
Arti�cial Intelligence as Structural Estimation:

Economic Interpretations of Deep Blue, Bonanza, and

AlphaGo�

Mitsuru Igamiy

October 30, 2017

Abstract

Arti�cial intelligence (AI) has achieved superhuman performance in a growing num-

ber of tasks, including the classical games of chess, shogi, and Go, but understand-

ing and explaining AI remain challenging. This paper studies the machine-learning

algorithms for developing the game AIs, and provides their structural interpreta-

tions. Speci�cally, chess-playing Deep Blue is a calibrated value function, whereas

shogi-playing Bonanza represents an estimated value function via Rust�s (1987) nested

�xed-point method. AlphaGo�s �supervised-learning policy network�is a deep neural

network (DNN) version of Hotz and Miller�s (1993) conditional choice probability

estimates; its �reinforcement-learning value network� is equivalent to Hotz, Miller,

Sanders, and Smith�s (1994) simulation method for estimating the value function. Their

performances suggest DNNs are a useful functional form when the state space is large

and data are sparse. Explicitly incorporating strategic interactions and unobserved

heterogeneity in the data-generating process would further improve AIs�explicability.

Keywords: Arti�cial intelligence, Conditional choice probability, Deep neural network,

Dynamic game, Dynamic structural model, Simulation estimator.

JEL classi�cations: A12, C45, C57, C63, C73.

�This paper bene�ted from comments at a seminar at RIKEN Center for Advanced Intelligence Project
on August 7, 2017, as well as conversations with Jerry Hausman, Greg Lewis, Robert Miller, Yusuke Narita,
John Rust, and Takuo Sugaya.

yYale Department of Economics and MIT Department of Economics. E-mail: mitsuru.igami@gmail.com.

1

1 Introduction

Arti�cial intelligence (AI) has achieved human-like performance in a growing number of

tasks, such as visual recognition and natural language processing.1 The classical games of

chess, shogi (Japanese chess), and Go were once thought to be too complicated and in-

tractable for AI, but computer scientists have overcome many of the conceptual as well as

practical challenges. In chess, IBM�s computer system named Deep Blue defeated Grand-

master Garry Kasparov in 1997. In shogi, a machine learning-based program called Bonanza

challenged (and was defeated by) Ryūō champion Akira Watanabe in 2007, but one of its

successors (Ponanza) played against Meijin champion Amahiko Satoh and won in 2017. In

Go, Google DeepMind developed AlphaGo, a deep learning-based program, which beat the

2-dan European champion Fan Hui in 2015, a 9-dan (highest rank) professional Lee Sedol in

2016, and the world�s best player Ke Jie in 2017.

Despite such remarkable achievements, one of the lingering criticisms of AI is its lack

of transparency. The internal mechanism seems like a black box to most people, including

the human experts of the relevant tasks, which raises concerns about accountability and

responsibility when something goes wrong. The desire to understand and explain the func-

tioning of AI is not limited to the scienti�c community. For example, the US Department of

Defense airs its concern that �the e¤ectiveness of these systems is limited by the machine�s

current inability to explain their decisions and actions to human users,�which led it to host

the Explainable AI (XAI) program aimed at developing �understandable� and �trustwor-

thy�machine learning.2 However, the catch for �explainable AI�is that most of the recent

progress in AI has relied precisely on the black box-ing of data-analysis procedures. �Deep

neural networks (DNNs)�are a �exible model to capture complicated data patterns, with a

complicated internal structure of its own. �Reinforcement learning�typically employs a lot

of simulations in search for the optimal actions and decisions. Both of these techniques have

proved powerful for enhancing AI�s performance, but tended to obfuscate its mechanism.

This paper examines three prominent game AIs in recent history, Deep Blue, Bonanza,

and AlphaGo. I have chosen to study this category of AIs because board games repre-

sent an archetypical task that has required human intelligence, including cognitive skills,

decision-making, and problem-solving. They are also well-de�ned problems for which eco-

1The formal de�nition of AI is contentious, partly because scholars have not agreed on the de�nition
of intelligence in the �rst place. This paper follows a broad de�nition of AI as computer systems able to
perform tasks that traditionally required human intelligence such as cognitive skills, decision-making, and
problem-solving.

2See https://www.darpa.mil/program/explainable-arti�cial-intelligence (accessed on October 17, 2017).

2

nomic interpretations are more natural than for, say, visual recognition and natural language

processing.

A close examination of their development processes and algorithms suggests these AIs�

key components are mathematically equivalent to well-known econometric methods to esti-

mate dynamic structural models. Speci�cally, chess experts and IBM�s engineers manually

adjusted thousands of parameters in Deep Blue�s �evaluation function,�which quanti�es the

probability of eventual winning as a function of the current positions of pieces (i.e., state

of the game) and therefore could be interpreted as an approximate value function. Deep

blue is a calibrated value function. By contrast, Kunihito Hoki, the developer of Bonanza,

constructed a dataset of professional shogi games, and used logit regressions with a backward-

induction algorithm to determine such parameters. His method for the �supervised learning�

of the evaluation function is equivalent to a �nite-horizon version of Rust�s (1987) nested

�xed-point (NFXP) algorithm; hence Bonanza represents an empirical model of human shogi

players�value function that is estimated by a direct (or �full-solution�) method.

Google DeepMind�s AlphaGo embodies an alternative approach to estimating dynamic

structural models: two-step estimation. AlphaGo�s �rst component is called a �policy net-

work�to predict professional Go players�next move as a function of the current board state,

which is only a slightly di¤erent name for a policy function. The developers used data from

the professional Go games and a DNN (i.e., a �exible approximation of an arbitrary func-

tion) to construct an empirical mapping from state to choice probabilities, which closely

follows Hotz and Miller�s (1993) conditional choice probability (CCP) method for estimating

dynamic discrete-choice models. Moreover, AlphaGo�s second component is a �value net-

work�to evaluate the state of the game, which is constructed by forward simulations using

the policy network (i.e., CCP estimates) in the �rst stage. This procedure is equivalent to

the CCP-based conditional choice simulation (CCS) estimator, proposed by Hotz, Miller,

Sanders, and Smith (1994) for single-agent dynamic programming (DP) models, and Bajari,

Benkard, and Levin (2007) for dynamic games.

Thus, these leading game AIs and the core algorithms for their development turn out to

be successful applications of the empirical methods to implement dynamic structural models.

These �ndings have three implications for economics as well as computer science. First, the

straight-forward interpretation of these AIs (or their development processes, to be precise) as

structural estimation suggests economics has an important role to play in the understanding,

explanation, and hence di¤usion of this new technology. Economists can open some of the

black boxes by providing structural interpretations.

3

Second, the success of these AIs (in terms of achieving certain performance milestones)

should be regarded as a proof of concept for dynamic structural models, with some new

insights for future research. The curse of dimensionality has been a major bottleneck for the

empirical application of these models, because realistic models typically entail large state

spaces, which increase computational costs and/or data requirement. The high predictive

power of AlphaGo�s policy function suggests DNNs could be a useful �functional form�for

�exibly estimating high-dimensional CCPs when only sparse data are available (i.e., only a

negligible fraction of the state space, such as 2:56 � 108=10171 = 2:56=10163 � 0, is actually
observed in the data).

Third, the equivalence between the structural econometric methods and the algorithms to

develop these AIs means well-known econometric issues for the estimation of dynamic games,

such as strategic interactions and unobserved heterogeneity, would need to be addressed.

