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Abstract

We consider a take-it-or-leave-it price offer game under value interdependence. The main
result is a simple but general sufficient condition that ensures existence and uniqueness of
a separating equilibrium. The condition amounts to the monotonicity of what we call the
Myerson virtual profit, and covers quality uncertainty à la Akerlof as a special case. Prices
are shown to be higher than under signal disclosure, thus reflecting a signalling premium.
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1 Introduction

Beginning with Akerlof (1970), economists have long realized that adverse selection may impede

trade. However, when there are profitable opportunities for trading, a possibility arises that

the seller may transmit information through the price offered to the buyer. This signalling

channel, first identified by Spence (1973), may mitigate adverse selection.

In many situations, neither the buyer nor the seller knows the value of the object prior to

trade. At the same time, both agents often have certain valuable information concerning their

values. Thus, the values are often interdependent. Real-life examples of markets with these

features are abundant: real estate, financial assets, sales of natural resources such as offshore

oil, etc.

These markets feature private information on both sides, which exacerbates adverse selection

as the “quality” is not perfectly known to either side. Indeed, if trade occurs at a predominantly
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constant price, buyers may suffer adverse selection as the sellers who choose to trade at this

price may have a relatively low quality signal. But with interdependent values, the same effect

also obtains on the seller side as the buyers they will trade with may have a higher quality

signal, which may drive up the seller’s own value (cost).

But in reality prices are never constant, and may transmit seller’s information to the buyer,

which may mitigate adverse selection. The literature to date, beginning with Myerson (1985),

has identified this effect in settings with on one-sided adverse selection, i.e. when the “quality”

is perfectly known to the seller, and therefore so is the seller’s cost.1

In this paper, we investigate signalling in a model with interdependent values. In our model,

there is a seller and a buyer of a single unit of the good. The buyer and the seller have ex

post valuations of the good that are not known with certainty. Prior to the game, each of

them receives information, or signal, concerning his or her value. The buyer’s signal is never

perfectly revealing, and the seller’s signal xS may also be not perfectly revealing.2 The signals

are allowed to be correlated.3

The seller makes a take-it-or-leave-it offer to the buyer. The buyer forms a posterior belief of

the seller’s signal, and then decides whether to accept or reject the offer. We restrict attention

to Perfect Bayesian equilibria of this price-setting game, and, further, to equilibria in monotone

strategies, where the seller’s offer is a nondecreasing function of her signal. In this class, an

equilibrium is (fully) separating if the offer strategy is strictly increasing in the signal.

Our main result is a simple condition for existence, and uniqueness, of a separating equilib-

rium in pure strategies in this model. The condition amounts to the monotonicity of the virtual

profit a la Myerson (1981) and Bulow and Roberts (1989), in the buyer’s signal.4 The virtual

profit is defined in this paper as the difference between the Myerson virtual value function and

the seller’s cost. Following Bulow and Roberts (1989), it can be interpreted as the marginal

1There is also a literature that examines other types of communication in addition to pure price signalling,
such as advertising as in Milgrom and Roberts (1986), inspection as in Bester and Ritzberger (2001) or disclosure
as in and Bagwell and Riordan (1991) and more recently, Daughety and Reinganum (2008). This paper, however,
only considers price signalling.

2However, we not preclude the scenario where the the seller is perfectly informed. As we discuss later in the
paper, this corresponds to the “lemons” case, earlier considered in the literature, albeit under assumptions less
general than here.

3More precisely, we assume that the conditional distribution of the buyer’s signal has the monotone likelihood
ratio property.

4There are other standard conditions such as the MLRP, and the monotonicity assumption on the buyer and
seller valuations with respect to the signals.
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profit of the seller, assuming the probability of sale is the “quantity”.

The result that there is a separating equilibrium in monotone strategies is not self-evident.

In order to provide the seller with an incentive to reveal the signal, it is necessary that the

probability of the offer acceptance is monotone decreasing in the seller’s signal.5 The mono-

tonicity of seller’s offer strategy will ensure this. But, the higher price comes at a cost due

to the “winner’s curse” effect for the seller. This is because a higher price entails a higher

average buyer’s signal conditional on acceptance, which in turn leads to a higher seller’s cost.

This “winner’s curse” effect pushes the seller’s price down, and it limits the seller’s ability to

transmit information in a separating equilibrium.

A question then arises, under what conditions a separating equilibrium would exists. Our

analysis shows that it does under a condition based the Myerson virtual surplus function, which

is frequently invoked in mechanism design. Namely, we show that a (monotone) separating

equilibrium exists, and is unique, if this virtual profit is monotone increasing in the buyer’s

signal.

For intuition, consider first the setting without the winner’s curse, where the buyer’s in-

formation is irrelevant for the seller. This is what we shall call the “lemons” environment,

with the seller’s signal having the interpretation of “quality”. Our assumptions ensure that

the seller’s cost is increasing in quality. It is known from the literature that the virtual value

function is then effectively the seller’s marginal revenue, where the probability of sale acts as

the “quantity” variable.6 As the seller’s cost increases, incentive compatibility implies that the

price is non-decreasing in “quality”.

