cost bins is -0.03, compared to -0.15 in Table 4. Similarly, the
DDD estimate on the pooled sample is �0.03 on this placebo treatment, compared to -0.23

on the actual treatment. These results suggest that vehicle models assigned to high-slope,

high-cost weight bins may be those that showed slow technical progress anyway, but the bias

that it causes to our DDD estimate is likely to be small.

5.C. Economic Mechanism

Our results so far con�rm a statistically and qualitatively large impact of regulatory

assignment to high-slope weight bins. A question remains as to exactly what economic

17It may not necessarily make the statistical signi�cance of estimates completely disappear since in our
regulatory setup, we expect in�uences of weight bin assignment in almost every weight bin.
18Note that we cannot choose k to be too small or too large. Because we average weights over all variants

of each model, virtually all models would be assigned to the same weight bins if we choose k to be too small.
In the meantime, choosing too large a number is problematic because it would end by shifting virtually all
models to the next weight bins. The average bin size is roughly 75 kg. Hence, we end up choosing a number
between 20 and 30.
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mechanism caused that e¤ect. The economic mechanism outlined in Section 2 is that
weight segments that have steeper slopes relative to the pre-existing TPFs would induce

�rm to increase curb weights for vehicle models and save costs of compliance to meet the

fuel economy standards in these segments. If this is indeed the economic mechanism, we

should also observe an increase in average curb weight for vehicle models assigned to the

high-slope weight bins. Identifying this e¤ect is, however, more challenging than identifying

the e¤ect on fuel economy for several reasons.

First, this logic suggests that vehicles in such weight bins should increase weights only

up to the next weight cuto¤s. This means that the anticipated weight increase should be

bound, in principle, by bin size (measured as jwb+1 � wbj in kg). This is in contrast to
fuel economy improvements, for which there is no apparent bound because how much to

improve fuel economy given other product attributes (incl. weight) should only depend on

the net marginal bene�ts of doing so. Hence, from the outset, the expected impact on curb

weight may not be large enough compared to the variance of curb weight for each weight

bin. This issue is further complicated by the fact that there is large variation in bin size.

Larger (i.e., longer) weight bins may exhibit two counteractive e¤ects. First, because �rms

have incentives to increase vehicle weight only to the next weight cuto¤s, we might expect

a larger weight increase in larger weight bins. However, larger weight bins also mean that it

takes a more weight increase to cross the next weight cuto¤. Given the design and size of a

vehicle, it may be easy to increase weight by, say, 20 kg, but may be hard to increase weight

by, say, 100 kg. A priori, there is no clear reason to expect which e¤ect is stronger.

These reasonings suggest that for cleaner results, we might control for bin size. To do

so, we �rst calculate bin sizes of all segments (excluding the lightest and the heaviest weight

bins), and classify them into quartiles of bin sizes. By tabulating our main sample by these

quartiles, we �nd that the 1st bin size quartile (i.e., the smallest bins) contains observations

in all compliance cost � slope subsamples. Hence, we run DD and DDD regressions of logged
curb weight on the same set of covariates as in Table 4 (excluding logged weight, of course).
Table 6 reports the results of these regressions. The DD estimate on the pooled sample

(i.e., consisting of both high-compliance-cost and low-compliance-cost groups) is positive

and statistically highly signi�cant. The DD estimate is also positive and statistically highly

signi�cant on a separate subsample, either the high-cost group or the low-cost group. The

magnitude of the estimate is roughly of the same size between the two samples. Consequently,

the DDD estimate is statistically insigni�cant. These results seem to indicate that in both

high-cost and low-cost segments, high-slope weight bins do create incentives to increase curb

weight, and, hence, the results increase credence in our main results.

Unfortunately, the fact that the regulatory impact also exists in the low-cost segments
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violates the condition for the unbiasedness of the DDD estimates � the high slope does

not create incentives in the low-cost segments. Note, however, that this result does not

necessarily nullify the usefulness of our three-hold control structures. To see this, recall our

result in Subsection 5.A. that assignment to the high-slope in the low-cost segments was
associated with a higher rate of fuel economy improvements. Combined with the result that

the high slope also creates incentives to increase vehicle weights (and slow down technical

progress) in these low-cost segments, the counterfactual fuel economy improvement in the

absence of high-slope assignment should be even greater there. But if the same trend is

occurring in the high-cost segments, then the DD estimate would be biased there too, and

our DDD estimate should still be unbiased in that case. On the other hand, if the same

trend is not occurring in the high-cost segments, then our DDD estimate is biased toward

zero, and the true impact could be larger or smaller.