Explicitly incorporating these fundamental features of the real data-generating processes

could further improve the transparency and the interpretability of AIs. Fortunately, the last

decade has witnessed rapid methodological progress on this front, including Kasahara and

Shimotsu (2009), Arcidiacono and Miller (2011), and Berry and Compiani (2017).

Literature

This paper establishes the equivalence between some of the algorithms for developing

game AI and the aforementioned econometric methods for estimating dynamic models. As

such, the most closely related papers are Rust (1987), Hotz and Miller (1993), and Hotz,

Miller, Sanders, and Smith (1994). The game AIs I analyze in this paper are probably the

most successful (or at least the most popular) empirical applications of these methods.

At a higher level, the purpose of this paper is to clarify the connections between some of

the recent advance in computer science-based data analysis (i.e., machine learning) and the

more traditional econometric models and methods, both of which share probability theory

and statistics as the underlying technology. As such, the paper shares the spirit of this

rapidly growing literature. For surveys, see Belloni, Chernozhukov, and Hansen (2014);

Varian (2014); Athey (2017); and Mullainathan and Spiess (2017), among others.

The paper is also potentially relevant to more recently proposed methods for estimating

dynamic structural models. My investigation into the data-generating process (i.e., how

human experts prepare for and play these games) suggests the presence of classical econo-

metric problems such as unobserved heterogeneity and identi�cation issues due to multiple

equilibria, although the developers of game AIs do not seem to pay much attention to them.

Addressing them would require the application of new methods, including Kasahara and

4

Shimotsu (2009), Arcidiacono and Miller (2011), and Berry and Compiani (2017).

Finally, the successful approximation of unknown functions (policy and value) in the

massively high-dimensional state space of Go (with only very small/sparse data) would ap-

pear to be the most important achievement of AlphaGo for the applied econometric research

on dynamic models. The development team applied a version of multi-layer feed-forward

(a.k.a. DNN) models, which have been known to be capable of approximating arbitrary

functions (c.f., Hornik, Stinchcombe, and White [1989]) and recently started generating use-

ful applications. For an overview, see Goodfellow, Bengio, and Courville (2016), among

others.

2 Model

This section introduces basic notations to describe a dynamic game. The goal is to establish

a common mathematical ground for comparing the algorithms (for developing game AIs)

and the econometric methods (for estimating dynamic structural models).

Setup

Chess, shogi, and Go belong to the same class of games, with two players (i = 1; 2), discrete

time (t = 1; 2; :::), alternating moves (players 1 and 2 choose their actions, at, in odd and

even periods, respectively), perfect information, and deterministic state transition,

st+1 = f (st; at) ; (1)

where both the transition, f (�), and the initial state, s1, are completely determined by
the rule of each game. Action space is �nite and is de�ned by the rule as �legal moves,�

at 2 A (st).
State space is �nite as well, and consists of four mutually exclusive subsets:

st 2 S = Scont [Swin [Slose [Sdraw: (2)

The game continues as long as st 2 Scont. The payo¤s sum to zero:

u1 (st) =

8>><>>:
1 if st 2 Swin;
�1 if st 2 Slose; and
0 otherwise,

(3)

5

with u2 (st) de�ned symmetrically. That is, player 1 wins when player 2 loses, and vice versa.

For notational simplicity, I use Swin (or Slose) to mean player 1�s win (or loss). This setup
means chess, shogi, and Go are well-de�ned �nite games. In principle, such games can be

solved exactly and completely by backward induction from the terminal states.

In practice, even today�s supercomputers and a cloud of servers cannot hope to solve

them within our lifetime, because the size of the state space, jSj, is large. The approximate
jSj of chess, shogi, and Go are 1047, 1071, and 10171, respectively, which are comparable
to the number of atoms in the observable universe (1078 � 1082) and certainly larger than

the total information-storage capacity of humanity (in the order of 1020 bytes).3 Given the

size of S that exceeds our civilization�s aggregate capacity, the fact that individual human
professionals can play these games seemingly intelligently is remarkable.

How Human Experts Play

Human professionals approach these games with the following heuristics. First, the player

forms some expectations about the opponent�s strategy, ��i, which is a probabilistic policy

function that maps states to likely moves. Human experts closely study each other�s play

history to form such beliefs (c.f., Kasparov [2007], Watanabe [2013, 2014]).

Second, the player holds some belie¤ about the likelihood of eventual winning from each

(current) state st,

Pr
win
(st; ��i) � Pr fs1 2 Swinjst; ��ig ; (4)

where s1 represents the eventual state. Of course, even computers cannot calculate or store

this information exactly for each speci�c st. Human players develop and re�ne an approxi-

mate, subjective version of such board-state evaluation functions through their own research

as well as personal histories of games. Developing these two beliefs, ��i and Prwin (st; ��i),

is time-consuming. The player prepares and polish them in advance, prior to the actual

match, although some updating may occur during the game.

Third, during the game, the player takes ��i and Prwin (st; ��i) as given, and chooses

actions to maximize the probability of winning under the time constraint (typically a few

hours of thinking time are allotted to each player per game). Given the large jSj and the
time constraint, the player cannot think through the endgame and instead tries to look

forward for a limited number of moves, L <1, based on ��i , and chooses his/her move at
3In 2016, the world�s hard disk drive (HDD) industry produced the total of 693 exabytes (EB), or

6:93� 1020 bytes.

6

to maximize the expected continuation value, Prwin (st+L; ��i), by backward induction.

Dynamic Discrete Choice Formulation for Empirical Implementation

Translating such heuristics to the dynamic discrete-choice framework is straight-forward.

Let Vijt (st) denote player i�s expected value function conditional on choosing legal action j

(i.e., at = aj 2 A (st)) in state st:

Vijt (st;��i) = E [ui (s1) jst; at = aj;��i] : (5)

The player�s optimal strategy, or policy function, is characterized by:

ait (st;��i) = arg max
aj2A(st)

fVijt (st;��i)g : (6)

The game�s environment is stationary; hence, the truly optimal value function would

not require any further forward-looking/backward-induction calculations (e.g., for L moves

ahead). However, the only practically available value function is an approximate and sub-

jective one,

Vi (st;��i) � V � (st;��i) ; (7)

and the endgame does require precise backward induction to �nd checkmates (i.e., the ter-

minal actions). Hence, human experts (as well as computer programs) try to reduce the

approximation error and �nd checkmates by thinking L < 1 moves ahead of the current

turn under the time constraint. We may explicitly incorporate this aspect of actual play by

adding L as an extra argument in (5) to clarify that the expectations is taken under the

time/computational constraint:

Vijt (st;��i; L) = E [ui (s1) jst; at = aj;��i; L] ; (8)

although I will suppress this notation (for simplicity) in most of the following exposition.4

In the data from human players�games, di¤erent players choose di¤erent moves at di¤er-

ent times, despite being in the same state (i.e., ait (st) 6= ai0t (st0) in general even if st = st0).

Such heterogeneity could arise due to heterogeneous abilities, beliefs, and constraints, among

4If one wants to model the underlying structure of L more precisely, one would need to consider the
optimal time allocation problem within each game, which is beyond the scope of this paper (or any of the
AIs under investigation).

