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A Heuristic Example

Example (Job Search I)

@ At each t, an unemployed worker obtains a wage offer w; = w(Z;).
o (Z:)e>o0: the underlying state process.

@ Two choices:

o accept the offer: work permanently at w;.
e reject the offer: receive compensation ¢ and reconsider next period.

© Objective: A stopping rule maximizing expected total returns.




@ Value function based method

@ Continuation value based method
e Potential advantages

© The theory we develop: continuation value based

o Optimality results
e Properties of continuation values and optimal policies



® (Zn)n>0: a time homogeneous Markov process

Zni (Q,ﬁ, {yn}nZOJP) — (27 ,ff)

P:Zx % —[0,1] : the stochastic kernel of (Z,)n>0

o A P(z,A) is a probability measure, Vz € Z
o z+— P(z,A) is Z-measurable, VA€ &

@ ./ the set of stopping times on Q w.r.t {%,}n>0
e r: Z— R : exit reward function

@ c: Z— R : flow continuation reward function

e € (0,1): discount factor



Value Function Based Method

The value function:

vi(z) = sup E, {Zﬁt t)+ B7r( )}
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The value function:
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The Bellman operator:

Tv(z) := max {r(z), c(z) + ,8/ v(Z')P(z, dz’)} .



Value Function Based Method

The value function:

v¥(z) .= sup E, {Zﬁt t)+ B87r(Z )}

TEM

The Bellman operator:

Tv(z) = max{r(z +5/ Z)P(z,dz )}

Theorem (Stokey etc. (1989); Peskir and Shiryaev (2006))

If r,c € bcZ and P is Feller, then v* solves the Bellman equation:

vi(z) = max{ +ﬁ/ Z)P(z,dz") }

and T: (beZ, || -||) — (bcZ,|| - ||) is a contraction mapping with unique
fixed point v*.




Value Function Based Method

Example (Job search | cont.)

The exit and flow continuation rewards:

Tt

and ¢(z) = ¢ = u(&).

The Bellman operator:

Tv(z)::max{ uw( —|—ﬁ/ P(z,dZ) }

If uis bounded and continuous and P is Feller, then

vi(z) = max{ ulw( +6/ P(z dz’)}

and T : bcZ — bcZ is a contraction with unique fixed point v*.




Value Function Based Method: Limitations

@ Unbounded rewards are common:
e AR(1) state process (unit root possible)
Zt+1 = b+pzt+5t+17 (Et) I"IB N(0702)a Pe [_171]a

o Log-normal wage process: w(z) = e*

o CRRA utility

u(w) =

W if6>0and6#1
Inw, iféd=1

@ Among others ...



An Alternative Method

Recall the value function
v*(z):max{r , z)—i—B/ P(z,dZ") } (1)

Define the continuation value function

+B/ (z,dZ) (2)

Substituting (2) into (1):
vi(2) = max{r(z),9"(2)}. (3)
Substituting (3) into (2):

W@ = cl) + 8 [ max(r(z).0* ()} P(a.d2).
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Continuation Value Based Method

Define the continuation value operator, or Jovanovic operator

QU(z) =c(z) + B/max {r(z'),w(z’)} P(z,dZ").
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Continuation Value Based Method

Define the continuation value operator, or Jovanovic operator

QU(z) =c(z) + B/max {r(z'),w(z’)} P(z,dZ").

Example (Jovanovic, 1982)

Firm's decision: stay in or exit the industry?
V(x;p) = n(x;p) + B / max { W, V(X’; p)} P(x,dx’).

e V(x; p): the expected value of staying in the industry

o 7(x; p): the expected profit from the current industry (bounded)

@ W: expected return in a different industry (a constant)
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Continuation Value Based Method

Example (Job Search | cont.)

The Bellman operator

Tv(z):max{ co—i—ﬂ/ P(z,dZ") }
The Jovanovic operator

Quta) =0+ 5 [ max{ D,y b, az).

]__
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Continuation Value Based Method

Potential advantage—1: smoother fixed points
o Facilitating analysis of the optimal policy.
e Facilitating analysis related to unbounded rewards.