However, if the marginal revenue is not monotone, then the expected profit may have

multiple local maxima. As the seller’s signal (and therefore the cost) increases, the price may

exhibit bunching, sticking to one of the maxima, remaining constant over an interval of signals.

This may lead to pooling rather than separation. In the ”lemons” setting, the marginal cost

does not depend on the buyer’s information, so if the marginal revenue is monotone in it, the

marginal profit is also monotone. In our environment, the seller’s cost generally depends on the

buyer’s information (signal). So in order to avoid the above mentioned possibility of bunching,

5See Myerson (1985).
6This interpretation is due to Bulow and Roberts (1989).

3



we instead require that the marginal profit is monotone in the buyer’s signal.

The price offered in the separating equilibrium is shown to involve a counter-efficient sig-

nalling premium, making it above the price that would be offered if the seller’s signal were

disclosed to the buyer. To get intuition for it, once again consider a “lemons” environment.

Suppose that under disclosure, the price is monotonic in the seller’s signal.7 Then without

disclosure, the seller with a slightly lower signal would have an incentive to mimic because

doing so would convince the buyer that the quality is higher, thereby increasing the probability

of acceptance and the expected profit. To countervail this incentive, it is necessary to reduce

the acceptance probabilities by increasing the price relative to the full disclosure level.

Although it is widely understood that value interdependance may impede trade, we be-

lieve ours is the first general model that allows to quantify the signalling premium for general

specifications of the buyer and seller utilities. By deriving a simple, easy to interpret sufficient

condition for a separating equilibrium, we clarify the restrictions that would need to be imposed

on this model in applied work.

Related literature We are not aware of any similar result in a general setting as in this

paper. Our focus on a continuum of quality levels makes our setting closer to the bargaining

literature, rather than quality signalling literature that has mostly considered two quality levels

(high and low). One notable exception is Myerson (1985), who, among other things, shows

existence of a fully separating equilibrium in standard Akerlof (1970)-type model, with mixed

strategies on the buyer side.

There is a related paper by Cai, Riley, and Ye (2007) that investigates reserve price signalling

in a second-price auction with affiliated buyer values. The case of a single bidder corresponds

to our model; the reserve price simply becomes the price set by the seller. Cai, Riley, and Ye

(2007) also derive a sufficient condition for a separating equilibrium.8 It turns out that, with

a single bidder, their model is a special case of ours, and our condition specializes to theirs.

There are two differences from our model. First, in their model there is no “winner’s curse”

since the seller’s cost is assumed to be unaffected by the buyers’ signal. Second, they assume

7A sufficient condition for this is that the marginal profit function is decreasing in the seller’s signal. This
condition, however, is not needed in the absence of disclosure; then the price monotonicity would be implied by
incentive compatibility.

8In an auction with more than one bidder, a corrected version of their condition is given Lamy (2010).
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that the seller’s signal is independent of the buyers’, while we are allowing for correation.

There are some related results in the double auction literature. Satterthwaite and Williams

(1989) show existence of an equilibrium in monotone strategies for a k-double auction with

independent private values. This result has recently been generalized to affiliated private values

by Kadan (2007), under additional conditions.9

2 Model

There is a buyer and a seller. The seller has a unit of a good to sell, and the buyer has a unit

demand. We consider a price-setting game: the seller makes a take-it-or-leave-it offer to the

buyer, who may either accept or reject it.

Before the game begins, the buyer and the seller receies signals xB and xS that affect their

ex-post valuations of the good, uB(xB, xS) and uS(xS , xB). The signals xB and xS will be

sometimes referred to as buyer’s and seller’s types. The buyer and the seller do not observe the

signal received by the opposite side, only their own signals. We allow xB to be correlated with

xS .

The signals are drawn prior to the game from a joint distribution supported on [0, 1]2. We

will need the following regularity assumption on the conditional distribution of the buyer’s

signal, FB(xB|xS).

Assumption 1 (Regularity of density). The distribution FB(xB|xS) has density fB(xB|xS),

continuously differentiable and positive on [0, 1]2.

To capture the idea that signals are positively associated, we impose the Monotone Likeli-

hood Ratio Property (MLRP).

Assumption 2 (MLRP). For any xB ≤ x̂B, xS ≤ x̂S, we have

fB(x̂B|xS)

fB(xB|xS)
≤ fB(x̂B|x̂S)

fB(xB|x̂S)
.

We assume that the buyer’s and seller’s valuations are increasing in the signals, and are

also regular in the sense defined below.

9In addition, several papers, in particular Vincent (1989) and, more recently, Deneckere and Liang (2006),
have studied dynamic bargaining in a “lemons” environment.
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Assumption 3 (Monotonicity and differentiability of valuations). 1. The buyer’s valuation

uB(xB, xS) is twice continuously differentiable on its domain, with

∂uB(xB, xS)

∂xB
> 0,

∂uB(xB, xS)

∂xS
≥ 0.