7

many other factors that would a¤ect human behavior in reality. O¢ cial record of games typ-

ically contains only the players�identities and moves. Hence an empirical model would need

an error term, "ijt, to accommodate such unexplained variation in the data:

ait (st; "it;��i) = arg max
aj2A(st)

fVijt (st;��i) + "ijtg ; (9)

where "it is a vector of "ijt�s across all legal moves, and functions as another state variable

that represents the collection of unobserved �random�components of payo¤s. A conventional

approach is to assume "ijt follows the type-1 extreme value distribution, independently and

identically across i, j, and t.5

3 Algorithms

This section uses the notations I introduced in the previous section to describe the algorithms

that are used either in the development process of the three AIs or in their actual play of

the game. This section�s exposition frequently uses the terminology from computer chess,

shogi, and Go, with only limited translation to the language of economics, because the

section�s main purpose is description rather than explanation. By contrast, the next section

focuses on providing economic translation of the programming jargons as well as structural

interpretations of these algorithms, with clear connections to the economics literature.

3.1 Chess: Deep Blue

IBM�s Deep Blue is a whole computer system with custom-built hardware components as well

as software components. This paper focuses on the latter, programming-related part. Deep

Blue�s program consists of three key elements: an evaluation function, a search algorithm,

and databases.

Evaluation Function

The evaluation function of Deep Blue is a parametric value function to measure the prob-

ability of eventual winning, Prwin, or its monotonic transformation, g (Prwin), in each state

5The presence of persistent or other systematic unobserved heterogeneity in the data-generating process
(DGP) would violate this assumption, such as player-level heterogeneity, match-speci�c elements, or a secular
growth of knowledge about the game in the community of players. I will come back to this point toward the
end of the paper.

8

of the board, st:

VDB (st) = g
�
Pr
win
(st) ; �

�
= �1x1t + �2x2t + � � �+ �KxKt; (10)

where � � (�1; �2; : : : ; �K) is a vector of K parameters and xt � (x1t; x2t; : : : ; xKt) is a vector
of K observable characteristics of st.

A typical evaluation function for computer chess considers �material value�associated

with each type of pieces, such as 1 point for a pawn, 3 points for a knight, 3 points for a

bishop, 5 points for a rook, 9 points for a queen, and an arbitrarily many points for a king

(e.g., 200 or 1 billion), because the game ends when a king is killed. Other factors include

the relative positions of these pieces, such as pawn structure, protection of kings, and the

fact that a pair of bishops are usually worth more than the sum of their individual material

values. Finally, the importance of these factors may change depending on the phase of the

game: opening, middle, or endgame.

Reasonable parameterization, g (�; �), and the choice of characteristics (variables), xt,
require expert knowledge. Multiple Grandmasters (the highest rank of chess players) advised

the Deep Blue development team. Importantly, they did not use any statistical methods or

data from the professional games. Each of the several thousand parameters, �, was manually

adjusted until the program�s performance reached a satisfactory level.

Search Algorithm

The second component of Deep Blue is �search,�or a solution algorithm to choose the optimal

action at each turn to move. In the language of computer chess programming, the �full-width

search�procedure works as follows: the program evaluates every possible position for a �xed

number of future moves along the game tree, using the �minimax algorithm� and some

�pruning�methods. In the language of economics, this �search� is a version of numerical

backward induction. I will provide more precise translation in section 4.

Databases

The two databases of Deep Blue are for the endgame and the opening phases of chess,

respectively. The endgame database embodies the cumulative e¤orts by the computer chess

community to solve the game in an exact manner. The currrent state of the art is the

Nalimov database, which covers all �ve-piece endings (i.e., the states with only �ve pieces,

9

and all possible future states that can be reached from them) for 7.05 GB of hard disk space,

and all six-piece endings for 1.2 terabytes (TB). Deep Blue used some earlier version of such

endgame databases.

The second database is �opening books,�which is a collection of common openings (i.e.,

move patterns at the beginning of the game) that are considered good play by experts. It also

contains good ways to counter the opponent�s poor openings, again based on the judgment

by experts.

Performance

Deep Blue defeated the top-ranked Grandmaster Garry Kasparov in 1997. Since then, the

use of computer programs have become wide-spread in terms of both training and games

(e.g., those played by hybrid teams of humans and computers).

3.2 Shogi: Bonanza

In 2005, Kunihito Hoki, an academic chemist then at the University of Toronto, spent his

spare time on developing a shogi-playing program named Bonanza, which won the world

championship in computer shogi in 2006. Hoki�s Bonanza revolutionized the �eld of game

AI by introducing machine learning to �train� (i.e., estimate) a more �exible evaluation

function than either those for chess or those designed for the existing shogi programs.

More Complicated Evaluation Function

The developers of chess programs manually adjusted thousands of parameters in the evalua-

tion function, as described in the previous subsection, and could beat the human champions.

The same approach had not produced any comparable performance in shogi. The computer

programs before Bonanza could compete at amateur players�level at best. This performance

gap between chess and shogi AIs is rooted in the fact that shogi is more complicated and

intractable than chess, with jSshogij � 1071 > 1047 � jSchessj.
Several factors contribute to the increased complexity of shogi: a larger board size (9�9 >

8 � 8), more pieces (40 > 32), more types of pieces (8 > 6), most of the pieces have

limited mobility,6 and the fact that pieces other than kings never die. This last feature is

6Four of the eight types of pieces in shogi can move only one unit distance at a time, whereas only two
out of the six types of pieces in chess (pawn and king) have such low mobility. The exact positions of pieces
becomes more important in characterizing the state space when mobility is low, whereas high mobility makes
pure �material values�relatively more important because pieces can be moved to wherever they are needed
within a few turns.

10

particularly troublesome for any attempt to solve the game exactly. Non-king pieces are

simply �captured,�not killed, and can then be �dropped,� (re-deployed on the capturer�s

side) almost anywhere on the board, as a legal move at any of the capturer�s subsequent

turns.

Hoki designed a �exible evaluation function by factorizing the positions of pieces into (i)

the positions of any three pieces including the kings and (ii) the positions of any three pieces

including only one king. This granular yet tractable characterization turned out to capture

important features of the board through the relative positions of three-piece combinations.

Bonanza�s evaluation function, VBO (st; �BO), also incorporated other, more conventional

characteristics, such as individual pieces�material values (see Hoki and Watanabe [2007],

pp. 119�120, for details). As a result, VBO (st; �BO) contains 50 million variables and the

same number of parameters (Hoki [2012]).

Machine Learning (Logit Regression)

That the Deep Blue team managed to adjust thousands of parameters for the chess program

by human hands is almost incredible. But the task becomes simply impossible with 50 million

parameters. Hoki gave up on manually tuning Bonanza�s 50 million parameters, �BO, and

chose to rely on statistical methods to automatically adjust them based on the data from

the professional shogi players�50,000 games on o¢ cial record: supervised machine learning.

Each game takes 100 moves on average. Hence, the 50,000 games contain approximately 5

million pairs of (at; st). Hoki used additional data from 50,000 uno¢ cial, online game record

as well, to cover some rare states such as nyuu-gyoku positions (in which a king enters the

opponent�s territory and becomes di¢ cult to capture, because the majority of shogi pieces

can only move forward, not backward).

Like Deep Blue, Bonanza chooses its move at each of its turn t by searching for the action

at that maximizes VBO in some future turn t + L, assuming that the opponent follows the

same strategy as itself (i.e., ��i = �BO):

aBO;t (st; �BO; L; ��i = �BO) = arg max
aj2A(st)

fVBO;j;t (st; �BO; L; ��i = �BO)g ; (11)

where I made the dependence of the policy and the value on (L; ��i) explicit. The conditional

values are:

VBO;j;t (st; �BO; L; ��i = �BO) = E [uBO (s1) jst; aBO;t = aj; �BO; L; ��i = �BO] : (12)

11

The eventual probability of winning is approximated by the parametric evaluation function:

VBO (st; �BO) = �1x1t + �2x2t + � � �+ �KxKt

� uBO (s1) : (13)

Thus, parameter �BO uniquely determines the optimal move a�BO;t (given L) unless there are

ties between multiple actions j and j0.