6. Welfare Implications

In this section, we discuss the welfare implications of our empirical �ndings, and substan-

tiate the important di¤erences from those of other studies that investigate the distortionary

impacts of regulatory �loopholes�in environmental regulation [Anderson and Sallee (2011),

Sallee and Slemrod (2012), and Ito and Sallee (forthcoming)]. Regulatory loopholes distort

�rm�s or consumer�s choice, and thereby, result in welfare losses relative to the counterfactual

in which there are no such loopholes. Without accounting for e¤ects on technical change,

however, the magnitude of the losses may be substantially understated.19 For example, An-

derson and Sallee (2011) write, in their study on the �exible-fuel credits under the CAFE

regulation, "the �exible-fuel loophole may actually increase welfare by allowing �rms to re-

lax an ine¢ cient (fuel-economy standards) constraint (p. 106, parenthesis added). Ito and

Sallee (forthcoming) also demonstrate that attribute-basing in the fuel economy regulation

is welfare-increasing relative to no attribute-basing without an e¢ cient credit trading mech-

anism. All these studies, however, assume the distortion shows up in �rm�s or consumer�s

choice conditional on �rm�s technology choice, assuming away the distortion in technical

change. For example, Sallee and Slemrod (2012) examine the distortionary impact of the

notched schedule of the U.S. Gas Guzzler Tax, and estimate the welfare e¤ects of marginally

adjusting fuel economy ratings given the �rst stage choices "regarding engine size, body style

and vehicle features that cannot be changed quickly and have large impacts on fuel economy"

(p. 991). The same principle is also applied in Ito and Sallee (forthcoming), who estimate

19This may be the reason why regulators opt for such loopholes in the �rst place � regulators may be
aware of the suboptimal nature of the regulation, but still use them in light of other merits.
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the discrete choice model of �rms�new product o¤erings without accounting for consumer

demand. In their model, �rms simply weigh the distance in the attribute space between

the existing o¤erings and the new o¤erings against the level of (one-time) tax incentives

associated with that distance. By construction, therefore, these welfare estimates do not

account for consumer surplus resulting from the change in technical change. Furthermore,

the recent IO literature substantiates the importance of accounting for the gain in consumer

surplus from new or improved products [e.g., Nevo (2000), Petrin (2002), Goolsbee and
Petrin (2004)]. Failure to account for consumer loss from the distortion in technical change,
therefore, is likely to understate the welfare e¤ects of regulatory loopholes.

To demonstrate our point, we compute a �wild� estimate of the welfare loss from the

distortion in technical change. In doing so, we construct a counterfactual in which the fuel

economy ratings of vehicles assigned to the high-slope segments would improve the same

way as those assigned to the low-slope segments, yet all other vehicle attributes would stay

the same as observed. This allows us to isolate the impact of the change in TPF from the

change in other product attributes. We call it a �wild�estimate because we do not incorporate

strategic responses by �rms in pricing or product choice under the counterfactual scenario,

despite that �rms would, in general, adjust all attributes of vehicles fully mindful of their

competitors when they can o¤er vehicles on a higher TPF. A structural approach would give

us a more realistic estimate, but we defer it to a future research. The approach we take

here, however, is still consistent with the convention in applied welfare economics and the

non-market valuation literature in environmental economics.

Speci�cally, we proceed as follows. We have annual vehicle sales data for our policy

period (2010-2012). However, the data are only reported at the model level. Hence, we

transform the grade-level attributes to the model-level attributes by calculating model-level

averages. We then borrow the estimates of mean marginal utility parameters with respect

to income � and kilometer per yen � (i.e., fuel economy divided by gasoline price p) from

the random-coe¢ cient logit model of consumer demand that is estimated for the same study

period in Konishi and Zhao (2017). These estimates can give us an estimate of consumer�s

(marginal) willingness to pay for fuel economy improvements, ��=�p. Assuming that prices
and other attributes stay the same, we can also assume that consumer demand for each car

model stays the same. We can then approximate the change in consumer welfare purely

due to the change in fuel economy technology by multiplying the model-level sales with the

marginal WTP for the counterfactual fuel economy improvements and summing them over

all a¤ected vehicles. Our estimate comes at an annual welfare loss of roughly $1.8 million

or $23,183 per vehicle model (with standard errors to be calculated). To place this
number in context, Ito and Sallee estimate that the Japanese weight-based regulation has a
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welfare gain of $1,766-$2,133 per vehicle model relative to no attribute-basing (but welfare

loss of $1,226-$1,788 relative to an e¢ cient credit trading). Thus, a failure to account for

technical change (and associated welfare loss in consumer surplus) may lead to misguided

policy advice.