2. The seller’s valuations uS(xS , xB) is increasing in xS, nondecreasing in xB and contin-

uously differentiable.

The above assumption is a natural one. It requires the buyer’s valuation to be increasing

in both his and partner’s signals, while the seller’s valuation is only required to be increasing

in own signal. This means that, first, the setting is rich enough to incorporate the important

lemons environment. In the lemons environment, the seller’s valuation does not depend on the

buyer’s signal, and the seller’s signal has a clear interpretation as a measure of quality of the

good. However, we do not allow the pure lemons environment, where the buyer’s valuation is

known to the seller. In our model, in order to sustain a separating equilibrium, it is necessary

that the buyer would reject bigger offers with a higher probability. Our assumption that the

buyer’s utility is strictly increasing in own signal will ensure that the buyer will reject offers

not only because the quality is low, but also because of its own signal, which provides a degree

of horizontal differentiation.

2.1 Benchmark: Equilibrium under disclosure

As a benchmark, consider a model with one-sided private information: the seller’s signal xS is

observable to the buyer. We will refer to this setting as disclosure. Then the buyer’s responding

strategy is obtained as a minimal signal x∗B(p, xS) such that the seller’s offer p is acceptable to

a buyer,

x∗B(p, xS) = inf{xB ∈ [0, 1] : uB(xB, xS) ≥ p}

Note that the offer p can be so low that it is acceptable to a buyer with any signal if p ≤

uB(0, xS); in this case, x∗B = 0. Or, it can be so high that it is never acceptable and then x∗B

is not defined. For any price p ∈ [uB(0, xS), uB(1, xS)], the buyer’s reservation cutoff x∗B(p, xS)

is determined from

uB(x∗B(p, xS), xS) = p. (1)
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For p < uB(0, xS), the reservation cutoff is x∗B(p, xS) = 0, while for p > uB(1, xS), it is given

by x∗B(p, xS) = 1. Given the buyer’s responding strategy x∗B(p, xS), the seller’s problem is to

choose price p to maximize the expected profit.

It turns out to be more convenient to reformulate the problem in terms of q, the induced

probability of sale.10 If the marginal buyer type is xB, then

q = 1− FB(xB|xS) =⇒ xB(q) = F−1B (1− q|xS)

and the expected seller’s profit as a function of q is

πS(q, xs) = quB(xB(q), xS)−
∫ 1

xB(q)
uS(xS , x̃B)fB(x̃B|xS)dx̃B,

so the marginal profit is

∂πS(q, xS)

∂q
= uB(xB(q), xS) + q

∂uB(xB(q), xS)

∂xB
x′B(q)− uS(xS , xB(q))x′B(q)fB(xB(q)|xS).

As

xB(q) = F−1B (1− q|xS) =⇒ x′B(q) = − 1

fB(xB(q)|xS)
,

after some algebra, the marginal profit simplifies to

∂πS(q, xS)

∂q
= JB(xB(q), xS)− uS(xS , xB(q)) ≡ J(xB(q), xS), (2)

where JB(xB, xS) is the Myerson virtual value,

JB(xB, xS) ≡ uB(xB, xS)− ∂uB(xB, xS)

∂xB
· 1− FB(xB|xS)

fB(xB|xS)
, (3)

and J(xB, xS) is what we shall call the seller’s virtual profit.

Central to our analysis is the following standard monotonicity assumption on the virtual

profit function.

Assumption 4 (Monotonicity of virtual profit). For all xB, xS ∈ [0, 1], we have

∂J(xB, xS)

∂xB
> 0.

10This approach is motivated by Bulow and Roberts (1989).
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The iso-marginal profit curve, or the J-curve for short,

{(xB, xS) ∈ [0, 1]2 : J(xB, xS) = 0},

separates the square [0, 1]2 that represents the set of all possible buyer and seller signals, into

two parts. The marginal profit is positive below the J-curve, and negative above it.

Let x∗B(xS) ∈ [0, 1] be the minimal buyer type for whom the xS-seller’s optimal offer is

acceptable. The optimal price offer is equal to uB(x∗B(xS), xS). Since J(xB, xS) is increasing

in xB, the marginal profit is decreasing in q, and there are three possibilities for x∗B(xS).

• If J(0, xS) > 0, then the marginal profit is positive for all price offers that can ever be

accepted, and therefore the optimally chosen price is the highest one acceptable to all

buyers. This implies that x∗B(xS) = 0.

• If J(1, xS) < 0, then the marginal profit is negative for all price offers, and there is no

trade. In this case, we set x∗B(xS) = 1 by convention.

• If J(0, xS) ≤ 0 and J(1, xS) ≥ 0, then x∗B(xS) is uniquely determined by J(x∗B(xS), xS) =

0, i.e. lies on the J-curve.