By the same token, the observed action-state pairs (at; st) are informative about the

human players�true, underlying �0. This is the implicit identi�cation strategy behind Hoki�s

data analysis, the immediate goal of which is to make Bonanza predict (�t) the professional

players�actual moves in the data.

Hoki used logit regressions to determine the values of �BO automatically, in combination

with the chess-style �full-width search.�The use of logit regression implicitly assumes the

addition of the error term, "ijt, that follows i.i.d. type-1 extreme value, as shown in equation

(9). This continuous random variable eliminates the possibility of ties between multiple

actions j and j0, thereby making the mapping between �BO and �BO (i.e., the optimal choice

probabilities = the policy function) unique.

Performance

Bonanza won the world championship in computer shogi in 2006 and 2013. In 2007, the Ryūō

(�dragon king,� one of the two most prestigious titles) champion Akira Watanabe agreed

to play against Bonanza and won. After the game, however, he said he regretted agreeing

to play against it because he felt he could have lost with non-negligible probabilities. Hoki

made the source code publicly available. The use of data and machine learning for computer

shogi was dubbed the �Bonanza method�and copied by most of the subsequent generations

of shogi programs.

Issei Yamamoto, a programmer, named his software Ponanza out of respect for the pre-

decessor, claiming his was a lesser copy of Bonanza. From 2014, Ponanza started playing

against itself in an attempt to �nd �stronger�parameter con�gurations than those obtained

(estimated) from the professional players�data: reinforcement learning (Yamamoto [2017]).

Eventually, Ponanza became the �rst shogi AI to beat the Meijin (�master,�the other most

prestigious title) champion in 2017, when Amahiko Satoh lost two straight games.

12

3.3 Go: AlphaGo

The developers of AIs for chess and shogi had successfully parameterized the state spaces of

these games and found reasonable parameter values for the respective evaluation functions,

VDB

�
st; �̂DB

�
and VBO

�
st; �̂BO

�
. Meanwhile, the developers of computer Go struggled to

�nd any reasonable parametric representation of the board.

Go is even more complicated than either chess or shogi, with jSgoj � 10171 > 1071 �
jSshogij. Go has only one type of piece, a stone, and the goal is simply to occupy larger
territories than the opponent when the board is full of black and white stones (for players

1 and 2, respectively). However, the 19� 19 board size is much larger, and so is the action
space. Practically all open spaces constitute legal moves. The local positions of stones

seamlessly interact with the global ones. Even the professional players cannot articulate what

distinguishes good positions from bad ones, frequently using phrases that are ambiguous and

di¢ cult to codify. The construction of a useful evaluation function was deemed impossible.

Instead, most of the advance since 2006 had been focused on improving the game-tree

search algorithms (Yoshizoe and Yamashita [2012], Otsuki [2017]). Even though the board

states in the middle of the game is di¢ cult to codify, the terminal states are unambiguous,

with either win or loss. Moreover, a �move�in Go does not involve moving pieces that are

already present on the board; it comprises of simply dropping a stone on an open space

from outside the board. These features of Go make randomized �play-out� easy. That

is, the programmer can run Monte Carlo simulations in which black and white stones are

alternatingly dropped on random places until the board is �lled and the winner is determined.

Repeat this forward simulation many times, and one can calculate the probability of winning,

Prwin, from any arbitrary state of the board, st. This is the basic idea of a method called

Monte Carlo tree search (MCTS).

Of course there are 10171 states in Go; hence, calculating an approximate Prwin (st) for

all st�s remains impossible. However, a program can use this approach in real time to play

Go, because it needs to compare only jA (st)j < 361 = 19 � 19 alternative actions and
their resulting states at its turn to move. Forward simulations involve many calculations,

but each operation is simple and parallelizable. That is, computing one history of future

play does not rely on computing another history. Likewise, simulations that start from a

particular state st+1 = f (st; aj) does not have to wait for other simulations that start from

s0t+1 = f (st; aj0), where j 6= j0. Such computational tasks can be performed simultaneously

on multiple computers, processors, cores, or GPU (graphic processing unit). If the developer

can use many computers during the game, the MCTS-based program can perform su¢ ciently

13

many numerical operations to �nd good moves in a short time.

This was the state of computer Go programming when Demis Hassabis and his team at

Google DeepMind proposed a deep learning-based AI, AlphaGo. The four pillars of AlphaGo

are (i) a policy network, (ii) a value network, (iii) reinforcement learning, and (iv) MCTS.

The �rst two are the most novel components in the context of existing game AIs.

Supervised Learning (SL) of Policy Network

The �rst component of AlphaGo is �policy network,�which is a deep neural network (DNN)

model to predict strong professional players�move at as a function of current state st. In

other words, it is a policy function, � (st; �AG), with a particular speci�cation and 4.6 million

�weights�(i.e., parameters �AG).

Like Hoki did for Bonanza, the AlphaGo team determined �AG by using the data from an

online Go website named Kiseido Go Server (KGS). Speci�cally, they used the KGS record

on 160,000 games played by high-level (6-9 dan) professionals. A game lasts for 200 moves

on average, and eight symmetric transformations (i.e., rotations and �ipping) of the board

generate formally di¤erent states. Hence, the e¤ective size of the data is:

256 million (action-state pairs) = 160; 000 (games)� 200 (moves/game)

�8 (symmetric transformations). (14)

Note the sample size is still small (negligible) relative to jSgoj � 10171.
The speci�cation of the model consists of 48 input �channels� (variables), 13 �layers�

(stages within a hierarchical architecture), and 192 �kernels�(�lters to �nd local patterns).

A complete review of deep neural networks in general (or AlphaGo�s model speci�cation in

particular) is beyond the scope of this paper, but these objects interact as follows. Each of

the 48 channels represents a binary indicator variable that characterizes st,

xkt =

(
1 if feature k is present in st; and

0 otherwise.
; (15)

�Features� include the positions of black stones, white stones, and blanks (see Extended

Data Table 2 of Silver et al [2016] for the full list).

These xkt�s are not combined linearly (as in VDB or VBO) but processed by many kernels

across multiple hierarchical layers. In the �rst layer, each of the 192 kernels is a 5 � 5 grid
with 25 parameters that responds to a particular pattern within 25 adjacent locations. As

14

the name �kernel�suggests, this 5 � 5 matrix is applied to perform convolution operations

at every one of the 225 (= 15� 15) locations within the 19� 19 board:

zr;c =

192X
l=1

5X
p=1

5X
q=1

wl;p;q � xl;r+p;c+q + b; (16)

where zr;c is the result of convolution for row r and column c, wl;r;q is the weight for kernel

l, row r, and column c, (p; q) denote the row and column of the kernel, xl;r+p;c+q is an input,

and b is the intercept term (�bias�). The weights and intercepts constitute the parameters

of the model. DNNs of this type is called convolutional neural networks (CNNs) in the

machine learning literature, and is primarily used for image-recognition tasks. The results of

convolution are subsequently transformed by a function,

yr;c = max f0; zr;cg ; (17)

where yr;c is the transformed output (to be passed on to the next layer as input). This

function is called recti�ed linear unit (or �ReLU�). The resulting 15� 15 output is smaller
than the 19�19 board; the margins are �lled by zeros to preserve the 19�19 dimensionality
(�zero padding�).

