Optimal Timing of Decisions: A General Theory Based on Continuation Values

Qingyin Ma ^a John Stachurski ^b

^{a,b}The Australian National University qingyin.ma@anu.edu.au john.stachurski@anu.edu.au

June 6, 2017

A Heuristic Example

Example (Job Search I)

- **①** At each t, an unemployed worker obtains a wage offer $w_t = w(Z_t)$.
 - $(Z_t)_{t\geq 0}$: the underlying state process.
- 2 Two choices:
 - accept the offer: work permanently at w_t .
 - ullet reject the offer: receive compensation $ilde{c}_0$ and reconsider next period.
- 3 Objective: A stopping rule maximizing expected total returns.

Road Map

- Value function based method
- 2 Continuation value based method
 - Potential advantages
- The theory we develop: continuation value based
 - Optimality results
 - Properties of continuation values and optimal policies

Primitives

• $(Z_n)_{n\geq 0}$: a time homogeneous Markov process

$$Z_n: (\Omega, \mathscr{F}, \{\mathscr{F}_n\}_{n\geq 0}, \mathbb{P}) \to (\mathsf{Z}, \mathscr{Z})$$

- $P: \mathbb{Z} \times \mathscr{Z} \to [0,1]$: the stochastic kernel of $(Z_n)_{n \geq 0}$
 - $A \mapsto P(z, A)$ is a probability measure, $\forall z \in Z$
 - $z \mapsto P(z, A)$ is \mathscr{Z} -measurable, $\forall A \in \mathscr{Z}$
- \mathcal{M} : the set of stopping times on Ω w.r.t $\{\mathcal{F}_n\}_{n\geq 0}$
- $r: Z \to \mathbb{R}$: exit reward function
- ullet c: $Z \to \mathbb{R}$: flow continuation reward function
- $\beta \in (0,1)$: discount factor

The value function:

$$v^*(z) := \sup_{ au \in \mathscr{M}} \mathbb{E}_z \left\{ \sum_{t=0}^{ au-1} \beta^t c(Z_t) + eta^ au r(Z_ au)
ight\}.$$

The Bellman operator

$$Tv(z) := \max \left\{ r(z), c(z) + \beta \int v(z')P(z, dz') \right\}.$$

Theorem (Stokey etc. (1989); Peskir and Shiryaev (2006))

If $r, c \in bcZ$ and P is Feller, then v^* solves the Bellman equation:

$$v^*(z) = \max \left\{ r(z), c(z) + \beta \int v^*(z') P(z, dz') \right\},$$

and $T:(bcZ,\|\cdot\|)\to (bcZ,\|\cdot\|)$ is a contraction mapping with unique fixed point v^* .

The value function:

$$v^*(z) := \sup_{\tau \in \mathscr{M}} \mathbb{E}_z \left\{ \sum_{t=0}^{\tau-1} \beta^t c(Z_t) + \beta^\tau r(Z_\tau) \right\}.$$

The Bellman operator:

$$Tv(z) := \max \left\{ r(z), c(z) + \beta \int v(z')P(z, dz') \right\}.$$

Theorem (Stokey etc. (1989); Peskir and Shiryaev (2006))

If $r, c \in bcZ$ and P is Feller, then v^* solves the Bellman equation:

$$v^*(z) = \max \left\{ r(z), c(z) + \beta \int v^*(z') P(z, dz') \right\},\,$$

and $T:(bcZ,\|\cdot\|)\to (bcZ,\|\cdot\|)$ is a contraction mapping with unique fixed point v^* .

The value function:

$$v^*(z) := \sup_{\tau \in \mathscr{M}} \mathbb{E}_z \left\{ \sum_{t=0}^{\tau-1} \beta^t c(Z_t) + \beta^\tau r(Z_\tau) \right\}.$$

The Bellman operator:

$$Tv(z) := \max \left\{ r(z), c(z) + \beta \int v(z')P(z, dz') \right\}.$$

Theorem (Stokey etc. (1989); Peskir and Shiryaev (2006))

If $r, c \in bcZ$ and P is Feller, then v^* solves the Bellman equation:

$$v^*(z) = \max \left\{ r(z), c(z) + \beta \int v^*(z') P(z, \mathrm{d}z') \right\},$$

and $T:(bcZ,\|\cdot\|)\to (bcZ,\|\cdot\|)$ is a contraction mapping with unique fixed point $v^*.$

Example (Job search I cont.)

The exit and flow continuation rewards:

$$r(z):=rac{u(w(z))}{1-eta} \quad ext{and} \quad c(z)\equiv c_0:=u(ilde{c}_0).$$

The Bellman operator:

$$Tv(z) := \max \left\{ \frac{u(w(z))}{1-\beta}, c_0 + \beta \int v(z')P(z, \mathrm{d}z') \right\}.$$

If u is bounded and continuous and P is Feller, then

$$v^*(z) = \max \left\{ \frac{u(w(z))}{1-\beta}, c_0 + \beta \int v^*(z')P(z,dz') \right\},$$

and $T:bcZ \rightarrow bcZ$ is a contraction with unique fixed point v^* .