Figure 8 visualizes what is driving our welfare estimate. Top panel (a) of Figure
8 displays the sales distribution in the attribute space of vehicles introduced during the
2010-2012 period. Each circle represents a new vehicle model, and the size of the circle

represents the annual sales of that model for only the year in which it is introduced. The

�gure shows how disperse the sales are over the attribute space. Bottom panel (b) plots
the counterfactual in which the fuel economy ratings of vehicles assigned to the high-slope

segments improve the same way as those assigned to the low-slope segments, yet all other

vehicle attributes and sales amounts stay the same as observed. The �gure also display

the same data as in Panel (b) by x�s without bubbles representing sales. As we assume a
constant marginal WTP and ignore strategic interactions or substitution between vehicles,

the welfare e¤ects are simply larger for vehicle models with larger sales.

7. Concluding Remarks

We examine the distortionary impact of the Japanese weight-based fuel economy regula-

tion on technical progress. We �rst set up a simple model of �rm�s choice over technology

upgrade and product attributes to obtain a clear-cut economic prediction: An attribute-

based regulation distorts technical change when it creates trade-o¤s between the targeted

and secondary attributes that di¤er from technically feasible trade-o¤s. We use the variant-

level vehicle characteristics data for new vehicle models launched between 2004 and 2012 in

Japan to estimate the distortionary impact on �rm�s technology possibility frontier (TPF). To

control for confounders, we employ a di¤erence-in-di¤erence-in-di¤erences strategy, exploit-

ing the quasi-experimental variations created due to changes in weight segmentation under

the 2007 fuel economy standards. Our results indicate the stalk impact of the regulation:

Assignment to high-slope weight bins slowed down the rate of fuel economy improvements

by roughly 20 percentage points. Hence, we conclude that the attribute-based regulation

has signi�cantly distorted technological change in the Japanese automobile industry.

The �ndings of the paper deliver four important messages. First, it is not just the notched

schedule but rather the slope of the attribute-based regulation that induces distortion in

product o¤erings. Second, the distortion in product o¤erings do translate into distortion in

technical progress. Third, bunching behavior found in Ito and Sallee (forthcoming) is most

likely the evidence of manipulation in reporting to the government rather than distortion
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in actual product o¤erings in the market. Our paper, however, gets at the latter. Lastly,

the paper points to an important policy advice: To remove such a bias, the regulator needs

to make the slope of the attribute-based regulation as close as that of �rm�s TPF both

when credit trading is in place and when it is absent. Credit trading is known to equalize

the marginal cost of compliance. A conventional wisdom is that a �at standard would

be innocuous in the presence of credit trading (Ito and Sallee, forthcoming). However, a

�at standard would be too �at compared to the �rm�s TPF. It might still distort �rm�s

incentives by o¤ering low-cost compliance strategies (lower than buying credits). Credit

trading lessens, but does not necessarily eliminate, the distortionary incentives. This last

point is also important for other types of attribute-based regulation (e.g., product labels) as

well as other institutional arrangements that involve multiple attributes in evaluation such

as auctions, hiring, and other business contracts.
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Appendix. Proof of Proposition

Let other �rms�product portfolios 
 be given. Then the Lagrangian of the �rm�s second-

stage optimization program under no regulation is:

LN = �(f; w; 
)� c(s) + �[T (w; s)� f ];

where � is the shadow value of the technology constraint. The �rst-order condition can be

rearranged to yield an optimality condition:

@�

@w

�
@�

@f
= �:

Given (A1) and (A2), this optimality condition is necessary and su¢ cient. Under (A1),

the technology constraint is binding: f = T (w; s). Hence, the optimal fuel economy fN

is uniquely pinned down by fN = T (wN ; s) once wN is pinned down. Along with the

tangency condition above, this gives us a unique solution to the optimization program. Let

(fN(s); wN(s)) denote the optimal solution given s.

On the other hand, under the attribute-based regulation, the Lagrangian can be written

as

LR = �(f; w; 
)� c(s) + �[T (w; s)� f ] + �[f �R(w)];

where � is the shadow value of the regulatory constraint.