In the second layer, another set of 192 kernels is used to perform convolution on the

outputs from the �rst layer. The results go through the ReLU transformation again, and

proceed to the third layer. The size of the kernels in layers 2 through 12 is 3 � 3, instead
of 5� 5 in layer 1. In layer 13, the size of the layer is 1� 1, because the goal of the policy
network is to put a number on each of the 19 � 19 board positions. Each of the 19 � 19
outputs in this last layer goes through a logit-style monotonic (�softmax�) transformation

into the [0; 1] interval,

CCPr;c =
exp (yr;c)P

r0
P

c0 exp (yr0;c0)
; (18)

so that the �nal output can be interpreted as the players�conditional choice probabilities of

choosing action j (or board location (r; c)).

The above is the description of the DNN (CNN) speci�cation of the policy function.

It is �deep� in the sense that the model contains multiple layers. It is named �neural

network�because small units of numerical operations are passing along inputs and outputs

in a network-like architecture, with the analogy of computational nodes as biological neurons

15

that transmit electric signals.

In one of the foundational works for deep learning, econometrician Halbert White and

his coauthors proved that such a multi-layer model with su¢ ciently many nodes can ap-

proximate any arbitrary functions (Hornik, Stinchcombe, and White [1989]). In practice,

such a �nonparametric�model is implemented with a �nite number of parameters. The

approximate number of parameters in AlphaGo�s policy network is:

4:6 million (weights) = (192 kernels)2 �
�
52 + 32 � 11 + 12

�
; (19)

which turns out to be smaller than the 50 million parameters in Bonanza, despite the fact

that Go has a larger state space than shogi.

The supervised learning (i.e., estimation) of �AG uses a standard numerical optimization

algorithm to maximize the likelihood function that aggregates the optimal choice probabil-

ities implied by the model, the data, and the parameter values. That is, AlphaGo�s policy

function is estimated by the classical maximum likelihood method. The team did not add

any �regularization�term in the objective function, which is a common practice in machine

learning to improve the out-of-sample prediction accuracy at the expense of biased estimates.

Nevertheless, the trained (i.e., estimated) policy network, �
�
st; �̂AG

�
, could predict 55.7%

of the human players�moves outside the sample, and its top-�ve move predictions contained

the actual human choices in almost 90% of the times.7

Reinforcement Learning (RL) of Policy Network

The ultimate goal of the AlphaGo team was the creation of a strong AI, not the prediction of

human play per se (or the unbiased estimation of �0). The second ingredient of AlphaGo is

the process of reinforcement learning to make a stronger policy function than the estimated

one from the previous step, �
�
st; �̂AG

�
.

Reinforcement learning is a generic term to describe a numerical search for �better�

parameter values based on some performance criteria, or �reward,�such as the score of the

game, u (st). The speci�c task in the current case is to �nd some ~�AG 6= �̂AG such that the

7By contrast, a simple parametric (logit) version of the empirical policy function (for the MCTS purposes)
achieved only 27% accuracy, which is still remarkable but less impressive than the DNN version�s performance.

16

winning probability is higher under strategy �
�
st; ~�AG

�
than �

�
st; �̂AG

�
, or equivalently,

V
�
st;�i = �

�
st; ~�AG

�
; ��i = �

�
st; �̂AG

��
> V

�
st;�i = �

�
st; �̂AG

�
; ��i = �

�
st; �̂AG

��
(20)

in the majority of the relevant st.

Of course, the outcome of the game depends on both �i and ��i. The condition (20)

does not guarantee the superiority of �
�
st; ~�AG

�
over any strategy other than �

�
st; �̂AG

�
.

The only satisfactory way to address this issue is to solve the game exactly and completely

for the optimal strategy �� (st), but that is computationally impossible. The AlphaGo

team tries to �nd �satis�cing� ~�AG, by making each candidate policy play against many

di¤erent policies that are randomly sampled from the previous rounds of iteration (i.e.,

various perturbed versions of �̂AG in the numerical search process), and by simulating plays

from a wide variety of st that are also randomly sampled from those in the data (as well as

from perturbed versions of such historical games).

Ultimately, one cannot prove �
�
st; ~�AG

�
= �� (st), or assess which of the alternative

policies, �
�
st; ~�AG

�
and �

�
st; �̂AG

�
, is �closer� to �� (st) in any formal sense, but the

development team organized their search procedure carefully. Their approach is consistent

with the goal of making a strong AI that can beat the top human players. After all, being

�stronger�usually means �winning more often� in natural languages, even if it cannot be

proven or de�ned more formally.

Supervised/Reinforcement Learning (SL/RL) of Value Network

The third ingredient of AlphaGo is the evaluation function, VAG (st), to assess the probability

of winning from any state st. Constructing such an object had been deemed impossible in

the computer Go community, but the team managed to estimate the value function from the

policy function through simulations.

Their procedure is the following. First, simulate many game plays between the RL policy

function, �
�
st; ~�AG

�
, and itself. Second, pick many (30 million) di¤erent states from separate

games in the simulation and record their winners, which generates a synthetic dataset of 30

million (Prwin; st) pairs. Third, use this dataset to �nd the value function that predicts

Prwin from any st. In other words, the strategy �
�
st; ~�AG

�
implies certain outcomes of the

game, and these outcomes become explicit through simulations. Once the outcomes become

explicit, the only remaining task is to �t some functional form to predict Prwin as a function

17

of st: plain-vanilla supervised learning.

DeepMind�s functional form of choice is another DNN (CNN) with a design that is similar

to the policy network: 49 channels, 15 layers, and 192 kernels. The only di¤erences are an

additional state variable that re�ects the identity of the player (to attribute the win/loss

outcome to the correct player) and an additional computational step at the end of the

hierarchical architecture that takes all arrays of intermediate results as inputs and returns a

scalar (Prwin) as an output.

Let us denote the estimated value network by

V
�
st; ̂AG; �i = ��i = �

�
st; ~�AG

��
; (21)

where ̂AG represents a vector of estimated parameters (another set of millions of weights

inside the CNN). The expression �i = ��i = �
�
st; ~�AG

�
clari�es the dependence of V (�) on

the use of the RL strategy �
�
st; ~�AG

�
for both the focal player�s play and the opponent�s

during the simulation step to calculate Prwin. These notations are lengthy and cumbersome,

but help us keep track of the exact nature of the estimated value network when we proceed

to the structural interpretation of these algorithms in the next section.

Combining Policy and Value with MCTS

The fourth component of AlphaGo is MCTS, the stochastic solution method for a large game

tree. When AlphaGo plays actual games, it combines the RL policy, �
�
st; ~�AG

�
, and the

RL value (equation 21) within an MCTS algorithm, to achieve the best performance.

Each of these components can be used individually, or in any combinations (Silver et al

[2016], Figure 4). The policy function directly proposes the optimal move from any given

state. The value function indirectly suggests the optimal move by comparing the winning

probabilities across the next states that result from candidate moves. An MCTS can perform

a similar state-evaluation task by simulating the outcomes of the candidate moves. They

represent more or less the same concept: approximate solutions to an intractable problem.

Nevertheless, the positive ensemble e¤ect of multiple methods is frequently reported,

because di¤erent types of numerical approximation errors may cancel out each other. This

ensemble part involves many implementation details of purely computational tasks, and

hence beyond the scope of this paper.

