
The Vickrey-Target Strategy and the Core in Ascending

Combinatorial Auctions

Ryuji Sano∗

Institute of Social and Economic Research, Osaka University

April 10, 2012

Abstract

This paper considers a class of combinatorial auctions with ascending prices,

which includes the Vickrey-Clarke-Groves mechanism and core-selecting auc-

tions. We analyze incentives in ascending combinatorial auctions under com-

plete information. We show that in every ascending auction, the “Vickrey-target

strategy” constitutes a subgame perfect equilibrium if bidders’ strategy space is

restricted. The equilibrium outcome is in the bidder-optimal core and unique

under some criteria. This implies that equilibrium selection is done by an as-

cending price scheme from many equilibria of sealed-bid auctions. The equi-

librium outcome is “unfair” in the sense that winners with low valuations tend

to earn high profits. This payoff non-monotonicity leads to inefficiency in the

equilibrium under unrestricted strategy space.
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1 Introduction

This paper formulates a class of multi-object auction mechanisms with ascending

prices. We introduce the “ascending Vickrey-reserve auctions” and analyze the sub-

game perfect equilibrium under complete information. The Vickrey-reserve auctions

are a class of combinatorial (or package) auctions that includes the Vickrey-Clarke-

Groves mechanism and core-selecting auctions. We show that a particular strategy

constitutes a subgame perfect equilibrium and implements an outcome in the core if

bidders’ strategy space or valuation domain is limited.

Since the U.S. Federal Communications Commission conducted a spectrum li-

cense auction in 1994, the theory of multi-object auctions has attracted a great

deal of attention. In recent decades, a considerable number of studies have been

conducted on the designs and analyses of multi-object auctions, especially combina-

torial auctions. Combinatorial auctions are those in which bidders can make bids

for bundles or packages of goods, not just individual goods. Although such auctions

are generally complicated in practice, they are now being implemented in spectrum

license auctions in several countries and have been proposed for auctions of airport

landing slots.1

Incentives and equilibria in combinatorial auction mechanisms have been exam-

ined under sealed-bid formats, or direct revelation mechanisms. The Vickrey-Clarke-

Groves mechanism (the Vickrey auction) is an important benchmark. The Vickrey

auction is an efficient mechanism that is incentive compatible in dominant strategy

(Green and Laffont (1977), Holmstrom (1979)). However, some studies point out

that the Vickrey auction has several disadvantages such as low revenue and vulnera-

bility to collusive bidding (Ausubel and Milgrom (2006)). In practical combinatorial

auction designs, the Vickrey auction has hardly ever been used.

Core-selecting auctions are recent attractive alternatives to the Vickrey auction.

A core-selecting auction selects an outcome in the core with respect to the reported

valuations. The core-selecting property avoids some of the disadvantages of the

1See Cramton (2009) for the applications of combinatorial auctions to spectrum license auctions.
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Vickrey auctions. Although core-selecting auctions are not incentive compatible,

Day and Milgrom (2008) show that they achieve an outcome in the core in a Nash

equilibrium under complete information. This fact forms a theoretical foundation

for applying core-selecting auctions to spectrum licenses auctions in the U.K. and

several other European countries.

From the viewpoint of practical auction design, ascending-price auctions are fre-

quently preferred to sealed-bid auctions. The dynamic, open-bid format is trans-

parent and economizes revealed information about valuations during the auction.

For example, the U.S. Federal Communications Commission first adopted the si-

multaneous ascending auction (SAA) for spectrum auctions, in which items are put

on sale simultaneously using an ascending-price rule. Bidders can submit new bids

for any item if a new bid is submitted for some item. The ascending-price format

is standard for spectrum license auctions in many countries. The ascending-price,

open-bid format is more important when package bids are allowed, since a sealed-

bid format often requires bidders to submit an exponential number of package bids.

Many studies investigate and propose various combinatorial auction designs with

ascending-price formats.2

Most studies on ascending-price combinatorial auctions try to formulate “ascending-

price Vickrey auctions” for multiple objects, i.e., ascending auctions that terminate

with the Vickrey-Clarke-Groves outcome. Such auctions correspond to a standard

English auction of a single object, and bidders reveal true information on valuations

in the equilibrium. Parkes and Ungar (2000), Ausubel and Milgrom (2002), and de

Vries et al. (2007) formulate ascending combinatorial auctions with non-linear and

non-anonymous prices. Their auctions are ascending Vickrey auctions for substitute

goods, whereas they are not for general valuations. However, they are ascending

core-selecting auctions for general valuations.

These auctions are not satisfactory from the viewpoint of the motivation of de-

2See Parkes (2006) for a review of several designs and the advantages of ascending auctions over

sealed-bid auctions.
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signing an ascending Vickrey auction. However, they will be desirable in practice

because they have an ascending-price format and the core-selecting property. How-

ever, we need to take the incentive problem into consideration. A natural question

is what the subgame perfect equilibrium of an ascending auction is, if it is not an

ascending Vickrey auction. In combinatorial auctions, even if bidders have private

values, bidding behaviors by the others often indicate wich bundle of goods is the

most profitable. Hence, strategic bidding behavior will be quite different between

sealed-bid and ascending-price auctions. Equilibrium analysis of ascending combina-

torial auctions provides both theoretical and practical implications for multi-object

auction design. Unfortunately, however, the equilibrium of ascending auctions has

never been examined. In their seminal paper, Ausubel and Milgrom (2002) formu-

late an ascending combinatorial auction; however, they consider proxy bidding in the

equilibrium analysis and do not examine the incentives during the ascending-price

procedure. Is there a subgame perfect equilibrium that achieves an outcome in the

core in ascending core-selecting auctions?

This paper answers this question and shows that every ascending core-selecting

auction has a subgame perfect equilibrium in the bidder-optimal core if bidders’

strategy spaces are limited. Moreover, we show that the identical equilibrium exists

in a broader class of ascending combinatorial auctions. We consider a general form

of ascending price combinatorial auction with a single price path of a non-linear

and non-anonymous price vector. We allow an arbitrary ascending price scheme and

possible final discount, i.e., payments may be different from the terminal prices. We

introduce “ascending Vickrey-reserve auctions,” in which bidders pay at least their

Vickrey payments with respect to the revealed information on valuations. Our model

includes most of the auctions in the literature, including Parkes and Ungar (2000),

Ausubel and Milgrom (2002), de Vries et al. (2007), and Mishra and Parkes (2007).3

We focus on a class of dynamic strategy, semi-truthful strategy, which corresponds

to the truncation strategy by Day and Milgrom (2008) in sealed-bid auctions. In a

3Ausubel’s (2006) auction uses multiple price paths, and is an exception.
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semi-truthful strategy, a bidder either reports his true demand or stops bidding

at each period. The timing of bidders’ decisions to stop generally depends on the

behavior of others. In this paper, we consider the subgame perfect equilibrium (SPE)

with the strategy space restricted to semi-truthful strategies.

We have three main results. First, we show that a particular strategy, which we

call the Vickrey-target strategy, constitutes an SPE. In this strategy, a bidder aims

to bid up to a kind of Vickrey price, which is computed by using true and revealed

valuations at each time. This strategy is free from the specifications of the auction

rules. The equilibrium outcome is in the bidder-optimal core4 with respect to the

true valuations. This result is similar to that of Day and Milgrom (2008), who show

a particular strategy profile as a Nash equilibrium of every core-selecting auction.

Second, we show that the specified equilibrium outcome is a unique equilibrium

outcome under certain conditions in every strict Vickrey-reserve auction, in which

winners pay amounts strictly more than the Vickrey price. This result contrasts

with the fact that there are possibly many Nash equilibria in sealed-bid Vickrey-

reserve auctions. Equilibrium selection is done to some extent by introducing an

ascending-price format and subgame perfection.

Third, although the outcome of the Vickrey-target strategies is in the bidder-

optimal core, it is “unfair” in the sense that the lower the valuation of a winner, the

higher are the profits he tends to earn. The payoff non-monotonicity leads to the

possibility that the Vickrey-target strategy may not constitute an SPE with unre-

stricted strategy space. Moreover, we show that an SPE with unrestricted strategy

space may be inefficient.

The intuition of these results is as follows. In an ascending auction, the prices of

goods increase gradually from low initial prices. Bidders decide whether to continue

bidding or not at each period. Note that there exists a best core outcome for each

bidder in which he obtains the Vickrey payoff. If a bidder stops bidding at his

Vickrey price, and if the auction finally selects the efficient allocation, he will be

4A core outcome is bidder-optimal if it is Pareto-optimal among bidders.
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able to win the goods with the Vickrey price. Hence, by stopping at the Vickrey

price, he will definitely earn the Vickrey payoff, which is the best payoff in the core.

The Vickrey payments of the winners with lower valuations are generally lower than

those of the high-value winners. Hence, the prices first reach the Vickrey prices

of low-value winners, and low-value winners achieve their most preferred outcomes.

When a winner stops bidding, the remaining bidders need to raise their bids even

further to win. High-value bidders tend to pay dearly and earn little net profit.