Value Function Based Method: Limitations

- Unbounded rewards are common:
 - AR(1) state process (unit root possible)

$$Z_{t+1} = b + \rho Z_t + \varepsilon_{t+1}, \quad (\varepsilon_t) \stackrel{\text{\tiny IID}}{\sim} N(0, \sigma^2), \quad \rho \in [-1, 1],$$

- Log-normal wage process: $w(z) = e^z$
- CRRA utility

$$u(w) = \left\{ egin{array}{l} rac{w^{1-\delta}}{1-\delta}, & ext{if } \delta \geq 0 ext{ and } \delta
eq 1 \ ext{ln } w, & ext{if } \delta = 1 \end{array}
ight.$$

Among others ...

An Alternative Method

Recall the value function

$$v^*(z) = \max\left\{r(z), c(z) + \beta \int v^*(z')P(z, \mathrm{d}z')\right\}. \tag{1}$$

Define the continuation value function

$$\psi^*(z) := c(z) + \beta \int v^*(z) P(z, dz').$$
 (2)

Substituting (2) into (1):

$$v^*(z) = \max\{r(z), \psi^*(z)\}.$$
 (3)

Substituting (3) into (2):

$$\psi^*(z) = c(z) + \beta \int \max\{r(z'), \psi^*(z')\} P(z, \mathrm{d}z').$$

Define the *continuation value operator*, or *Jovanovic operator*

$$Q\psi(z) = c(z) + \beta \int \max\{r(z'), \psi(z')\} P(z, dz').$$

Example (Jovanovic, 1982)

Firm's decision: stay in or exit the industry?

$$V(x; p) = \pi(x; p) + \beta \int \max\{W, V(x'; p)\} P(x, dx')$$

- V(x; p): the expected value of staying in the industry
- $\pi(x; p)$: the expected profit from the current industry (bounded)
- W: expected return in a different industry (a constant)

Define the *continuation value operator*, or *Jovanovic operator*

$$Q\psi(z) = c(z) + \beta \int \max\{r(z'), \psi(z')\} P(z, dz').$$

Example (Jovanovic, 1982)

Firm's decision: stay in or exit the industry?

$$V(x; p) = \pi(x; p) + \beta \int \max\{W, V(x'; p)\} P(x, dx').$$

- V(x; p): the expected value of staying in the industry
- $\pi(x; p)$: the expected profit from the current industry (bounded)
- W: expected return in a different industry (a constant)

Example (Job Search I cont.)

The Bellman operator

$$Tv(z) = \max \left\{ \frac{u(w(z))}{1-\beta}, c_0 + \beta \int v(z')P(z, \mathrm{d}z') \right\}.$$

The Jovanovic operator

$$Q\psi(z) = c_0 + \beta \int \max \left\{ \frac{u(w(z))}{1-\beta}, \psi(z') \right\} P(z, \mathrm{d}z').$$

Potential advantage-1: smoother fixed points

- Facilitating analysis of the optimal policy.
- Facilitating analysis related to unbounded rewards.
- Computationally less expensive.

Example (Job Search II)

A job search model with learning:

The wage process

$$\ln w_t = \theta + \varepsilon_t, \quad (\varepsilon_t)_{t \geq 0} \stackrel{\text{\tiny IID}}{\sim} N(0, \gamma_{\varepsilon})$$

- θ : unobservable component, prior belief $N(\mu, \gamma)$
- ullet If the offer is rejected, the agent observes w' and updates belief
- Posterior belief: $\theta | w' \sim N(\mu', \gamma')$

$$\bullet \ \, \gamma' = 1/(1/\gamma + 1/\gamma_\varepsilon) \quad \text{ and } \quad \mu' = \gamma' \left(\mu/\gamma + \ln w'/\gamma_\varepsilon \right)$$

• $f(w'|\mu, \gamma) = LN(\mu, \gamma + \gamma_{\varepsilon})$: the current expectation of the next period wage distribution.

Example (Job Search II cont.)

The Bellman operator

$$Tv(w,\mu,\gamma) := \max \left\{ \frac{u(w)}{1-\beta}, c_0 + \beta \int v(w',\mu',\gamma') f(w'|\mu,\gamma) dw' \right\}$$

and the Jovanovic operator

$$Q\psi(\mu,\gamma) := c_0 + \beta \int \max \left\{ \frac{u(w')}{1-\beta}, \psi(\mu',\gamma') \right\} f(w'|\mu,\gamma) \, \mathrm{d}w',$$

where $f(w'|\mu,\gamma) = LN(\mu,\gamma+\gamma_{\varepsilon})$.

Note:

• 3-dimensional (T) v.s. 2-dimensional (Q).

Potential advantage—2: lower state dimension

- Simplifying challenging problems associated with
 - unbounded rewards
 - parametric continuity
 - differentiability
 - so on ...
- Mitigating the curse of dimensionality.

