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Abstract

The paper introduces a notion of complementarity (substitutability) of two signals which

requires that in all decision problems each signal becomes more (less) valuable when the

other signal becomes available. We provide a general characterization which relates com-

plementarity and substitutability to a Blackwell comparison of two auxiliary signals. In

a setting with a binary state space and binary signals, we find an explicit characteriza-

tion that permits an intuitive interpretation of complementarity and substitutability. We

demonstrate how these conditions extend to more general settings.
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1 Introduction

Suppose that two signals are available to a decision maker, and that each signal contains

some information about an aspect of the world that is relevant to the decision maker’s

choice. In this paper we ask under which conditions these two signals are substitutes, and

under which conditions they are complements. Roughly speaking, we mean by this that

the incentive to acquire one signal decreases as the other signal becomes available (in the

case of substitutes), or that it increases as the other signal becomes available (in the case

of complements).

The incentives to acquire signals depend, of course, on the decision for which the

information will be used. When we call signals complements or substitutes in this paper,

then we mean that the conditions described above are satisfied in all decision problems.

Hence we say that signals are substitutes if in all decision problems the value of each signal

decreases as the other signal becomes available. The signals are complements if in all

decision problems the value of each signal increases as the other signal becomes available.

The conditions that we shall provide will thus not refer to any particular decision problem,

but only to the joint distribution of signals, conditional on the various possible states of

the world. We identify features of the joint distribution of signals that are necessary or

sufficient for these signals to be substitutes or complements. Our approach is in the spirit

of Blackwell’s (1951) comparison of the informativeness of signals.

Two examples indicate how signals can be complements in our sense.

Example 1. Signal 1 is the encrypted messages that your enemy’s military commanders

send to each other. Signal 2 is the encryption code. The encryption code is of no value by

itself, unless you also have the messages that were sent. Equally, the messages sent are

of no value by themselves without the encryption code. Together, however, the two signals

are of positive value.1

Example 2. Signal 1 is the weather forecast for tomorrow. Signal 2 is information about

the qualification of the forecaster. Knowing the qualification of the forecaster is of no value

by itself, unless you also have the forecaster’s forecast. But if you have the weather forecast,

then it is potentially valuable to know the qualification of the forecaster. Symmetrically,

the value of the forecast increases if you know the qualification of the forecaster.

1 The following is a special case of Example 1 in which the signal and the state are real numbers:
s = ω + ε, where s is a signal, ω is the state, and ε is random noise that is independent of the state.
Here, ε is the “language” in which s expresses ω, and hence, if we regard ε as a signal, s and ε are
complementary signals.
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A special feature of these two examples is that signal 2 is independent of the infor-

mation that the decision maker is interested in, that is, the decision-relevant state of the

world. Signal 2 only provides information about signal 1. In Example 1, signal 2 pro-

vides the “language” in which signal 1 is expressed. In Example 2, signal 2 provides the

“strength” of signal 1. Therefore, signal 2 has positive value only if the decision maker

also has access to signal 1. Otherwise, it has zero value. This makes the two signals

complements.

Our focus in this paper will be on the case when neither of the two signals is un-

informative by itself, but instead both signals provide by themselves information about

the state of the world. Signals can be complements in this case, too. One result of this

paper shows for a setting in which each signal is informative by itself, with two possible

states of the world, and two possible realizations per signal, that complementary signals

are characterized by a property that is related to a feature of Example 1. The result says

that in the specified setting, signals are complements if and only if there are a state and a

realization of each signal so that if received by themselves, each realization increases the

probability of the state in comparison to the prior, yet if received together, the two signal

realizations decrease the probability of the state. We refer to this as “meaning reversal:”

the meaning of each realization is reversed when received together.

If a signal realization by itself raises the decision maker’s subjective probability of a

state, but if there is a realization of the other signal such that the two signal realizations,

if observed together, lower the probability of that state, then there must be a different

realization of the other signal that has the opposite effect: If observed with the same

realization of the first signal, the decision maker’s probability of the state must be raised in

comparison to the prior.2 Thus, the “meaning” of the realization of the first signal depends

on the realization of the second signal. This is a weaker property than the property that

the first signal provides the “language” in which the second signal is expressed, because in

that case one would expect that the meaning of all realizations of the first signal depends

on the realization of the second signal. By contrast, we obtain this feature only for at

least one realization of the first signal. “Meaning reversal” is restrictive in another way,

however. It requires a particular form of dependence of the meaning of the realization

of one signal on the realization of the other signal: If the second signal by itself has the

same meaning as the first signal by itself, then the meaning of the joint realization is the

opposite of the meaning that the two signal realizations have by themselves. Meaning

2This is because the prior probability is the expected value of the posterior probabilities.
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reversal is thus related to, but different from the main feature of Example 1.3

An example of meaning reversal in the economics literature is provided by Dow and

Gorton (1993). A technology company is observed by two analysts. One analyst learns

whether the company’s lead engineer is leaving the company to create an independent

competitor, and the other learns whether the technology that the engineer is working on

is likely to succeed. If the technology is likely to succeed and the engineer stays, then

this is good news for the company’s value. If the technology is likely to fail, and the

engineer leaves, that is also good news because the company is likely to stay dominant

in its market. However, the remaining cases are bad news about the company’s value,

because either a competitor with a promising technology is created, or because a dubious

project will be continued further. The interpretation of each analyst’s signal may be

reversed by the other analyst’s signal.

The reversal result that we have just illustrated will be shown in this paper for the

setting with two states and two realizations per signal only. However, we also explore

the extent to which it generalizes. We show that in many cases it is necessary for com-

plementarity of signals that the meaning of the realization of one signal can be reverted

by a realization of the other signal. We also show that this condition is in general not

sufficient.

The next example illustrates how signals can be substitutes.

Example 3. Signals 1 and 2 are the advice offered by two advisors. They both work with

the same sources, and will tell you exactly the same thing. Then each of them will have

positive value, but once you have heard what one of them says, you do not derive any

additional benefit from hearing what the other one says.

In the setting with two states and two realizations per signal that we referred to earlier

a property that is related to perfect correlation is necessary and sufficient for signals to

be substitutes. Interestingly, however, this condition is weaker than perfect correlation.

Roughly speaking, it requires that conditional on observing certain realizations of one

signal, the other signal does not provide further information to the decision maker. In the

general setting, with arbitrarily many states and signal realizations, a similar condition

is necessary, but not sufficient for signals to be substitutes.

3In the general model, in which both signals are informative, there is no case of complements that
is similar to Example 2. We explain in Remark 4 below that Example 2 is not robust to perturbations
which introduce a small informational content of signal 2 by itself.
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The results described so far provide interesting, but partial insights into the nature of

the complementarity and substitutability relations among signals. We also offer in this

paper completely general characterizations of complements and substitutes. These results

show that two signals are complements (resp. substitutes) if and only if, among two other

signals that are derived from the two original signals, one dominates the other in the sense

of Blackwell (1951), that is, is more valuable in all decision problems. We thus reduce the

problem of determining whether two signals are complements (resp. substitutes) to the

problem of determining whether among two other signals one Blackwell dominates the

other. This is useful because it allows us to use well-known characterizations of Blackwell

dominance to find out whether two signals are complements (resp. substitutes).

After establishing this general result, the paper’s objective is to obtain characteriza-

tions of complements and substitutes that offer more immediate insights than the general

result does. This leads us to the results outlined earlier in the Introduction. As is well

known, Blackwell comparisons are qualitatively different in the case of two states, and in

the case of three or more states, with the case of two states being much easier to study.

In the same way we find that we have particularly strong results for the case of only two

states, and somewhat weaker result for the general case, as explained above.

Many pairs of signals are neither complements nor substitutes if our definitions are

used. This is because our definitions of these terms require certain conditions to be true

in all decision problems. This is in the spirit of Blackwell’s comparison whose ordering

of signals is incomplete. More signals will satisfy the conditions for being substitutes or

complements if we restrict attention to smaller classes of decision problems. In the context

of Blackwell’s original work this line of investigation has been pursued by Lehmann (1988),

Persico (2000), Athey and Levin (2001) and Jewitt (2007). A similar research agenda is

feasible in our context, and we present in this paper a first step in this direction.

Radner and Stiglitz (1984) consider a setting in which a one-dimensional real parame-

ter indexes the quality of a signal. They show that the value of the signal in any decision

problem is weakly increasing but not everywhere concave as the quality of information

increases. In particular, a non-concavity occurs for any decision problem in the neigh-

borhood of the parameter value for which the signal is uninformative. Non-concavity of

the value of a signal as the quality of the signal improves indicates increasing returns to

scale in information. It may be possible to interpret an improvement in the quality of a

signal as “making a further signal available,” and one might be able to interpret a non-

concavity of the value of information as a complementarity between an existing signal,
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and a further signal that might be made available. We have not yet explored whether we

can make these analogies precise.

The idea that signals may be complements or substitutes has previously appeared in

some applied work. An example is the paper by Sarvary and Parker (1997), who take

consumers’ valuations of signals as exogenously given, and focus on competition among

information providers. Complementarity and substitutability of signals has previously

also been referred to in an auction context by Milgrom and Weber (1982) and in a voting

context complementarity of voters’ information has been emphasized by Persico (2004). In

auction or voting contexts, different signals are held by different individuals, whereas our

paper focuses on a single person decision problem. All papers listed, moreover, consider

complementarity or substitutability in very specific settings, whereas we seek characteri-

zations of signals that are in all decision problems complements or substitutes.

The paper is organized as follows: Section 2 provides definitions. Section 3 contains

our result on the relation between substitutability, complementarity, and Blackwell com-

parisons. Section 4 studies in detail the special case that there are only two states of

the world. Section 5 investigates the extent to which the findings of Section 4 generalize

when the number of states of the world is arbitrary. In Section 6 we specialize to the case

in which the state of the world is a real number, and the utility function is linear in the

state of the world. The results of Section 4 can be transferred to this setting. Section 7

concludes. Some of the proofs are relegated to the appendix.

2 Definitions

The state of the world is a random variable ω̃ with realizations ω in a finite set Ω which has

at least two elements. The probability distribution of ω̃ is denoted by π. Without loss of

generality we assume that each state in Ω occurs with the same probability: π(ω) = 1/|Ω|
for all ω ∈ Ω.4 Two signals are available: s̃1 with realizations s1 in the finite set S1 where

S1 has at least two elements, and s̃2 with realizations s2 in the finite set S2 where S2 also

has at least two elements. We assume without loss of generality that S1∩S2 is empty. The

joint distribution of signals s̃1 and s̃2 conditional on the state being ω ∈ Ω is denoted by

4Our results in Sections 3-5 would not be different if the prior was any other distribution with support
Ω. This follows from the relation between our analysis and the Blackwell comparison of signals that
is pointed out in Proposition 1 below, and from the fact that the Blackwell comparison of signals is
independent of the prior as long as the prior has full support. In Section 6, by contrast, the prior
distribution of the state will matter, and we shall then relax the assumption of a uniform distribution.