@ Computationally less expensive.
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Continuation Value Based Method

Example (Job Search II)

A job search model with learning:

@ The wage process

11

Inwy =0+, (et)e>0 ~ N(0,7:)
@ 0: unobservable component, prior belief N(u,)

o If the offer is rejected, the agent observes w’ and updates belief
o Posterior belief: §|w' ~ N(p',~")

o v =1/(1/y+1/7) and p'=5"(u/v+Inw'/7)

o f(w'|u,v) = LN(p,y + ~e): the current expectation of the next
period wage distribution.
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Continuation Value Based Method

Example (Job Search Il cont.)

The Bellman operator

Tv(w, pu,vy) == max{(—ﬁ, o-l-ﬁ/ w1 ) (W |, y) d /}

and the Jovanovic operator

Qv(k,7) == co+ B/ max { Lll(_wﬂ) (W, 7’)} f(w'|p, ) dw',

where f(w'|p,v) = LN(p,y + 7¢)-

Note:

@ 3-dimensional (T) v.s. 2-dimensional (Q).

16 /57



Continuation Value Based Method

Potential advantage—2: lower state dimension

o Simplifying challenging problems associated with
unbounded rewards

parametric continuity

differentiability

soon ...

@ Mitigating the curse of dimensionality.
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What We Do

The first systematic study of optimal timing of decisions, based on
continuation value functions and operators.
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What We Do

The first systematic study of optimal timing of decisions, based on
continuation value functions and operators.

Main results:

@ A general optimality theory: bounded or unbounded rewards

@ Conditions under which continuation values satisfy

o (parametric) continuity
@ monotonicity
e (continuous) differentiability

@ Conditions under which threshold policies satisfy

o (parametric) continuity
@ monotonicity
o (continuous) differentiability: an expression for the derivative
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o (continuous) differentiability: an expression for the derivative
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Individual applications of optimal timing:

@ Jovanovic (1982), Posche (2010), Chatterjee and Rossi-Hansberg
(2012), Kellogg (2014)

Unbounded dynamic programming:

@ The weighted supremum norm theory
o Boyd (1990), Alvarez and Stokey (1998), Le Van and Vailakis (2005)

@ The local contraction theory

e Rincon-Zapatero and Rodriguez-Palmero (2003), Martins-Da-Rocha
and Vailakis (2010)
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Optimality Results

Assumption 2.1

There exist a Z-measurable function g : Z — R and constants n € Ny

and a1, -+ ,a4,m,d € Ry such that Bm <1, and, for all z € Z,
[1r2)Pr(z.d2) < () + o @
[1e@)1P(z.02) < () + 2 )
and /g(z’)P(z,dz’) < mg(z)+d. (6)
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Optimality Results

Assumption 2.1

There exist a Z-measurable function g : Z — R and constants n € Ny
and a1, -+ ,a4,m,d € Ry such that Bm <1, and, for all z € Z,
[1r2)Pr(z.d2) < () + o @
[1e@)1P(z.02) < () + 2 )
and /g(z’)P(z,dz’) < mg(z)+d. (6)
Note:

@ If r and ¢ are bounded, then assumption 2.1 holds.
@ True for some n € Ng = true for all integer n’ > n.
© May use ny in (4), n2 in (5), and ny # no.
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Optimality Results

For k : Z — (0, +00), the k-weighted supremum norm:

|f(2)]

fllx = sup ——.
Il zez K(2)

Then (b.Z,|| - ||x) is a Banach space, where
beZ :={f e mZ :||f|, < oo}

Recall the Jovanovic operator:

QY(z) :=c(z) + ﬁ/max {r(z’), w(z’)} P(z,dZ).
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Optimality Results

Theorem 2.1

Under assumption 2.1, there exist m’, d’ > 0 such that for / : Z — R given
by

o(z) = (iEzwzm + iEz|c<zt>|> +e(2)+d,
t=1 t=0

1. Q is a contraction mapping on (beZ, || - ||¢).
2. The unique fixed point of Q in byZ is ¥*.
3. 0*(z) = 1{r(z) > ¢*(2)} is an optimal policy.
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Optimality Results

Theorem 2.1

Under assumption 2.1, there exist m’, d’ > 0 such that for / : Z — R given
by

o(z) = (iEzwzm + iEz|c<zt>|> +e(2)+d,
t=1 t=0

1. Q is a contraction mapping on (beZ, || - ||¢).

2. The unique fixed point of Q in byZ is ¥*.

3. 0*(z) = 1{r(z) > ¢*(2)} is an optimal policy.
Note:

@ Assumption 2.1 holds for n =0 = {(z) = g(z) + d'.
@ Assumption 2.1 holds for n =1 = ¢(z) = m’|c(2)| + g(z) + d'.
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Optimality Results

Example (Job Search | cont.)