It is quite restrictive to focus only on semi-truthful strategies. However, the

analysis of this paper is applied under the unrestricted strategy space if bidders are

single-minded, i.e., they are interested only in a particular bundle and place bids

only for that bundle.

The contribution of this paper is as follows. First, we consider a general class of

combinatorial auctions with ascending prices and show an equivalence in an equilib-

rium strategy under complete information. With a restricted strategy space, every

ascending combinatorial auction has a subgame perfect equilibrium in the bidder-

optimal core with respect to true valuations. This corresponds to the preceding

results on sealed-bid combinatorial auctions by Bernheim and Whinston (1986),

Ausubel and Milgrom (2002), and Day and Milgrom (2008). Second, we show that

the equilibrium outcome is unique with some criteria. This contrasts with the mul-

tiple equilibria of sealed-bid combinatorial auctions. As Milgrom (2007) discusses,

the preceding analyses are not satisfactory even if we accept the strong assumption

of complete information, since there are many plausible equilibria. Our result can

be interpreted as an equilibrium selection and indicates which outcome in the core

is most plausible if we still assume complete information. Finally, we show some

negative properties, such as non-monotonicity of the equilibrium payoff and possible

inefficiency in an equilibrium with unrestricted strategy space. In terms of practical

use, we need to consider that the ascending price formats do not always perform

well.
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1.1 Related Literature

As we have mentioned, various ascending-price auctions are proposed by Parkes and

Ungar (2000), Ausubel and Milgrom (2002), Ausubel (2006), de Vries et al. (2007),

and Mishra and Parkes (2007). All these auctions terminate with the Vickrey out-

come and are incentive compatible for substitute goods. Even for general valua-

tions, these are core-selecting auctions except Ausubel (2006) and Mishra and Parkes

(2007). De Vries et al. (2007) show that it is impossible to design an ascending auc-

tion that converges to the Vickrey outcome under general valuations. Mishra and

Parkes (2007) introduce final discounts after the ascending price procedure and pro-

vide a class of ascending Vickrey auctions for general valuations. The conditions for

the Vickrey outcome in the core are studied by Bikhchancani and Ostroy (2002) and

Ausubel and Milgrom (2002).

Concerning information requirement, Mishra and Parkes (2007) show the neces-

sary and sufficient condition for computing the Vickrey outcome from the auction

outcome. Matsushima (2011) provides another necessary and sufficient condition

for implementing the Vickrey outcome using a general price-based scheme. He also

shows the necessary and sufficient condition for implementing a strategy-proof and

interim individually rational mechanism using a price-based scheme. Blumrosen and

Nisan (2010) show that non-linear and non-anonymous prices are necessary to achieve

efficiency by ascending auctions in general valuations.

Equilibrium analyses of combinatorial auctions are conducted mainly under com-

plete information and sealed-bid formats. Bernheim and Whinston (1986) consider

the “first-price” combinatorial auction called menu auction. They show that there

possibly exist many full-information Nash equilibria in the core. Ausubel and Mil-

grom (2002) consider the ascending proxy auction, where bidders report their valu-

ations in advance to their proxy agents. They show that Bernheim and Whinston’s

(1986) Nash equilibrium is also a Nash equilibrium in the ascending proxy auction.

Day and Milgrom (2008) generalize these results to every sealed-bid core-selecting

auction. Sano (2012b) further generalizes Day and Milgrom (2008). Sano shows that
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Bernheim and Whinston’s (1986) Nash equilibrium exists if and only if bidders pay

at least their Vickrey payments.

There are several studies on the analysis of ascending-price non-package auc-

tions. Ausubel and Schwartz (1999) and Grimm et al. (2003) study the subgame

perfect equilibrium in a multi-unit ascending auction with complete information.

They consider a multi-unit, ascending uniform-price auction with two bidders. They

show that there is a unique low-price subgame perfect equilibrium. Their low-price

equilibrium stems from demand reduction or implicit collusion by bidders in multi-

unit uniform-price auctions (Engelbrecht-Wiggans and Kahn (1998), Ausubel and

Cramton (2002)).

The remainder of this paper proceeds as follows. In section 2, we provide a simple

example and explain the intuition of the results. In section 3, we formulate the model

and the auction. We define a Vickrey-reserve auction and introduce an ascending-

price format. In section 4, we show that the Vickrey-target strategies constitute an

equilibrium and lead to an outcome in the bidder-optimal core. We then examine

the uniqueness of the equilibrium and the equilibrium selection. In section 5, we

discuss the results. If an ascending auction is core-selecting, it is robust to collusive

overbiddings. In addition, we show the non-monotonicity of the equilibrium payoff,

which leads to inefficiency in the SPE with unrestricted strategy space.

2 An Illustration

We first look at a simple example of two goods and three bidders.

Example 1. There are two goods {A,B} and three bidders {1, 2, 3}. Suppose

that bidder 1 wants only good A, whereas bidder 2 wants only B. Bidder 3 wants

both A and B. Bidder 1’s willingness to pay for A is 7, and 2’s willingness to pay

for B is 8. Bidder 3’s willingness to pay is 10 for AB, and 0 for each good. In

the efficient allocation, bidders 1 and 2 get A and B, respectively. The core of the

auction game is described in terms of bidders’ payments as p1(A) ≤ 7, p2(B) ≤ 8 and

p1(A) + p2(B) ≥ 10, where pi(k) denotes the payment of i for good(s) k. The first
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two inequalities are from the individual rationality for bidders. The last inequality

follows since if p1 + p2 < 10, bidder 3 and the seller form a blocking coalition with a

payment p3(AB) ∈ (p1 + p2, 10]. In the bidder-optimal core, p1(A) + p2(B) = 10.

First, consider a sealed-bid core-selecting auction. Assuming that bidder 3 truth-

fully places a bid of 10 for the package AB, every bid profile (b1, b2) such that

b1 + b2 = 10, b1 ≤ 7, and b2 ≤ 8 is a Nash equilibrium. In this equilibrium, each

winning bidder pays bi (i = 1, 2) by the core-selecting pricing rule. Thus, any bidder-

optimal core outcome is achieved in a Nash equilibrium (Day and Milgrom, 2008).5

Notably, these strategy profiles are also Nash equilibria of the Vickrey auction (Sano,

2012b).

Next, consider the ascending auction by Parkes and Ungar (2000) and Ausubel

and Milgrom (2002). The auction starts from zero prices, and bidders gradually raise

the bids. Bidders are not allowed to jump bids. Suppose that at period t, bidders

1 and 2 submit bids for each single good, pt
1(A) and pt

2(B), and that bidder 3 can

submit package bids for AB, pt
3(AB). At period 1, each bidder places bids of 1 for

his interest: p1
1(A) = p1

2(B) = p1
3(AB) = 1. Then, bidders 1 and 2 are tentative

winners, so bidder 3 raises the bid at period 2: p2
3(AB) = 2. If bidder 3 becomes the

tentative winner at period 2, bidders 1 and 2 raise the bids to p3
1(A) = p3

2(B) = 2 at

period 3, and so on.

Suppose that all bidders behave truthfully and raise the bids to their true values.

Then, the auction terminates at T when pT
1 (A) = pT

2 (B) = 5 and pT
3 (AB) = 10.

Bidders 1 and 2 win goods A and B, respectively for the price of 5. Note that the

outcome is in the core.6

Let us consider the subgame perfect equilibrium of the auction. It is natural to

assume that once a bidder stops bidding at t, he can no longer raise the bids. We can

easily obtain the equilibrium by standard backward induction. Suppose that bidder

3 behaves truthfully and raises the bids until p3(AB) = 10. Consider a subgame in

5The specification of a pricing rule does not matter. The core with respect to the reported bids

is uniquely determined in the equilibrium.
6The final prices may differ by the bid increment. However, we ignore this.
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Figure 1: The subgame perfect equilibrium path

which bidder 2 first stops bidding at 3 ≤ p2(B) < 5. Since 10 − p2(B) ≤ 7, bidder

1 successfully wins the good A by bidding until 10 − p2(B). Note that the price

10− p2(B) is 1’s Vickrey price, given that bidders’ 2 and 3 values are p2(B) and 10.

Hence, for bidder 1, the “Vickrey-target strategy” is to bid until 10 − p2(B), and

is optimal when p2(B) ≥ 3. When bidder 2 stops bidding at p2(B) < 3, bidder 1

must pay 10− p2(B) > 7 to win. Hence, it is optimal for 1 to stop at p1(A) = 7 and

lose. Similarly, for bidder 2, the Vickrey-target strategy, bidding until 10− p1(A), is

optimal when p1(A) ≥ 2.

Now, let us consider a subgame where no one has stopped bidding. Applying the

consideration above, bidder 1 will win as long as he bids until p1(A) ≥ 10 − 8 = 2.