Combining (A1) and (A4), we can write

� = �+ �; for some � 2 R; (4)

where � = �dR=dw is the slope of the regulatory constraint and � = �@T=@w is the slope
of the TPF. Using (4), the �rst-order condition of the Lagrangian under the regulation can

then be rearranged to yield:
@�

@w

�
@�

@f
+

��

@�=@f
= �:

Again, let wR(s) and fR(s) = T (wR(s); s) denote the optimal solution given s under the

regulation. By (A1), the second term of the LHS is strictly positive as long as the regulation

is binding. This means that the optimal attributes occur at the tangency between the iso-

pro�t curve and a�atter TPF curve, instead of the true TPF. It follows then that the optimal

attributes (fR(s); wR(s)) under the regulation lie to the right of the optimal attributes under

no regulation (fN(s); wN(s)) if � > 0., and to the left if � < 0.
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Now, let us consider the �rst-stage decision on technology capital s. We can solve for the

optimum by maximizing the following objective function:

�(T (wr(s); s); wr(s); 
)� c(s);

taking the second-stage solution wN(s) and wR(s) as given, for r = N under no regulation

and r = R under the regulation. Then under no regulation, the optimality condition is given

by:
@�

@f

@T

@s

����
wN (s)

=
dc

ds
;

whereas that under the regulation is:

@�

@f

@T

@s

����
wR(s)

� ��dw
R(s)

ds
=
dc

ds
:

Given (A3), these conditions are necessary and su¢ cient. The second term of the LHS is

positive as dwR(s)=ds � 0 for � > 0. This means that the �rm under the regulation values

the marginal increase in pro�ts less than under no regulation. Hence, the �rm invests less

in technology capital under the regulation. �
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Figure	1.	Changes	in	Technology	Trade‐offs	for	Toyota’s	Passenger	Cars		
between	1991	and	2015	

 
Note:	The	figure	excludes	commercial	vans	and	trucks,	imported	brands,	diesel,	hybrid,	and	electric	cars. 
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Figure	2.	Impact	of	Attribute‐based	Regulation	on	TPF		
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Figure	3.	The	Old	and	New	Fuel	Economy	Standards		
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Figure	4.	Variation	in	Regulatory	Assignments:	An	Illustration	
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Figure	5.	Vehicle	Weight	Distributions,	Years	2010‐2012	
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Figure	6.	Technology	Possibility	Frontiers	Before	and	After	the	New	Standards	
	

	
Note:	The	figure	excludes	commercial	vans	and	trucks,	imported	brands,	diesel,	hybrid,	and	electric	
cars	as	well	as	observations	that	fall	in	weight	segments	with	the	first	and	the	third	quartiles	of	
compliance	costs	during	the	pre‐2007	period.	

	
	 	



	
Figure	7.	Trends	in	Average	Fuel	Economy	between	and	within	Groups	

	
Note:	Panel	(a)	plots	average	fuel	economy	ratings	for	the	high‐slope	(treatment)	and	the	low‐slope	
(control)	groups.	Panel	(b)	plots	the	ratio	of	the	average	fuel	economy	of	the	high‐cost	group	to	that	of	
the	low‐cost	for	the	treatment	and	the	control	groups.		
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Figure	8.	Model‐level	Sales	and	Welfare	Impact	of	DTC	in	the	Attribute	Space		
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Table	1.	Distribution	of	Vehicle	Weight	in	MLIT	Data	vs.	Catalog	Data	
2010	–	2012	

	

	
	

	 	

Obs. Percent Obs. Percent

All 2,011 4,303
Range	=	0 508 (0.25) 4,303 (1.00)
Range	>	0 1,503 (0.75) 0 (0.00)
Avg.	Range	(in	kg)
Min.	Range	(in	kg)
Max.	Range	(in	kg)

Of	those	reported	with	range	=	0

Weight	at	the	cutoffs	of	2001	standards
To	the	right 59 (0.04) 214 (0.05)
To	the	left 59 (0.04) 192 (0.04)

Weight	at	the	cutoffs	of	2007	standards
To	the	right 55 (0.04) 439 (0.10)
To	the	left 159 (0.11) 1,033 (0.24)

Of	those	reported	with	range	>	0

Minimum	weight	at	the	cutoffs	of	2001	standards
To	the	right 272 (0.18)
To	the	left 59 (0.04)

Maximum	weight	at	the	cutoffs	of	2001	standards
To	the	right 59 (0.04)
To	the	left 235 (0.16)

Minimum	weight	at	the	cutoffs	of	2007	standards
To	the	right 196 (0.13)
To	the	left 555 (0.37)

Maximum	weight	at	the	cutoffs	of	2007	standards
To	the	right 182 (0.12)
To	the	left 560 (0.37)

MLIT	Data Our	Data

35.5
10
200



Table	2.	Fuel	Economy	Ratings	
by	Weight	Band	under	the	New	2007	Standards		
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Table	3.	Unconditional	Difference‐in‐difference‐in‐differences	(DDD)	Estimates	
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Table	4.	Full	DDD	Regression	Results	using	2004‐2012	Passenger	Cars	
	

	
Note:	Regressions	exclude	commercial	vans	and	trucks,	imported	brands,	diesel,	hybrid,	and	electric	cars	as	
well	as	observations	that	fall	in	weight	segments	with	the	first	and	the	third	quartiles	of	compliance	costs	
during	the	pre‐2007	period.	In	parentheses	are	standard	errors.	The	asterisks	*,	**,	and	***	indicate	
significance	at	0.1,	0.05,	and	0.01	levels.	