5



p12,ω. The probability assigned by this distribution to some realization (s1, s2) ∈ S1 × S2

is denoted by p12,ω(s1, s2). The unconditional distribution of (s̃1, s̃2) is denoted by p̄12 and

is given by: p̄12(s1, s2) =
∑

ω∈Ω p12,ω(s1, s2)π(ω) for all (s1, s2) ∈ S1×S2. The probability

distribution on Ω conditional on observing signal realization (s1, s2) ∈ S1 × S2 (where

p̄12(s1, s2) > 0) is denoted by qs1,s2 and is given by:

qs1,s2(ω) = π(ω)
p12,ω(s1, s2)

p̄12(s1, s2)
for all ω ∈ Ω. (1)

For i = 1, 2 the marginal distribution of signal s̃i conditional on the state being ω ∈ Ω

is denoted by pi,ω. The probability assigned by this distribution to some realization si ∈ Si
is denoted by pi,ω(si). For i = 1, 2 the unconditional distribution of s̃i is denoted by p̄i

and it is given by: p̄i(si) =
∑

ω∈Ω pi,ω(si)π(ω) for all si ∈ Si. Without loss of generality

we assume that p̄i(si) > 0 for all si ∈ Si. For i = 1, 2 the probability distribution on Ω

conditional on observing signal realization si ∈ Si is denoted by qsi
and is given by:

qsi
(ω) = π(ω)

pi,ω(si)

p̄i(si)
for all ω ∈ Ω. (2)

We shall say that signal s̃i is “informative” if there is at least one si ∈ Si such that

qsi
6= π. We shall say that signal s̃i is “informative conditional on signal realization

sj ∈ Sj” (where j 6= i) if there is at least one si ∈ Si such that qs1,s2 6= qsj
. We shall make

the following:

Assumption 1. For every i ∈ {1, 2}, if signal s̃i is not informative, then there is a signal

realization sj ∈ Sj (where j 6= i) such that signal s̃i is informative conditional on signal

realization sj.

This assumption rules out signals that are of no potential use to the decision maker.

To define when the two signals are substitutes or complements we need some auxiliary

definitions.

Definition 1. A decision problem is a pair (A, u) where A is some finite set of actions

and u is a utility function: u : A× Ω→ R.

Definition 2. For given decision problem (A, u):

• The value of not having any signal is:

V∅(A, u) ≡ max
a∈A

∑
ω∈Ω

(u(a, ω)π(ω)) . (3)
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• For i ∈ {1, 2} the value of having signal s̃i alone is:

Vi(A, u) ≡
∑
si∈Si

p̄i(si) max
a∈A

∑
ω∈Ω

(u(a, ω)qsi
(ω)). (4)

• The value of having both signals is:

V12(A, u) ≡
∑
s1∈S1

∑
s2∈S2

p̄12(s1, s2) max
a∈A

∑
ω∈Ω

(u(a, ω)qs1,s2(ω)). (5)

The two key definitions of this paper are:

Definition 3. Signals s̃1 and s̃2 are substitutes if for all decision problems (A, u) we

have:

V1(A, u)− V∅(A, u) ≥ V12(A, u)− V2(A, u) (6)

and

V2(A, u)− V∅(A, u) ≥ V12(A, u)− V1(A, u). (7)

Definition 4. Signals s̃1 and s̃2 are complements if for all decision problems (A, u) we

have:

V12(A, u)− V2(A, u) ≥ V1(A, u)− V∅(A, u) (8)

and

V12(A, u)− V1(A, u) ≥ V2(A, u)− V∅(A, u). (9)

Note that the two inequalities in Definition 3, and also the two inequalities in Definition

4, are equivalent.

For a simple interpretation of the inequalities in Definitions 3 and 4 suppose that the

decision maker’s not explicitly modeled overall utility is additive in the expected utility

from decision problem (A, u) and money. Then the inequalities in Definitions 3 and 4

compare the decision maker’s willingness to pay for signals in different scenarios. For

example, the inequality in Definition 3 says that the willingness to pay for signal s̃1 is

larger if signal s̃2 is not available than if it is available. It seems natural to call signals

substitutes in this case. Without postulating the existence of money, and additive utility,

one could interpret the inequalities in Definitions 3 and 4 using an idea in von Neumann

and Morgenstern (1953, p. 18). They argue that inequalities that involve differences of
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von Neumann Morgenstern utilities reflect differences in the intensity of a preference. For

example, in the case of Definition 3, this interpretation says that the preference for having

signal s̃1 over not having signal s̃1 is more intense when signal s̃2 is not present than when

it is present. This interpretation of the difference of von Neumann Morgenstern utilities

is not universally accepted, however.5

We next offer formalizations of the three examples informally described in the In-

troduction using the framework of this section. It will be obvious that the signals in

Examples 1 and 2 are complements and in Example 3 substitutes.

Example 1. Ω = {a, b}, S1 = {α, β}, S2 = {α̂, β̂}. Signal 2 determines the language

that signal 1 uses. If signal 2 has realization α̂, then signal 1 uses signal realization α

to indicate state a, and signal realization β to indicate state b. If signal 2 has realization

β̂ then the signal 1 uses the reverse language. The code corresponding to α̂ is used with

probability ϕ. Independent of the language, signal 1 indicates the state correctly with

probability ρ ∈ [0.5, 1] and provides an incorrect signal with the remaining probability. We

display the two conditional distributions p12,a and p12,b in Figure 1. Rows correspond to

realizations of signal s̃1, and columns correspond to realizations of signal s̃2.

α̂ β̂

α ϕρ (1− ϕ)(1− ρ)

β ϕ(1− ρ) (1− ϕ)ρ

α̂ β̂

α ϕ(1− ρ) (1− ϕ)ρ

β ϕρ (1− ϕ)(1− ρ)

ω = a ω = b

Figure 1: Example 1 (signals are complements)

α̂ β̂

α ϕρ (1− ϕ)ρ̂

β ϕ(1− ρ) (1− ϕ)(1− ρ̂)

α̂ β̂

α ϕ(1− ρ) (1− ϕ)(1− ρ̂)

β ϕρ (1− ϕ)ρ̂

ω = a ω = b

Figure 2: Example 2 (signals are complements)

5Luce and Raiffa (1957, p. 32) regard this interpretation as a fallacy, whereas Binmore (2009, p. 67)
is sympathetic to this interpretation. We return to von Neumann and Morgenstern’s argument in more
detail in Remark 1 below.
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α̂ β̂

α ρ 0

β 0 1− ρ

α̂ β̂

α 1− ρ 0

β 0 ρ

ω = a ω = b

Figure 3: Example 3 (signals are substitutes)

Example 2. Ω = {a, b}, S1 = {α, β}, S2 = {α̂, β̂}. Signal 1 indicates the state correctly

with probability ρ ∈ [0.5, 1] if signal 2 has realization α̂ and it indicates the state correctly

with probability ρ̂ ∈ [0.5, 1] if signal 2 has realization β̂. Signal 1 always uses the code

by which α indicates that the state is a, and β indicates that the state is b. Signal 2 has

realization α̂ with probability ϕ ∈ (0, 1). The conditional distributions of the signals are

shown in Figure 2.

Example 3. Ω = {a, b}, S1 = {α, β}, S2 = {α̂, β̂}. Each signal indicates the state

correctly with probability ρ ∈ [0.5, 1) and incorrect with the remaining probability. Signals

are perfectly correlated. The code that the signals use is that α and α̂ indicate that the

state is a, and β and β̂ indicate that the state is b. The conditional distributions of the

signals are shown in Figure 3.

3 Connection With Blackwell Dominance

To obtain a general characterization of signals that are complements or substitutes, we

define two auxiliary signals, s̃S and s̃C . Informally, the signal s̃S can be described as

follows. An unbiased coin is tossed. If “heads” comes up, the decision maker is informed

about the realization of s̃1. If “tails” comes up, the decision maker is informed about the

realization of s̃2. Formally, the signal s̃S has realizations in the set SS ≡ S1∪S2.6 For given

state ω ∈ Ω, the probability that s̃S has realization s1 ∈ S1 is pS,ω(s1) ≡ 1
2
p1,ω(s1), and

the probability that s̃S has realization s2 ∈ S2 is pS,ω(s2) ≡ 1
2
p2,ω(s2). The unconditional

distribution of s̃S is denoted by p̄S and is given by p̄S(sS) = π(ω)
∑

ω∈Ω pS,ω(sS) for all

sS ∈ SS. The conditional distribution on Ω conditional on observing signal realization

sS ∈ SS is the distribution qsS
that was defined in equation (2).

The second auxiliary signal, s̃C , is intuitively constructed as follows. An unbiased coin

is tossed. If “heads” comes up, the decision maker is informed about the realizations of

6Recall that we assume that S1 ∩ S2 is empty.
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s̃1 and s̃2. If “tails” comes up, the decision maker receives no information. Formally, the

signal s̃C has realizations in the set SC ≡ (S1 × S2) ∪ {N}. Here, the symbol N denotes

the case that the decision maker receives no information. For given state ω ∈ Ω, the

probability that s̃C has realization (s1, s2) ∈ S1 × S2 is pC,ω(s1, s2) ≡ 1
2
p12,ω(s1, s2), and

the probability that s̃C has realization N is pC,ω(N) ≡ 1
2
. The unconditional distribution

of s̃C is denoted by p̄C and is given by p̄S(sS) = π(ω)
∑

ω∈Ω pS,ω(sS) for all sS ∈ SS.

The conditional distribution on Ω conditional on observing signal realization sC ∈ SC is

the distribution qsC
that was defined in equation (1) if sC ∈ S1 × S2, and it is the prior

distribution π if sC = N . We shall write for this distribution also qN .

Definition 5. For given decision problem (A, u) and for k ∈ {S,C}, the value of having

signal s̃k is:

Vk(A, u) ≡
∑
sk∈Sk

p̄k(sk) max
a∈A

∑
ω∈Ω

(u(a, ω)qsk
(ω)). (10)

Proposition 1. (i) Signals s̃1 and s̃2 are substitutes if and only if signal s̃S Blackwell

dominates signal s̃C, i.e. in all decision problems (A, u):

VS(A, u) ≥ VC(A, u). (11)

(ii) Signals s̃1 and s̃2 are complements if and only if signal s̃C Blackwell dominates signal

s̃S, i.e. in all decision problems (A, u):

VC(A, u) ≥ VS(A, u). (12)

Proof. For part (i) note that in all decision problems (A, u) the inequality that defines

substitutes, V1(A, u) − V∅(A, u) ≥ V12(A, u) − V2(A, u) is equivalent to: 1
2
(V1(A, u) +

V2(A, u)) ≥ 1
2
(V12(A, u)+V∅(A, u)). But by definition the expression on the left hand side

is the same as VS, and the expression on the right hand side is the same as VC . Thus (i)

follows. The proof of part (ii) is analogous.