What We Do

The first systematic study of optimal timing of decisions, based on continuation value functions and operators.

Main results:

- A general optimality theory: bounded or unbounded rewards
- Conditions under which continuation values satisfy
 - (parametric) continuity
 - monotonicity
 - (continuous) differentiability
- Conditions under which threshold policies satisfy
 - (parametric) continuity
 - monotonicity
 - (continuous) differentiability: an expression for the derivative

What We Do

The first systematic study of optimal timing of decisions, based on continuation value functions and operators.

Main results:

- A general optimality theory: bounded or unbounded rewards
- Conditions under which continuation values satisfy
 - (parametric) continuity
 - monotonicity
 - (continuous) differentiability
- Conditions under which threshold policies satisfy
 - (parametric) continuity
 - monotonicity
 - (continuous) differentiability: an expression for the derivative

What We Do

The first systematic study of optimal timing of decisions, based on continuation value functions and operators.

Main results:

- A general optimality theory: bounded or unbounded rewards
- Conditions under which continuation values satisfy
 - (parametric) continuity
 - monotonicity
 - (continuous) differentiability
- Conditions under which threshold policies satisfy
 - (parametric) continuity
 - monotonicity
 - (continuous) differentiability: an expression for the derivative

Literature

Individual applications of optimal timing:

 Jovanovic (1982), Posche (2010), Chatterjee and Rossi-Hansberg (2012), Kellogg (2014)

Unbounded dynamic programming:

- The weighted supremum norm theory
 - Boyd (1990), Alvarez and Stokey (1998), Le Van and Vailakis (2005)
- The local contraction theory
 - Rincon-Zapatero and Rodriguez-Palmero (2003), Martins-Da-Rocha and Vailakis (2010)

Assumption 2.1

There exist a \mathscr{Z} -measurable function $g: \mathbb{Z} \to \mathbb{R}$ and constants $\underline{n \in \mathbb{N}_0}$ and $a_1, \cdots, a_4, m, d \in \mathbb{R}_+$ such that $\beta m < 1$, and, for all $z \in \mathbb{Z}$,

$$\int |r(z')|P^n(z,dz') \le a_1g(z) + a_2, \tag{4}$$

$$\int |c(z')|P^n(z,\mathrm{d}z') \le a_3g(z) + a_4,\tag{5}$$

and
$$\int g(z')P(z,dz') \leq mg(z) + d.$$
 (6)

Note:

- ① If r and c are bounded, then assumption 2.1 holds
- ② True for some $n \in \mathbb{N}_0 \Longrightarrow$ true for all integer $n' \ge n$.
- **3** May use n_1 in (4), n_2 in (5), and $n_1 \neq n_2$.

Assumption 2.1

There exist a \mathscr{Z} -measurable function $\underline{g}: Z \to \mathbb{R}$ and constants $\underline{n} \in \mathbb{N}_0$ and $a_1, \cdots, a_4, m, d \in \mathbb{R}_+$ such that $\beta m < 1$, and, for all $z \in Z$,

$$\int |r(z')|P^n(z,dz') \le a_1g(z) + a_2, \tag{4}$$

$$\int |c(z')|P^n(z,\mathrm{d}z') \le a_3g(z) + a_4,\tag{5}$$

and
$$\int g(z')P(z,dz') \leq mg(z) + d.$$
 (6)

Note:

- lacktriangledown If r and c are bounded, then assumption 2.1 holds.
- ② True for some $n \in \mathbb{N}_0 \Longrightarrow$ true for all integer $n' \ge n$.
- **3** May use n_1 in (4), n_2 in (5), and $n_1 \neq n_2$.

For $\kappa : \mathsf{Z} \to (0, +\infty)$, the κ -weighted supremum norm:

$$||f||_{\kappa} := \sup_{z \in \mathsf{Z}} \frac{|f(z)|}{\kappa(z)}.$$

Then $(b_{\kappa}\mathsf{Z},\|\cdot\|_{\kappa})$ is a Banach space, where

$$b_{\kappa}\mathsf{Z}:=\{f\in m\mathscr{Z}:\|f\|_{\kappa}<\infty\}.$$

Recall the Jovanovic operator:

$$Q\psi(z) := c(z) + \beta \int \max \{r(z'), \psi(z')\} P(z, \mathrm{d}z').$$

Theorem 2.1

Under assumption 2.1, there exist m',d'>0 such that for $\ell:\mathsf{Z}\to\mathbb{R}$ given by

$$\ell(z) := m' \left(\sum_{t=1}^{n-1} \mathbb{E}_{z} |r(Z_t)| + \sum_{t=0}^{n-1} \mathbb{E}_{z} |c(Z_t)| \right) + g(z) + d',$$

- 1. Q is a contraction mapping on $(b_{\ell}\mathsf{Z},\|\cdot\|_{\ell})$.
- 2. The unique fixed point of Q in $b_{\ell}Z$ is ψ^* .
- 3. $\sigma^*(z) = \mathbb{1}\{r(z) \ge \psi^*(z)\}$ is an optimal policy.