On the other hand, bidder 2 will win when he first stops at p2(B) ≥ 10 − 7 = 3. To

minimize the payment, bidder 1’s best strategy is to bid until p1(A) = 2, and 2’s

until p2(B) = 3. These prices are their Vickrey prices given true values. Thus, it is a

perfect equilibrium to stop at the Vickrey prices computed from bidders’ true values

and stopping prices. In the equilibrium outcome, bidder 1 stops first at p1(A) = 2

and bidder 2 raises bids until p2(B) = 8. This outcome is in the bidder-optimal core.

In addition, by inspection, this is a unique subgame perfect equilibrium outcome as

long as bidder 3 behaves truthfully. Figure 1 illustrates the equilibrium path of this
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example.

3 The Model

A seller wants to allocate multiple indivisible objects, and K denotes the set of

goods. Let N ≡ {0, 1, 2, . . . , n} be the set of all players. I = {1, . . . , n} is the set of

all bidders and 0 denotes the seller. Let Xi ⊆ 2K be the set of admissible bundles for

bidder i. For each i ∈ I, a null bundle is denoted by xi (instead of ∅), and xi ∈ Xi.

X ⊆ X1 × · · · × Xn denotes the set of feasible allocations. All bidders have quasi-

linear utilities. Suppose that valuations for bundles of goods are integer-valued. Let

ui : Xi → Z+ be a bidder i ’s valuation function. Suppose each ui is monotone and

ui(xi) = 0 for all i ∈ I. Bidder i earns a payoff πi = ui(xi)−pi where xi ∈ Xi denotes

goods allocated to i and pi is the monetary transfer to the seller. The seller’s payoff

is the revenue from the auction: π0 =
∑

i∈I pi.

Let X∗(u) ⊆ X be the set of efficient allocations with respect to the profile of

valuation functions u = (ui)i∈I :

X∗(u) ≡ arg max
x∈X

∑
i∈I

ui(xi). (1)

Given u, a coalition value of a set of players j ⊆ N is the maximum total value that

can be generated by J . The coalitional value function V is defined by

V (J, u) =


maxx∈X

∑
i∈J ui(xi) if 0 ∈ J

0 if 0 6∈ J

, (2)

where J ⊆ N and u0(·) ≡ 0. We sometimes use the notation V (·) instead of V (·, u).

Given a valuation profile u, a payoff profile π ∈ Rn+1 is feasible if
∑

i∈N πi ≤ V (N).

A payoff profile π is individually rational if π ≥ 0. Given u, the core of the auction

game is

Core(N,V ) =
{
π ≥ 0|

∑
i∈N

πi = V (N) and (∀J ⊆ N)
∑
i∈J

πi ≥ V (J)
}
. (3)
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That is, a payoff profile in the core is efficient, individually rational, and is not blocked

by any coalition. A payoff profile π ∈ Core(N,V ) is bidder-optimal if there is no

π′ ∈ Core(N,V )\{π} such that π′
i ≥ πi for all i ∈ I. Let BOC(N,V ) ⊆ Core(N,V )

be the set of bidder-optimal core payoff profiles.

3.1 Vickrey-Reserve Auctions

Before we define a class of ascending-price auctions, we introduce sealed-bid auctions

or direct revelation mechanisms. In a sealed-bid auction (ḡ, p̄), each bidder reports a

valuation function ûi. For a profile of valuation functions û = (ûi)i∈I , the outcome of

the auction is (ḡ(û), (p̄i(û))i∈I) ∈ (X, Rn
+), which specifies the choice of an allocation

x = ḡ(û) and payments p̄i(û) ∈ R+. A sealed-bid auction (ḡ, p̄) is efficient if for all

û, ḡ(û) ∈ X∗(û). In addition, (ḡ, p̄) is individually rational if for all û and x = ḡ(û),

p̄i(û) ≤ ûi(xi) for all i ∈ I.7 Bidder i is said to win if ḡi(û) 6= xi. Conversely, i is

said to lose if ḡi(û) = xi.

Let V̂ (·) ≡ V (·, û), which is the coalitional value function with respect to û.

Given an auction mechanism (ḡ, p̄) and a report profile û, let π̂i ≡ ûi(ḡi(û)) − p̄i(û)

for each bidder and π̂0 ≡ π0 =
∑

p̄i(û) for the seller. The auction mechanisms in

the existing literature are defined as follows.

Definition 1 A sealed-bid auction (ḡ, p̄V ) is the Vickrey auction if it is efficient and

for each i ∈ I,

p̄V
i (û) = V̂ (N−i) −

∑
j 6=i

ûj(ḡj(û)). (4)

In addition, π̄i denotes bidder i ’s Vickrey payoff :

π̄i ≡ ui(ḡi(u)) − p̄V
i (u) = V (N,u) − V (N−i, u).

Definition 2 A sealed-bid auction (ḡ, p̄) is core-selecting if it satisfies ∀û, π̂ ∈

Core(N, V̂ ).

7Let ûi(xi) ≡ 0 for all i ∈ I. Since p̄i ∈ R+, individual rationality implies that every bidder

assigned the null bundle pays 0.
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Definition 3 A sealed-bid auction (ḡ, p̄) is Vickrey-reserve if it is efficient, individu-

ally rational, and ∀û, p̄(û) ≥ p̄V (û). In addition, it is a strict Vickrey-reserve auction

if it satisfies p̄i(û) > p̄V
i (û) as long as p̄V

i (û) < ûi(ḡi).

Ausubel and Milgrom (2002) and Bikhchandani and Ostroy (2002) show that

every core-selecting auction is a Vickrey-reserve auction. In addition, they show

that Vickrey-reserve auctions are equivalent to core-selecting auctions if goods are

substitutes. However, when goods may be complements, this equivalence does not

hold. Particularly, the Vickrey outcome is not in the core and the Vickrey auction

is not core-selecting.

3.2 Ascending Auctions

An ascending-price format is introduced to Vickrey-reserve auctions. Our definition

of ascending auctions is motivated not by proposing a specific ascending auction

design, but rather by providing a general model for analyzing the proposed designs.

Following Parkes and Ungar (2000), de Vries et al. (2003), and Mishra and Parkes

(2007), we consider complex prices, which are non-linear and non-anonymous. This

means that a price of a bundle xi for i, which is denoted by pi(xi), does not have to

be the sum of the prices of each individual object. Moreover, the price for a bundle

can be different between bidders. A non-linear and non-anonymous price vector p is

in R
P

|Xi|
+ . We suppose pi(xi) ≡ 0 for all i. Blumrosen and Nisan (2010) show that

a complex price vector is necessary to conduct an ascending auction that finds an

efficient allocation.

Given a price vector p, let Di(p) be i ’s (true) demand set:

Di(p) ≡ {xi ∈ Xi|ui(xi) − pi(xi) ≥ ui(yi) − pi(yi) ∀yi ∈ Xi}. (5)

In an ascending auction, the auctioneer proposes a price vector pt at each period t.

Each bidder responds with his demand set D̂i(pt). The auctioneer then adjusts the

price vector and repeats the process. Bidder i is said to be active at t if for all τ ≤ t,

xi 6∈ D̂i(pτ ). Let It ⊆ I be the set of all active bidders at t. Active bidders are
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defined above because if xi 6∈ Di, he has a non-null bundle xi that earns a positive

payoff under the current price: ui(xi)− pi(xi) > 0. Thus, he can afford to pay more

for that bundle.

In this paper, we define ascending combinatorial auctions in a general form in the

sense that we do not specify the details of the rule in the following three ways. First,

although we fix the price increment by unity, the selections of bidders facing price

increases at each period are arbitrary. Second, we do not specify when the auction

terminates. We allow various conditions for stopping price increases to consider

the Vickrey and core-selecting pricing.8 Third, bidders’ payments can differ from

the prices in the terminal period. Bidders’ payments may be discounted from the

terminal prices, and the discounting rule is arbitrary with mild conditions. Our

definition of the auction extends Mishra and Parkes (2007) in the this respect.

We now define ascending combinatorial auctions in a general form. Our definition

follows that of Mishra and Parkes (2007).

1. The auctioneer initializes the price vector as p1 = (0, . . . , 0).

2. At each period t = 1, 2, . . . , each bidder reports his demand set D̂i(pt). The

auctioneer chooses a set of active bidders J t ⊆ It. If i ∈ J t and if xi ∈ D̂i(pt),

then pt+1
i (xi) = pt

i(xi) + 1. Otherwise, let pt+1
i (xi) = pt

i(xi).

3. Repeat the process. It terminates at T ≤ T̄ , when I T̄ = ∅. The auctioneer

selects an allocation x ∈ X and determines bidders’ payments p ∈ Rn
+.

Let (g, (pi)i∈I) be the mechanism of the ascending auction, which decides the final

allocation g(h) ∈ X and the payments (pi(h))i∈I ∈ Rn
+, where h ∈ H denotes a

history throughout the ascending auction.9 Note that the bidders’ payments do not

have to be the posted prices at the terminal period. Since we allow the auction

8For conditions for finding the Vickrey or core outcomes, see Mishra and Parkes (2007).
9Mishra and Parkes (2007) consider that auction outcome is determined only from

(pT , (Di(p
T ))i∈I). Our definition allows the auctioneer to determine an outcome using all the infor-

mation during the auction.