18

4 Structural Interpretations

This section explains how the concepts and algorithms for the development of the three AIs

in the previous section correspond to more familiar ideas and methods in economics. First,

Deep Blue is a calibrated value function. Second, the �Bonanza method�is mathematically

equivalent to Rust�s (1987) nested �xed-point algorithm. Third, AlphaGo�s �SL policy net-

work�is a version of Hotz and Miller�s (1993) nonparametric CCP estimator, and its �SL/RL

value network�is a straight-forward application of Hotz, Miller, Sanders, and Smith�s (1994)

simulation estimator. Finally, we may interpret AlphaGo�s �RL policy network�as a coun-

terfactual experiment scenario in which the professional Go players lived for a long time to

accumulate a lot of experience and improved their strategies.

4.1 Deep Blue is Calibration

The fact that IBM manually adjusted the parameter, �DB, via trials and errors means Deep

Blue is a fruit of painstaking e¤orts to �calibrate�a value function with thousands of para-

meters: Deep Blue is a calibrated value function.

As I brie�y explained in the model section, a truly optimal value function would obviate

the need for any forward-looking and backward-induction procedures to solve the game,

because the true value function embodies such solution already. However, any computable,

parametric value function is merely an attempt to approximate the optimal one, which is

why the use of solution algorithms can improve the strength of computer programs.

In the language of economics, the �full-width search�procedure is a brute-force numerical

search for the optimal choice (equation 6) by backward induction on a truncated version of the

game tree (truncated at length L from the current turn t, with some clever shortcuts to save

computational costs), where the terminal values at turn (t+ L) is given by the parametric

value function (10) and the opponent is assumed to share the same value function as well as

the symmetric strategy (i.e., ��i = �i = �). Once we translate the jargons into economics,

we may spot certain assumptions that was not so obvious at �rst glance (such as symmetry)

and start approaching AIs as an empirical problem.

Thus, Deep Blue�s main component, the �evaluation function,� is a parametric (linear)

function to approximate the winning probability at the end of a truncated game tree of

length L,

VDB (st; �DB; ��i = �DB; L) ;

19

in which the opponent plays the same strategy (��i = �DB). In other words, Deep Blue is

a calibrated, approximate terminal-value function in a game that the program plays against

its doppelgäger.

4.2 Bonanza is Harold Zurcher

Bonanza is similar to Deep Blue. Its main component is an approximate terminal-value

function, and the �optimal� action is determined by backward induction on a truncated

game tree of self play (equation 11). The only di¤erence is the larger number of parameters

(50 million), which re�ects the complexity of shogi and precludes any hopes for calibration.

Instead, Hoki decided to approach the development task as a data-analysis problem, that is,

an empirical analysis of the professional shogi players.

Consequently, Bonanza is an empirical model of Japanese shogi players, in the same

sense that Rust (1987) is an empirical model of Harold Zurcher, the Wisconsin-Madison

city-bus superintendent whose optimal engine-replacement decision was thoroughly analyzed

and whose utility function was structurally estimated. This comparison is not merely an

impressionistic analogy. The estimation algorithm for Bonanza is mathematically equivalent

to Rust (1987).

Rust�s (1987) full-solution estimation method consists of two numerical optimization

problems that are nested. First, the overall problem is to �nd the parameter values that

make the model�s predictions �t the observed discrete actions in the data. Second, the nested

sub-routine takes particular parameter values as inputs and solves the model to predict

actions. The �rst part is implemented by the maximum likelihood method (i.e., the �t is

evaluated by the proximity between the observed and predicted choice probabilities). The

second part is implemented by the value-function iteration, that is, by numerically solving a

contraction-mapping problem to �nd a �xed point, which is guaranteed to exist and is unique

under mild regularity conditions. This is why Rust named this algorithm nested �xed-point

(NFXP).

Hoki developed Bonanza in almost exactly the same manner. The overall problem is to

�nd the values of �BO in the approximate value function (13) that make Bonanza predict the

human experts�actions in the data. The nested sub-routine is to take a particular �BO as

inputs and numerically search for the optimal action a�t by means of backward induction. The

�rst part is implemented by logit regressions, that is, the maximum-likelihood estimation

of the discrete-choice model in which the error term is assumed i.i.d. type-1 extreme value.

This speci�cation is exactly the same as Rust�s implementation.

20

The second part, the sub-routine that solves the model by backward induction, proceeds

on a truncated game tree, whose �leaves� (i.e., terminal values at t + L) are given by the

approximate value function and the opponent is assumed to play the same strategy as itself

(��i = �BO). At �rst glance, this model setting and procedure might appear slightly di¤erent

from Rusts� value-function iteration, but it is essentially the same problem. Rust used

value-function iteration because his Harold Zurcher is solving a single-agent in�nite-horizon

dynamic programming (DP) problem. By contrast, Bonanza is solving an L-period �nite-

horizon DP with an opponent: a dynamic game.

Nevertheless, this di¤erence does not make the principle of its estimation algorithm any

di¤erent. The L-period �nite-horizon setting represents only a practical computational limit

(that the entire game is impossible to solve within �nite time), not a conceptual di¤erence.

The opponent is assumed to be the same version of Bonanza that shares the same value

function, which is a reasonable assumption as long as the developer aims at estimating the

average � of all human players.8

Igami (2017, 2018), as well as Igami and Uetake (2017), demonstrate how Rust�s NFXP

naturally extends to games with alternating moves (see the �rst two papers for deterministic

orders of moves; see the third paper for a stochastic order of moves). Shogi, chess, and

Go are games with a deterministic order of alternating moves. Moreover, such games can

be solved for a unique equilibrium if it features a �nite horizon and discrete choice. Thus,

given any assumptions on (��i; L), the game becomes an e¤ectively single-agent DP. From

this augmented-NFXP perspective, Harold Zurcher�s game is a special case with (��i; L) =

(N;1), where ��i = N indicates Harold is playing against nature (e.g., heavy snow in

Wisconsin) and not humans or robots; Bonanza�s game is another special case with (��i; L) =

(�BO; L <1).
Thus, Bonanza is to Akira Watanabe what Rust (1987) is to Harold Zurcher, in the strict

sense of the words.

4.3 AlphaGo is Two-step Estimation

Whereas Deep Blue and Bonanza are linear value functions, AlphaGo�s biggest innovation

is the use of a non-linear universal approximator to estimate the professional players�policy

function, without imposing parametric restrictions (�SL policy network�). This �rst step is

equivalent to the estimation of conditional choice probabilities (CCPs) in Hotz and Miller�s

8In section 5, I will discuss the possibility and desirability of relaxing this assumption, for a more serious
empirical analysis.

21

(1993) two-step method.

Subsequently, Google DeepMind uses these CCP estimates (or the stronger version, �RL

policy network�) to simulate many plays and estimate the probability of winning as a func-

tion of state, using another universal approximator (�SL/RL value network�). This step

is equivalent to the estimation of structural parameters by conditional choice simulations

(CCSs) in Hotz, Miller, Sanders, and Smith�s (1994, henceforth �HMSS�) extension of the

original CCP method, to avoid costly matrix inversion.

Because Go is a dynamic game, this algorithm to estimate AlphaGo�s value function

is also exactly the same as the second-stage forward simulation in Bajari, Benkard, and

Levin (2007), which is an application of HMSS (1994) to dynamic games, with an additional

assumption that the players�strategies are symmetric. Monte Carlo tree search embodies

the same idea, of using forward simulations to calculate the value function.