Note:

- Assumption 2.1 holds for $n = 0 \Longrightarrow \ell(z) = g(z) + d'$.
- ② Assumption 2.1 holds for $n = 1 \Longrightarrow \ell(z) = m'|c(z)| + g(z) + d'$.

Theorem 2.1

Under assumption 2.1, there exist m',d'>0 such that for $\ell:\mathsf{Z}\to\mathbb{R}$ given by

$$\ell(z) := m' \left(\sum_{t=1}^{n-1} \mathbb{E}_z |r(Z_t)| + \sum_{t=0}^{n-1} \mathbb{E}_z |c(Z_t)| \right) + g(z) + d',$$

- 1. Q is a contraction mapping on $(b_{\ell}\mathsf{Z},\|\cdot\|_{\ell})$.
- 2. The unique fixed point of Q in $b_{\ell}Z$ is ψ^* .
- 3. $\sigma^*(z) = \mathbb{1}\{r(z) \ge \psi^*(z)\}$ is an optimal policy.

Note:

- **1** Assumption 2.1 holds for $n = 0 \Longrightarrow \ell(z) = g(z) + d'$.
- **2** Assumption 2.1 holds for $n = 1 \Longrightarrow \ell(z) = m'|c(z)| + g(z) + d'$.

Example (Job Search I cont.)

Let $w(z) = e^z$, and the state process

$$Z_{t+1} = b + \rho Z_t + \varepsilon_{t+1}, \quad (\varepsilon_t) \stackrel{\text{\tiny IID}}{\sim} N(0, \sigma^2), \quad \rho \in [-1, 1].$$

The agent's preference

$$u(w) = \left\{ egin{array}{l} rac{w^{1-\delta}}{1-\delta}, & ext{if } \delta \geq 0 ext{ and } \delta
eq 1 \ ext{ln } w, & ext{if } \delta = 1 \end{array}
ight.$$

The Jovanovic operator

$$Q\psi(z) = c_0 + eta \int \max\left\{rac{u(w(z'))}{1-eta}, \psi(z')
ight\}f(z'|z)\,\mathrm{d}z'.$$

•
$$f(z'|z) = N(\rho z + b, \sigma^2)$$
.

Example (Job Search I cont.)

Consider, e.g., $\delta \geq 0, \delta \neq 1$ and $\rho \in [0,1)$.

•
$$r(z) = e^{(1-\delta)z}/((1-\beta)(1-\delta))$$
 and $c(z) \equiv c_0$.

Step 1. Since
$$X \sim N(\mu, \sigma^2) \Longrightarrow \mathbb{E} e^{sX} = e^{s\mu + s^2\sigma^2/2}$$
 (MGF):

$$\int e^{(1-\delta)z'} P^t(z, dz') = b_t \, \underline{e^{\rho^t(1-\delta)z}} \quad (b_t \text{ is constant for fixed } t).$$

Step 2. Let $g(z) = e^{\rho^n(1-\delta)z}$ and apply MGF:

$$\int g(z')P(z,\mathrm{d}z') \le (g(z)+1)\,\underline{\mathrm{e}^{\rho^n\xi}} \quad (\xi \text{ is a constant})$$

Step 3. Choose $n \in \mathbb{N}_0$ s.t $\beta \mathrm{e}^{\rho^n \xi} < 1$, and let $\underline{m = d = \mathrm{e}^{\rho^n \xi}}$

Example (Job Search I cont.)

Consider, e.g., $\delta \geq 0, \delta \neq 1$ and $\rho \in [0,1)$.

•
$$r(z) = e^{(1-\delta)z}/((1-\beta)(1-\delta))$$
 and $c(z) \equiv c_0$.

Step 1. Since $X \sim N(\mu, \sigma^2) \Longrightarrow \mathbb{E} e^{sX} = e^{s\mu + s^2\sigma^2/2}$ (MGF):

$$\int \mathrm{e}^{(1-\delta)z'} P^t(z,\mathrm{d}z') = b_t \, \underline{e^{\rho^t(1-\delta)z}} \quad (b_t \text{ is constant for fixed } t).$$

Step 2. Let $g(z) = e^{\rho^n(1-\delta)z}$ and apply MGF:

$$\int g(z')P(z,\mathrm{d}z') \le (g(z)+1)\,\underline{\mathrm{e}^{\rho^n\xi}} \quad (\xi \text{ is a constant})$$

Step 3. Choose $n \in \mathbb{N}_0$ s.t $\beta e^{\rho^n \xi} < 1$, and let $\underline{m = d = e^{\rho^n \xi}}$

Example (Job Search I cont.)

Consider, e.g., $\delta \geq 0, \delta \neq 1$ and $\rho \in [0,1)$.

•
$$r(z) = e^{(1-\delta)z}/((1-\beta)(1-\delta))$$
 and $c(z) \equiv c_0$.