14



outcome to be determined from all the information during the auction, let T = T̄

without loss of generality.10

We then define ûi : Xi → R+ for each i ∈ I as ûi(·) ≡ pT
i (·). The efficiency and

individual rationality in the ascending auction are defined with respect to û similarly

to sealed-bid auctions. In addition, V̂ and π̂ are also similarly defined.

Definition 4 An ascending auction is an ascending Vickrey auction if it is efficient

and p(h) = p̄V (û) for all h ∈ H. An ascending auction is core-selecting if ∀h,

π̂ ∈ Core(N, V̂ ). An ascending auction is Vickrey-reserve if it is efficient, individually

rational, and p(h) ≥ p̄V (û) for all h.

Selections of J t specify the ascending price procedure in detail. One specifica-

tion of J t is selecting “tentative losing bidders.” The auctioneer selects a revenue-

maximizing allocation x(t) ∈ X ∩
(
(D̂1 ∪ {x1})× · · · × (D̂n ∪ {xn})

)
at each period.

Then, J t is defined as J t = {j ∈ It|xj(t) = xj}. This specification, which is proposed

by Parkes and Ungar (2000) and Ausubel and Milgrom (2002), is intuitive. Other

studies specify J t as “minimally undersupplied bidders” (de Vries et al. (2007)).

During the auction, bidders are restricted by the following activity rule in order

that there exists a valuation function consistent with a bidder’s behavior. We follow

the activity rule considered by Mishra and Parkes (2007).

Assumption 1 (Activity Rule) Each bidder must satisfy the following:

1. If ps
i = pt

i, D̂i(ps) = D̂i(pt).

2. For all t, D̂i(pt) ⊆ D̂i(pt+1).

3. If xi ⊆ x′
i and xi ∈ D̂i(pt), then x′

i ∈ D̂i(pt).

The first rule requires that if the prices remain the same for a bidder, he must report

the same demand set. Equivalently, only bidders who face price increases make new

10We interpret the periods after the actual termination, T + 1, T + 2, . . . , T̄ , as a fictitious game

irrelevant to the final outcome.
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decisions at each period. The second rule should be satisfied when there is a valuation

function û consistent with the collection of demand sets. Every bundle demanded at

t has to be demanded at t + 1 because the price of the bundle is increased by only

the minimum increment. The third rule requires that reports be consistent with the

monotonicity of valuation functions.11

To simplify the analysis, we assume that bidders make choices sequentially. This

assumption is crucial for the uniqueness result of the equilibrium to some extent.

Assumption 2 (Sequential Decisions) Bidders make choices sequentially from

1 to n. Each bidder observes all actions made before his decision at each period.

3.3 Strategy and Equilibrium

First, we briefly state equilibrium of sealed-bid auctions. In sealed-bid auctions,

preceding studies (Bernheim and Whinston, 1986; Ausubel and Milgrom, 2002; Day

and Milgrom, 2008) focus on a class of strategies: truncation strategies.12 A strategy

ûi is said to be αi truncation of ui if ∃αi ≥ 0, ∀xi ∈ Xi, ûi(xi) = max{ui(xi)−αi, 0}.

That is, a bidder understates a value for each bundle of goods by a fixed amount

αi. For every Vickrey-reserve auction, a profile of truncation strategy constitutes a

Nash equilibrium.

Proposition 1 (Day and Milgrom (2008), Sano (2012b)) For every u and ev-

ery π ∈ BOC(N,V ), the profile of πi truncations of ui is a Nash equilibrium of every

sealed-bid Vickrey-reserve auction. The associated equilibrium payoff profile is π.

In an ascending auction, bidder i ’s (pure) strategy σi is a mapping from his

information sets or his decision nodes to 2Xi . A feasible strategy is one satisfying

the Activity Rule. Σi denotes the set of feasible strategies for i. Let Σ ≡ Σ1×· · ·×Σn

be the set of profiles of feasible strategies.
11See Mishra and Parkes (2007) for the sufficiency of this activity rule.
12The terminology of truncation strategy is adopted by Day and Milgrom (2008). Truncation

strategy is also called truthful strategy (Bernheim and Whinston (1986)), semi-sincere strategy, and

profit-target strategy (Ausubel and Milgrom (2002)).
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We focus on the following semi-truthful strategies, that correspond to the concept

of truncation strategy.13

Definition 5 A strategy σi ∈ Σi is semi-truthful if it satisfies ∀t,

D̂i(pt) ∈ {Di(pt), Xi}. (6)

Let Σ∗
i ⊆ Σi be the set of semi-truthful strategies, and let Σ∗ ≡ Σ∗

1 × · · · × Σ∗
n.

The terminology “truthful” is adopted since bidder i reports his true demand set as

long as he is active. Once i reports D̂i = Xi (3 xi), he cannot renew his demand set

any longer. Hence, bidder i is said to stop at t if D̂i(pt−1) 6= Xi and if D̂i(pt) = Xi. A

semi-truthful strategy does not necessarily report the true valuations, since bidders

may stop before prices reach their true valuations. Semi-truthful strategies in an

ascending auction correspond to truncation strategies in a sealed-bid auction.

Lemma 1 A bidder i follows σi ∈ Σ∗
i if and only if there exists αi ≥ 0 and for

∀xi ∈ Xi,

ûi(xi) = max{ui(xi) − αi, 0}. (7)

Proof. See Appendix B.

In every semi-truthful strategy, bidders report their true valuations or understate

and never bid over their true values. We allow that bidders play overbidding strate-

gies consistent with semi-truthful strategies as follows: D̂i(pt) ∈ {Xi \ {xi}, Xi} if

xi ∈ Di(pt). Let Σ∗+
i ⊃ Σ∗

i be the set of semi-truthful strategies and overbidding

strategies consistent with semi-truthful strategies, and let Σ∗+ ≡ Σ∗+
1 × · · · × Σ∗+

n .

In most of the paper, we restrict each bidder’s strategy space to Σ∗
i or Σ∗+

i . We

consider the truthful perfect equilibrium as an equilibrium concept. A truthful perfect

equilibrium is an SPE with respect to Σ∗+.

13Ausubel and Milgrom (2002) use the term “limited straightforward bidding” for our semi-

truthful strategy.
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Definition 6 A strategy profile σ ∈ Σ∗+ is a truthful perfect equilibrium (TPE) if

it is a subgame perfect equilibrium under the condition that each bidder’s strategy

space is restricted to Σ∗+
i .

4 Main Results

Since each bidder makes choices sequentially, the auction is a perfect information

game. To make it clear, we relabel the time by each bidder’s decision node. We refer

to bidder i ’s desicion node at period s as “period t (= n(s − 1) + i).”

4.1 Notations and Assumptions

Let ut
i : Xi → R+ be the provisional valuation function at t, which is the possible

valuation function given the bidding behavior up to t: for each xi ∈ Xi

ut
i(xi) ≡


max{ui(xi), pt

i(xi) + 1{xi∈D̂i(pt)}} if i is active at t

pt
i(xi) otherwise

. (8)

When the strategy space is restricted to Σ∗
i , the price vector never exceeds the true

valuation function. Then, the provisional valuation function is equivalent to i ’s true

valuation function if he is active at t, and otherwise coincides with the reported

valuation ûi. Given ut = (ut
i)i∈I , let V t(·) ≡ V (·, ut) for simplicity. In addition,

let π̄t
i be bidder i ’s Vickrey payoff with respect to ut: π̄t

i = V t(N) − V t(N−i). Let

Xt ≡ X∗(ut) be the set of efficient allocations with respect to ut, and let Xt
i ≡ {xi ∈

Xi|x ∈ Xt}.

We impose two additional assumptions. One regards the auction rule. To simplify

the analysis and clarify the results, we consider the following tie-breaking rule.

Assumption 3 For each x ∈ X∗(û), define t(x) ≡ min{t|(∀s ≥ t) x ∈ Xs}. Then,

g(h) ∈ arg minx∈X∗(û) t(x).

In auction models with complete information, ties are likely to occur, and an equilib-

rium may fail to exist with random tie-breaking when strategy space is continuous.
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Hence, ties are traditionally broken in a way that depends on bidders’ values and

not only on their bids. For example, in a first-price auction of a single object, the

highest two bidders submit the same bid in a Nash equilibrium, which is the value of

the second-highest bidder. In the analysis, we often assume that the bidder with the

higher value is chosen in the case of a tie break. This practice is acceptable because

the selected outcome is the limit of an equilibrium of an auction in which bidding

is discrete with an increment of ε > 0.14 However, since the strategy space in our

model is discrete, we are not concerned with ties here. Nevertheless, because our

model can be converted into a continuous case by taking a limit with a small price

increment, we follow this practice. Indeed, with Assumption 3, we clarify the results

and identify a striking property with respect to bidder-optimality. In Appendix A,

we construct a TPE without Assumption 3.