Remark 1. This result is related to von Neumann and Morgenstern’s (1953, p. 18)

discussion of the meaning of comparisons of utility differences to which we alluded before.

Roughly speaking,7 their argument is as follows. If a, b, c, and d are outcomes, then the

comparison of utility differences u(a) − u(b) > u(c) − u(d) can be inferred from choices

7Our rendition of von Neumann and Morgenstern’s argument follows Binmore’s (2009, p. 67). Von
Neumann and Morgenstern’s original argument is slightly different, involving only 3 outcomes. In sub-
stance it is the same.
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among lotteries because it is equivalent to: 0.5u(a) + 0.5u(d) > 0.5u(b) + 0.5u(c), and

hence to the preference of the lottery that gives a and d each with probability 0.5 over the

lottery that gives b and c each with probability 0.5. This preference can be interpreted as

an expression of an intensity of preferences because it means that, starting from a lottery

that gives b and d each with probability 0.5 the decision maker rather has b be replaced by

a than d by c. Hence the step from b to a seems larger to the decision maker than the step

from c to d. In our setting a, b, c, d are replaced by signals on which the decision maker can

base a choice. Our Proposition 1 is then a formal statement of the way in which choices

among lotteries express, according to von Neumann and Morgenstern, comparisons of

utility differences.

Blackwell and Girshick (1954, Theorem 12.2.2.) offer a variety of characterizations of

Blackwell dominance. A well-known characterization is that one signal Blackwell dom-

inates another if the dominated signal is a garbling of the dominating signal (Theorem

12.2.2., Condition (2), Blackwell and Girshick (1954)). Another condition is that the

posteriors resulting from the dominating signal are a mean-preserving spread of the pos-

teriors resulting from the dominated signal (Theorem 12.2.2., Condition (5), Blackwell

and Girshick (1954)). We now show an example in which this latter condition can be

used to easily verify that signals are complements and substitutes.

Example 4. Ω = {a, b}, S1 = {α, β, γ} and S2 = {α̂, β̂, γ̂}. The distributions p12,a

and p12,b are displayed in the same way as in Examples 1-3. Intuitively, in this example

signal s̃1 reveals the state with probability ρ. If signal s̃1 reveals the state, signal s̃2 is not

informative and has realization γ̂. Similarly, signal s̃2 reveals the state with probability

1 − ρ, and if signal s̃2 reveals the state, signal s̃1 is not informative and has realization

γ. To verify that signals are complements and substitutes in Example 4 one can easily

check that s̃S and s̃C imply identical posterior distributions: (1
2
, 1

2
) with probability 0.5,

and (1, 0) and (0, 1) with probability 0.25 each. Therefore, by the characterization of

Blackwell dominance quoted above, s̃S (weakly) Blackwell dominates s̃C and vice versa,

and by Proposition 1 signals are complements and substitutes.

4 The Case of Two States

It is easier to verify Blackwell dominance when there are only two states of the world,

and therefore beliefs are one-dimensional, than when there are more than two states of

the world, and therefore beliefs are multi-dimensional. The qualitative difference between
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α̂ β̂ γ̂

α 0 0 ρ

β 0 0 0

γ 1− ρ 0 0

α̂ β̂ γ̂

α 0 0 0

β 0 0 ρ

γ 0 1− ρ 0

ω = a ω = b

Figure 4: Example 4 (signals are complements and substitutes)

the one-dimensional case and the case of two or more dimensions is explained in Section

12.4 of Blackwell and Girshick. In the one-dimensional case the convex value function8

arising from an arbitrary decision problem can be approximated arbitrarily closely by

linear combinations of a very simple subclass of piecewise linear, convex functions. No

such approximation result is known in the two or more-dimensional case. The relevance

of having a dense class of simple value functions is that one can correspondingly restrict

attention to a simple class of decision problems when checking Blackwell dominance.

The results cited in the previous paragraph, and the close connection between our

concepts and Blackwell dominance shown in the previous section, motivate why we begin

our study here with the case in which there are only two states of the world. We label

them: Ω = {a, b}. The key property of the two states model is that we can restrict

attention to two action decision problems where A = {T,B} and u is given by Figure 5.

ω = a ω = b

T 0 x

B 1− x 0

Figure 5: A two action decision problem

Lemma 1. In the two states model, signals are complements (substitutes) if and only if

they are complements (substitutes) in all two action decision problems given by Figure 5

with x ∈ (0, 1).

Proof. The main argument in the proof of Theorem 12.4.1. in Blackwell and Girshick

(1954) demonstrates that in the two states case a signal s̃ Blackwell dominates another

8Value functions map posterior beliefs into the expected utility that the decision maker obtains when
holding those beliefs and choosing optimally. Every decision problem gives rise to a convex value function.
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signal s̃′ if and only if s̃ is more valuable than s̃′ in all two action problems of the form

shown in Figure 5.9 We can then apply Proposition 1 to infer Lemma 1.

4.1 Substitutes

We focus in this subsection on the case that each signal has only two realizations. The

next section will offer a strong characterization of substitutes in the case of arbitrary finite

state and signal spaces. We denote the realizations of signal s̃1 by α and β, and those of

signal s̃2 by α̂ and β̂. We shall focus on the case that each signal realization individually

is informative, that is, leads to a posterior belief that is different from the prior belief. It

is easy to see that otherwise there can’t be substitutes. This will also be shown in general

in Proposition 5 below. Without loss of generality we assume that observing α or α̂ (resp.

β or β̂) alone raises the decision maker’s belief that the state is a (resp. b): qα(a) > π(a)

and qα̂(a) > π(a). We refer to the model with two states and two realizations per signal

if it satisfies the assumptions introduced in this paragraph as the “binary-binary” model.

Proposition 2. In the binary-binary model, signals are substitutes if and only if the joint

realizations (α, α̂) and (β, β̂) each have strictly positive prior probability, and

qα,α̂(a) = max{qα(a), qα̂(a)}, and (13)

qβ,β̂(b) = max{qβ(b), qβ̂(b)}. (14)

Call a realization of a single signal “extreme” if it provides the strongest evidence

for state a, or state b, among all four individual signal realizations. The conditions in

Proposition 2 say that conditional on an extreme realization of a signal the other signal

is not informative. Thus, in the binary-binary model, substitutability amounts to a form

of conditional uninformativeness of signals.

Signal distributions that satisfy the conditions of Proposition 2 can be classified into

two types. For signal distributions of the first type the two extreme realizations are

different realizations of the same signal, whereas for signal distributions of the second

type, the two extreme realizations are realizations of two different signals. We illustrate

these two types in Figure 6.

9Blackwell and Girshick’s proof refers to a decision problem that is as in Figure 5 but with the first
row of payoffs replaced by (−(1 − x), x), where x ∈ (0, 1), and the second row of payoffs replaced by
(0, 0). The same argument that Blackwell and Girshick use can be used to demonstrate that a signal s̃
Blackwell dominates another signal s̃′ if and only if s̃ is more valuable than s̃′ in all two action problems

13



α̂ β̂

α ρ ϕ

β µϕ′ µρ′

α̂ β̂

α ηρ ηϕ

β ϕ′ ρ′

ω = a ω = b

Example 5 (α and β are extreme signal realizations)

α̂ β̂

α ρ 0

β ϕ 1− ρ− ϕ

α̂ β̂

α ρ′ 0

β ϕ′ 1− ρ′ − ϕ′

ω = a ω = b

Example 6 (α and β̂ are extreme signal realizations)

Figure 6: Two different types of substitutes

Example 5 illustrates the first type. We show the case in which both extreme signal

realizations come from signal s̃1. It then has to be the case that, conditional on the

realization of signal s̃1, signal s̃2 is always not informative. This happens if conditional on

any realization of signal s̃1, the likelihood ratios of joint signal realizations are the same

for all realizations of signal s̃2. The corresponding information structure is displayed in

Example 5 where the likelihood ratios are denoted by η and µ which are both less than

1.10 Note that the perfect correlation Example 3 is a special case of Example 5 where

ϕ = ϕ′ = 0, ρ = ρ′ and µρ′ = ηρ = 1− ρ.

Example 6 illustrates the second type of signal distributions that make signals substi-

tutes. In this type, the two extreme realizations come from different signals. We show the

case in which α and β̂ are the extreme realizations. In this case, signals are substitutes if

and only if signal s̃1 is not informative conditional on β̂, and signal s̃2 is not informative

conditional on α. It is not hard to see that this is equivalent to the realization (α, β̂)

having zero probability in both states. Accordingly, the information structure is of the

of the form shown in Figure 5. We omit the details.
10Of course, the entries in each table in Example 5 have to sum to one. Moreover, since (α, α̂) and

(β, β̂) occur with positive probability, we have ρ, ρ′ > 0 while ϕ,ϕ′ ≥ 0. Finally, to satisfy our assumption
that α̂ indicates state a, we need that ρ+ µϕ′ ≥ ηρ+ ϕ′.
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form shown in Example 6.11 Note that our earlier Example 3 is a special case of Example

6 where ϕ = ϕ′ = 0 and ρ′ = 1− ρ.

We prove the sufficiency of the conditions in Proposition 2 in the Appendix. The proof

is by calculation, using the fact that according to Lemma 1 we can restrict attention to

a one parameter class of decision problems with two actions only. We show the necessity

of the conditions in Proposition 2 in the next section, where we shall derive the necessity

from a more general result.

Remark 2. Among all pairs of conditional joint distributions of signals s̃1 and s̃2 in the

binary-binary model the ones shown in Figure 6 are rare. One way of saying this formally

is to identify pairs of conditional joint distributions of the two signals with vectors in

8-dimensional Euclidean space, and to endow the set of all joint distributions with the

relative Euclidean topology. The set of distributions that are not like the distributions

in Figure 6 is then an open and dense subset of the set of all joint distributions, and is

thus generic. This is mathematically obvious given Proposition 2. It may also appear

to be intuitively plausible given how stringent the requirement that defines substitutes is,

however, as we will point out below, in the same topological sense, complements, although

their definition seems equally stringent, are not rare.

4.2 Complements

We begin again by considering the binary-binary model introduced in the previous subsec-

tion. Note that our earlier Examples 1 and 2 would be special cases of the binary-binary

model had we not ruled out in the previous subsection the case that at least one of the

signals is not informative. Indeed, it is obvious that, whenever at least one signal by itself

is not informative, signals are complements. We state this simple observation in the next

section as Proposition 9. We now focus on the case that both signals are by themselves

informative.