Step 1. Since $X \sim N(\mu, \sigma^2) \Longrightarrow \mathbb{E} e^{sX} = e^{s\mu + s^2\sigma^2/2}$ (MGF):

$$\int \mathrm{e}^{(1-\delta)z'} P^t(z,\mathrm{d}z') = b_t \, \underline{e^{\rho^t(1-\delta)z}} \quad (b_t \text{ is constant for fixed } t).$$

Step 2. Let $g(z) = e^{\rho^n(1-\delta)z}$ and apply MGF:

$$\int g(z')P(z,\mathrm{d}z') \leq (g(z)+1)\,\underline{\mathrm{e}^{\rho^n\xi}} \quad (\xi \text{ is a constant}).$$

Step 3. Choose $n \in \mathbb{N}_0$ s.t $\beta e^{\rho^n \xi} < 1$, and let $\underline{m = d = e^{\rho^n \xi}}$

Example (Job Search I cont.)

Consider, e.g., $\delta \geq 0, \delta \neq 1$ and $\rho \in [0,1)$.

•
$$r(z) = e^{(1-\delta)z}/((1-\beta)(1-\delta))$$
 and $c(z) \equiv c_0$.

Step 1. Since $X \sim N(\mu, \sigma^2) \Longrightarrow \mathbb{E} e^{sX} = e^{s\mu + s^2\sigma^2/2}$ (MGF):

$$\int \mathrm{e}^{(1-\delta)z'} P^t(z,\mathrm{d}z') = b_t \, \underline{e^{\rho^t(1-\delta)z}} \quad (b_t \text{ is constant for fixed } t).$$

Step 2. Let $g(z) = e^{\rho^n(1-\delta)z}$ and apply MGF:

$$\int g(z')P(z,\mathrm{d}z') \leq (g(z)+1)\,\underline{\mathrm{e}^{\rho^n\xi}} \quad (\xi \text{ is a constant}).$$

Step 3. Choose $n \in \mathbb{N}_0$ s.t $\beta e^{\rho^n \xi} < 1$, and let $\underline{m = d = e^{\rho^n \xi}}$.

Example (Job Search I cont.)

• The cases $\rho \in (-1,0]$, $|\rho|=1$ and $\delta=1$ can be treated similarly.

Note:

- The local contraction method fails in this case.
 - Unbounded shocks and growth rate of the state process.

Advantages of assumption 2.1:

- No further restrictions on the key parameters.
- Exploits the smoothing effect of future transitions.

Example (Job Search II cont.)

The wage process

$$\ln w_t = \theta + \varepsilon_t, \quad (\varepsilon_t)_{t \geq 0} \stackrel{\text{\tiny IID}}{\sim} N(0, \gamma_{\varepsilon}).$$

The Jovanovic operator

$$Q\psi(\mu,\gamma) := c_0 + \beta \int \max \left\{ \frac{u(w')}{1-\beta}, \, \psi(\mu',\gamma') \right\} f(w'|\mu,\gamma) \, \mathrm{d}w'$$

- $\bullet \ \gamma' = 1/\left(1/\gamma + 1/\gamma_\varepsilon\right) \ \ \text{and} \ \ \mu' = \gamma'\left(\mu/\gamma + \ln w'/\gamma_\varepsilon\right)$
- $f(w'|\mu,\gamma) = N(\mu,\gamma+\gamma_{\varepsilon})$
- CRRA preference

$$u(w) = \left\{ egin{array}{l} rac{w^{1-\delta}}{1-\delta}, & ext{if } \delta \geq 0 ext{ and } \delta
eq 1 \ ext{In } w, & ext{if } \delta = 1 \end{array}
ight.$$

Example (Job Search II cont.)

Consider, e.g., $\delta=1$.

• $r(w) = \ln w/(1-\beta)$ and $c \equiv c_0$.

Step 1. Use $|\ln w| \le w + 1/w$ and MGF:

$$\int |\ln w'| f(w'|\mu, \gamma) dw' \le e^{\gamma_{\varepsilon}/2} \underline{\left(e^{\mu + \gamma/2} + e^{-\mu + \gamma/2}\right)}.$$

Step 2. Let $g(\mu, \gamma) = e^{\mu + \gamma/2} + e^{-\mu + \gamma/2}$, and use MGF:

$$\int g(\mu', \gamma') f(w'|\mu, \gamma) dw' = g(\mu, \gamma).$$

Step 3. Let n = 1, m = 1 and d = 0.

Example (Job Search II cont.)

Consider, e.g., $\delta=1$.

• $r(w) = \ln w/(1-\beta)$ and $c \equiv c_0$.

Step 1. Use $|\ln w| \le w + 1/w$ and MGF:

$$\int |\ln w'| f(w'|\mu,\gamma) \,\mathrm{d} w' \leq \mathrm{e}^{\gamma_\varepsilon/2} \underline{\left(\mathrm{e}^{\mu+\gamma/2} + \mathrm{e}^{-\mu+\gamma/2}\right)}.$$

Step 2. Let $g(\mu, \gamma) = e^{\mu + \gamma/2} + e^{-\mu + \gamma/2}$, and use MGF:

$$\int g(\mu', \gamma') f(w'|\mu, \gamma) dw' = g(\mu, \gamma).$$

Step 3. Let n = 1, m = 1 and d = 0.