In the context of estimation and data analysis, reinforcement learning (�RL policy net-

work�) would be interpreted as a counterfactual experiment in which the players (initially

embodied by �SL policy network�) are long-lived and accumulate experiences without a time

limit.9

SL Policy Network is First-stage CCP Estimates

Just like computer scientists have dealt with the high-dimensional problems of chess, shogi,

and Go, the economics and econometrics of dynamic structural models have always faced the

�curse of dimensionality�problem in computation. The NFXP method requires the solution

of the fully dynamic model, which becomes computationally expensive as the size of the

state space increases.

Hotz and Miller (1993) proposed a solution. To the extent that the actual choices in the

data re�ect the optimal choice probabilities that are conditional on the observed state in

the data, we can estimate the policy function directly from the data. This procedure is the

estimation of CCPs in their �rst stage.

They also proved the existence of a one-to-one mapping between the policy function and

the value function, so that we can invert the former to estimate the latter. This procedure

is implemented by means of matrix inversion in Hotz and Miller�s (1993) original method.

In the context of structural econometrics, typical parameters of interest are preferences

(e.g., utility and revenue) and technologies (e.g., cost and investment e¢ ciency), which are

9In the context of pure reinforcement learning without any initialization based on the data from human
experts, econometric interpretations do not exist because no data are involved. This seems to be the case
for the latest version of the program, AlphaGo Zero (Silver et al [2017]).

22

constituents of the value function, rather than the policy function. Hence, the two-step

method is an indirect approach to estimate the structural parameters in the second stage,

after achieving an intermediate objective of estimating the policy function.

The bene�t of this approach is that the procedure does not require solving a fully dynamic

model, which is computationally expensive. The cost of this approach is that the requirement

for data becomes more demanding. One should avoid imposing parametric assumptions on

the �rst-stage policy function, because the goal is to �nd the parameters of (the components

of) the value function that are implied by the raw data patterns, not by their parametric

surrogates. A priori restrictions on the policy function could potentially contradict the

optimal solution of the underlying DP.

Thus, being nonparametric and preserving �exible functional forms are crucial for an ad-

equate implementation of the two-step method. In practice, no data are perfect, and certain

states never appear in reality, which necessitates some extrapolation and parametric assump-

tions. Nevertheless, nonparametric estimation is always desirable for �rst-stage CCPs. This

is the sense in which the CCP method is demanding of data. It trades the computational

curse of dimensionality for the data curse of dimensionality.

Given this econometric context, the use of DNN seems a sensible choice of functional form,

because Hornik, Stinchcombe, and White (1989) show a multi-layer feed-forward network

model is a universal approximator for arbitrary functions, as long as the network is su¢ ciently

large and deep (i.e., has a su¢ cient degree of �exibility) to capture complicated data patterns.

The sole purpose and requirement of Hotz and Miller�s �rst-stage is to capture the actual

choice patterns in the data as �exibly as possible. Silver et al (2016) report SL policy

network�s out-of-sample move-prediction accuracy is 55% (and close to 90% with top-�ve

predictions in Maddison et al [2015]), whereas that of a simple parametric (logit) version

is 27%. This level of �t is a remarkable achievement, because the sample size is small

(practically zero) relative to the size of the state space.

RL Policy Network is a Counterfactual with Long-lived Players

Whereas SL policy network has a clear connection to econometrics, RL policy network does

not, because this procedure involves changing parameter values from the unbiased and consis-

tent CCP estimates, �̂AG, to something else, ~�AG 6= �̂AG. Nevertheless, we may still interpret
~�AG as an outcome of some speci�c counterfactual experiment in which the human players

(as represented by �̂AG) lived long careers and learned better strategies by accumulating ad-

ditional experiences form many games. This interpretation is possible as long as the initial

23

values are set at �̂AG and the parameter updating rules are simple and intuitive.

SL/RL Value Network is Second-stage Simulation Estimation of Value Function

The SL/RL value network is the �rst successful evaluation function for Go, according to

Silver et al (2016), which is a remarkable achievement. The procedure to obtain this value

function is a straight-forward application of Hotz, Miller, Sanders, and Smith�s (1994) condi-

tional choice simulation (CCS) estimator, combined with another DNN to approximate the

complicated relationship between Prwin and st in the high-dimensional state space.

HMSS (1994) proposed an alternative approach to the second step of the Hotz-Miller

method. Instead of analytical inversion of a large matrix to calculate an implied value

function from the policy function (CCPs), they suggest running many forward simulations

by using the CCPs. With su¢ ciently many simulations, the implied value function and its

underlying structural parameters can be estimated, because Hotz and Miller (1993) already

proved that the policy-value mapping is one-to-one and the parameters are identi�ed.

Bajari, Benkard, and Levin (2007, henceforth �BBL�) extended HMSS (1994) to dynamic

games and proposed moment inequality-based estimation approach under the maintained

hypothesis that the same equilibrium is played throughout the sample period and across

geographical markets. Although AlphaGo is developed for the game of Go and hence ob-

viously related to BBL (2007), the developer team has not been interested in or explicitly

incorporated the strategic interactions among multiple human players in the data.

Consequently, the forward simulations to estimate AlphaGo�s SL/RL value network, AG,

simply assumes symmetry (i.e., ��i = �AG), and hence e¤ectively treats the environment

as a single-agent problem. In this sense, AlphaGo�s value function estimation is an empir-

ical application of HMSS (1994) rather than BBL (2007). If economists were to write a

serious empirical paper about Go, we could (and should) incorporate the inherent strategic

interactions and player heterogeneity in the data.

Finally, the AlphaGo team estimates the value function implied by the RL policy, �
�
st; ~�AG

�
,

as shown in (21), rather than the one based on SL policy, �
�
st; �̂AG

�
. Hence, the economic

interpretation of AlphaGo�s (RL) value network is that it represents the board-state evalu-

ation by the hypothetical player who has been trained over centuries or millennia of game

play (~�AG), rather than the human players of our time in the data (�̂AG). In other words, Al-

phaGo�s policy and value functions are those of an (intellectual) great-grandchild of today�s

human players.

24

MCTS Blends Harold Zurcher with CCP Estimates

The actual play of AlphaGo is generated by an ensemble of RL policy network, RL value

network, and MCTS. Hence, it is a hybrid of the human players�great-grandchild and (the

stochastic version of) Harold Zurcher�s full-solution machine.

5 Discussions

I conclude this paper by discussing three implications and directions for future research.

Incorporating Strategic Interactions and Unobserved Heterogeneity

First, the empirical methods for dynamic structural models have advanced since the time of

Rust (1987), Hotz and Miller (1993), and HMSS (1994) to address fundamental economic

and econometric problems of strategic interactions, multiple equilibria, and unobserved het-

erogeneity.10 Because the AI developers� immediate goal has been to produce a program

that can beat the human champions, such econometric considerations have never surfaced

on their research agenda. Now that AlphaGo has achieved their long-time dream of super-

human performance, however, they might as well �nd new research agenda related to those

classical econometric problems. We can help.