Another assumption concerns bidders’ behavior.

Assumption 4 Let (xi, pi) indicate the obtaining of xi with payment pi. Suppose

that for any non-null bundle xi, there is a set of alternatives C ⊇ {(xi, 0), (xi, ui(xi))}.

Then, every bidder chooses (xi, 0) with probability 0.

Assumption 4 implies that if a bidder expects to win bundle xi by placing a bid of

ui(xi), he actually does. We do not need Assumption 4 to show the existence of an

equilibrium (Theorem 1). However, it is critical for the uniqueness of the equilibrium

outcome. This can be justified when we require trembling-hand perfection for the

equilibrium concept. A bidder may win some goods with a lower price with a small

probability when other bidders stop earlier than predicted.

4.2 The Vickrey-Target Strategy

The following proposition states that any efficient allocation according to ut, x ∈

Xt, remains efficient later on in any TPE. This simplifies the backward induction.

14For the means of tie-breaking and related topics, see Reny (1999), Simon and Zame (1990),

Ausubel and Milgrom (2002), and Day and Milgrom (2008).
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Bidders never choose an action that changes Xt if no bidder is restricted to bid over

the true values.

Proposition 2 Suppose Assumptions 1, 2, 3, and 4. Suppose that each bidder’s

strategy space is restricted to Σ∗
i . Then, any TPE satisfies Xt−1 ⊆ Xt for all t, both

on and off equilibrium paths.

Proof. See Appendix B.

Proposition 2 implies X∗(u) = X0 ⊆ XT = X∗(û) in equilibrium. Hence, any

TPE is efficient as long as no one overbids.

Suppose that in an efficient allocation, bidder i obtains a non-null bundle x∗
i .

By Proposition 2, given ut
−i, it is optimal for i to stop bidding at the least price pt

such that x∗ ∈ X∗(pt
i, u

t
−i), since i ’s payment never exceeds pt

i(x
∗
i ) by the individual

rationality. Such a price vector satisfies

∑
j 6=i

ut
j(x

∗
j ) + pt

i(x
∗
i ) = max

X

∑
j 6=i

ut
j(xj), (9)

hence,

pt
i(x

∗
i ) = V t(N−i) −

∑
j 6=i

ut
j(x

∗
j ), (10)

which is the Vickrey payment. Thus, it is a TPE for each bidder to stop at the

Vickrey payment with respect to ut. Formally, we define the Vickrey-target strategy

as follows.

Definition 7 A semi-truthful strategy σ∗
i ∈ Σ∗

i is said to be the Vickrey-target

strategy if ∀t ≥ 1 and ∀pt,

D̂i(pt) =


Di(pt) if pt

i(xi) < ui(xi) − π̄t−1
i for all xi( 6= xi) ∈ Xt−1

i ,

or if Xt−1
i = {xi}

Xi otherwise

. (11)
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Theorems 1 and 2 are the main theorems in the current paper. The Vickrey-target

strategy constitutes a TPE of every ascending Vickrey-reserve auction. Moreover, the

equilibrium outcome is in the bidder-optimal core with respect to the true valuations.

Let π∗ be the corresponding payoff allocation associated with σ∗.

Theorem 1 Suppose Assumptions 2 and 3.15 The profile of the Vickrey-target

strategies σ∗ ∈ Σ∗+ is a TPE of every ascending Vickrey-reserve auction.

Proof. See Appendix B.

Theorem 2 Suppose that p̄V
i (u) > 0 for all winners. Then, the outcome associated

with σ∗, π∗, is in the bidder-optimal core with respect to the true values.

Proof. See Appendix B.

At the initial period, every bidder is active and π̄t = π̄. Hence, bidders first

seek to stop bidding at their Vickrey payments. Note that once a bidder stops, he

can no longer renew his bid. Hence, the stopping bidder’s reported utility function

is revealed. Each bidder recomputes his Vickrey payoff, regarding the price vector

for the stopping bidder as his true valuation function. This recomputation weakly

decreases the Vickrey payoffs of bidders. Remaining bidders continue bidding and

aim for the revised Vickrey prices.

When the Vickrey outcome is in the core, it is a unique bidder-optimal outcome.

Hence, the TPE outcome coincides with the Vickrey outcome.

Note that σ∗ is a TPE regardless of any specification of J t, the terminal condi-

tion, or final discounts. Theorem 1 shows an equivalence in equilibrium strategy of

ascending Vickrey-reserve auctions. This is similar to the results of Day and Mil-

grom (2008) and Sano (2012b), which show that a particular strategy profile is a

Nash equilibrium of every core-selecting or Vickrey-reserve auction. However, the

equilibrium outcome π∗ can differ by rules.

15Assumption 1 is automatically satisfied as long as we focus on semi-truthful strategies.
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We consider a general valuation structure and a restricted strategy space. An-

other method of analysis is to formulate a restricted valuation domain with unre-

stricted strategies. If bidders are single-minded, i.e., they are interested only in a

specific bundle of goods, then Theorems 1 and 2 hold with unrestricted strategies.

A bidder is single-minded if there is a non-null bundle yi ∈ Xi and if

ui(xi) =


vi if yi ⊆ xi

0 otherwise
.

If a bidder is single-minded, he can make a profit by bidding for yi (or larger bundles).

It is profitless to bid for bundles that do not contain yi. Hence, it is obvious that

the bidder’s stratgy must be semi-truthful.

Corollary 1 If each bidder is single-minded, Theorems 1 and 2 hold with unre-

stricted strategy space.

Remark 1 Assumption 2 is not crucial for Theorem 1. We obtain Theorem 1 with-

out Assumption 2 by slightly modifying the Vickrey-target strategy. If two or more

bidders (e.g., {i, j, . . . } ≡ M) simultaneously reach their stopping prices at t with

π̄t−1
i , π̄t−1

j , . . . , then we take a maximal set M∗ ⊆ M that satisfies the following: (a)

Each i ∈ M∗ stops at t, (b) Each i 6∈ M∗ remains active at t, and (c) Xt−1 ⊆ Xt.

4.3 Equilibrium Selection

Under certain criteria, π∗ is a unique TPE outcome. When goods complementarities

exist, there are generally many outcomes in the bidder-optimal core. As Day and

Milgrom (2008) and Proposition 1 show, any payoff profile in the bidder-optimal core

is achieved in a Nash equilibrium. Subgame perfection (restricted to Σ∗) selects one

from the set of those Nash equilibria.

We focus on the equilibrium outcome in which losers behave truthfully. There are

many equilibrium outcomes, since it is optimal for losers to stop at any period in the

auction as long as they lose. This restriction is natural, and some preceding studies
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also focus on such an equilibrium in sealed-bid formats (Bernheim and Whinston

(1986), Ausubel and Milgrom (2002)). Moreover, this can be justified when we

require trembling-hand perfection.16 We assume that losers follow the Vickrey-target

strategy σ∗
i .

Theorem 3 Suppose Assumptions 1, 2, 3, and 4. Further suppose that p̄V
i (u) > 0

for all winners. If each bidder’s strategy space is resticted to Σ∗
i and if all losing

bidders follow σ∗
i , then π∗ is a unique TPE outcome in every ascending strict Vickrey-

reserve auction.

Proof. Under these assumptions, any TPE is efficient by Proposition 2. Since all

losers reveal true utility functions, for any winning bidder i, π̄t
i is nonincreasing in t

in any equilibrium by the argument in the proof of Theorem 1.

By Proposition 2, every winner i must stop when pt
i(xi) ≥ ui(xi) − π̄t−1

i . If

ûi(xi) > ui(xi)− π̄t−1
i , i ’s payment is pi > ui(xi)− π̄t−1

i by the strict Vickrey-reserve

pricing and monotonicity of π̄t
i . On the other hand, if bidder i follows σ∗

i , his payment

pi = ui(xi) − π̄t−1
i . Hence, σ∗

i is a unique optimal strategy for each winning bidder.

¥

The intuition of Theorem 3 is straightforward. By Proposition 2, each bidder al-

ways chooses Xt-preserving actions. Hence, each winner i can minimize the payment

by stopping at the earliest period such that Xt does not change even if i stops. Such

a strategy is the Vickrey-target strategy. Assumption 2 is critical to Theorem 3. As

discussed in Remark 1, bidders need to coordinate behavior if they simultaneously

reach the target prices at t. There will be several possible selections of M∗, and each

will lead to a different equilibrium outcome.

Although we focus only on strict Vickrey-reserve auctions, Theorem 3 is ap-

plied to ascending auctions without final discounts, as in Parkes and Ungar (2000),

Ausubel and Milgrom (2002), and de Vries et al. (2007). If the payments are equal

16If a loser stops under the true values, he loses a chance to win with a small probability. Con-

versely, if he bids over the true values, he may suffer a loss.
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to the final prices of the bundles, it is clearly suboptimal to bid over the true values

and win. Hence, Theorem 3 holds without being restricted to Σ∗
i .