Let w(z) = €7, and the state process

Zey1 = b+ pZi+ 61, (1) ~ N(0,62), pel[-1,1].

The agent's preference

1-6 .
_ T, ifd>0andd #1
u(w) { Inw, ifé=1

The Jovanovic operator

u(w())

QyY(z) —c0+5/max{ 15

(@)} ) 0z
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Optimality Results

Example (Job Search | cont.)

Consider, e.g., § > 0,0 # 1 and p € [0, 1).
o r(z) =e(=97/((1 - B)(1 —6)) and ¢(z) = .
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Optimality Results

Example (Job Search | cont.)

Consider, e.g., 6 > 0,6 # 1 and p € [0,1).
o r(z) =e(=97/((1 - B)(1 —6)) and ¢(z) = .

Step 1. Since X ~ N(u,02) = E eX = e#15°9°/2 (MGF):

/e(l_‘s)zlPt(z, dz') = by e (1797 (b, is constant for fixed t).
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Optimality Results

Example (Job Search | cont.)

Consider, e.g., 6 > 0,6 # 1 and p € [0,1).
o r(z) =e(=97/((1 - B)(1 —6)) and ¢(z) = .

Step 1. Since X ~ N(u,02) = E e5X = e5#+5°7°/2 (MGF):
/e(l_‘s)zlPt(z, dz') = by e (1797 (b, is constant for fixed t).

Step 2. Let g(z) = ¢?"(1=97 and apply MGF:

/g(z’)P(z, dz') < (g(z) + 1)e”"¢ (& is a constant).
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Optimality Results

Example (Job Search | cont.)

Consider, e.g., 6 > 0,6 # 1 and p € [0,1).
o r(z) =e(=97/((1 - B)(1 —6)) and ¢(z) = .

Step 1. Since X ~ N(u,02) = E e5X = e5#+5°7°/2 (MGF):
/e(l_‘s)zlPt(z, dz') = by e (1797 (b, is constant for fixed t).

Step 2. Let g(z) = ¢?"(1=97 and apply MGF:

/g(z’)P(z, dz') < (g(z) + 1)e”"¢ (& is a constant).

Step 3. Choose n € Ng s.t fe?€ <1, and let m = d = e”"¢.
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Optimality Results

Example (Job Search | cont.)

@ The cases p € (—1,0], |p| =1 and 6 = 1 can be treated similarly.

Note:
@ The local contraction method fails in this case.

e Unbounded shocks and growth rate of the state process.

Advantages of assumption 2.1:
@ No further restrictions on the key parameters.

@ Exploits the smoothing effect of future transitions.
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Optimality Results

Example (Job Search Il cont.)

The wage process

II

Inw; = 6 + &4, (5t)t20 ~ N(0, vc).

The Jovanovic operator

u(w’)

Qulp) = o+ [ max{ )yt ) iy aw

o v =1/(1/y+1/7) and p' =~"(u/v+Inw'/y)
f(w'|p, ) = N(p, v + )
@ CRRA preference

wi=s .
_ ) T, ifd=>0andd#1
u(w) { o, TH=1
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Optimality Results

Example (Job Search Il cont.)

Consider, e.g., 6 = 1.
o r(w)=Inw/(1—p) and c = c.
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Optimality Results

Example (Job Search Il cont.)

Consider, e.g., 6 = 1.
o r(w)=Inw/(1—p) and c = c.

Step 1. Use |Inw| < w + 1/w and MGF:

/ [ Inw/| (|, 7) dw’ < €7/ (e’“W + e_ﬂ+7/2).
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Optimality Results

Example (Job Search Il cont.)
Consider, e.g., 6 = 1.
o r(w)=Inw/(1—p) and c = .

Step 1. Use |Inw| < w + 1/w and MGF:

/ [ Inw/| (|, 7) dw’ < €7/ (e’”W + e_ﬂ+7/2).

Step 2. Let g(u,) = e#t/2 4 e #+7/2 and use MGF:

/g(ﬂla’Yl)f(Wl|M7’)’) dw’ = g(p,7).
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Optimality Results

Example (Job Search Il cont.)
Consider, e.g., 6 = 1.
o r(w)=Inw/(1—p) and c = .

Step 1. Use |Inw| < w + 1/w and MGF:

/ [ Inw/| (|, 7) dw’ < €7/ (e’”W + e_ﬂ+7/2).