	
	 	

Constant ‐2.7131 *** ‐3.3684 *** ‐6.0696 *** ‐7.0484 *** 1.3132 * 2.4093 *** ‐3.1886 *** ‐3.6552 ***
(0.5961) (0.6272) (1.0495) (1.0797) (0.7605) (0.7715) (0.5849) (0.6170)

T 	[High	Slope	=	1] 0.0371 *** 0.0362 *** 0.0363 *** 0.0451 *** ‐0.0243 *** ‐0.0064 0.0001 ‐0.0054
(0.0049) (0.0049) (0.0083) (0.0086) (0.0070) (0.0071) (0.0069) (0.0069)

R 	[Pol.	Period	=	1] 0.1396 *** 0.1414 *** 0.2077 *** 0.2073 *** 0.0905 *** 0.0988 *** ‐0.0244 *** ‐0.0108
(0.0051) (0.0051) (0.0086) (0.0084) (0.0057) (0.0057) (0.0079) (0.0081)

R 	×	T ‐0.0551 *** ‐0.0514 *** ‐0.1521 *** ‐0.1554 *** 0.0589 *** 0.0480 *** 0.0875 *** 0.0887 ***
(0.0085) (0.0085) (0.0120) (0.0120) (0.0127) (0.0128) (0.0064) (0.0064)

H	[High	Cost	=	1] 0.0882 *** 0.0690 ***
(0.0104) (0.0106)

H 	×	T 0.1182 *** 0.1206 ***
(0.0101) (0.0100)

H	×	R 0.0715 *** 0.0860 ***
(0.0144) (0.0147)

H 	×	R	×	T ‐0.2238 *** ‐0.2376 ***
(0.0181) (0.0185)

ln(weight)	 ‐1.2473 *** ‐1.3032 *** ‐1.2813 *** ‐1.3885 *** ‐0.9083 *** ‐0.9411 *** ‐1.2376 *** ‐1.3076 ***
(0.0331) (0.0339) (0.0524) (0.0536) (0.0470) (0.0488) (0.0332) (0.0345)

ln(hp) 0.0177 ‐0.0054 0.017268 ‐0.0092 0.0883 *** 0.0569 *** 0.0476 * 0.0190
(0.0214) (0.0215) (0.0368) (0.0366) (0.0270) (0.0272) (0.0209) (0.0210)

ln(torque) ‐0.1721 *** ‐0.1359 *** ‐0.1277 *** ‐0.1051 *** ‐0.2842 *** ‐0.2655 ** ‐0.1878 *** ‐0.1455 ***
(0.0206) (0.0206) (0.0291) (0.0285) (0.0279) (0.0288) (0.0200) (0.0202)

ln(size) 1.6817 *** 1.7891 *** 2.0653 *** 2.2501 *** 0.9902 *** 0.9011 *** 1.7217 *** 1.8202 ***
(0.0896) (0.0939) (0.1519) (0.1552) (0.1177) (0.1185) (0.0880) (0.0925)

AT/CVT 0.0276 *** 0.0308 *** 0.0370 *** 0.0380 *** ‐0.0025 0.0049 0.0239 *** 0.0265 ***
(0.0066) (0.0066) (0.0086) (0.0087) (0.0096) (0.0092) (0.0064) (0.0064)

Maker	fixed	effects

R2 0.9043 0.9083 0.6551 0.6784 0.9180 0.9257 0.9111 0.9145
Obs. 3,257 3,257 1,520 1,520 1,737 1,737 3,257 3,257

   

DD	(Pooled) DD	(High‐cost	Only) DD	(Lowt‐cost	Only) DDD	(Pooled)

(1) (2) (3) (4) (5) (6) (7) (8)



	
	

Table	5.	Regression	Results	on	Placebo	Treatments	
	

	
Note:	Top	panel	A	reports	the	results	of	regressions	on	a	placebo	treatment	where	weight	cutoffs	are	
shifted	by	k	=	25	kg.	Bottom	panel	B	reports	on	another	placebo	treatment	where	the	control	period	is	
2001‐2003	and	the	treatment	period	is	2004‐2006.	All	regressions	use	the	same	covariates	as	in	Table	3	
including	brand	dummies.	In	parentheses	are	standard	errors.	The	asterisks	*,	**,	and	***	indicate	
significance	at	0.1,	0.05,	and	0.01	levels.	

