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1 Complete information: the two agent case

Theorem 1. Suppose that I = 2, and consider an SCF f satisfying condition ω′′. If f

is efficient in the range, there exist a regime R and δ̄ such that, for any δ > δ̄,(i) Ωδ(R)

is non-empty; and (ii) for any σ ∈ Ωδ(R), π
θ(t)
i (σ,R) = vi(f) for any i, t ≥ 2 and θ(t).

If, in addition, f is strictly efficient in the range then aθ(t),θ
t
(σ,R) = f(θt) for any t ≥ 2,

θ(t) and θt.

Proof. By condition ω′′ there exists some ã ∈ A be such that v(ã)� v(f). Following

Lemma 1 in the main text, let Si be the regime alternating d(i) and φ(ã) from which i

can obtain payoff exactly equal to vi(f). For any j, let πj(S
i) be the maximum payoff

that j can obtain from regime Si when i behaves rationally in d(i). Since Si involves d(i),

Assumption (A) in the main text implies that vjj > πj(S
i) for j 6= i. Then there must

also exist ε > 0 such that vj(ã) < vi(f)− ε and πj(S
i) < vii− ε for any i, j such that i 6= j.

Next, define ρ ≡ maxi,θ,a,a′ [ui(a, θ)− ui(a′, θ)] and δ̄ ≡ ρ
ρ+ε

.

Mechanism g̃ = (M,ψ) is defined such that, for all i, Mi = Θ×Z+ and ψ is such that
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1. if mi = (θ, ·) and mj = (θ, ·), ψ(m) = f(θ);

2. if mi = (θi, zi), mj = (θj, 0) and zi 6= 0, ψ(m) = f(θj);

3. for any other m, ψ(m) = ã.

Regime R̃ represents any regime satisfying the following transition rules: R̃(∅) = g̃

and, for any h = ((g1,m1), . . . , (gt−1,mt−1)) ∈ H t such that t > 1 and gt−1 = g̃:

1. if mt−1
i = (θ, 0) and mt−1

j = (θ, 0), R̃(h) = g̃;

2. if mt−1
i = (θi, 0), mt−1

j = (θj, 0) and θi 6= θj, R̃(h) = Φã;

3. if mt−1
i = (θi, zi), mt−1

j = (θj, 0) and zi 6= 0, R̃|h = Si;

4. if mt−1 is of any other type and i is lowest-indexed agent among those who announce

the highest integer, R̃|h = Di.

We next prove the theorem via the following lemmas below, which characterize the

equilibrium set of R̃.

Lemma 1. Fix any σ ∈ Ωδ(R̃). For any t > 1 and θ(t), if gθ(t) = g̃, π
θ(t)
i ≥ vi(f).

Proof. Suppose not; then at some t > 1 and θ(t), gθ(t) = g̃ but π
θ(t)
i < vi(f) for some i.

Let θ(t) = (θ(t − 1), θt−1). Given the transition rules, it must be that gθ(t−1) = g̃ and

m
θ(t−1),θt−1

i = m
θ(t−1),θt−1

j = (θ̃, 0) for some θ̃. Consider i deviating at (h(θ(t− 1)), θt−1)

such that he reports θ̃ and a positive integer. Given ψ, the deviation does not alter the

current outcome but, by transition rule 3, can yield continuation payoff vi(f). Hence, the

deviation is profitable, implying a contradiction.

Lemma 2. Fix any δ ∈
(
δ̄, 1
)

and σ ∈ Ωδ(R̃). For any t and θ(t), if gθ(t) = g̃, m
θ(t),θt

i =

m
θ(t),θt

j = (θ, 0) for any θt.

Proof. Suppose not; then for some t, θ(t) and θt, gθ(t) = g̃ but mθ(t),θt
is not as in the

claim. There are three cases to consider.

Case 1: m
θ(t),θt

i = (·, zi) and m
θ(t),θt

j = (·, zj) with zi, zj > 0.

In this case, by rule 3 of ψ, ã is implemented in the current period and, by transition

rule 4, a dictatorship by, say, i follows forever thereafter. But then, by assumption (A)
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above, j can profitably deviate by announcing an integer higher than zi at such a history;

the deviation does not alter the current outcome from ã but switches dictatorship to

himself as of the next period.

Case 2: m
θ(t),θt

i = (·, zi) and m
θ(t),θt

j = (θj, 0) with zi > 0.