Step 2. Let g(u,) = e#t/2 4 e #+7/2 and use MGF:

/g(ﬂla’Yl)f(Wl|M7’)’) dw’ = g(p,7).

Step 3. Let n=1, m=1and d =0.
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Properties of Continuation Values: Continuity

Assumption 3.1

(1) The stochastic kernel P is Feller,
(2) c,r, 4, and z — [ |r(2')|P(z,d2"), [ £(Z")P(z,dZ") are continuous.

Recall:
@ Assumption 2.1 holds for n =0 = ¢(z) = g(z) + d'.
@ Assumption 2.1 holds for n =1 = {(z) = m'|c(2)| + g(z) + d".

Proposition 3.1

If assumptions 2.1 and 3.1 hold, then ¢* is continuous.
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Properties of Continuation Values: Differentiability

Set up:
e Z=7'x.-.-xZMmCR"™

@ P has a density representation f:

P(z,A) = / f(Z|z)dZ" forall Ae Z.
A

Notations:
o z=(z}..,z") ez
P (zl Zi—1 Zi—i—l, ...,zm)
° th( )= f“(.z.) and DIf(Z|z) = 2112

a2y a(z'y

Assumption 3.3

Dic(z) exists for all z € int(Z) and i=1,...,m

39 /57



Properties of Continuation Values: Differentiability

Assumption 3.4

P has a density representation f, and for i =1, ..., m:

(1) D?f('|z) exists for all (z,2) € int(Z) x Z;

(2) (z,2') — Djf(2'|z) is continuous;

(3) There are finite solutions of z' to D?f(Z'|z) = 0 (denoted by
z¥(2',z7")), and, for all zy € int(Z), there exist d >0 and a compact
subset A C Z such that 2’ ¢ A implies z/(Z',z,") ¢ Bs(2}).
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Properties of Continuation Values: Differentiability

Assumption 3.4

P has a density representation f, and for i =1, ..., m:

(1) D?f('|z) exists for all (z,2) € int(Z) x Z;

(2) (z,2') — Djf(2'|z) is continuous;

(3) There are finite solutions of z' to D?f(Z'|z) = 0 (denoted by

z¥(2',z7")), and, for all zy € int(Z), there exist d >0 and a compact
subset A C Z such that 2’ ¢ A implies z/(Z',z,") ¢ Bs(2}).

A

Example (Job Search | cont.)
We show that assumption 3.4 holds:
o P(z,A) = [,f(Z|z)dZ', where f('|z) = N(pz + b,5?).

. 0%f(2'|z) z/—bto
0z2 p

o |Z| = 0o = |z*(Z)| — 0.

= 0 has two solutions: z*(z') =
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Properties of Continuation Values: Differentiability

Assumption 3.5

k is continuous and [ |k(2')D;f(Z'|z)|dz’ < oo for all z € int(Z),
ke{rl}andi=1,..,m.

Proposition 3.3 (Differentiability)

Under assumptions 2.1 and 3.3-3.5, ¥* is differentiable at interior points,
and, for all z € int(Z) and i = 1,...,m,

Diy*(z) = Djc(z) + / max {r(z'), w(z’)} Dif(Z'|z)dZ.
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Properties of Continuation Values: Differentiability

Assumption 3.6
For i =1, ..., m, the following conditions hold:
(1) z~— Dic(z) is continuous on int(Z),

(2) k and z+— [ |k(2')Djf(Z'|z)| dz’ are continuous on int(Z) for
k e{r, ¢}

Proposition 3.4 (Continuous Differentiability)

If assumptions 2.1, 3.4 and 3.6 hold, then z — Djy*(z) is continuous on
int(Z) fori=1,...,m.
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Properties of Continuation Values: Differentiability

Recall that

Uz) = m' (i E,|r(Z)| + iEz|c(Zt)|> +g(z)+d.
t=1 t=0

Example (Job Search | cont.)
If § >0 and § # 1, then I ,|r(Z;)| = aze? 197 for some a; > 0, ¥Vt > 0.

o f(Z'|z) = N(pz + b, c?)
af(Z'|z)

= dZ’ is continuous for all a € R.

:>zn—>fe""zl

f(z'|2)

=z [ ‘r(z’)a o dz’ are continuous.

dz, [ ‘6(2’)—8’((822,‘2)

Hence, assumption 3.6 holds, and ¢* is continuously differentiable.
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Simulation: 3 =0.96, p=0.6,§=1, b=0and c =1.