	
	
	 	

A.	Perturbing	Bin	Assignments

DD	or	DDD ‐0.0257 ** 0.0076 ‐0.0132 ‐0.0886 ***
Estimate (0.0100) (0.0126) (0.0182) (0.0268)

R2 0.9248 0.6732 0.941 0.805
Obs. 2,006 1,130 437 2,006

B.	Using	2004‐2006	as	Treatment	Period

DD	or	DDD ‐0.0165 *** ‐0.0315 *** 0.0043 ‐0.0375 ***
Estimate (0.0057) (0.0085) (0.0079) (0.0121)

R2 0.9248 0.6732 0.941 0.9266
Obs. 4,340 1,893 2,447 4,340

(4)

DD	(Pooled) DD	(High‐cost) DD	(Lowt‐cost) DDD	(Pooled)

(1) (2) (3)



	
	

Table	6.	Regression	Results	on	Vehicle	Weight	
	

	
Note:	All	regressions	use	a	subsample	consisting	only	of	bins	with	width	less	than	40	(in	kg).	In	all	
regressions,	logged	curb	weights	are	regressed	on	the	same	set	of	covariates	as	in	Table	3,	excluding	brand	
dummies	and	logged	weights.	In	parentheses	are	standard	errors.	The	asterisks	*,	**,	and	***	indicate	
significance	at	0.1,	0.05,	and	0.01	levels.	

	
	

DD	or	DDD 0.0169 *** 0.0256 *** 0.0331 *** ‐0.0142
Estimate (0.0065) (0.0078) (0.0108) (0.0138)

R2 0.9778 0.9594 0.9443 0.979
Obs. 2,018 662 1,356 2,018

DD	(Pooled) DD	(High‐cost	Only) DD	(Lowt‐cost	Only) DDD	(Pooled)

(1) (2) (3) (4)



Online	Appendix.	
	

Figure	A1.	Sales‐weighted	Fuel	Economy	and	Standards	by	Maker,	Year	2007	
	

	
Note:	The	blue	bar	indicates	the	sales‐weighted	average	fuel	economy	of	vehicles	sold	in	2007	for	each	
domestic	car	maker.	The	red	bar	indicates	the	estimated	fuel	economy	standard	for	each	maker,	using	
the	2007	sales	weights	and	the	2007	fuel	economy	standards.	These	statistics	are	estimates	because	we	
average	out	fuel	economy	and	weight	data	over	variants	of	each	vehicle	model.	The	exact	sales	data	at	
the	car	variant	level	are	not	available.	The	figure	demonstrates	that	at	the	beginning	of	the	new	
standards,	all	domestic	car	makers	were	far	behind	the	required	fuel	economy	standards,	and	hence,	are	
likely	to	have	made	some	efforts	to	meet	the	standards	during	the	post‐2007	period.		
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Figure	A2.	Distribution	of	Curb	Weights	for	Vehicle	Models		
Assigned	to	High	Slope	Weight	Bins	
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Table	A1.	Raw	Image	of	Sample	MLIT	Table	Used	in	Ito	and	Sallee	(2018)	
	

	

当該自動車の製造又は輸入の事業を行う者の氏名又は名称 本田技研工業株式会社

ガソリン乗用車（普通・小型） 目標年度（平成22年度）

（参考）

低排出

ガス認定

レベル

ホンダ インサイト DAA-ZE2
LDA(内燃機関)
-MF6(電動機)

1.339
CVT

（E）
1190 5 31.0 75 16.0

CY・V･I・
EP・C・H

3W+EGR F タイヤ 185/60R15 ☆☆☆☆ 125

DAA-ZE2
LDA(内燃機関)
-MF6(電動機)

1.339
CVT

（E）
1190 5 30.0 77 16.0

CY・V･I・
EP・C・H

3W+EGR F ☆☆☆☆ 125

DAA-ZE2
LDA(内燃機関)
-MF6(電動機)

1.339
CVT

（E）
1200 5 28.0 83 16.0

CY・V･I・
EP・C・H

3W+EGR F タイヤ 185/55R16 ☆☆☆☆ 125

インサイト エクスクルーシブ DAA-ZE3
LEA(内燃機関)
-MF6(電動機)

1.496
CVT

（E）
1200～1210 5 26.5 88 16.0

V･I・EP・C・
H

3W+EGR F ☆☆☆☆ 125

DAA-ZE3
LEA(内燃機関)
-MF6(電動機)