DNN for Nonparametric CCP Estimation

Second, the use of DNN-style speci�cations for the �rst-stage nonparametric estimation of

CCPs seems a good idea. Given the sheer size of the state space (10171) and only a small

dataset (the e¤ective number of observations is 2:56� 108, which is virtually zero relative to
10171). This class of model speci�cation (�multi-layer feed-forward network�) has long been

known to be capable of approximating arbitrary functions (e.g., Hornik, Stinchcombe, and

White [1989]). AlphaGo (Maddison et al [2015] and Silver et al [2016] �nally o¤ered a proof

of concept in the dynamic-game context, which is su¢ ciently interesting and potentially

10BBL (2007); Aguirregabiria and Mira (2007); Pakes, Ostrovsky, and Berry (2007); and Pesendorfer
and Schmidt-Dengler (2008) proposed methods for analyzing dynamic games along the lines of the two-step
estimation method, whereas recent empirical applications, such as Igami (2017, 2018), Zheng (2016), Yang
(2017), and Igami and Uetake (2017), build on the full-solution method.
Kasahara and Shimotsu (2009) propose a method (based on rank conditions of the state transition dy-

namics) to identify the lower bound of the number of unobserved types that is required to rationalize data
patterns. Arcidiacono and Miller (2011) use an expectation-maximization algorithm to estimate CCPs in the
presence of such unobserved types. Berry and Compiani (2017) advance an instrumental-variables approach
to address unobserved heterogeneity in dynamic games.

25

relevant for economic research. I would appreciate any econometric research to clarify the

properties of the relevant classes of DNN.

Structural Econometrics for �Explainable AI�

Third, the fact that this paper could provide a clear mapping between some of the computer-

science algorithms to develop game AIs and the well-known econometric methods to analyze

dynamic structural models suggests economics could potentially be helpful in understanding

and explaining AIs. The US Department of Justice�s �Explainable AI�project and other

similar news seem to indicate our society�s general interest in unpacking the black box with

logic and intuition. Economics is a discipline with the philosophy and technology to explain

the complicated black box of reality, and hence is well-positioned to supply what the society

seems to demand.

26

References

[1] Arcidiacono, P., and R. A. Miller. 2011. �Conditional Choice Probability Estimation of

Dynamic Discrete Choice Models With Unobserved Heterogeneity.�Econometrica, 79:

1823�1867.

[2] Athey, Susan. 2017. �Beyond prediction: Using big data for policy problems.�Science,

355: 483�485.

[3] Bajari, P., C. L. Benkard, and J. Levin. 2007 �Estimating Dynamic Models of Imperfect

Competition.�Econometrica, 75: 1331�1370.

[4] Belloni, A., V. Chernozhukov, and C. Hansen. 2014. �High-Dimensional Methods and

Inference on Structural and Treatment E¤ects.�Journal of Economic Perspectives, 28:

29�50.

[5] Berry, S. T., and G. Compiani. 2017. �An Instrumental Variable Approach to Dynamic

Models.�Manuscript, Yale University.

[6] Campbell, M., A. Hoane, and F. Hsu. 2002. �Deep Blue.�Arti�cial Intelligence, 134:

57�83.

[7] Goodfellow, I., Y. Bengio, and A. Courville. 2016. Deep Learning. Cambridge, MA: The

MIT Press.

[8] Hoki, K. 2012. �Kazuno bouryoku de ningen ni chousen! Bonanza no tanjou,�in Com-

puter Shogi Association, ed., Ningen ni katsu computer shogi no tsukuri kata. Tokyo:

Gijutsu hyouron sha.

[9] Hoki, K., and A. Watanabe. 2007. Bonanza Vs Shoubunou: Saikyou shogi sohuto wa

ningen wo koeruka. Tokyo: Kadokawa (in Japanese).

[10] Hornik, K., M. Stinchcombe, and H. White. 1989. �Multilayer Feedforward Networks

are Universal Approximators,�Neural Networks, 2: 359�366.

[11] Hotz, V. J., and R. A. Miller. 1993. �Conditional Choice Probabilities and the Estima-

tion of Dynamic Models.�Review of Economic Studies, 60: 497�529.

[12] Hotz, V. J., R. A. Miller, S. Sanders, and J. Smith. 1994. �A Simulation Estimator for

Dynamic Models of Discrete Choice.�Review of Economic Studies, 61: 265�289.

27

[13] Igami, M.. 2017. �Estimating the Innovator�s Dilemma: Structural Analysis of Creative

Destruction in the Hard Disk Drive Industry, 1981�1998,�Journal of Political Economy,

125: 798�847.

[14] Igami, M.. 2018 �Industry Dynamics of O¤shoring: The Case of Hard Disk Drives.�

American Economic Journal: Microeconomics, forthcoming.

[15] Igami, M., and K. Uetake. 2017. �Mergers, Innovation, and Entry-Exit Dynamics: Con-

solidation of the Hard Disk Drive Industry, 1996�2016.�Manuscript, Yale University.

[16] Kasahara, H., and K. Shimotsu. 2009. �Nonparametric Identi�cation of Finite Mixture

Models of Dynamic Discrete Choices.�Econometrica, 77: 135�175.

[17] Kasparov, G.. 2007. How Life Imitates Chess: Making the Right Moves, from the Board

to the Boardroom. London: Bloomsbury.

[18] Maddison, C. J., A. Huang, I. Sutskever, and D. Silver. 2015. �Move Evaluation in Go

Using Deep Convolutional Neural Networks.�ICLR.

[19] Mullainathan, S., and J. Spiess. 2017. �Machine learning: an applied econometric ap-

proach.�Journal of Economic Perspectives, 31: 87�106.

[20] Otsuki, T.. Saikyou igo AI AlphaGo kaitai shinsho. Tokyo: Shoeisha (in Japanese).

[21] Pakes, A., Ostrovsky, M., and Berry, S. 2007. �Simple estimators for the parameters of

discrete dynamic games (with entry/exit examples).�RAND Journal of Economics, 38:

373�399.

[22] Pesendorfer, M., and P. Schmidt-Dengler. 2008. �Asymptotic Least Squares Estimators

for Dynamic Games.�Review of Economic Studies, 75: 901�928.

[23] Rust, J.. 1987. �Optimal Replacement of GMC Bus Engines: An Empirical Model of

Harold Zurcher.�Econometrica, 55: 999�1033.

[24] Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J.

Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,

J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T.

Graepel, and D. Hassabis. 2016. �Mastering the game of Go with deep neural networks

and tree search.�Nature, 529: 484�489.

28

[25] Silver, D., J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,

L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driess-

che, T. Graepel, and D. Hassabis. 2017. �Mastering the game of Go without human

knowledge.�Nature, 550: 354�359.

[26] Varian, Hal. 2014. �Big Data: New Tricks for Econometrics.� Journal of Economic

Perspectives, 28: 3�28.

[27] Watanabe, A.. 2013. Shōbushin. Tokyo: Bungei shunju (in Japanese).

[28] Watanabe, A.. 2014. Watanabe Akira no shikou: Banjou bangai mondou. Tokyo:

Kawade shobou shinsha (in Japanese).

[29] Yamamoto, I.. 2017. Jinkou chinou wa donoyouni shite �Meijin�wo koetanoka? Tokyo:

Diamond sha (in Japanese).

[30] Yang, Chenyu. 2017. �Could Vertical Integration Increase Innovation?� Manuscript,

University of Rochester.

[31] Yoshizoe, K., and H. Yamashita. 2012. Computer Go: Theory and Practice of Monte

Carlo Method (ed. by H. Matsubara). Tokyo: Kyouritsu shuppan (in Japanese).

[32] Zheng, Fanyin. 2016. �Spatial Competition and Preemptive Entry in the Discount Retail

Industry.�Manuscript, Columbia University.

29