Proposition 3. In the binary-binary model, signals are complements if and only if the

joint realizations (α, α̂) and (β, β̂) each have strictly positive probability in at least one

11In accordance with Proposition 2 we need ρ, ρ′ > 0 and ϕ,ϕ′ ≥ 0. To satisfy our assumption that α
and α̂ indicate state a, we need that ρ ≥ ρ′ and ρ+ϕ ≥ ρ′ + ϕ′. To ensure that α is the strongest signal
for state a we need: ρϕ′ ≥ ρ′ϕ, and finally, to ensure that β̂ is the strongest signal for state b we need:
(1− ρ)ϕ′ ≤ (1− ρ′)ϕ.
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state, and one of the following conditions holds:12

qα,α̂(a) ≤ π(a), or (15)

qβ,β̂(b) ≤ π(b). (16)

Inequality (15) says that if the decision maker receives signal (α, α̂) the decision

maker’s posterior probability of state a is less than or equal to the prior π(a), even though

individually both α and α̂ move the decision maker’s probability of state a above π(a).

Inequality (16) says that if the decision maker receives signal (β, β̂) the decision maker’s

posterior probability of state b is not more than the prior π(b), even though individually

both β and β̂ move the decision maker’s probability of state b above π(b). In both cases,

two signals which by themselves move the decision maker’s beliefs into one direction,

if received together move the decision maker’s beliefs into the opposite direction. The

“meaning” of these signals is reversed if they are received together.

We prove the sufficiency of the conditions in Proposition 3 in the Appendix. We derive

the necessity in the next section from a more general result. Example 7 shows a class of

complements. If ν > µ, the signal realizations α and α̂ by themselves raise the decision

maker’s belief that the true state is a. If ρ ≤ ϕ, then the joint signal realization (α, α̂),

by contrast, reduces the decision maker’s probability that the true state is a or leaves it

unchanged.13

α̂ β̂

α ρ ν − ρ

β ν − ρ 1 + ρ− 2ν

α̂ β̂

α ϕ µ− ϕ

β µ− ϕ 1 + ϕ− 2µ

ω = a ω = b

Figure 7: Example 7 (signals are complements)

12As we note in Remark 5 the two conditions are mutually exclusive. In any particular example, at
most one of them can be true.

13Example 7 captures all conditional joint probability distributions of the two signals in the binary-
binary model for which condition (15) holds, and for which in each state the probabilities of the two signal
realizations (α, β̂) and (β, α̂) are the same. (There are, of course, other conditional joint distributions
of the two signals for which signals are complements.) All suitable values for the four parameters in
Example 7 can be found by making choices allowed in the following procedure: First pick ν such that
0 < ν < 1. Then pick µ > 0 such that 2ν − 1 ≤ µ < ν. Then pick ϕ ≥ 0 such that 2ν − 1 ≤ ϕ ≤ µ.
Finally, pick ρ ≥ 0 such that 2ν − 1 ≤ ρ ≤ ϕ.
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Remark 3. Whereas substitutes are rare, as we noted in Remark 2, complements are

not. To express this formally, we again endow the set of all pairs of joint conditional

probability distributions of the two signals with the relative Euclidean topology, and note

that the set of distributions that correspond to complements has an open subset. For

example, a small open ball around a pair of full support distributions that satisfy one of the

conditions in Proposition 3 as a strict inequality14 is a subset of the set of all distributions

that correspond to complements. This mathematically trivial fact is intuitively surprising

given how stringent the requirement that defines complements is.

Remark 4. In the Introduction and in Section 2 we provided Examples 1 and 2 as ex-

amples of pairs of signals that are complements. These examples are not special cases of

the binary-binary model because one signal, signal 2, is uninformative by itself. However,

we can perturb the conditional signal distributions in these examples so that signal 2 is

informative. Then we obtain special cases of the binary-binary model. One can verify

that if we perturb Example 1 in this way we obtain a pair of signals that exhibits meaning

reversal in the sense of Proposition 3. By contrast, Example 2 cannot be perturbed so that

it satisfies the meaning reversal condition of Proposition 3. Example 2 is thus not robust.

The intuitive reason for this can be seen when considering decision problems of the type

shown in Figure 5 in the case that the decision maker, when holding the prior belief, is

almost indifferent between the two actions. By choosing x close enough to 0.5 we can

construct a decision problem in which signal 2, even if its informational content is very

small, has positive value by itself. By contrast, signal 1 may be known to be so strong that

no realization of signal 2 can change the decision maker’s optimal choice, and therefore, if

combined with signal 1, signal 2 has zero marginal value. Thus, in this decision problem,

signals are not complements.

Remark 5. The two conditions in Proposition 3, inequalities (15) and (16), are mutually

exclusive. To see this, suppose (15) were true: qα,α̂(a) ≤ π(a). Because, by assumption,

qα(a) > π(a), signal realization (α, β̂) then must have positive prior probability, and:

qα,β̂(a) > π(a). Hence qα,β̂(b) < π(b). But because, also by assumption, qβ̂(b) > π(b),

signal realization (β, β̂) then must have positive prior probability and: qβ,β̂(b) > π(b), i.e.

inequality (16) is false.

We generalize the sufficiency part of Proposition 3 to obtain a sufficient condition for

complementarity in the case when signals have arbitrarily many realizations. Let si (resp.

14With a suitable choice of parameters in Example 7, condition (15) holds as a strict inequality.
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s̄i) be the realization of signal s̃i, which provides the weakest (resp. strongest) support

for state a: qsi
(a) = minsi

qsi
(a) and qs̄i

(a) = maxsi
qsi

(a). Let

x ∈ X ≡
(
max{qs1(a), qs2(a)},min{qs̄1(a), qs̄2(a)}

)
, (17)

that is, x is larger than the smallest posterior probability of a that is induced by any

realization of a single signal, and smaller than the largest posterior probability of a induced

by any realization of a single signal. We partition the set Si of realizations of signal s̃i into

two subsets, depending on whether they induce posterior beliefs qsi
(a) that are smaller or

larger than x:

Sβi (x) = {si ∈ Si | qsi
(a) ≤ x}, Sαi (x) = {si ∈ Si | qsi

(a) > x}. (18)

Now imagine that, instead of observing each realization of signal s̃i, the decision maker

only observes whether a realization is in one of the two partitions. This amounts to

observing a signal with two realizations. We call this binary signal t̃i(x) and denote the

realization of t̃i(x) by tβi (x) if si ∈ Sβi (x) and by tαi (x) if si ∈ Sαi (x).

Proposition 4. In the two state case, if for all x ∈ X the signals t̃1(x) and t̃2(x) are

complements, then the signals s̃1 and s̃2 are complements.

Proof. We denote the expected utility that the decision maker receives when maximizing

expected utility in some arbitrary decision problem (A, u) after observing the realization

of t̃i(x) by Vi,x(A, u) and we denote the expected utility that the decision maker receives

when maximizing expected utility in decision problem (A, u) after observing the joint

realization (t̃1(x), t̃2(x)) by V12,x(A, u). Let the auxiliary signals t̃C(x) and t̃S(x) be defined

analogously to s̃C and s̃S, and denote the expected utility that the decision maker receives

when maximizing expected utility in decision problem (A, u) after observing these signals

by VC,x(A, u) and VS,x(A, u).

By Lemma 1 it is sufficient to verify complementarity for the two action problem

of Figure 5 for all x ∈ (0, 1). For x 6∈ X, there is at least one signal s̃i which is not

informative. Hence, signals are obviously complements (see Proposition 9 below). Let

x ∈ X, and let (A, u) for the purposes of this proof be the corresponding two action

decision problem. By Proposition 1, it is sufficient to show that VC(A, u) ≥ VS(A, u).

To demonstrate this, we begin with two observations. The first observation is that

Vi(A, u) = Vi,x(A, u). This is so since in the two action problem at hand, all that matters
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for the decision maker’s optimal action after observing realization si of signal s̃i is whether

the posterior belief qsi
(a) is smaller or larger than x. But this is precisely the information

provided by signal t̃i(x). We omit the formal proof. The second observation is that,

evidently, the signal (s̃1, s̃2) is (weakly) more informative than the signal (t̃1(x), t̃2(x)).

Hence, V12(A, u) ≥ V12,x(A, u). Using these two observations, we can deduce:

VC(A, u) = 0.5V12(A, u) + 0.5V∅(A, u)

≥ 0.5V12,x(A, u) + 0.5V∅(A, u)

= VC,x(A, u)

≥ VS,x(A, u) (19)

= 0.5V1,x(A, u) + 0.5V2,x(A, u)

= 0.5V1(A, u) + 0.5V2(A, u)

= VS(A, u),

where the inequality in the fourth line follows because by assumption t̃1(x) and t̃2(x) are

complements. This proves the claim.

To use Proposition 4 in practice one notices that the distribution of t̃1(x) and t̃2(x)

are determined by the underlying distributions of s̃1 and s̃2, and that Proposition 3

characterizes when t̃1(x) and t̃2(x) are complements. The following example illustrates

how Proposition 4 can be applied.

Example 8. Ω = {a, b} and for i = 1, 2: Si = {si1, si2, si3}. The distribution of signals

conditional on the state is shown in Figure 8. Note that for n < m, the realization sin

provides stronger support for state a than the realization sim. Note also that the two signals

are symmetric. There are only two partitions into which realizations can be grouped:

For x ∈ (qsi3
(a), qsi2

(a)), we have to consider the signals that arise from the partition

{{si3}, {si2, si1}}. And for x ∈ [qsi2
(a), qsi1

(a)), we have to consider the signals that arise

from the partition {{si3, si2}, {si1}}. The induced signals t̃1(x) and t̃2(x) are described by

the information structures in Figure 9. Observe that in both cases shown in Figure 9, the

signals t̃1(x) and t̃2(x) are complements since condition (15) from Proposition 3 is met.

In Subsection 5.3 we give an example that illustrates that the condition in Proposition

4 is not necessary for complementarity.
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s21 s22 s23

s11 6/100 0 24/100

s12 0 40/100 0

s13 24/100 0 6/100

s21 s22 s23

s11 10/100 0 10/100

s12 0 40/100 0

s13 10/100 0 30/100

ω = a ω = b

Figure 8: Example 8 (signals are complements)

tα2 (x) tβ2 (x)

tα1 (x) 46/100 24/100

tβ1 (x) 24/100 6/100

tα2 (x) tβ2 (x)

tα1 (x) 50/100 10/100

tβ1 (x) 10/100 30/100

ω = a ω = b

tα2 (x) tβ2 (x)

tα1 (x) 6/100 24/100

tβ1 (x) 24/100 46/100

tα2 (x) tβ2 (x)

tα1 (x) 10/100 10/100

tβ1 (x) 10/100 70/100

ω = a ω = b

Figure 9: Signals t̃1(x) and t̃2(x) for Example 8 and partition {{si3}, {si2, si1}} (top) and
partition {{si3, si2}, {si1}} (bottom)

5 The General Case

As we explained in the previous section, the case that there is an arbitrary finite number

of states is harder to analyze than the case of two states. In our investigation below, the

main results show that the conditions that are necessary and sufficient for substitutes or

complements in the binary-binary model are necessary, but not sufficient, for substitutes

or complements in the general model.