1.496
CVT

（E）
1210 5 25.5 91 16.0

V･I・EP・C・
H

3W+EGR F タイヤ 185/55R16 ☆☆☆☆ 125

フィット DAA-GP1
LDA(内燃機関)
-MF6(電動機)

1.339
CVT
(E)

1130～1150 5 30.0 77 16.0
CY・V・I・
EP・C・H

3W+EGR F ☆☆☆☆ 125

DBA-GE6 L13A 1.339
CVT

(E・LTC)
1010 5 24.5 95 17.9 C・V・EP 3W+EGR F CVTウォーマー ☆☆☆☆ 125

DBA-GE6 L13A 1.339
CVT

(E・LTC)
1010 5 24.0 97 17.9 C・V・EP 3W+EGR F ☆☆☆☆ 125

DBA-GE6 L13A 1.339
CVT

(E・LTC)
1030～1080 5 22.0 106 16.0 C・V・EP 3W+EGR F CVTウォーマー ☆☆☆☆ 125

DBA-GE6 L13A 1.339
CVT

(E・LTC)
1030～1080 5 21.5 108 16.0 C・V・EP 3W+EGR F ☆☆☆☆ 125

DBA-GE6 L13A 1.339 5MT 990 5 21.0 111 17.9 V・EP 3W+EGR F ☆☆☆☆ 115

DBA-GE6 L13A 1.339 5MT 990～1010 5 21.0 111 17.9 V・EP 3W+EGR F ☆☆☆☆ 115

DBA-GE8 L15A 1.496
CVT

(E・LTC)
1070～1090 5 20.0 116 16.0 C・V・EP 3W+EGR F 走行抵抗改善 ☆☆☆☆ 125

DBA-GE8 L15A 1.496
CVT

(E・LTC)
1080～1100 5 20.0 116 16.0 C・V・EP 3W+EGR F ☆☆☆☆ 125

DBA-GE8 L15A 1.496
CVT

(E・LTC)
1080～1100 5 19.6 118 16.0 C・V・EP 3W+EGR F ☆☆☆☆ 120

DBA-GE8 L15A 1.496
CVT

(E・LTC)
1080～1100 5 19.2 121 16.0 C・V・EP 3W+EGR F CVTウォーマー ☆☆☆☆ 120

DBA-GE8 L15A 1.496
CVT

(E・LTC)
1080～1100 5 18.8 123 16.0 C・V・EP 3W+EGR F タイヤ 185/55R16 ☆☆☆☆ 115

DBA-GE8 L15A 1.496 6MT 1050～1080 5 17.4 133 16.0 V・EP 3W+EGR F ☆☆☆☆ 105

DBA-GE8 L15A 1.496 5MT 1050～1080 5 17.2 135 16.0 V・EP 3W+EGR F ☆☆☆☆ 105

DBA-GE7 L13A 1.339
5AT

(E・LTC)
1140～1170 5 17.2 135 16.0 V・EP 3W+EGR A 走行抵抗改善 ☆☆☆☆ 105

DBA-GE7 L13A 1.339
5AT

(E・LTC)
1140～1170 5 17.0 137 16.0 V・EP 3W+EGR A ☆☆☆☆ 105

DBA-GE9 L15A 1.496
5AT

(E・LTC)
1170～1180 5 16.4 142 16.0 V・EP 3W+EGR A 走行抵抗改善 ☆☆☆☆ 100

DBA-GE9 L15A 1.496
5AT

(E・LTC)
1160～1170 5 16.2 143 16.0 V・EP 3W+EGR A ☆☆☆☆ 100

フィット シャトル DAA-GP2
LDA(内燃機関)
-MF6(電動機)

1.339
CVT
(E)

1190～1230 5 30.0 77 16.0
CY・V・I・
EP・C・H

3W+EGR F ☆☆☆☆ 125

DBA-GG7 L15A 1.496
CVT

(E・LTC)
1140～1170 5 20.0 116 16.0 C・V・EP 3W+EGR F ☆☆☆☆ 125

DBA-GG7 L15A 1.496
CVT

(E・LTC)
1160～1180 5 19.2 121 16.0 C・V・EP 3W+EGR F タイヤ 185/55R16 ☆☆☆☆ 120

DBA-GG8 L15A 1.496
5AT

(E・LTC)
1210～1240 5 16.4 142 16.0 V・EP 3W+EGR A ☆☆☆☆ 100

フリード DAA-GP3
LEA(内燃機関)
-MF6(電動機)