From now on, we assume that all seller types trade with a positive probability.

Assumption 5. We have

x∗B(xS) < 1 ∀xS ∈ [0, 1].

Remark 1. More primitive conditions that ensure the monotonicity of the virtual profit J

can be provided. First, notice that if the seller’s valuation uS(xS , xB) does not depend on xB,

then it is sufficient to require that the virtual value JB(xB, xS) is increasing in xB and has a

positive slope, ∂JB(xB, xS)/∂xB > 0. This generalizes the condition obtained in Cai, Riley,

and Ye (2007) for auctions by allowing the seller’s and the buyer’s signals to be correlated.

Second, if uS(xS , xB) does depend on xB so that we have genuine value interdependence, then

the monotonicity of J in xB is implied by the following more primitive conditions, most of

which are standard in the literature.
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1. Single crossing: The difference uB(xB, xS)− uS(xS , xB) is increasing in xB.

2. The buyer’s utility function uB(xB, xS) is convex in xB for any xS ∈ [0, 1], so that

∂uB(xB ,xS)
∂xB

is nondecreasing in xB.

3. The conditional distribution of the buyer’s signal, FB(xB|xS) has nondecreasing hazard

rate, so that 1−FB(xB |xS)
fB(xB |xS)

is a nonincreasing function of xB.

It is not hard to provide specific examples of utility functions satisfying (1) and (2). For

the condition on the signals (3) above, one needs to ensure that it is compatible with the

MLRP, which is the maintained assumption. One such example is the FGM family of densities,

introduced to model affiliation in Kosmopoulou and Williams (1998), and applied more recently

to double auctions in Kadan (2007) and Gresik (2011). This family is defined as

f(xB, xS) = 1 + κ(1− 2xS)(1− 2xB) (κ ≥ 0),

and it can be easily verified that it satisfies the MLRP. Moreover, since the marginals are

uniform [0, 1] distributions, the conditional density f(xB|xS) = f(xB, xS), and it is log-concave

in xB for any fixed xS ∈ [0, 1]. Since

fB(xB|xS)

1− FB(xB|xS)
= −

d log
(
1− FB(xB|xS)

)
dxB

,

this implies that FGM distributions F (xB|xS) have hazard rate increasing in xB.

2.2 Separating equilibrium without disclosure

In this section, we prove our main result: even when the seller’s signal is unobservable to the

buyer, there is a unique separating equilibrium in monotone strategies. That is, in equilibrium

the seller fully reveals its signal to the buyer. Moreover, we show that the price will involve a

signalling premium.

We first show that, in parallel to the disclosure setting, the buyer’s best-response responding

strategy is still characterized by a cutoff rule.

Lemma 1. Suppose the seller adopts a (measurable) strategy S : [0, 1]→ R+. Then the buyer’s

best-response strategy to a price offer p is characterized by a cutoff XB(p) such that the buyer

accepts the offer if and only if xB ≥ XB(p).11

11As before, we assume that whenever the buyer is indifferent between accepting or not, he will accept.
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Proof. The buyer’s expected profit upon accepting a price offer p is

ΠB(xB, p) =

∫
{x̃S :S(x̃S)=p}

(
uB(xB, x̃S)− p

)
dFS(x̃S |xB), (4)

and, because the integrand is increasing in xB, ΠB(xB, p) is continuous and increasing in xB

under first-order stochastic dominance implied by the MLRP assumption (Assumption 2). So

if p is acceptable to a buyer with signal xB, ΠB(xB, p) ≥ 0, it is also acceptable for a buyer with

a higher signal x′B > xB, and it follows that the buyer’s strategy can be defined as the lowest

signal XB(p) such that the price p is acceptable, XB(p) = inf{x ∈ [0, 1] : ΠB(x, p) ≥ 0}.

In this paper, we investigate fully separating equilibria (S-equilibria), i.e. those equilibria

where (i) there is a unique seller type XS(p) offering price p, and (ii) there is a unique buyer type

XB(p) such that this type and all types above it find the price offer p acceptable. Moreover,

we restrict attention to equilibria in continuous and monotone strategies.

Definition 1 (S-equilibrium). An S-equilibrium is defined as any perfect-Bayesian equilibrium

where the seller’s strategy S(·) is increasing, continuous and therefore fully type-revealing.

This assumption implies that the inverse strategy

XS(p) ≡ inf{x ∈ [0, 1] : S(x) ≥ p}

is nondecreasing and continuous. We can now define the range of prices that will be offered,

[p, p], where

p = S(0), p = S(1).

A pair of equilibrium strategies is shown in Figure 1. Since S(·) is assumed to be increasing,

it is clear that in any Perfect Bayesian equilibrium, the buyer, upon receipt of the offer p =

S(xS), will infer the seller’s type xS and respond accordingly. That is, the offer will be accepted

if uB(xB, xS) ≥ p, and rejected otherwise. So for p ∈ [p, p], the equilibrium responding strategy

is given by

XB(p) = inf{x ∈ [0, 1] : uB(x,XS(p)) ≥ p}.
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Figure 1: A pair of equilibrium strategies.