5.1 Substitutes

We begin by considering the case that at least one signal is not informative. The following

result was already anticipated in the previous section.

Proposition 5. If at least one signal is not informative, then signals are not substitutes.
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Proof. Without loss of generality assume that signal s̃1 is not informative. Then V1(A, u)−
V∅(A, u) = 0 in all decision problems (A, u). For signals not to be substitutes, we therefore

need: V12(A, u)− V2(A, u) > 0 for some decision problem (A, u). By Assumption 1 signal

s̃1 is informative conditional on some realization of signal s̃2. Therefore there are s2 ∈ S2

and two s1, s
′
1 ∈ S1 such that p̄12(s1, s2) > 0, p̄12(s′1, s2) > 0, and qs1,s2 6= qs′1,s2 . By the

separating hyperplane theorem there are then a vector r ∈ R|Ω| and a number e ∈ R
such that qs1,s2r > e and qs′1,s2r < e. Consider the decision problem (A, u) in which the

decision maker has two actions: R and E, and in which the payoff to action R in state ω

is given by the ω-th component of r, and the payoff to action E is equal to e in all states

of the world. After observing at least one of the joint realizations (s1, s2) and (s′1, s2)

an action that was optimal under qs2 will not be optimal under the posterior following

observation of the joint realization. Therefore, V12(A, u) − V2(A, u) > 0, and signals are

not substitutes.

Assuming that both signals are informative, we showed in the previous section that in

the binary-binary model a necessary and sufficient condition for substitutes is that a signal

is not informative conditional on the other signal having a realization that induces extreme

posteriors. We now show that a similar condition is in general necessary for substitutes.

We begin with a useful auxiliary result. For any subset C of a finite-dimensional Euclidean

space we denote by “co C” the convex hull of C.

Lemma 2. If signals are substitutes, then for every (s1, s2) ∈ S1×S2 such that p̄12(s1, s2) >

0:

qs1,s2 ∈ co {qsi
|i ∈ {1, 2}, si ∈ Si} . (20)

Proof. By part (i) of Proposition 1, if signals are substitutes, s̃S Blackwell dominates

s̃C . By condition (5) of Theorem 12.2.2. in Blackwell and Girshick (1954) this means

that the posteriors after observing s̃S are a mean-preserving spread of the posteriors after

observing s̃C . Therefore, the posteriors after observing s̃C are contained in the convex

hull of the posteriors after observing s̃S. This implies Lemma 2.

We now state our main result on substitutes. Recall that an element of a convex set

C is called an “extreme point” of C if it is not a convex combination of two different

elements of C where each of these elements has strictly positive weight.

Proposition 6. Suppose signals are substitutes. If for some i ∈ {1, 2} and some s∗i ∈ Si
the vector qs∗i is an extreme point of co {qsk

|k ∈ {1, 2}, sk ∈ Sk}, then signal s̃j (where

j 6= i) is not informative conditional on signal realization s∗i .
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Observe that the condition in Proposition 6 is a generalization of the condition in

Proposition 2. Proposition 2 is for the binary-binary model only, and it shows for that

model that the condition is necessary and sufficient for substitutes. For the general case,

by contrast, Proposition 6 only asserts the necessity of the condition. An example that

we present in subsection 5.3 will show that the condition in Proposition 6 is in general

not sufficient for substitutes.

Proof. Indirect. Suppose qs∗i ,sj
6= qs∗i for some sj ∈ Sj with p̄12(s∗i , sj) > 0. By standard

properties of posteriors qs∗i can be written as a convex combination of the vectors qs∗i ,sj

(sj ∈ Sj). We can infer that qs∗i ,sj
6= qs∗i for at least two sj ∈ Sj with p̄12(s∗i , sj) > 0,

and that both of these vectors qs∗i ,sj
receive positive weight in the convex combination

that makes up qs∗i . By Lemma 2 for every sj ∈ Sj with p̄12(s∗i , sj) > 0 the vector qs∗i ,sj

is an element of co {qsi
|i ∈ {1, 2}, si ∈ Si}. We have thus inferred that qs∗i can be written

as the convex combination of at least two different elements of co {qsi
|i ∈ {1, 2} si ∈ Si}

where each element receives positive weight. Next, one can easily see that this implies

that one can also express qs∗i as the convex combination of exactly two different elements

of co {qsi
|i ∈ {1, 2}, si ∈ Si} where each element receives positive weight. This contradicts

our assumption that qs∗i is an extreme point of co {qsi
|i ∈ {1, 2}, si ∈ Si} .

The following result adds to Proposition 6 the observation that if signals are substitutes

there are at least two signal realizations to which the condition of Proposition 6 applies.

Corollary 1. Suppose signals are substitutes. Then there are i, j ∈ {1, 2} and s∗i ∈ Si,
s∗j ∈ Sj such that qs∗i 6= qs∗j , k 6= i implies that signal s̃k is not informative conditional on

s∗i , and k 6= j implies that signal s̃k is not informative conditional on s∗j .

Proof. By Proposition 5, if signals are substitutes, at least one signal is informative, and

therefore the set {qsi
|i ∈ {1, 2}, si ∈ Si} has at least two elements. Hence co {qsi

|i ∈ {1, 2},
si ∈ Si} has at least two extreme points: by the Krein-Milman Theorem (Ok, 2007, p.

659) co {qsi
|i ∈ {1, 2}, si ∈ Si} is the closed convex hull of its extreme points, and if it had

only one extreme point, it would therefore have to have only one element. By Milman’s

Converse to the Krein-Milman Theorem (Ok, 2007, p. 660), all extreme points of this set

are elements of {qsi
|i ∈ {1, 2}, si ∈ Si}. The result follows from Proposition 6.

We can use Proposition 6 to prove the necessity of the condition in Proposition 2.
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Proof of the Necessity Part of Proposition 2. The necessity of the condition in Proposi-

tion 2 is an immediate consequence of Proposition 6 once we show that the signal re-

alizations (α, α̂) and (β, β̂) have strictly positive probability in some state. We prove

this indirectly. Suppose the realization (α, α̂) had zero probability in both states. Then

p1,ω(α) = p12,ω(α, β̂) for both ω, and, because each realization of each signal occurs with

strictly positive prior probability: p12,ω(α, β̂) > 0 for some ω. Hence, the posterior condi-

tional on observing (α, β̂) is well-defined and we have qα,β̂(a) = qα(a). Now suppose that

β̂ provides the weakest individual evidence for state a, i.e. qβ̂(a) is an extreme point of

the convex hull of {qsi
(a) | i ∈ {1, 2}, si ∈ Si}. Then because p12,ω(α, β̂) > 0 for some

ω, we can apply Proposition 6 and infer that qα,β̂(a) = qβ̂(a). Hence, the two previous

equalities yield qα(a) = qβ̂(a), a contradiction to our assumption that α indicates state

a, and β̂ indicates b. If, on the other hand, β provides the weakest individual evidence

for state a, then an analogous argument yields the contradiction qα̂(a) = qβ(a). A similar

argument shows that (β, β̂) cannot have zero probability in both states.

Clearly, if signals are perfectly correlated, then they are substitutes. In the remainder

of this subsection we ask when the converse is true, i.e. when substitutes need to be

perfectly correlated. We begin by defining perfect correlation formally.

Definition 6. Signals s̃1 and s̃2 are perfectly correlated if there is a one-to-one function

f : S1 → S2 such that

p̄12(s1, s2) > 0⇔ s2 = f(s1). (21)

The following is obvious:

Proposition 7. If signals are perfectly correlated, then they are substitutes.

A converse to this proposition can be proved under additional assumptions.

Proposition 8. Assume:

(i) qsi
6= qs′i for all i ∈ {1, 2} and si, s

′
i ∈ Si where si 6= s′i;

(ii) qsi
/∈ co{qsj

|j ∈ {1, 2}, sj ∈ Sj, qsj
6= qsi

} for all i ∈ {1, 2} and si ∈ Si.

If signals are substitutes, then they are perfectly correlated.

Assumption (i) in Proposition 8 is mild. It requires that no two different signal real-

izations give rise to the same posterior. Assumption (ii) is more restrictive. It says that

23



the posterior qsi
resulting from any signal realization si is not contained in the convex

hull of the set of posteriors arising from all signal realizations if one removes from that

set any posterior that is identical to qsi
.

Proof. Condition (ii) in Proposition 8 implies that the set of extreme points of co {qsi
|

i ∈ {1, 2}, si ∈ Si} includes {qsi
|i ∈ {1, 2}, si ∈ Si}. On the other hand, by Milman’s

Converse to the Krein-Milman Theorem (Ok, 2007, p. 660), all extreme points of co {qsi
|

i ∈ {1, 2}, si ∈ Si} are in {qsi
|i ∈ {1, 2}, si ∈ Si}. Therefore, the set of extreme points of

co {qsi
|i ∈ {1, 2}, si ∈ Si} equals {qsi

|i ∈ {1, 2}, si ∈ Si}.

Consider any s1 ∈ S1, and suppose s2 ∈ S2 is such that p̄12(s1, s2) > 0. Then, by

Proposition 6 we have qs1,s2 = qs1 and qs1,s2 = qs2 , and therefore qs1 = qs2 . There must

be at least one such s2 ∈ S2, and by assumption (i) in Proposition 8 there can be only

one such s2 ∈ S2. We define: f(s1) ≡ s2. This can be done for every s1 ∈ S1. The

function f satisfies, by construction, p̄12(s1, s2) > 0 ⇔ s2 = f(s1). The function f is

one-to-one because f(s1) = f(s′1) implies by construction qs1 = qs′1 which, by condition

(i) of Proposition 8 implies s1 = s′1.

5.2 Complements

We begin again with the case that at least one signal is not informative. For this case,

the following observation is immediate from the definition of complements.

Proposition 9. If at least one signal is not informative, then signals are complements.

In the previous section we showed that a form of “meaning reversal” was necessary and

sufficient for signals to be complements in the binary-binary example. The next result

shows that in general, with more than two states, under an additional assumption meaning

reversal is necessary for complements. Note that, unlike in the case of the binary-binary

model, the result does not assert that meaning reversal is sufficient for complements.

Indeed, in the next subsection we shall show an example where the meaning reversal

condition presented in this subsection is satisfied, and where signals are substitutes.