In this case, by rule 2 of ψ, f(θj) is implemented in the current period and, by transition

rule 3, continuation regime Si follows thereafter. Consider j deviating to another strategy

identical to σj everywhere except at (h(θ(t)), θt) it announces an integer higher than

zi. Given rule 3 of ψ and transition rule 4, this deviation yields a continuation payoff

(1 − δ)uj(ã, θ
t) + δvjj , while the corresponding equilibrium payoff does not exceed (1 −

δ)uj(f(θj), θt) + δπj(S
i). But, since vjj > πj(S

i) + ε and δ > δ̄, the former exceeds the

latter, and the deviation is profitable.

Case 3: m
θ(t),θt

i = (θi, 0) and m
θ(t),θt

j = (θj, 0) with θi 6= θj.

In this case, by rule 3 of ψ, ã is implemented in the current period and, by transition

rule 2, in every period thereafter. Consider any agent i deviating by announcing a positive

integer at (h(θ(t)), θt). Given rule 2 of ψ and transition rule 3, such a deviation yields

continuation payoff (1−δ)ui(f(θj), θt)+δvi(f), while the corresponding equilibrium payoff

is (1− δ)ui(ã, θt) + δvi(ã). But, since vi(f) > vi(ã) + ε and δ > δ̄, the former exceeds the

latter, and the deviation is profitable.

Lemma 3. For any δ ∈
(
δ̄, 1
)

and σ ∈ Ωδ(R̃), π
θ(t)
i = vi(f) for any i, t > 1 and θ(t).

Proof. Given Lemmas 1-2, and since f is efficient in the range, we can directly apply the

proofs of Lemmas 3 and 4 in the main text.

Lemma 4. For any δ ∈
(
δ̄, 1
)
, Ωδ(R̃) is non-empty.

Proof. Consider a symmetric Markov strategy profile in which the true state and zero

integer are always reported. At any history, each agent i can deviate in one of the

following three ways:

(i) Announce the true state but a positive integer. Given rule 1 of ψ and transition

rule 3, such a deviation is not profitable.

(ii) Announce a false state and a positive integer. Given rule 2 of ψ and transition

rule 3, such a deviation is not profitable.

(iii) Announce zero integer but a false state. In this case, by rule 3 of ψ, ã is imple-

mented in the current period and, by transition rule 2, in every period thereafter. The
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gain from such a deviation cannot exceed (1−δ) maxa,θ [ui(ã, θ)− ui(a, θ)]−δε < 0, where

the inequality holds since δ > δ̄. Thus, the deviation is not profitable.

2 Complexity-averse agents

One approach to sharpen predictions in dynamic games has been to introduce refinements

of the standard equilibrium concepts with players who have preferences for less complex

strategies (Abreu and Rubinstein [1], Kalai and Stanford [5], Chatterjee and Sabourian

[2], Sabourian [7], Gale and Sabourian [3] and Lee and Sabourian [6], among others). We

now introduce complexity considerations to our repeated implementation setup. It turns

out that only a minimal refinement is needed to obtain repeated implementation results

from period 1.

Consider any measure of complexity of a strategy under which a Markov strategy is

simpler than a non-Markov strategy.1 Then, refine Nash equilibrium lexicographically as

follows: a strategy profile σ = (σ1, . . . , σI) constitutes a Nash equilibrium with complexity

cost, NEC, of regime R if, for all i, (i) σi is a best response to σ−i; and (ii) there exists no

σ′i such that σ′i is a best response to σ−i at every history and σ′i is simpler than σi.
2 Let

Ωδ,c(R) denote the set of NECs of regime R with discount factor δ. The following extends

the notions of Nash repeated implementation to the case with complexity-averse agents.

Definition 1. An SCF f is payoff-repeated-implementable in Nash equilibrium with com-

plexity cost if there exists a regime R such that (i) Ωδ,c(R) is non-empty; and (ii) every

σ ∈ Ωδ,c(R) is such that π
θ(t)
i (σ,R) = vi(f) for all i, t and θ(t); f is repeated-implementable

in Nash equilibrium with complexity cost if, in addition, aθ(t),θ
t
(σ,R) = f(θ) for any t,

θ(t) and θt.

Let us now consider the canonical regime in the complete information setup with

I ≥ 3, R∗.3 Since, by definition, a NEC is also a Nash equilibrium, Lemmas 2-4 in the

1There are many complexity notions that possess this property. One example is provided by Kalai
and Stanford [5] who measure the number of continuation strategies that a strategy induces at different
periods/histories of the game.