In a separating equilibrium, the best-response by the buyer is to accept an offer p if uB(xB, XS(p)) ≥

p and reject otherwise, so the best-response strategyXB(p) for all p ∈ [p, p] is given as a (unique)

solution to

uB(XB(p), XS(p)) = p. (5)

In equilibrium, the seller with signal xS will choose p optimally, maximizing the expected

profit function

ΠS(xS , p) =

∫ 1

XB(p)
[p− uS(xS , x̃B)]fB(x̃B|xS)dx̃B,

resulting in a F.O.C. at all points of differentiability:12

∂ΠS(xS , p)

∂p
= −X ′B(p)(p− uS(xS , XB(p)))fB(XB(p)|xS) + 1− FB(XB(p)|xS) = 0.

Using (5) and simplifying, we obtain the differential equation for the buyer’s inverse strategy

12A monotone function is differentiable almost everywhere.
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XB(p):13

X ′B(p) =
1− FB(XB(p)|XS(p))

fB(XB(p)|XS(p))

1

uB(XB(p), XS(p))− uS(XS(p), XB(p))
. (6)

It is convenient to totally differentiate (5),

∂uB
∂xB

X ′B(p) +
∂uB
∂xS

X ′S(p) = 1,

and then substitute the slope X ′S(p) from the seller’s F.O.C. (6), yielding after some manipu-

lations

X ′S(p) =
1

∂uB
∂xS

(
1− ∂uB

∂xB
X ′B(p)

)
=

1
∂uB(XB(p),XS(p))

∂xS

J(XB(p), XS(p))

uB(XB(p), XS(p))− uS(XS(p), XB(p))
(7)

Equations (6) and (7) were derived for all points of differentiability of XB(·) and XS(·).

However, as the following lemma shows, both XB(·) and XS(·) must in fact be continuously

differentiable.

Lemma 2. The seller’s inverse offer strategy XS(·) and the buyer’s responding strategy XB(·)

are continuously differentiable functions.

Proof. Since S(·) is a strictly increasing, continuous function according to the definition of

an S-equilibrium, its inverse XS(·) is also strictly increasing and continuous. We now show

that the definition of the buyer’s responding strategy as the function XB(p) that solves (5)

implies that XB(·) is likewise continuous. We argue by contradiction. If p0 is a point of

discontinuity of XB(p), then there exist two sequences of prices {pn}, {p′n} such that pn, p
′
n → p0

and XB(pn)→ x1B, XB(p′n)→ x2B where x1B 6= x2B. Without loss of generality, assume x2B > x1B.

Since uB(·, ·) is also continuous (indeed, continuously differentiable), passing to the limit in (5)

along the sequences pn and p′n yields

uB(x1B, XS(p0)) = p0 = uB(x2B, XS(p0)),

but this contradicts our Assumption 3 according to which the buyer’s valuation is strictly in-

creasing in xB. So XB(·) must be continuous. As a monotone function, XS(·) is differentiable

13In line with usual notation for differential equations, in the r.h.s. we suppress the dependence of xB and xS

on p.
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almost everywhere. Then, equation (5) implies that XB(·) is also differentiable almost every-

where. Now all the functions appearing on the r.h.s. of (6) and (7), namely uB(·, ·), uS(·, ·)

and FB(·|·), fB(·|·), are continuous by assumption. Also, XS(p) is continuous by definition of

an S-equilibrium, and we have just shown that XB(·) is also continuous. It follows that the

r.h.s. of (6) and (7) are continuous functions of p, and therefore the derivatives X ′B(p) and

X ′S(p) appearing in the l.h.s. can be extended by continuity to the entire interval [p, p]. There-

fore in any S-equilibrium, both XB(·) and XS(·) are continuously differentiable, not merely

continuous.

So far we have shown that the first-order conditions given by the system of differential

equations (6) and (7) are necessary for S-equilibrium. In order to complete the characterization

of an equilibrium candidate, we need to pin down the initial condition for this system. This is

done in the following lemma, which also establishes uniqueness of the equilibrium candidate.

Lemma 3. For any S-equilibrium, S(0) = uB(xB, 0), where xB ≡ x∗B(0) is the point of inter-

section of the J-curve with the horizontal axis, or xB = 0 if J(xB, 0) > 0 ∀xB ∈ [0, 1].

Proof. Equivalently, we need to show that

XB(p) = xB, XS(p) = 0, (8)

where p = uB(xB, 0).

Refer to Figure 2. In this figure, the J-curve defined in the previous section separates the

feasible signal space [0, 1]2 into the upper and lower region. Note that the solution cannot

enter the upper region since monotonicity fails there, either X ′S(p) < 0 if uB(XB(p), XS(p))−

uS(XS(p), XB(p)) > 0, or X ′B(p) < 0 if uB(XB(p), XS(p)) − uS(XS(p), XB(p)) < 0. So the

initial condition for the buyers must be XB(p) ≥ xB.