The following result looks formidable. We unpack the statement of the result for the

reader in the text that follows the result.

Proposition 10. Suppose signals are complements. Consider any r ∈ R|Ω|. Define

e ≡ rπ. If for each i ∈ {1, 2} there is a partition (SEi , S
R
i ) of Si such that the following

three conditions are satisfied:
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(i) For each i ∈ {1, 2}:

e ≥ rqsi
for all si ∈ SEi and e > rqsi

for at least one si ∈ SEi , (22)

and

rqsi
≥ e for all si ∈ SRi and rqsi

> e for at least one si ∈ SRi ; (23)

(ii) For each k ∈ {E,R} there is at least one (s1, s2) ∈ Sk1 × Sk2 such that

p̄12(s1, s2) > 0; (24)

(iii) For each (k, `) ∈ {(E,R), (R,E)}:

e ≥ rqs1,s2 for all (s1, s2) ∈ Sk1 × S`2 with p̄12(s1, s2) > 0, (25)

or

rqs1,s2 ≥ e for all (s1, s2) ∈ Sk1 × S`2 with p̄12(s1, s2) > 0; (26)

then

rqs1,s2 ≥ e for some (s1, s2) ∈ SE1 × SE2 with p̄12(s1, s2) > 0, (27)

or

e ≥ rqs1,s2 for some (s1, s2) ∈ SR1 × SR2 with p̄12(s1, s2) > 0. (28)

This result indicates in lines (27) and (28) that a form of meaning reversal is a necessary

condition for complementarity. To interpret the result suppose the decision maker wants

to learn from the signals whether the expected utility of a risky action R whose payoffs

are given by the vector r is larger or smaller than the expected utility from a safe action

E that yields payoff e in all states. Assume that r and e are such that with the prior

belief π the decision maker is indifferent between the two actions. We denote the set

of realizations of signal s̃i which imply a posterior belief for which action E has higher

expected utility than action R by SEi , and we denote the set of realizations of signal s̃i

which imply a posterior belief for which action R has higher expected utility than action

E by SRi . Beliefs for which the decision maker is indifferent can be assigned arbitrarily

to one of these two sets.

Signal realizations in SEi by themselves indicate that the expected value rqsi
is not

larger than e. But according to (27) for some joint realization where both realizations
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are in SEi we have (almost15) the reverse: rqs1,s2 ≥ e. In the same way, (28) is a form of

meaning reversal. At least one of these two meaning reversals must occur according to

Proposition 10.

Note, however, that the meaning reversal is necessary only if conditions (24), (25)

and (26) hold. Among these, (24) is a mild regularity condition. The remaining two

conditions are more restrictive. They refer to the case that the decision maker receives

“mixed messages” from the two signal. There are two possible types of mixed messages:

the first type is when s1 is in SE1 but s2 is in SR2 ; the second type is when s1 is in SR1 but

s2 is in SE2 . The conditions require that for each of the two types of mixed signals one

can say unambiguously which signal is “stronger,” irrespective of the specific realization

of the signals. Thus either for all mixed realizations of the first type the expected value of

action E is at least as large as that of action R, and hence signal s̃1 is stronger, or for all

mixed realizations of the first type the expected value of action R is at least as large as

that of action E, and hence signal s̃2 is stronger. An analogous condition needs to hold

for all mixed realizations of the second type, but it is not necessary that the same signal

is stronger for mixed realizations of both types.

Proof. Indirect. Assume for some r ∈ R|Ω| and e ∈ R there were partitions (SEi , S
R
i ) (for

i ∈ {1, 2}) that satisfy the conditions (i)-(iii) of the Proposition, but neither (27) nor (28)

were true. Consider the decision problem with two actions, R and E, where the payoff

of action R in state ω is given by the ω-th component of r, and the payoff of action E is

equal to e in all states of the world. For an arbitrary belief q the expected payoff of action

R is rq, and the expected payoff of E is e. By assumption, the prior π is such that rπ = e,

that is, the agent is indifferent between the two actions based on the prior. We shall show

that the signals are not complements in this decision problem. For the remainder of this

proof, (A, u) will denote this particular decision problem.

Suppose for (k, `) = (E,R) condition (25) were true, and for (k, `) = (R,E) condition

(26) were true. Together with the assumption that neither (27) nor (28) are true, we

can deduce that, conditional on observing any joint signal realization (s1, s2), one optimal

action for the decision maker is E whenever s1 ∈ SE1 , independent of the realization

of signal s̃2, and R whenever s1 ∈ SR1 , again independent of the realization of signal

s̃2. Therefore, V12(A, u) − V1(A, u) = 0. On the other hand, the strict inequalities in

conditions (22) and (23), applied to i = 2, imply that V2(A, u) − V∅(A, u) > 0. Thus,

15Ignoring the possibility of indifference.

26



signals are not complements. The case that for (k, `) = (E,R) condition (26) is true, and

for (k, `) = (R,E) condition (25) is true, is analogous, with the roles of signals 1 and 2

swapped.

Now consider the case that for both admissible (k, `) condition (25) holds. We shall

calculate V1(A, u)−V∅(A, u) and V12(A, u)−V2(A, u). To calculate these value differences

we recall that a positive marginal value from a signal arises only when the signal changes

the decision maker’s optimal choice. As the prior makes the decision maker indifferent,

we can pick the decision maker’s choice when holding the prior as is convenient for our

proof. We pick it to be R. Then we have:

V1(A, u)− V∅(A, u) =
∑
s1∈SE

1

p̄1(s1)(e− rqs1) (29)

=
∑
s1∈SE

1

∑
s2∈S2:

p̄12(s1,s2)>0

p̄12(s1, s2)(e− rqs1,s2), (30)

where the second line equals the first because the expected value of the posterior belief

conditional on the realizations of both signals is the posterior belief conditional on the

realization of signal s̃1. Focusing again on signal realizations that change the set of optimal

choices for the decision maker we also calculate:

V12(A, u)− V2(A, u) =
∑
s1∈SE

1

∑
s2∈SR

2 :
p̄12(s1,s2)>0

p̄12(s1, s2)(e− rqs1,s2). (31)

This equation follows from the assumption that (25) holds for both admissible (k, `) and

that neither (27) nor (28) are true. Subtracting (31) from (30), we find:

V1(A, u)− V∅(A, u)− (V12(A, u)− V2(A, u))

=
∑
s1∈SE

1

∑
s2∈SE

2 :
p̄12(s1,s2)>0

p̄12(s1, s2)(e− rqs1,s2). (32)

By condition (24), applied to k = E, in Proposition 10, the sum on the right hand side of

the last equality is over at least one pair (s1, s2). Moreover, because (27) does not hold for

any (s1, s2) ∈ SE1 × SE2 , this sum is negative, and therefore signals are not complements.

The remaining case, when for both admissible (k, `) condition (26) holds, is analogous,

with the optimal choice under the prior taken to be E.
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Remark 6. For the case of two states, we have a sufficient condition for complements in

Proposition 4, and a necessary condition for complements in Proposition 10. The example

in Subsection 5.3 will show that neither of these results is a complete characterization, that

is, the sufficient condition is not necessary, and the necessary condition is not sufficient.

For the case of more than two states we only have the necessary condition for complements

of Proposition 10, and we don’t have a general sufficient condition. It is interesting to

observe that the proof of Proposition 10 makes reference only to choice problems in which

there are only two actions. The condition in Proposition 10 would therefore even be

necessary if we required signals to satisfy the complementarity inequality only in all two

action choice problems. One way in which one could try to find a more restrictive necessary

condition would be to consider arguments involving decision problems with more than two

actions.

Proposition 10 has the following corollary that provides a necessary condition that is

easier to check than the necessary condition in Proposition 10 because no reference is made

to the vector r and the number e. Instead, a condition is provided under which a suitable

vector r and a number e can be constructed. The proposition’s necessary condition does

not make the connection with meaning reversal obvious. This is why we have first stated

Proposition 10.

Corollary 2. If signals are complements, then for every signal realization (s′1, s
′
2) with

p̄12(s′1, s
′
2) > 0 we have:

π ∈ co {qs1,s2|(s1, s2) ∈ S1 × S2 \ {(s′1, s′2)} and p̄12(s1, s2) > 0} . (33)

Proof. The proof is indirect. Denote the convex hull to which the corollary refers by C

and suppose π /∈ C. Then there is a hyperplane through π that does not intersect with

C. Let r be the orthogonal vector of this hyperplane, and define e ≡ rπ. We can choose

r such that rq < e for all q ∈ C. We now show that with this choice of r and e the

necessary condition of Proposition 10 is violated. For i = 1, 2 define SEi ≡ Si \ {s′i} and

SRi ≡ {s′i}. We first verify conditions (22) and (23) of Proposition 10. Let i ∈ {1, 2}
and j 6= i. Because for every si ∈ SEi and every sj ∈ Sj we have: qsi,sj

∈ C, we can

conclude: rqsi,sj
< e. Because qsi

is a convex combination of qsi,sj
for sj ∈ Sj, this

implies: rqsi
< e, and thus (22) holds. Now consider qs′i . If this belief satisfied: rqs′i ≤ e,

then we could infer rπ < e, because π is a convex combination of qsi
for si ∈ Si, which
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contradicts e = rπ. Therefore: rqs′i > e, which verifies (23). Next, we note that (24)

holds by construction, and that also by construction (25) is true for both (k, `). On the

other hand, (27) and (28) are violated by construction. Thus, Proposition 10 implies that

signals are not complements.

We now use Corollary 2 to derive the necessity part of Proposition 3.

Proof of the Necessity Part of Proposition 3. We begin by proving that p̄12(α, α̂) > 0 and

p̄12(β, β̂) > 0. The proof is indirect. Suppose first that both probabilities were zero.

Then the signals would be perfectly correlated, and therefore not be complements. Next

suppose p̄12(α, α̂) = 0 but p̄12(β, β̂) > 0. Because α and α̂ occur with strictly positive

prior probability probability, we have to have: p̄12(α, β̂) > 0 and p̄12(β, α̂) > 0. Because

α and α̂ indicate that the state is more likely to be a, it must be that qα,β̂(a) > π(a) and

qβ,α̂(a) > π(a). But then the condition of Corollary 2 is violated if we take (s′1, s
′
2) to be

(β, β̂). A symmetric argument applies if p̄12(α, α̂) > 0 and p̄12(β, β̂) = 0. We conclude

that (α, α̂) and (β, β̂) have strictly positive prior probability.