2Note that the complexity cost here concerns the cost associated with implementation, rather than
computation, of a strategy.

3Corresponding results for the two-agent complete information as well as incomplete information cases
can be similarly derived and, hence, omitted for expositional flow.
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main text remain true for NEC. Moreover, since a Markov Nash equilibrium is itself a

NEC, Ωδ,c(R∗) is non-empty. In addition, we obtain the following.

Lemma 5. Every σ ∈ Ωδ,c(R∗) is Markov.

Proof. Suppose that there exists some σ ∈ Ωδ,c(R∗) such that σi is non-Markov for some

i. Then, consider i deviating to a Markov strategy, σ′i 6= σi, such that when playing g∗

it always announces (i) the same positive integer and (ii) the state announced by σi in

period 1, and when playing d(i), it acts rationally. Fix any θ1 ∈ Θ. By part (ii) of Lemma

3 in the main text and the definitions of g∗ and R∗, we have aθ
1
(σ′i, σ−i, R

∗) = aθ
1
(σ,R∗)

and πθ
1

i (σ′i, σ−i, R
∗) = vi(f). Moreover, we know from Lemma 4 in the main text that

πθ
1

i (σ,R∗) = vi(f). Thus, the deviation does not alter i’s payoff. But, since σ′i is less

complex than σi, such a deviation is worthwhile for i. This contradicts the assumption

that σ is a NEC.

This immediately leads to the following result.

Theorem 2. If f is efficient (in the range) and satisfies conditions ω (ω′), f is payoff-

repeated-implementable in Nash equilibrium with complexity cost; if, in addition, f is

strictly efficient (in the range), it is repeated-implementable in Nash equilibrium with

complexity cost.

Note that the notion of NEC does not impose any payoff considerations off the equi-

librium path; although complexity enters players’ preferences only at the margin it takes

priority over optimal responses to deviations. A weaker equilibrium refinement than NEC

is therefore to require players to adopt minimally complex strategies among the set of

strategies that are best responses at every history, and not merely at the beginning of the

game (see Kalai and Neme [4]).

In fact, the complexity results in our repeated implementation setup can also be ob-

tained using this weaker notion if we limit the strategies to those that are finite (i.e. can

be implemented by a machine with a finite number of states). To see this, consider again

the three-or-more-agent case with complete information, and modify the mechanism g∗ in

regime R∗ such that if two or more agents play distinct messages then one who announces

the highest integer becomes a dictator for the period. Fix any equilibrium (under this

weaker refinement) in this new regime. By the finiteness of strategies there is a maximum

bound z on the integers reported by the players at each date. Now, for any player i and
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any history (on- or off-the-equilibrium) starting with the modified mechanism g∗, compare

the equilibrium strategy with any Markov strategy for i that always announces a number

exceeding z and acts rationally in mechanism d(i). By a similar argument as in the proof

of Lemmas 2-4 in the main text, it can be shown that i’s equilibrium continuation payoff

beyond period 1 is exactly the target payoff. Also, since the Markov strategy makes i the

dictator at that date and induces Si or Di in the continuation game, the Markov strategy

induces a continuation payoff at least equal to the target utility. Therefore, by complexity

considerations the equilibrium strategy must be Markov.

3 Non-exclusion vs. condition ω

Consider the following two examples. First, consider P where I = {1, 2}, A = {a, b},
Θ = {θ′, θ′′}, p(θ′) = p(θ′′) = 1/2 and the agents’ state-contingent utilities are given

below:

θ′ θ′′

i = 1 i = 2 i = 3 i = 1 i = 2 i = 3

a 1 3 2 3 2 1

b 3 2 1 1 3 2

c 2 1 3 2 1 3

Here, the SCF f such that f(θ′) = a and f(θ′′) = b is efficient but fails to satisfy

condition ω because of agent 1. But, notice that f is non-exclusive.

Second, consider P where I = {1, 2, 3}, A = {a, b, c, d}, Θ = {θ′, θ′′} and the agents’

state-contingent utilities are given below:

θ′ θ′′

i = 1 i = 2 i = 3 i = 1 i = 2 i = 3

a 3 2 0 1 2 1

b 2 1 1 2 3 0

c 1 3 1 3 1 1

d 0 0 0 0 0 0

6



Here, the SCF such that f(θ′) = a and f(θ′′) = b is efficient and also satisfies condition

ω, but it fails to satisfy non-exclusion because of agent 3.
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