We now show that any XB(p) > xB will give the seller the incentive to deviate to a lower

price. For an out-of-equilibrium offer p < p, buyer’s beliefs are not pinned down by the Bayes

rule. Still, in a Perfect Bayesian equilibrium, the buyer will best-respond given some beliefs

about the seller’s types xS . So we consider the worst-case scenario when the buyer believes that

this offer came from this seller type xS = 0, which is in fact the case. This belief corresponds,

for p < p, to the highest buyer’s marginal type XB(p) possible, defined as the unique solution
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Figure 2: A phase portrait of an equilibrium. The equilibrium curve is marked by E. The
monotonicity region corresponds to the part of the square below the J(xB, xS) = 0 curve,
marked as J . The ex-post efficiency region lies below the uB(xB, xS) = uS(xS , xB) curve.

to uB(XB(p), 0) = p, since with these beliefs, the buyer with any signal xB assigns the lowest

possible value to the object, uB(xB, 0). So the seller’s profit from such a deviation is bounded

from below by ΠS(XB(p)), where

ΠS(xB) ≡
∫ 1

xB

(uB(xB, 0)− uS(0, x̃B))fB(x̃B|0)dx̃B.

After some algebra, the slope of this profit function at xB = XB(p) can be shown to be

Π′S(XB(p)) = −J(XB(p), 0) · fB(XB(p)|0).

If XB(p) > xB, then J(XB(p), 0) > J(x∗B, 0) ≥ 0 and this slope is negative. This means

that even under the most unfavourable buyer beliefs, and therefore for any beliefs, the seller’s

expected profit can be increased by offering a lower price p < p. This is a contradiction. So

the only remaining possibility is XB(p) = xB.
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Let

M≡ {(xB, xS) ∈ [0, 1]2 : J(xB, xS) ≥ 0}

be the domain where the equilibrium candidate is monotone, X ′S(p), X ′B(p) > 0. The following

lemma shows that the r.h.s. of the differential equations (6) and (7) define a vector field on

M.

Lemma 4 (Continuously differentiable vector field). The mapping

(xB, xS) 7→
(1− FB(xB)|xS)

fB(xB|xS)

1

uB(xB, xS)− uS(xS , xB)
,

1
∂uB(xB ,xS)

∂xS

J(xB, xS)

uB(xB, xS)− uS(xS , xB)

)
(9)

defines a continuously differentiable vector field on M.

Proof. Assumption 3 implies that uB,uS and ∂uB/∂xB, ∂uB/∂xS are continuously differen-

tiable. It only remains to verify that the difference uB(xB, xS) − uS(xS , xB) is bounded from

below on M by a positive constant. The mean-value theorem applied to J(xB, xS) on M

implies for some x̃B ∈ [x∗B(xS), 1]:

J(xB, xS) = J(x∗B(xS), xS) +
∂J(x̃B, xS)

∂xB
(x̃B − x∗B(xS))

≥ 0 +
∂J(x̃B, xS)

∂xB
(xB − x∗B(xS)).

The definition of J then implies

uB(xB, xS)− uS(xS , xB) ≥ 1− FB(xB|xS)

fB(xB|xS)

∂uB
∂xB

+
∂J(x̃B, xS)

∂xB
(xB − x∗B(xS)).

Assumption 4 implies that the derivative of J with respect to xB is bounded from below by a

positive constant,

∂J(x̃B, xS)

∂xB
≥ a > 0.

Also, the boundedness of fB(xB, xS) from both above and below on [0, 1]2 implies

1− FB(xB|xS)

fB(xB|xS)
≥ fB
f
B

(1− xB).
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while Assumption 3 implies ∂uB/∂xB is bounded from below on [0, 1]2 by a positive constant,

say φ > 0. Therefore,

uB(xB, xS)− uS(xS , xB) ≥ fB
f
B

φ(1− xB) + a(xB − x∗B(xS))

≥ min{fB
f
B

φ, a}min{1− xB, xB − x∗B(xS)}

= min{fB
f
B

φ, a}
1 + x∗B

2
> 0.

So the r.h.s. of (6) and (7) in fact define a continuously differentiable vector field on M.

Our main result is the following proposition that shows existence and uniqueness of a Perfect

Bayesian S-equilibrium.

Proposition 1. There exists a unique Perfect Bayesian S-equilibrium, characterized by the pair

of differential equations (6) and (7), with the initial conditions (8). For price offers outside

the equilibrium range [p, p], this equilibrium is supported by out-of-equilibrium buyer beliefs as

follows:

• For p < p, then the buyer believes that the offer originated from the seller with the lowest

signal, xS = 0;

• For p > p, the buyer’s beliefs are unrestricted.