We now prove that qα,α̂(a) ≤ π(a) or qβ,β̂(b) ≤ π(b). The proof is indirect. Suppose

qα,α̂(a) > π(a) and qβ,β̂(b) > π(b). (34)

We begin with the case that the two mixed realizations (α, β̂) and (β, α̂) both have strictly

positive prior probability so that posteriors conditioning on these signal realizations are

well-defined. We go through different possible orderings of the posterior beliefs, and

show that none of them is compatible with signals being complements. Consider first the

following two cases:

qα,β̂(a) ≥ π(a) and qβ,α̂(a) ≤ π(a), (35)

qα,β̂(a) ≤ π(a) and qβ,α̂(a) ≥ π(a). (36)

Condition (35) together with (34) implies that in the decision problem of Figure 5 with

x = 0.5 = π(a), which we shall denote by (A, u) in this proof, the marginal value of

signal s̃2 conditional on signal s̃1 is zero for both signal realizations of signal s̃1. Thus,

V12(A, u)−V1(A, u) = 0, and signals are not complements (note that V2(A, u)−V∅(A, u) >

0 by the assumption that signal s̃2 is informative and x = 0.5.) For ordering (36) the

argument is the same with the roles of signals 1 and 2 swapped.
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We are left with the orderings

qα,β̂(a) > π(a) and qβ,α̂(a) > π(a), (37)

qα,β̂(a) < π(a) and qβ,α̂(a) < π(a). (38)

If (37) holds in combination with (34), the necessary condition in Corollary 2 is violated

if we choose (s′1, s
′
2) = (β, β̂), and if (38) holds in combination with (34), the necessary

condition in Corollary 2 is violated if we choose (s′1, s
′
2) = (α, α̂).

It remains to discuss the cases in which at least one of (α, β̂) and (β, α̂) does not have

strictly positive prior probability. Suppose first that both realizations (α, β̂) and (β, α̂)

have zero prior probability. This means that signals are perfectly correlated and therefore

the marginal value of a signal when the other signal is available is zero. Hence, signals

are not complements. Suppose next that (α, β̂), but not (β, α̂) has zero probability.

If qβ,α̂(a) ≤ π(a), then the same argument as for ordering (35) can be used, and if

qβ,α̂(a) ≥ π(a), the same argument as for ordering (36) can be used. For the remaining

case that (β, α̂), but not (α, β̂) has zero probability, the argument is analogous.

5.3 A Counterexample

In this subsection we present an example that shows that the conditions in Proposition 6

for substitutes and Proposition 10 for complements are only necessary, but not sufficient.

The example also shows that the sufficient conditions for complements in Proposition 4

are not necessary for complements.

Example 9 is shown in Figure 10.16 The example is a two state example: Ω = {a, b}.
Each individual signal s̃i has two informative realizations: αi, βi, and two not informative

realizations: σi, σ
′
i. Among all individual and joint signal realizations, the posterior

belief that the state is a can take on only three values: it equals 1/(1 + λ) > 1/2 for

the realizations αi, (σ1, σ2), (σ′1, σ
′
2); it equals 1/2 for the realizations σi, σ

′
i; and it equals

λ/(1 + λ) < 1/2 for the realizations βi, (σ1, σ
′
2), (σ′1, σ2).

Lemma 3. In Example 9 signals are substitutes if 2ϕ ≤ ρ and complements if 2ϕ ≥ ρ.

Proof. Individually, a signal is informative with probability (1 + λ)ρ. If it is informative,

it induces the same posteriors as a signal with likelihood ratios 1/λ and λ. Therefore, the

16To ensure that all probabilities are non-negative and sum to one, we have to choose the parameters
ρ, ϕ, λ ∈ (0, 1) such that (1 + λ)(ρ+ 2ϕ) = 1.
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α2 σ2 σ′2 β2

α1 ρ 0 0 0

σ1 0 ϕ λϕ 0

σ′1 0 λϕ ϕ 0

β1 0 0 0 λρ

α2 σ2 σ′2 β2

α1 λρ 0 0 0

σ1 0 λϕ ϕ 0

σ′1 0 ϕ λϕ 0

β1 0 0 0 ρ

ω = a ω = b

Figure 10: Example 9 (signals are substitutes if 2ϕ ≤ ρ and complements if 2ϕ ≥ ρ)

marginal value of an individual signal is the same as the marginal value of a signal with

likelihood ratios 1/λ and λ multiplied by the probability (1 + λ)ρ.

Conditional on being informative, signals are perfectly correlated. Therefore, if one

signal is available and is informative, then the other signal’s marginal value is zero. On

the other hand, if one signal is available and not informative, the other signal induces

the same posteriors as a signal with likelihood ratios 1/λ and λ. Therefore, the marginal

value of a signal given the other signal is already available is the same as the marginal

value of a signal with likelihood ratios 1/λ and λ multiplied by the probability that the

other signal is not informative, which is 1− (1 + λ)ρ.

It follows that signals are substitutes if and only if 1− (1 +λ)ρ ≤ (1 +λ)ρ, and signals

are complements if and only if 1− (1 + λ)ρ ≥ (1 + λ)ρ. With (1 + λ)(ρ+ 2ϕ) = 1, these

conditions are equivalent to 2ϕ ≤ ρ resp. 2ϕ ≥ ρ.

We shall now show that the example satisfies, for all parameter combinations, the

necessary conditions in Proposition 6 for substitutes and Proposition 10 for complements.

We shall thus show that neither set of conditions is sufficient. Consider first the conditions

in Proposition 6. The realizations of signal s̃i which individually induce the most extreme

posteriors are αi and βi. Conditional on such an extreme realization, signals are perfectly

correlated. In particular, once an extreme realization is observed, no realization of the

other signal changes the decision maker’s belief. This means that the necessary condition

for substitutes in Proposition 6 is met for both signals s̃i. However, for 2ϕ > ρ, signals

are not substitutes.

Next, we show that the example satisfies all conditions of Proposition 10. It is easy

to see that for any r and e for which some partition of S1 and S2 satisfies condition (i) of

Proposition 10, the equation rq ≥ e is equivalent to q(a) ≥ 0.5 or q(a) ≤ 0.5. Without
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loss of generality we assume it is equivalent to q(a) ≥ 0.5. For each of the two sets

Si there are four partitions that satisfy condition (i) of Proposition 10. We must have

αi ∈ SRi and βi ∈ SEi , but σi and σ′i can each be allocated to either of the two sets. This

yields 16 pairs of partitions, all of which satisfy condition (ii) of Proposition 10. One can

check that condition (iii) is violated by the two pairs of partitions for which σi and σ′i

are both in SEi for some i ∈ {1, 2} and σj and σ′j are both in SRj for j 6= i. Ignoring

these two cases, one can check that in all other cases there is some meaning reversal.

For example, if SR1 = {α1, σ1}, SE1 = {σ′1, β1}, SR2 = {α2, σ
′
2}, and SE2 = {σ2, β2}, then

meaning reversal occurs for the signal realizations (σ1, σ
′
2). This shows that the example

satisfies the necessary condition for complementarity in Proposition 10. However, for

2ϕ < ρ, signals are not complements.

The example also demonstrates that the sufficient condition in Proposition 4 for com-

plementarity is not necessary. To see this, pick some x such that λ/(1+λ) < x < 0.5, and

note that Sαi (x) = {αi, σi, σ′i} and Sβi (x) = {βi} for i = 1, 2. The information structure

for the derived signals t̃1(x) and t̃2(x) is shown in Figure 11. Observe that t̃1(x) and t̃2(x)

are perfectly correlated and therefore are not complements.

tα2 (x) tβ2 (x)

tα1 (x) 1− λρ 0

tβ1 (x) 0 λρ

tα2 (x) tβ2 (x)

tα1 (x) 1− ρ 0

tβ1 (x) 0 ρ

ω = a ω = b

Figure 11: Signals t̃1(x) and t̃2(x) for Example 9 and partition {{σ′i, σi, αi}, {βi}}

6 Linear Decision Problems

Many pairs of signals are neither complements nor substitutes. This is because the require-

ments that define complementarity and substitutability are stringent in that they require

the complementarity or substitutability inequalities to hold in all decision problems. In

applications, only subclasses of decision problems might be of interest. Restricting at-

tention to subclasses of decision problems gives rise to notions of complementarity or

substitutability that apply to more pairs of signals. In the literature on the Blackwell

comparison of the informativeness of signals, the parallel line of research has been pur-

sued by Lehmann (1988), Persico (2000), Athey and Levin (2001), and Jewitt (2007).
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These authors restrict attention to decision problems where states and actions are real

numbers. Only decision problems for which the utility function u satisfies some form of

monotonicity, for example a single crossing condition, are considered. These authors then

provide informativeness comparisons for real valued signals that are assumed to satisfy

the monotone likelihood ratio condition. In particular, Jewitt (2007, Propositions 1, 3,

and 4) shows that informativeness comparisons in this restricted set-up are equivalent to

Blackwell comparisons that are carried out for each pair of possible states, pretending in

each case that these two states were the only possible states of the world. Our insights

into complementarity and substitutability in the case of only two states can therefore be

extended to settings with more than two states if one restricts attention to the same class

of decision problems as the authors quoted above do, and if one makes use of the close

relation between complementarity, substitutability, and Blackwell comparisons. However,

to proceed along these lines one needs to impose conditions on the joint conditional distri-

bution of signals that ensure that both auxiliary signals that were constructed in Section

3 satisfy the monotone likelihood ratio condition. The investigation of such conditions

goes beyond the scope of this paper.

We focus instead on a different subclass of decision problems, linear decision problems,

for which we can extend our results without strong conditions for the signal distributions.

We assume that states, though not necessarily signals, are real numbers, and we only

consider decision problems where the utility function is linear in the state. Our results

in this section will show that complementarity or substitutability in the linear model is

equivalent to complementarity or substitutability in an auxiliary model in which there

are only two states, and in which utility functions are unrestricted. Therefore, our earlier

analysis of the two state case can be extended in a straightforward way to obtain an

analysis of substitutability and complementarity in linear decision problems.

An important conceptual feature of the analysis that follows is that it depends on

the prior distribution π over the state space Ω. In the linear model, signals that are

complements or substitutes for one prior need not be complements or substitutes for

some other prior. This is different from the case in which we allow all possible utility

functions, as in the previous sections. In that case the prior can be fixed, but which prior

is chosen does not affect the analysis. These considerations motivate the reference to the

prior distribution in the following definition.17

17The assumption in this definition that min Ω = 0 and max Ω = 1 is a normalizing assumption that is
without loss of generality.
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Definition 7. Suppose Ω is a finite subset of R, and suppose ω ≡ min Ω = 0 and

ω̄ ≡ max Ω = 1. Let π be a prior distribution over Ω. Signals s̃1 and s̃2 are linear

substitutes given π if for all decision problems (A, u) such that for any given a ∈ A the

utility function u(a, ω) is a linear function of ω we have:

V1(A, u)− V∅(A, u) ≥ V12(A, u)− V2(A, u). (39)

Signals s̃1 and s̃2 are linear complements given π if for all decision problems (A, u) such

that for any given a ∈ A the utility function u(a, ω) is a linear function of ω we have:

V12(A, u)− V2(A, u) ≥ V1(A, u)− V∅(A, u). (40)

Now consider some arbitrary signal s̃ with realizations in the finite set S. We shall

associate with s̃ another, auxiliary signal ŝ that is defined in an auxiliary model with only

two states, ω = 0 and ω̄ = 1, and which has realizations in the same finite set S in which

also the realizations of s̃ are contained. To specify this auxiliary model we thus have

to specify the prior probabilities π̂(ω) and π̂(ω̄) of the two states, and the conditional

probabilities p̂ω(s) and p̂ω̄(s) of all signal realizations s ∈ S. We shall specify these below.