Corollary 2 Suppose Assumptions 1, 2, 3, and 4, and suppose that p̄V
i (u) > 0 for

all winners. If all losing bidders follow σ∗
i , then π∗ is a unique TPE outcome in

every ascending auction with no final discount.

5 Discussions

5.1 Resistance to Joint Deviations

Theorem 3 holds for every ascending strict Vickrey-reserve auction when bidders are

not allowed to overbid. As Ausubel and Milgrom (2002) and Day and Milgrom (2008)

observe, there may exist an inefficient equilibrium in which some bidders collusively

overstate their values and outbid the efficient allocation.

For example, consider the situation in Example 1. Suppose that bidder 1 values

4 for good A and that bidder 2 values 4 for good B; suppose that bidder 3 wants the

package of A and B and values 10. In this case, in the subgame perfect equilibrium

σ∗, bidder 3 wins both goods with a payment of 8. This outcome coincides with the

Vickrey outcome. However, there is an inefficient Nash equilibrium in the sealed-bid

Vickrey auction. Suppose that all bidders submit bids of 10. Then, bidders 1 and

2 wins each good with zero payment, and it is an equilibrium. Similar equilibrium

can exist in some strict Vickrey-reserve auctions. In addition, similar TPEs exist in

some ascending strict Vickrey-reserve auctions as well.

Such a collusive overbidding equilibrium is excluded by imposing core-selecting

pricing (Day and Milgrom (2008)). In the above example, if bidders 1 and 2 win,

the sum of their payments must be at least 10 in a core-selecting auction. Hence,

the joint deviation by 1 and 2 is not profitable. Similarly, ascending core-selecting

auctions prevent bidders from bidding over the true valuations collusively. Theorem

4 shows that there is no profitable joint deviation by bidders including losing bidders.

Let G∗ be the set of winning bidders associated with σ∗. Let σJ = (σj)j∈J .
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Theorem 4 In any ascending core-selecting auction, there is no group of bidders

G 6⊆ G∗ such that ∃σG ∈ Σ∗+
G , σ = (σG, σ∗

I\G) achieves an allocation x̂ and the

corresponding payoffs πσ with πσ
i > π∗

i and ûi(x̂i) > 0 for all i ∈ G.

Proof. See Appendix B.

5.2 Ascending Vickrey Auction

Ascending Vickrey-reserve auctions include ascending Vickrey auctions. Clearly,

truth-telling is also an SPE in their auctions.

Proposition 3 Suppose that the Vickrey outcome is not in the core. Then, there are

at least two TPE outcomes in every ascending Vickrey auction: the Vickrey outcome

π̄ and the core-implementing outcome π∗.

Auction designers expect that in an ascending Vickrey auction, bidders behave

truthfully, and thus that the Vickrey outcome is actually implemented. However,

when the Vickrey outcome is not in the core, ascending Vickrey auctions have another

equilibrium that leads to an outcome in the core. Moreover, the “core-implementing”

equilibrium seems more robust in the following senses. First, the Vickrey-target

strategy σ∗
i is obviously a best response among Σ∗

i to both σ∗
−i and truth-telling

strategies. Conversely, the truth-telling strategy is not the best response if the other

players follow σ∗
−i. Second, σ∗ is an equilibrium even if the auction is slightly different

from the Vickrey auctions. Truth-telling, however, is not an equilibrium of such an

almost-Vickrey auction.

5.3 Payoff Non-Monotonicity and the Free-Rider Problem

It seems to be a positive result that the ascending auctions have a unique TPE at

the core. However, the equilibrium outcome may not necessarily be desirable. In the

TPE σ∗, when a winner has a low valuation, he tends to obtain a large profit. This

is because the Vickrey payments for the low-value bidders are low and their prices
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Figure 2: Non-Monotonic Equilibrium Payoffs

reach the Vickrey prices earlier. The higher the value a winner has, the lower are

the profits he tends to get in the equilibrium.

Example 1 (continued). Recall Parkes and Ungar’s (2000) auction with 2 goods

and 3 bidders. When bidders’ actual values are (7, 8, 10), the equilibrium payoff

allocation is (π0, π1, π2, π3) = (10, 5, 0, 0). Note that bidder 1, who has a lower value

than bidder 2, earns all the gains, whereas bidder 2 earns zero net payoff. Suppose

that bidder 1’s value for A is 9, with everything else remaining unchanged. Then, in

the equilibrium, bidder 2 stops at the price of 1 and bidder 1 behaves truthfully. The

equilibrium payoff allocation is now (10, 0, 7, 0). The equilibrium payoff of bidder 1

decreases as his valuation increases (Figure 2).

As this example shows, the TPE outcome is at an edge of the bidder-optimal

core. Moreover, the winner with a low value earns the Vickrey payoff, while the

high-value winner earns 0.

This situation is quite similar to the standard free-rider problem. Suppose a

private provision game of a public good in which marginal values for a public good

are heterogeneous among agents. Then, in a unique equilibrium, only the agent with

the highest marginal value provides the good, and the others do not provide it at
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all.17 In our auction situation, bidders with low values free-ride on other bidders with

higher values. Indeed, the incentive problem in core-selecting auctions is considered

a kind of free-rider problem (Milgrom (2000)), called the “threshold problem.” In a

sealed-bid format, the threshold problem is often interpreted as a kind of coordination

failure by bidders (Bykowsky et al. (2000)). However, in an ascending-price open-bid

format, it seems more appropriate to interpret the incentive problem as a free-rider

problem.

This free-rider problem appears in a striking form when valuations are private

information of each bidder. Suppose the same situation as in Example 1 and asym-

metric information. Even when bidder 1 has a low value, he will have a certain

amount of expected payoff because he can free-ride on bidder 2. Conversely, when

bidder 1 has a high value, his expected payoff may be low because bidder 2 may have

a low value and free-ride on him. Hence, it may be good for bidder 1 to behave as a

low-value bidder even when he has a high value. Thus, bidders 1 and 2 both behave

as low-value bidders, which will lead to inefficiency and low revenue (Sano (2012a)).

5.4 Inefficiency under Unrestricted Strategies

Even with complete information, payoff non-monotonicity provides inefficiency in the

case where strategy space is unrestricted. In a sealed-bid format, a truncation strat-

egy is a best response among all strategies (Day and Milgrom (2008), Sano (2012b)).

However, in ascending auctions, the Vickrey-target strategy is not necessarily a best

response among Σi. The TPE σ∗ is not an SPE in general. Moreover, an SPE may

be inefficient. The following example shows an SPE that is not efficient.

Example 2. Suppose that there are 3 goods {A,B,C} and 7 bidders. All bidders

except bidder 7 are interested only in a unique bundle of the goods. Each of the

values for these six bidders is u1(ABC) = 12, u2(A) = 7, u3(B) = u4(B) = 1, and

u5(C) = u6(C) = 1 respectively. Bidder 7 is interested in goods B and C. His

valuation function is such that u7(B) = u7(BC) = 8 and u7(C) = 6. In the efficient

17See Mas-Collel et al. (1995) for the free-rider problem in this public goods game.
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allocation, bidders 2, 5 (or 6), and 7 win the single goods A, C, and B, respectively.

Suppose that the ascending auction in Parkes and Ungar’s (2000) is conducted.

Since bidders 3, 4, 5, and 6 are completely competitive, they bid until their true

values in any equilibrium. The Vickrey payments for bidders 2 and 7 are 3 and 4,

respectively. Hence, in the TPE σ∗, bidder 2 stops earlier than bidder 7. In the

equilibrium, p2(A) = 3, p5(C) = 1, and p7(B) = 8. Bidder 7’s TPE payoff is 0.

Now, consider that bidder 7 follows the Vickrey-target strategy with respect to

the following valuation function: ũ7(B) < ũ7(C) = ũ7(BC) = 6. Under (u−7, ũ7),

bidder 7 obtains good C in the efficient allocation. Bidder 2’s Vickrey payment

changes to 5, whereas that of bidder 7 for C remains the same. In the TPE outcome,

bidder 7 wins item C with p7(C) = 4, whereas bidder 2 pays 7 for item A. By

inspection, this is an SPE and the equilibrium outcome is inefficient.

This inefficiency stems from payoff non-monotonicity. In an efficient allocation, a

bidder obtains some goods whose value is sufficiently large. However, the true value

is so large that other bidders stop earlier and he may have to pay too much. On the

other hand, if he focuses on another good whose value is not so high, he may win it

with a lower price, and it may be more profitable.

Theorem 5 The TPE σ∗ is not an SPE with the unrestricted strategy domain in

general. Moreover, an SPE is not efficient in general.