1.496
CVT
(E)

1380～1420 5/6/7 24.0 97 13.0
V・I・EP・C・

H・CY
3W+EGR F ☆☆☆☆ 125

DBA-GB3 L15A 1.496
CVT

(E･LTC)
1270～1380 4/5/6/7/8 17.0 137 13.0 C・V・EP 3W+EGR F CVTウォーマー ☆☆☆☆ 125

DBA-GB3 L15A 1.496
CVT

(E･LTC)
1270～1350 4/5/7/8 16.4 142 13.0 C・V・EP 3W+EGR F ☆☆☆☆ 125

DBA-GB4 L15A 1.496
5AT

(E･LTC)
1360～1460 4/5/6/7　 14.0 166 13.0 V・EP 3W+EGR A ☆☆☆☆ 105

DBA-GB4 L15A 1.496
5AT

(E･LTC)
1350～1440 　4/5/7　 14.0 166 13.0 V・EP 3W+EGR A ☆☆☆☆ 105

フリード スパイク DAA-GP3
LEA(内燃機関)
-MF6(電動機)

1.496
CVT
(E)

1380～1420 5/6/7 24.0 97 13.0
V・I・EP・C・

H・CY
3W+EGR F ☆☆☆☆ 125

DBA-GB3 L15A 1.496
CVT

(E･LTC)
1270～1380 4/5/6/7/8 17.0 137 13.0 C・V・EP 3W+EGR F CVTウォーマー ☆☆☆☆ 125

DBA-GB3 L15A 1.496
CVT

(E･LTC)
1270～1350 4/5/7/8 16.4 142 13.0 C・V・EP 3W+EGR F ☆☆☆☆ 125

DBA-GB4 L15A 1.496
5AT

(E･LTC)
1360～1460 4/5/6/7　 14.0 166 13.0 V・EP 3W+EGR A ☆☆☆☆ 105

DBA-GB4 L15A 1.496
5AT

(E･LTC)
1350～1440 　4/5/7　 14.0 166 13.0 V・EP 3W+EGR A ☆☆☆☆ 105

ステップワゴン DBA-RK1 R20A 1.997
CVT

(E・LTC)
1600～1680 7/8 16.0 145 10.5 C･V・I・EP 3W+EGR F ☆☆☆☆ 125

DBA-RK1 R20A 1.997
CVT

(E・LTC)
1630～1660 7/8 15.8 147 10.5 C･V・I・EP 3W+EGR F タイヤ　205/60R16 ☆☆☆☆ 125

DBA-RK1 R20A 1.997
CVT

(E・LTC)
1580～1670 8 14.2 163 10.5 C･V・EP 3W+EGR F 　 ☆☆☆☆ 125

DBA-RK1 R20A 1.997
CVT

(E・LTC)
1580～1670 8 14.2 163 10.5 C･V・EP 3W+EGR F ☆☆☆☆ 125

DBA-RK1 R20A 1.997
CVT

(E・LTC)
1610～1680 8 14.0 166 10.5 C･V・EP 3W+EGR F タイヤ　205/60R16 ☆☆☆☆ 125

DBA-RK1 R20A 1.997
CVT

(E・LTC)
1610～1680 8 14.0 166 10.5 C･V・EP 3W+EGR F タイヤ　205/60R16 ☆☆☆☆ 125

DBA-RK3 R20A 1.997
CVT

(E・LTC)
1690～1700 7 16.0 145 10.5 C･V・I・EP 3W+EGR F ☆☆☆☆ 125

DBA-RK3 R20A 1.997
CVT

(E・LTC)
1710 7 15.8 147 10.5 C･V・I・EP 3W+EGR F タイヤ　205/60R16 ☆☆☆☆ 125

DBA-RK3 R20A 1.997
CVT

(E・LTC)
1680～1700 7 14.2 163 10.5 C･V・EP 3W+EGR F ☆☆☆☆ 125

DBA-RK3 R20A 1.997
CVT

(E・LTC)
1680～1700 7 14.2 163 10.5 C･V・EP 3W+EGR F ☆☆☆☆ 125

DBA-RK3 R20A 1.997
CVT

(E・LTC)
1680～1700 7 14.0 166 10.5 C･V・EP 3W+EGR F タイヤ　205/60R16 ☆☆☆☆ 125

車両重量

（kg）
型式 型式

総排

気量

（L）

車名 通称名

原動機
変速装置

の型式及び

変速段数

乗車定員

（名）

10･15モード
主要

燃費

改善

対策

燃費基準

達成・向上

達成レベル
燃費値

（km/L）

1km走行

における
CO2排出量

（g-CO2/km）

燃費

基準値

（km/L）

その他燃費値の異なる要因

主要排

出ガス

対策

駆動

形式
その他

Curb weights in kg