Proof. Step 1: The solution to the system of differential system exists, is unique and monotone,

and defines an equilibrium candidate.

By Lemma 4, the right-hand sides of (6) and (7) define a vector field, continuously differen-

tiable onM. Since the initial condition for the system (6) and (7), (xB, 0), is at the boundary

of M, a fundamental result in the theory of differential equations then implies that there is

a unique integral curve passing through (xB, 0). This curve is entirely contained in M, and

therefore the corresponding XB(·) and XS(·) functions are monotone with X ′B(p), X ′S(p) > 0.

To claim that this integral curve defines a (unique) S-equilibrium candidate, we need to ver-

ify that it exits the square through the upper edge [0, 1] × {1}. Equivalently, this will show

that the solution can be extended to the entire interval [p, p], where p = uB(xB, 1) for some

xB ∈ [x∗B(1), 1].
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The argument is geometric. Refer to Figure 2. Because the vector filed defined by the

system is parallel to the horizontal axis on the J-curve, and to the vertical axis on the right

side of the square, where xB = 1, the solution curve cannot intersect M these boundaries.

Therefore, the solution will “leave” the M region only through the segment BC on the upper

horizontal side of the square. This intersection point is the required xB.

Step 2: Within-equilibrium deviations To show that within-range deviations are not prof-

itable, consider p̂ > p. We show that the slope of the expected profit function is negative at p̂.

Denote xB = XB(p), xS = XS(p) and x̂B = XB(p̂), x̂S = xS(p̂). Then the slope of the seller’s

expected profit ΠS(xS , p̂) is equal to

∂ΠS(xS , p̂)

∂p
= fB(x̂B|xS) ·

(
−x′B(p̂)(p̂− uS(xS , x̂B)) +

1− FB(x̂B|xS)

fB(x̂B|xS)

)
Now from uS(xS , xB) being strictly increasing in xS , and the MLRP, which implies

1− FB(x̂B|xS)

fB(x̂B|xS)
=

∫ 1

x̂B

fB(x̃B|xS)

fB(x̂B|xS)
dx̃B ≤

1− FB(x̂B|xS)

fB(x̂B|x̂S)
,

we see that

∂ΠS(xS , p̂)

∂p
≤ fB(x̂B|xS) ·

(
−x′B(p̂)(p̂− uS(x̂S , x̂B)) +

1− FB(x̂B|x̂S)

fB(x̂B|x̂S)

)
But from our differential equation (6), the r.h.s. of the above inequality is 0. This shows that

the expected profit has a non-positive slope for p̂ > p, and therefore such a deviation is not

profitable.

Step 3: Out-of-equilibrium deviations. We now show that outside-range deviations are not

profitable. We only need to consider price offers p ∈ I ≡ [uB(0, 0), uB(1, 1)]. This is because

p < uB(0, 0) would be acceptable to any buyer type regardless of the beliefs, and is therefore

dominated for the seller by the price p = uB(0, 0), while p > uB(1, 1) will never be acceptable

to any buyer type.

Our equilibrium does not restrict the buyer’s beliefs upon observing a price p > p. So

denote the buyer’s perceive type of the seller as x̂S . In general, the buyer’s belief may be

stochastic. Denote the distribution of x̂S given price p as GB(x̂S |p). Point beliefs are not

ruled out, in which case the distribution GB is degenerate at a point. Given that we only
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consider a “serious” deviation, not higher than uB(1, 1), there is always an interval of buyer

types accepting such an offer. (This interval could be a single point if the offer is made exactly

at uB(1, 1).) Given a belief x̂S , we can alternatively reparameterize a deviation to a price p > p

by the minimal buyer type x for whom such a price is acceptable. The price itself is then

uB(x, x̂S). Let ΠS(x, xS , x̂S) denote the seller’s profit if the buyer’s beliefs were known to the

seller

Π∗S(x, xS , x̂S) ≡
∫ 1

x
(uB(x, x̂S)− uS(x̃B, xS))fB(x̃B|xS)dx̃B,

so that the expected seller’s profit from a deviation to p is equal to
∫

Π∗S(x, xS , x̂S)dGB(x̂S |p).

Since Π∗S(x, xS , x̂S) is increasing in x̂S , the seller’s expected profit is bounded from above by

Π∗S(x, xS , 1).

For any xS ∈ [0, 1], we have already ruled out within-range deviations, so

Π(xS , S(xS)) ≥ ΠS(xS , p) = Π∗S(xB, xS , 1),

where the last equality follows by the fact that the offer p in equilibrium corresponds to xS = 1:

S(1) = p.

The claim that there is no profitable deviation to p > p will follow once we show that the

slope of the “most optimistic” profit function Π∗S(x, xS , 1) with respect to x is nonpositive.

Now

∂ΠS(x, xS , 1)

∂x
= −

(
uB(x, 1)− uS(xS , x)− ∂uB(x, 1)

∂xB

1− FB(x|xS)

fB(x|xS)

)
· fB(x|xS).