Example (Job Search II cont.)

Consider, e.g., $\delta=1$.

• $r(w) = \ln w/(1-\beta)$ and $c \equiv c_0$.

Step 1. Use $|\ln w| \le w + 1/w$ and MGF:

$$\int |\ln w'| f(w'|\mu,\gamma) \,\mathrm{d} w' \leq \mathrm{e}^{\gamma_\varepsilon/2} \underline{\left(\mathrm{e}^{\mu+\gamma/2} + \mathrm{e}^{-\mu+\gamma/2}\right)}.$$

Step 2. Let $g(\mu, \gamma) = e^{\mu + \gamma/2} + e^{-\mu + \gamma/2}$, and use MGF:

$$\int g(\mu',\gamma')f(w'|\mu,\gamma)\,\mathrm{d}w'=g(\mu,\gamma).$$

Step 3. Let n = 1, m = 1 and d = 0.

Optimality Results

Example (Job Search II cont.)

Consider, e.g., $\delta=1$.

• $r(w) = \ln w/(1-\beta)$ and $c \equiv c_0$.

Step 1. Use $|\ln w| \le w + 1/w$ and MGF:

$$\int |\ln w'| f(w'|\mu,\gamma) \,\mathrm{d} w' \leq \mathrm{e}^{\gamma_\varepsilon/2} \underline{\left(\mathrm{e}^{\mu+\gamma/2} + \mathrm{e}^{-\mu+\gamma/2}\right)}.$$

Step 2. Let $g(\mu, \gamma) = e^{\mu + \gamma/2} + e^{-\mu + \gamma/2}$, and use MGF:

$$\int g(\mu',\gamma')f(w'|\mu,\gamma)\,\mathrm{d}w'=g(\mu,\gamma).$$

Step 3. Let n = 1, m = 1 and d = 0.

Properties of Continuation Values: Continuity

Assumption 3.1

- (1) The stochastic kernel P is Feller,
- (2) c, r, ℓ , and $z \mapsto \int |r(z')| P(z, dz'), \int \ell(z') P(z, dz')$ are continuous.

Recall:

- Assumption 2.1 holds for $n = 0 \Longrightarrow \ell(z) = g(z) + d'$.
- Assumption 2.1 holds for $n = 1 \Longrightarrow \ell(z) = m'|c(z)| + g(z) + d'$.

Proposition 3.1

If assumptions 2.1 and 3.1 hold, then ψ^* is continuous.

Set up:

- $Z = Z^1 \times \cdots \times Z^m \subset \mathbb{R}^m$
- P has a density representation f:

$$P(z,A) = \int_A f(z'|z) dz'$$
 for all $A \in \mathscr{Z}$.

Notations:

- $z = (z^1, ..., z^m) \in Z$
- $z^{-i} = (z^1, ..., z^{i-1}, z^{i+1}, ..., z^m)$
- $D_i^j h(z) := \frac{\partial^j h(z)}{\partial (z^i)^j}$ and $D_i^j f(z'|z) := \frac{\partial^j f(z'|z)}{\partial (z^i)^j}$

Assumption 3.3

 $D_ic(z)$ exists for all $z \in \text{int}(Z)$ and i = 1, ..., m.

Assumption 3.4

P has a density representation f, and for i = 1, ..., m:

- (1) $D_i^2 f(z'|z)$ exists for all $(z, z') \in \text{int}(Z) \times Z$;
- (2) $(z, z') \mapsto D_i f(z'|z)$ is continuous;
- (3) There are finite solutions of z^i to $D_i^2 f(z'|z) = 0$ (denoted by $z_i^*(z',z^{-i})$), and, for all $z_0 \in \operatorname{int}(Z)$, there exist $\underline{\delta} > \underline{0}$ and a compact subset $\underline{A} \subset \underline{Z}$ such that $z' \notin A$ implies $z_i^*(z',z_0^{-i}) \notin B_\delta(z_0^i)$.

Example (Job Search I cont.)

We show that assumption 3.4 holds:

•
$$P(z, A) = \int_A f(z'|z) dz'$$
, where $f(z'|z) = N(\rho z + b, \sigma^2)$.

•
$$\frac{\partial^2 f(z'|z)}{\partial z^2} = 0$$
 has two solutions: $z^*(z') = \frac{z' - b \pm \sigma}{\rho}$.

•
$$|z'| \to \infty \Longrightarrow |z^*(z')| \to \infty$$
.

Assumption 3.4

P has a density representation f, and for i = 1, ..., m:

- (1) $D_i^2 f(z'|z)$ exists for all $(z, z') \in \text{int}(Z) \times Z$;
- (2) $(z, z') \mapsto D_i f(z'|z)$ is continuous;
- (3) There are <u>finite solutions</u> of z^i to $D_i^2 f(z'|z) = 0$ (denoted by $z_i^*(z',z^{-i})$), and, for all $z_0 \in \operatorname{int}(Z)$, there exist $\underline{\delta} > \underline{0}$ and a compact subset $\underline{A} \subset \underline{Z}$ such that $z' \notin A$ implies $z_i^*(z',z_0^{-i}) \notin B_\delta(z_0^i)$.