Remark 2 Inefficient subgame perfect equilibrium can exist because of another

logic. Suppose that there are 2 goods, A and B, and 2 bidders. Both bidders

have identical valuations of ui(A) = ui(B) = 6 and ui(AB) = 12. In any TPE

outcome, both bidders have to earn zero payoff. However, if both bidders report

D̂i = {A,B,AB} at the initial period, then both can obtain one good with zero

payment. This constitutes an equilibrium. This is an implicit collusion in which bid-

ders split up goods between themselves and end the auction with low prices. Such

an equilibrium is considered also by Ausubel and Schwartz (1999) and Grimm et

al. (2003) in an ascending auction without package bidding.
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6 Conclusion

We formulate a general class of ascending-price auctions. The Vickrey-target strat-

egy constitutes a perfect equilibrium of every ascending Vickrey-reserve auction

with restricted strategy space. The equilibrium outcome is in the bidder-optimal

core and unique in ascending strict Vickrey-reserve auctions if losing bidders fol-

low the Vickrey-target strategy. These results are positive findings, as sealed-bid

Vickrey-reserve auctions may have multiple Nash equilibria. Although ascending

Vickrey auctions have both truth-telling and core-implementing equilibria, the core-

implementing equilibrium seems more robust under complete information and re-

stricted strategy space.

The equilibrium outcome, however, can be “unfair” in the sense that bidders with

lower values tend to obtain higher payoffs. This situation is similar to a standard free-

rider problem, and leads to inefficiency under incomplete information. The payoff

non-monotonic property also provides inefficiency in the case of unrestricted strategy

space. An interesting future study would be to constitute an SPE with unrestricted

strategy space. It is also an open question as to what class of valuation functions

assures SPE in the core.
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A Theorem 1 without Assumption 3

In this paper, we suppose that bidders’ strategies are discrete; however, ties are

broken in a way that favors particular bidders. This assumption is made for analytical

purposes. We also have a corresponding result when the special tie-breaking rule is

not assumed. We redefine the Vickrey-target strategy as one decreasing the Vickrey

payoff by unity. In this section, we assume that there is a unique efficient allocation

with respect to true valuations: X∗(u) = {x∗}.

Suppose that bidder i has a non-null bundle xi ∈ Xt−1
i for some period t − 1,

and that he stops at t under the Vickrey-target strategy. Then, the provisional

coalitional value V t(N) = V t−1(N)− π̄t−1
i = V t−1(N−i) = V t(N−i). Hence, there is

an allocation x̃ ∈ Xt such that x̃i = xi and ties occur.

Let λt
i be the approximate Vickrey payoff with respect to ut:

λt
i = max{π̄t

i − 1, 0}, (12)

We then redefine the Vickrey-target strategy with λt
i as follows.

Definition 8 A semi-truthful strategy σ∗
i ∈ Σ∗

i is said to be the (approximate)

Vickrey-target strategy if ∀t ≥ 1 and ∀pt,

D̂i(pt) =


Di(pt) if pt

i(xi) < ui(xi) − λt−1
i for all xi(6= xi) ∈ Xt−1

i ,

or if Xt−1
i = {xi}

Xi otherwise

. (13)

We then have Theorem 1 with the approximate Vickrey-target strategy.

Using λt
i instead of π̄t

i , ties do not occur. We can observe this as follows. Suppose

that Xt−1 is a singleton and Xt−1 = {xt−1}. Then, V t−1(N) ≥ V t−1(N−i) + 1 for

each i ∈ {i ∈ I|xt−1
i 6= xi}. Since π̄t−1

i ≥ 1, λt−1
i = π̄t−1

i − 1. When bidder i stops at

t by the approximate Vickrey-target strategy, his reported valuation function is

ûi(xi) = max{ui(xi) − λt−1
i , 0}.
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Hence,

V t(N) = max
X

[
max{ui(xi) − λt−1

i , 0} +
∑
j 6=i

ut−1
j (xj)

]
= V t−1(N) − λt−1

i

= V t−1(N) − (V t−1(N) − V t−1(N−i) − 1)

= V t−1(N−i) + 1.

(14)

Since xt−1 is a unique efficient allocation, we have Xt = {xt−1}.

B Proofs

B.1 Proof of Lemma 1

(Only if part.) Suppose that bidder i follows σi ∈ Σ∗
i and stops at t.

It is trivial in the case of t = 1. Hence, suppose t ≥ 2. Take arbitrary x̂i ∈

D̂i(pt−1) = Di(pt−1), and let αi ≡ ui(x̂i)−pt
i(x̂i) ≥ 0. Then ûi(x̂i) = ui(x̂i)−αi ≥ 0.

By the activity rule, pt−1
i 6= pt

i and pt
i(xi) = pt−1

i (xi) + 1 for all xi ∈ D̂i(pt−1).

For every xi ∈ D̂i(pt−1),

ui(xi) − pt−1
i (xi) = ui(x̂i) − pt−1

i (x̂i) = αi + 1.

Therefore,

ûi(xi) = pt
i(xi) = ui(xi) − αi.

On the other hand, by the activity rule, xi 6∈ D̂i(pt−1) implies xi 6∈ D̂i(ps) for all

s ≤ t − 1. Hence, ûi(xi) = pt
i(xi) = 0. Since xi 6∈ Di(pt−1), ui(xi) < αi + 1. Since ui

is integer, max{ui(xi) − αi, 0} = 0.

(If part.) Suppose that ûi has a form of (7) under some σi ∈ Σi. Suppose for

contradiction there exists some period t and D̂i(pt) 6∈ {Di(pt), Xi}.

Suppose xi ∈ Di(pt) and xi 6∈ D̂i(pt). Then, for any x′
i ∈ D̂i(pt),

ui(xi) − pt
i(xi) ≥ ui(x′

i) − pt
i(x

′
i),
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hence,

ui(xi) − ui(x′
i) ≥ pt

i(xi) − pt
i(x

′
i). (15)

On the other hand, i ’s report implies

ûi(xi) − pt
i(xi) < ûi(x′

i) − pt
i(x

′
i). (16)

Since ûi(x′
i) ≥ 0, ûi(x′

i) = ui(x′
i) − αi. Hence, we have

ûi(xi) < ûi(x′
i) + pt

i(xi) − pt
i(x

′
i)

≤ ûi(x′
i) + ui(xi) − ui(x′

i)

= ui(xi) − αi

≤ max{ui(xi) − αi, 0},

(17)

which is a contradiction.

We also have a contradiction in the same manner when xi 6∈ Di(pt) and xi ∈

D̂i(pt). ¥

B.2 Proof of Proposition 2

We prove by induction. Suppose there are m active bidders at t.

Step 1. Suppose m = 1 and bidder i is active. Since ps
i (·) ≤ ui(·) for all s by

assumption, Xs = Xs−1 for all s ≥ t as long as i is active.

If Xt
i = {xi}, clearly Xs = Xt for all s ≥ t. Hence, suppose that there exists

xt−1 ∈ Xt−1, xt−1
i 6= xi, and that pt

i(x
t−1
i ) ≤ ui(xt−1

i ) − π̄t−1
i . Consider that bidder

i reports Xi at s ≥ t and that ûi(xi) = max{ui(xi) − d, 0}. Note that every other

bidder has already stopped, so that û−i is determined. By Day and Milgrom (2008)

and Sano (2012b), ûi = ui − π̄i is among best responses given û−i and that any

ũi < ûi is not. Hence, d ≤ π̄t−1
i in every TPE. Then,

max
x∈X

[
max{ui(xi) − d, 0} +

∑
j 6=i

ûj(xj)
]

= V t−1(N) − d. (18)

Equality holds since V t−1(N) − d ≥ V t−1(N−i). On the other hand,

ui(xt−1
i ) − d +

∑
j 6=i

ûj(xt−1
j ) = V t−1(N) − d. (19)
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Therefore, xt−1 ∈ Xs.

It is trivial in the case that pt
i(x

t−1
i ) > ui(xt−1

i ) − π̄t−1
i .

Step 2. Suppose m ≥ 2 and the proposition is true for ∀m′ ≤ m − 1. Let i be the

bidder making the decision at t. Hence, ut
−i = ut−1

−i .

Step 2.1. Suppose Xt−1
i = {xi}. Then,

max{ui(x̃i) − d, 0} +
∑
j 6=i

ut
j(x̃j) < max

∑
j 6=i

ut
j(xj) = V t(N−i) (20)

for all d ≥ 0 and for all x̃ ∈ {x ∈ X|xi 6= xi}. Hence, as long as i follows a

semi-truthful strategy, Xt
i = {xi} and Xt = Xt−1.

Step 2.2. Suppose that there exists a non-null bundle xt−1
i ∈ Xt−1

i . Suppose

that bidder i stops at t: D̂i(pt) = Xi. Let ûi be the reported valuation function and

ûi = max{ui − d, 0}.

If d > π̄t−1
i , then for any x̃ ∈ {x ∈ X|xi 6= xi},

max{ui(x̃i) − d, 0} +
∑
j 6=i

ut
j(x̃j) ≤ V t−1(N) − d < V t−1(N−i) = V t(N−i). (21)

Hence, Xt
i = {xi}. Induction hypothesis and Assumption 3 imply that in any TPE,

i must obtain xi.