Since the MLRP implies

1− FB(x|xS)

fB(x|xS)
≤ 1− FB(x|1)

fB(x|1)
,

and uS(xS , x) < uS(1, x), we have

uB(x, 1)− uS(xS , x)− ∂uB(x, 1)

∂xB

1− FB(x|xS)

fB(x|xS)

≥ uB(x, 1)− uS(1, x)− ∂uB(x, 1)

∂xB

1− FB(x|1)

fB(x|1)

= J(x, 1) ≥ 0,

where the last inequality follows because x > xB. This implies

∂Π∗S(x, xS , 1)

∂x
≤ 0,
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so even for the optimistic beliefs x̂S = 1, a deviation to p > p is not profitable to the seller.

For a deviation to a price p < p, we use the fact the assumed equilibrium belief upon such

a deviation is x̂S = 0. We only need to consider the case xB > 0: if xB = 0, then p = uB(0, 0)

and the offer will be rejected by the buyer and is thus dominated by the (assumed) equilibrium

offer. Also, we have already ruled out within-range deviations, so

Π(xS , S(xS)) ≥ Π(xS , p) = Π∗S(xB, xS , 0).

A deviation to p ≤ p is equivalent to picking xB = x ∈ [0, xB], with the ensuing expected profit

Π∗S(x, xS , 0). The slope of this profit function is

∂Π∗S(x, xS , 0)

∂x
= −

(
uB(x, 0)− uS(xS , x)− ∂uB(x, 0)

∂xB

1− FB(x|xS)

fB(x|xS)

)
· fB(x|xS).

In this case, the MLRP implies

1− FB(x|xS)

fB(x|xS)
≥ 1− FB(x|0)

fB(x|0)
,

while the monotonicity in own signal implies uS(xS , x) ≥ uS(0, x), and therefore the slope

∂Π∗S(x, xS , 0)

∂x
≥ −J(x, 0) · fB(x|xS).

Since J(x, 0) ≤ J(xB, 0) = 0, we see that

∂Π∗S(x, xS , 0)

∂x
≥ 0,

so the profit is upward sloping for x ∈ [0, xB] and a deviation to p < p is not profitable.

3 Discussion

Some interesting implications of our results are discussed below.

Signalling premium. Recall that for a given xS , the marginal buyer’s type on the J-curve

is denoted as x∗B(xS), and the price offer by the type xS seller under disclosure is S0(xS) ≡

uB(x∗B(xS), xS). Inspection of Figure 2 reveals that the solution (or equilibrium) curve, denoted

as E in the graph, lies to the right of the J-curve that corresponds to the equilibrium under

19



disclosure. Since the no-disclosure marginal buyer’s type is related to the seller’s type as

XB(S(xS)), this implies

x∗B(xS) < XB(S(xS)) ∀xS ∈ (0, 1].

By the strict monotonicity of uB(xB, xS) in xB, we have

uB(x∗B(xS), xS) < uB(XB(S0(xS)), xS) =⇒ S0(xS) < S(xS).

In other words, the no-disclosure equilibrium seller’s offer involves a signalling premium S(xS)−

S0(xS) > 0 for xS ∈ (0, 1].

No regret. Any S-equilibrium satisfies the no-regret property for both buyers and sellers.

That is, no buyer and no seller will obtain a negative surplus. For any price p ∈ [p, p], i.e.

any price at which trade can occur, (XB(p), XS(p)) ∈M, and therefore, as we have seen (refer

to Figure 2), uB(XB(p), XS(p)) = p ≥ uS(XB(p), XS(p)). For any seller type XS(p) who in

S-equilibrium trades with buyer types x ≥ XB(p), the surplus is at least p− uS(x,XS(p)) and

is therefore non-negative. Similarly, for any buyer type XB(p), who in S-equilibrium will trade

with sellers having types x ≤ XS(p) and below, the surplus uB(XB(p), x)− p is non-negative.

Lemons. Another application of our result is to classical lemons problem, introduced in

Akerlof (1970). Can the seller signal quality through prices only, thereby mitigating adverse

selection? In a lemons setting, the seller’s utility doesn’t depend on buyer’s signal, only on

the seller’s signal. At the same time, the buyer’s utility depends both on the buyer’s signal

and the seller’s signal. The seller’s signal may now be interpreted as a quality parameter, with

higher quality levels associated with higher cost. There are two interpretations that can be

given to the buyer’s signal. First, it can be interpreted as a taste parameter, in which case it

may be (but doesn’t have to be) assumed that xB and xS are independent. Second, it may be

interpreted literally as a signal that provides the buyer additional information about the seller’s

product, beyond what is known to the seller in terms of quality. Our assumptions allow this

signal to be weak; all that is needed is that there is some positive dependence of the buyer’s

utility on xB. In this setting, our main result implies that there exists a separating equilibrium

where seller signals quality to the buyer, so the market for higher quality is not shut down.
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