Example (Job Search I cont.)

We show that assumption 3.4 holds:

•
$$P(z, A) = \int_A f(z'|z) dz'$$
, where $f(z'|z) = N(\rho z + b, \sigma^2)$.

•
$$\frac{\partial^2 f(z'|z)}{\partial z^2} = 0$$
 has two solutions: $z^*(z') = \frac{z' - b \pm \sigma}{\rho}$.

•
$$|z'| \to \infty \Longrightarrow |z^*(z')| \to \infty$$
.

Assumption 3.5

k is continuous and $\int |k(z')D_if(z'|z)| dz' < \infty$ for all $z \in \text{int}(Z)$, $k \in \{r, \ell\}$ and i = 1, ..., m.

Proposition 3.3 (Differentiability)

Under assumptions 2.1 and 3.3–3.5, ψ^* is differentiable at interior points, and, for all $z \in \text{int}(\mathsf{Z})$ and i=1,...,m,

$$D_i\psi^*(z) = D_ic(z) + \int \max\{r(z'), \psi(z')\} D_if(z'|z) dz'.$$

Assumption 3.6

For i = 1, ..., m, the following conditions hold:

- (1) $z \mapsto D_i c(z)$ is continuous on int(Z),
- (2) k and $z \mapsto \int |k(z')D_if(z'|z)| dz'$ are continuous on int(Z) for $k \in \{r, \ell\}$.

Proposition 3.4 (Continuous Differentiability)

If assumptions 2.1, 3.4 and 3.6 hold, then $z \mapsto D_i \psi^*(z)$ is continuous on $\operatorname{int}(\mathsf{Z})$ for i=1,...,m.

Recall that

$$\ell(z) := m' \left(\sum_{t=1}^{n-1} \mathbb{E}_{z} |r(Z_{t})| + \sum_{t=0}^{n-1} \mathbb{E}_{z} |c(Z_{t})| \right) + g(z) + d'.$$

Example (Job Search I cont.)

If $\delta \geq 0$ and $\delta \neq 1$, then $\mathbb{E}_{z}|r(Z_{t})| = a_{t}\mathrm{e}^{\rho^{t}(1-\delta)z}$ for some $a_{t} > 0$, $\forall t \geq 0$.

•
$$f(z'|z) = N(\rho z + b, \sigma^2)$$

 $\implies z \mapsto \int e^{az'} \left| \frac{\partial f(z'|z)}{\partial z} \right| dz'$ is continuous for all $a \in \mathbb{R}$.

$$\implies z \mapsto \int \left| r(z') \frac{\partial f(z'|z)}{\partial z} \right| \mathrm{d}z', \ \int \left| \ell(z') \frac{\partial f(z'|z)}{\partial z} \right| \mathrm{d}z' \ \text{are continuous.}$$

Hence, assumption 3.6 holds, and ψ^* is continuously differentiable.

Differentiability: VF v.s. CVF

Simulation: $\beta=$ 0.96, $\rho=$ 0.6, $\delta=$ 1, b= 0 and c= 1.

Set up:

- $Z \subset \mathbb{R}^m$ with $Z = X \times Y \subset \mathbb{R}^{m_0} \times \mathbb{R}^{m-m_0}$
- $(Z_t)_{t\geq 0} = \{(X_t, Y_t)\}_{t\geq 0}$
- Conditional independence: given Y_t , the next period states (X_{t+1}, Y_{t+1}) are independent of X_t .

Then the stochastic kernel

$$P(z, dz') = P((x, y), d(x', y')) = d\mathbb{F}_y(x', y').$$

• The flow continuation reward $c: Y \to \mathbb{R}$.

Then the Jovanovic operator

$$Q\psi(y) := c(y) + \beta \int \max\{r(x',y'),\psi(y')\} d\mathbb{F}_y(x',y')$$

Set up:

- $Z \subset \mathbb{R}^m$ with $Z = X \times Y \subset \mathbb{R}^{m_0} \times \mathbb{R}^{m-m_0}$
- $(Z_t)_{t\geq 0} = \{(X_t, Y_t)\}_{t\geq 0}$
- Conditional independence: given Y_t , the next period states (X_{t+1}, Y_{t+1}) are independent of X_t .

Then the stochastic kernel

$$P(z,\mathrm{d} z')=P((x,y),\mathrm{d}(x',y'))=\mathrm{d}\mathbb{F}_y(x',y').$$

• The flow continuation reward $c: Y \to \mathbb{R}$.