Now suppose d ≤ π̄t−1
i . Then,

max
x∈X

[
max{ui(xi) − d, 0} +

∑
j 6=i

ut
j(xj)

]
= V t−1(N) − d. (22)

On the other hand,

ui(xt−1
i ) − d +

∑
j 6=i

ut
j(x

t−1
j ) = V t−1(N) − d. (23)

Therefore, xt−1 ∈ Xt. By induction hypothesis, xt−1 ∈ X∗(û).

Hence, it is not optimal to report Xi in the case of d > π̄t−1
i > 0. In addition,

by Assumption 4, bidder i does not report Xi in the case of d > π̄t−1
i = 0 either.

Therefore, xt−1 ∈ Xs for all s ≥ t. ¥
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B.3 Proof of Theorem 1

We prove by induction. Suppose there are m active bidders at t.

Step 1. Suppose m = 1. Suppose that bidder i is active at t. Note that every other

bidder has stopped, and that û−i is determined. By Day and Milgrom (2008) and

Sano (2012b), ûi = ui − π̄i is among best responses given û−i. Hence, σ∗
i obviously

constitutes an equilibrium.

Step 2. Suppose that there are m ≥ 2 active bidders at t. Further, suppose that

every active bidder follows the Vickrey-target strategy σ∗
i after m′ ≤ m − 1 bidders

remain active, and that this constitutes an equilibrium for m − 1 bidders.

Consider π̄s
i = V s(N)− V s(N−i). Suppose that all the remaining bidders except

i follow the Vickrey-target strategy. Then, V s(N) decreases at s by π̄s−1
j if and

only if someone j stops bidding. In addition, V s(N−i) decreases at s by at most

π̄s−1
j . Hence, π̄s

i is nonincreasing in s as long as every other bidder follows the

Vickrey-target strategy.

Suppose that Xt−1
i = {xi}. No bidder overstates the values when he follows the

Vickrey-target strategy. Hence, by the proof of Proposition 2, xi = xi for ∀x ∈ X∗(û)

for any strategy such that ûi ≤ ui. Suppose that bidder i continues bidding until

pt
i > ui and that for some t, x̃i (6= xi) ∈ Xt

i . Let t be the minimum of such t. Then,

{xi, x̃i} ⊆ Xt
i , since bid increment is unity. Hence, V t(N) = V t(N−i). Then, bidder

i has to pay at least p̄V
i (û) for x̃i and his payoff is at most

ui(x̃i) − p̄V
i (û) = ui(x̃i) − ûi(x̃i) + V̂ (N) − V̂ (N−i)

≤ ui(x̃i) − pt
i(x̃i) + V t(N) − V t(N−i)

< 0.

(24)

Weak inequality comes from the fact that π̄τ
i does not increase in τ in which bidders

except i make decisions. Hence, it is never optimal to bid over the true valuations,

and thus, σ∗
i is an optimal strategy.

Suppose that ∃xt−1 ∈ Xt−1 and xt−1
i 6= ∅. Suppose that bidder i stops bidding

at t. If d ≡ ui(xt−1
i ) − ûi(xt−1

i ) > π̄t−1
i , then Xt

i = {xi} by the consideration in
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Proposition 2. By induction hypothesis and Assumption 3, i obtains xi in the end

and πi = 0. On the other hand, if d ≤ π̄t−1
i , then xt−1 ∈ Xt.

By the Vickrey-reserve pricing, bidder i ’s payoff πi is

πi = ui(xi) − pi ≤ ui(xi) − p̄V
i (û)

= ui(xi) − ûi(xi) + V̂ (N) − V̂ (N−i)

≤ V t−1(N) − V t−1(N−i) = π̄t−1
i .

(25)

The second inequality comes from the weak monotonicity of π̄τ
i in τ . If d = π̄t−1

i ,

then xt−1 ∈ X∗(û) and bidder i wins a non-null bundle xt−1
i .18 Bidder i earns at least

π̄t−1
i by the individual rationality. Since π̄s

i is nonincreasing in s, it is suboptimal

to stay active whenever m bidders are active. Hence, the Vickrey-target strategy is

among best responses for i. ¥

B.4 Proof of Theorem 2

Let x∗ ∈ X∗(û) be the resulting allocation. By construction of σ∗, π̂i = 0 for all

i ∈ I. Hence, for all J ⊆ N ,

V̂ (J) ≤ V̂ (N) = π∗
0. (26)

Note that each bidder’s true payoff π∗
i = ui(x∗

i )− ûi(x∗
i ). Therefore, for any coalition

J including the seller,∑
j∈J

π∗
j ≥ V̂ (J) +

∑
j∈J−0

π∗
j

= max
x∈X

[ ∑
j∈J−0

ûj(xj)
]
+

∑
j∈J−0

π∗
j

≥ max
x∈X

[ ∑
j∈J−0

(uj(xj) − π∗
j )

]
+

∑
j∈J−0

π∗
j = V (J)

. (27)

18If there is another allocation x̃ ∈ Xt−1, where i obtains xi, and if it is selected by the tie-

breaking rule, then π̄t−1
i = 0. It is still optimal to follow σ∗

i by the same consideration as the case

of Xt−1
i = {xi}.
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The first inequality is from (26). The second inequality comes from ûi(xi) = max{ui(xi)−

π∗
i , 0}.19 By Theorem 1, any winner i is blocked (will obtaion nothing) if he stops one-

period earlier. This implies that if a bidder’s payment is decreased by unity, then the

seller chooses a different revenue-maximizing allocation. Hence, π∗ is bidder-optimal.

¥

B.5 Proof of Theorem 4

Suppose for contradiction there is a group of bidders G 6⊆ G∗ and σG ∈ ×i∈GΣ∗+
i ,

and πσ
i > π∗

i , where σ = (σG, σ∗
I\G) and πσ is the corresponding payoff allocation.

Since πσ
i > π∗

i ≥ 0, each i ∈ G is a winner under σ. Let Ĝ ⊇ G be the set of winners

under σ. Let x̂ be the corresponding goods allocation associated with σ.

Since each i ∈ I \G follow σ∗
i , every decision node for them satisfies Xt−1 ⊆ Xt.

Hence, ∑
i∈G∗\G

ûσ
i (x∗

i ) +
∑

i∈G∩G∗

ui(x∗
i ) ≥ V (Ĝ + 0, u) ≥

∑
Ĝ

ui(x̂i), (28)

where ûσ
i denotes the reported valuation function for i under σ. Let di ≡ ui(xi) −

ûσ
i (x̂i). Then, by assumption ûσ

i (x̂i) = ui(x̂i) − di > 0 for i ∈ G. Since σi ∈ Σ∗+
i ,

ûi(x∗
i ) = max{ui(x∗

i ) − di, 0}. Hence,

ui(x∗
i ) − ûσ

i (x∗
i ) ≤ di = ui(x̂i) − ûσ

i (x̂i) (29)

for all i ∈ G. Therefore,

V̂ σ(G∗ + 0) ≥
∑
i∈G∗

ûσ
i (x∗

i )

=
∑

i∈G∗\G

ûσ
i (x∗

i ) +
∑

i∈G∩G∗

ui(x∗
i ) −

∑
i∈G∩G∗

(
ui(x∗

i ) − ûσ
i (x∗

i )
)

≥
∑
i∈Ĝ

ui(x̂i) −
∑

i∈G∩G∗

(
ui(x̂i) − ûσ

i (x̂i)
)
.

(30)

Feasibility requires

πσ
0 +

∑
i∈Ĝ

πσ
i ≤

∑
i∈Ĝ

ui(x̂i). (31)

19If p̄V
i (u) = 0 for some i, then i stops at the initial period and ûi(xi) = 0 ≤ max{ui(xi) − π∗

i , 0}

for all xi.
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Hence,

V̂ σ(G∗ + 0) ≥
∑
i∈Ĝ

ui(x̂i) −
∑

i∈G∩G∗

(
ui(x̂i) − ûσ

i (x̂i)
)

≥ πσ
0 +

∑
i∈Ĝ\(G∩G∗)

πσ
i +

∑
i∈G∩G∗

(
ûσ

i (x̂i) − pi(σ)
)

> πσ
0 +

∑
i∈(Ĝ∩G∗)\G

πσ
i +

∑
i∈G∩G∗

π̂σ
i

≥ πσ
0 +

∑
i∈Ĝ∩G∗

π̂σ
i

= πσ
0 +

∑
i∈G∗

π̂σ
i ,

(32)

where p(σ) and π̂σ denote the payments and the reported payoffs under σ. Strict

inequality comes from πσ
i > 0 for i ∈ G \ G∗ and πσ

i ≥ 0 for i ∈ Ĝ \ (G ∪ G∗), for

i ∈ Ĝ \ (G ∪ G∗) follows σ∗
i and earns a nonnegative payoff. The fourth inequality

comes from πσ
i ≥ π̂σ

i for i ∈ (Ĝ ∩ G∗) \ G, for i ∈ (Ĝ ∩ G∗) \ G follows σ∗
i and

ûσ
i (·) ≤ ui(·). This contradicts the core-selecting property. ¥
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