250

— continuation value function -
- - value function p

200} L ]
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Optimal Policy

Set up:
@ ZCR™withZ=XxY CR™ x RM~ ™

o (Zt)r>0 = {(Xt, Yt)} >0

o Conditional independence: given Y;, the next period states
(Xt+1, Yey1) are independent of X;.
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Optimal Policy

Set up:
@ ZCR™withZ=XxY CR™ x RM~ ™

o (Zt)r>0 = {(Xt, Yt)} >0

o Conditional independence: given Y;, the next period states
(Xt+1, Yey1) are independent of X;.

Then the stochastic kernel

P(z,dZ") = P((x,y),d(x', ) = dF, (', y').
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Optimal Policy

Set up:
e ZCR™"withZ=XxY CR™M x RMmo
o (Zt)eo = {(Xt, Yt)}e>0

o Conditional independence: given Y;, the next period states
(Xt+1, Yey1) are independent of X;.

Then the stochastic kernel
P(z, dz') = P((x,y), d(x’,y')) = dIFy(x',y’).

@ The flow continuation reward ¢ : Y — RR.

Then the Jovanovic operator

QU(y) = cly) + B / max{r(x', y'), ¥(y')} dBy (X' y').
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Optimal Policy

In the next, we consider mg = 1.

Assumption 4.1
r is strictly monotone on X. Moreover for all y €Y, there exists x € X
such that r(x,y) = c(y)+ 8 [ v* NVdF,(x,y').

@ X;: the threshold state

@ Y;: the environment

The reservation rule property
Under assumption 4.1, there is a decision threshold x : Y — X.

@ When x attains X, the agent is indifferent between stopping and
continuing: r(x(y),y) = ¥*(y), for all y € Y.
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Optimal Policy

Example (Job Search Il cont.)

The Bellman operator

TV(W,M,’Y):maX{ CO+B/ ,,U, fy |IU’ ’}/)dW}

The Jovanovic operator
Qu(p,v) = Co+ﬁ/ma><{ = ),w(u 7)} F(w'|p, ) dw'.

o w=:x € X:=R,;: threshold state
o (u,7) =1y € Y:=R x R44: environment

@ w:Y — X : the reservation wage
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Optimal Policy: The Reservation Wage

Simulation: 5 =0.95, 7. = 1.0, & = 0.6, 6 = 3.0

2]

HoL
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Computational Efficiency

CVI (2-dim) v.s.  VFI (3-dim):

178 seconds v.s. More than 7 days!
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Optimal Policy

Proposition 4.3 (Differentiability of Decision Threshold)

Let assumptions 2.1, 3.4, 3.6 and 4.1 hold. If r is continuously
differentiable on int(Z), then X is continuously differentiable on int(Y),

with

Dix(y) = _D,-r(>'<(y)( )(_) D)¢*( y) forally eint(Y)andi=1,...m

e r(x,y) —¥*(y): terminating premium
o Dir(%(y),y) — Div*(y): the marginal premium of y'
e Dyr(x(y),y): the marginal premium of x
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Extension—1: Repeated Sequential Decisions

@ At each time t, the agent is either active or passive
@ Active state: observe Z;, continue or exit?

e continuation: ¢(Z;), remain active at t + 1
o exit: s(Z;), transition to passive at time ¢, return to active with
probability « at time t + 1

e E.g., Arellano (2008)

The value function:

V;()_max{v +5/ zdz)}

vi(2) :s(z)+aﬁ/v;(z/) 2,dZ) + (1 - a) 5/ P(z,dZ)
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Extension—2: Sequential Decision with More Choices

@ At each period t, the agent observes Z;
@ Choosing among N alternatives.
o Alternative i: current reward r;(Z;), stochastic kernel P;(z,dz’).

e E.g., Jovanovic (1987), Moscarini and Postel-Vinay (2013)

The value function

( )—max{% 7 7¢N( )}
¥i(2) +6/ Pi(z,dZ')
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Conclusions

o Explore hidden advantages of the continuation value based method.

e Smoothing effect of the future transitions
o Conditional independence along the transition path

@ Develop a general theory of optimal timing of decisions.

@ Extend and improve the existing dynamic programming theory of
optimal timing of decisions.

e Analytically and computationally.
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Thank you!