Then the Jovanovic operator

$$Q\psi(y) := c(y) + \beta \int \max\{r(x',y'),\psi(y')\} d\mathbb{F}_y(x',y').$$

Set up:

- $Z \subset \mathbb{R}^m$ with $Z = X \times Y \subset \mathbb{R}^{m_0} \times \mathbb{R}^{m-m_0}$
- $(Z_t)_{t\geq 0} = \{(X_t, Y_t)\}_{t\geq 0}$
- Conditional independence: given Y_t , the next period states (X_{t+1}, Y_{t+1}) are independent of X_t .

Then the stochastic kernel

$$P(z, \mathrm{d}z') = P((x, y), \mathrm{d}(x', y')) = \mathrm{d}\mathbb{F}_y(x', y').$$

• The flow continuation reward $c: Y \to \mathbb{R}$.

Then the Jovanovic operator

$$Q\psi(y):=c(y)+eta\int\max\{r(x',y'),\psi(y')\}\,\mathrm{d}\mathbb{F}_y(x',y').$$

In the next, we consider $m_0 = 1$.

Assumption 4.1

r is strictly monotone on X. Moreover, for all $y \in Y$, there exists $x \in X$ such that $r(x,y) = c(y) + \beta \int v^*(x',y') d\mathbb{F}_v(x',y')$.

- X_t: the <u>threshold state</u>
- Y_t : the <u>environment</u>

The reservation rule property

Under assumption 4.1, there is a <u>decision threshold</u> $\bar{x}: Y \to X$.

• When x attains \bar{x} , the agent is indifferent between stopping and continuing: $r(\bar{x}(y), y) = \psi^*(y)$, for all $y \in Y$.

Example (Job Search II cont.)

The Bellman operator

$$Tv(w,\mu,\gamma) = \max\left\{ rac{u(w)}{1-eta}, c_0 + eta \int v(w',\mu',\gamma') f(w'|\mu,\gamma) \,\mathrm{d}w'
ight\}.$$

The Jovanovic operator

$$Q\psi(\mu,\gamma) = c_0 + \beta \int \max\left\{\frac{u(w')}{1-\beta}, \psi(\mu',\gamma')\right\} f(w'|\mu,\gamma) \,\mathrm{d}w'.$$

- $w =: x \in X := \mathbb{R}_{++}$: threshold state
- $(\mu, \gamma) =: y \in Y := \mathbb{R} \times \mathbb{R}_{++}$: environment
- $oldsymbol{ar{w}}: \mathsf{Y} o \mathsf{X}: \mathsf{the} \mathsf{ reservation} \mathsf{ wage}$

Optimal Policy: The Reservation Wage

Simulation: $\beta=$ 0.95, $\gamma_{\varepsilon}=$ 1.0, $\tilde{c}_{0}=$ 0.6, $\delta=$ 3.0

Computational Efficiency

```
CVI (2-dim) v.s. VFI (3-dim):

178 seconds v.s. More than 7 days!
```

Proposition 4.3 (Differentiability of Decision Threshold)

Let assumptions 2.1, 3.4, 3.6 and 4.1 hold. If r is continuously differentiable on int(Z), then \bar{x} is continuously differentiable on int(Y), with

$$D_i\bar{x}(y)=-\frac{D_ir(\bar{x}(y),y)-D_i\psi^*(y)}{D_xr(\bar{x}(y),y)} \text{ for all } y\in \text{int}(Y) \text{ and } i=1,...,m.$$

- $r(x,y) \psi^*(y)$: terminating premium
- $D_i r(\bar{x}(y), y) D_i \psi^*(y)$: the marginal premium of y^i
- $D_x r(\bar{x}(y), y)$: the marginal premium of x

Extension—1: Repeated Sequential Decisions

- At each time t, the agent is either active or passive
- Active state: observe Z_t , continue or exit?
 - continuation: $c(Z_t)$, remain active at t+1
 - exit: $s(Z_t)$, transition to passive at time t, return to active with probability α at time t+1
- E.g., Arellano (2008)

The value function:

$$v_a^*(z) = \max \left\{ v_p^*(z), c(z) + \beta \int v_a^*(z') P(z, dz') \right\}$$
$$v_p^*(z) = s(z) + \alpha \beta \int v_a^*(z') P(z, dz') + (1 - \alpha) \beta \int v_p^*(z') P(z, dz')$$

Extension—2: Sequential Decision with More Choices

- At each period t, the agent observes Z_t
- Choosing among N alternatives.
 - Alternative i: current reward $r_i(Z_t)$, stochastic kernel $P_i(z, dz')$.
- E.g., Jovanovic (1987), Moscarini and Postel-Vinay (2013)

The value function

$$v^*(z) = \max\{\psi_1^*(z), ..., \psi_N^*(z)\}$$

$$\psi_i^*(z) = r_i(z) + \beta \int v^*(z') P_i(z, dz')$$

Conclusions

- Explore hidden advantages of the continuation value based method.
 - Smoothing effect of the future transitions
 - Conditional independence along the transition path
- Develop a general theory of optimal timing of decisions.
- Extend and improve the existing dynamic programming theory of optimal timing of decisions.
 - Analytically and computationally.

Thank you!