We shall then apply this construction of an auxiliary signal to the particular case that

the signal s̃ is (s̃1, s̃2) to obtain an auxiliary signal (ŝ1, ŝ2). Our main result will be that

s̃1 and s̃2 are linear substitutes given a prior π if and only if ŝ1 and ŝ2 are substitutes,

and that an analogous result holds for complements.

We now construct the auxiliary signal ŝ. We denote by E[ω̃] the expected value of ω̃,

and we denote by E[ω̃|s] the expected value of ω̃ conditional on some signal realization

s. We set Ω̂ = {ω, ω̄}, we specify the prior probabilities π̂ as follows:

π̂(ω̄) = E[ω̃] and π̂(ω) = 1− E[ω̃], (41)

and we define the conditional signal probabilities by setting for any s ∈ S:

p̂ω̄(s) =

∑
ω∈Ω

[π(ω)pω(s)ω]

E[ω̃]
and p̂ω(s) =

∑
ω∈Ω

[π(ω)pω(s)(1− ω)]

1− E[ω̃]
. (42)

It is easy to verify that these are non-negative numbers whose sum is 1.

By construction, the prior expected value of the state in the auxiliary model is the

same as in the original model. The next lemma shows that the auxiliary signal that we
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have constructed also induces the same distribution of conditional expected values of ω̃

as the original signal.

Lemma 4. For every signal realization s ∈ S: (i) the prior probability of observing signal

realization s is in the auxiliary model the same as it was in the original model; and (ii)

the conditional expected value of the state, conditional on observing signal realization s,

is in the auxiliary model the same as it was in the original model.

Proof. To prove (i), note that in the auxiliary model the prior probability of observing s

is:

π̂(ω̄)p̂ω̄(s) + π̂(ω)p̂ω(s)

= E[ω̃]

∑
ω∈Ω

[π(ω)pω(s)ω]

E[ω̃]
+ (1− E[ω̃])

∑
ω∈Ω

[π(ω)pω(s)(1− ω)]

1− E[ω̃]

=
∑
ω∈Ω

[π(ω)pω(s)] , (43)

which is equal to the prior probability of observing s in the original model.

To prove (ii), note that in the auxiliary model the conditional expected value of the

state is:

π̂(ω̄)p̂ω̄(s)∑
ω∈Ω̂

π̂(ω)p̂ω(s)
=
E[ω̃]

P
ω∈Ω

[π(ω)pω(s)ω]

E[ω̃]∑
ω∈Ω

[π(ω)pω(s)]
=

∑
ω∈Ω

[π(ω)pω(s)ω]∑
ω∈Ω

[π(ω)pω(s)]
= E[ω̃|s], (44)

where we use the assumption that ω = 0 and ω̄ = 1.

In the particular case in which signal s̃ is equal to (s̃1, s̃2), the above construction

yields an auxiliary signal (ŝ1, ŝ2) with realizations in S1 × S2. We denote the signals

that result if the decision maker observes only the first, or only the second, of the two

components of the auxiliary signal by ŝ1 and ŝ2. Since equation (42) is additive in the

conditional probabilities pω(s), ŝi and the auxiliary signal associated with s̃i have the same

distribution conditional on each state. Consequently, (ŝ1, ŝ2), ŝ1 and ŝ2 induce the same

distribution of conditional expected values of the state as (s̃1, s̃2), s̃1 and s̃2. In addition,

when utility is linear, the decision maker’s expected utility of any action only depends on

the expected value of the state ω and not on any other feature of the distribution of ω.

This explains the main result of this section.
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Proposition 11. Signals s̃1 and s̃2 are linear substitutes given π if and only if the aux-

iliary signals ŝ1 and ŝ2 are substitutes. Signals s̃1 and s̃2 are linear complements given π

if and only if the auxiliary signals ŝ1 and ŝ2 are complements.

Remark 7. Proposition 11 refers to signals s̃1 and s̃2 as linear complements or substitutes

given the prior π, but refers to signals ŝ1 and ŝ2 as complements and substitutes without

reference to a prior. This is because in the auxiliary two state model all utility functions

are linear with respect to the state, and therefore there is no difference between linear

complementarity or substitutability, and complementarity or substitutability in the sense

of the previous sections. Moreover, as was emphasized before, the complementarity and

substitutability notions of the previous section are independent of the prior. Note that the

prior π does, of course, enter into the definition of signals ŝ1 and ŝ2

Proof. Consider any decision problem (A, u) where u is linear in ω. There is a related

decision problem (Â, û) in the auxiliary model where the action set is Â = A, that

is, the same as in the original decision problem, and where the utility function û is

obtained from the utility function u in the original model by setting û(a, ω) = u(a, ω)

and û(a, ω) = u(a, ω) for any a ∈ Â. Thus, û is the restriction of u to A × {ω, ω̄}. For

every decision problem (A, u) there is thus a corresponding decision problem (Â, û), but

observe also that, vice versa, for every given decision problem (Â, û), there is a unique

corresponding decision problem (A, u) such that u is linear in ω.

Denote by V̂∅(Â, û) the decision maker’s expected utility when choosing optimally in

the auxiliary model with no information, for i = 1, 2, denote by V̂i(Â, û) the decision

maker’s expected utility when choosing optimally after observing the realization of ŝi in

the auxiliary model, and denote by V̂12(Â, û) the decision maker’s expected utility when

choosing optimally after observing the realization of (ŝ1, ŝ2) in the auxiliary model. Our

proof strategy is to show:

V̂∅(Â, û) = V∅(A, u), V̂i(Â, û) = Vi(A, u) (for i = 1, 2), V̂12(Â, û) = V12(A, u). (45)

This equation immediately implies that the same inequalities that determine whether s̃1

and s̃2 are complements or substitutes also determine whether ŝ1 and ŝ2 are complements

or substitutes, and thus proves the result.

To prove our claims we observe first that, when utility is linear, the decision maker’s

expected utility only depends on the expected value of the state ω̃, not on the distribution

of ω̃. Therefore, Lemma 4 (ii) implies that, when maximizing expected utility in decision
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problem (A, u) conditional on some signal realization s, the decision maker obtains the

same maximal expected utility in the auxiliary model using the auxiliary signal as he

obtained in the original model using the original signal. Second, Lemma 4 (i) says that

all signal realizations s have the same prior probability in the auxiliary model as in

the original model. Because the ex ante expected utilities to which we refer above are

calculated as the sum over all signal realizations of the probability of that signal realization

times the maximal expected utility obtainable after observing that signal realization, our

assertion follows.

As a consequence of this proposition, we can check whether any two signals are linear

complements or linear substitutes by checking complementarity and substitutability, re-

spectively, in an associated two state model. For this latter purpose we can use the results

of Section 4 for two state models. Consider, for instance, a linear model in which indi-

vidual signals each only have two possible realizations: S1 = {α, β} and S2 = (α̂, β̂}, and

assume that E[ω̃|α] > E[ω̃|β] and E[ω̃|α̂] > E[ω̃|β̂]. Then we can infer from Proposition 2

that signals are substitutes if and only if (α, α̂) and (β, β̂) each have strictly positive prob-

ability and E[ω̃|(α, α̂)] = max{E[ω̃|α], E[ω̃|α̂]} and E[ω̃|(β, β̂)] = min{E[ω̃|β], E[ω̃|β̂]}.
Similarly, we can infer from Proposition 3 that signals are complements if and only if

(α, α̂) and (β, β̂) each have strictly positive prior probability and E[ω̃|(α, α̂)] ≤ E[ω̃] or

E[ω̃|(β, β̂)] ≥ E[ω̃]. Intuitively, one obtains characterizations in terms of conditional ex-

pected values of the state because in the auxiliary model, where the state is either 0 or 1,

the conditional probabilities equal conditional expected values, and because conditional

expected values in the auxiliary model equal conditional expected values in the original

model by part (ii) of Lemma 4.

7 Conclusion

This paper has provided some insights into the nature of substitutability and comple-

mentarity relations among signals. Our most general conditions for substitutability and

complementarity in the case that there are more than two states are only necessary, not

sufficient, and therefore give us only a partial description of signals that are substitutes

or complements. As the necessary condition for substitutes is obviously very restrictive,

whereas the necessary condition for complements is not obviously as restrictive, perhaps

the most intriguing open question is how large the class of complements is if there are

more than two states. As explained in Section 6, a further study of complementarity and
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substitutability in the case that attention is restricted to decision problems in which the

decision maker’s utility function satisfies some monotonicity condition seems also feasible.

A further line of work is to pursue the implications of complementarity and substi-

tutability in economic settings. In this context it is interesting that complementarity and

substitutability of signals may not only matter in single person decision problems, but also

in games when agents hold private signals, and each agent’s preferences depend on all sig-

nal realizations, that is, in contexts with interdependent preferences. Such contexts arise

naturally in auctions or in voting games. It seems worthwhile to explore the implications

of complementarity and substitutability in those contexts. Finally, complementarity of

signals may also matter when agents acquire signals sequentially. In this case, the second

signal may be acquired when the agent already knows the realization of the first signal.

By contrast, in our setting, each signal is acquired without knowing the realization of the

other signal. Extending our results to a setting where agents evaluate signals knowing

the realization of other signals is another project for future work.
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A Proof of the Sufficiency Part of Proposition 2

We only consider the case in which the realization α provides the strongest individual

evidence for state a: qα(a) ≥ qα̂(a). The other case can be dealt with analogously.

There are two further cases: we first consider the case in which β provides the strongest

individual evidence for b: qβ(b) ≥ qβ̂(b). In this case, conditions (13) and (14) become:

qα,α̂(a) = qα(a), qβ,β̂(a) = qβ(a). (46)

We now argue that signal s̃2 does not affect the decision maker’s belief if he has observed

signal s̃1. Indeed, if the realization (α, β̂) has strictly positive probability in some state,

then since qα(a) is a convex combination of qα,s2(a), s2 ∈ {α̂, β̂}, the left equality above

implies that qα,β̂(b) = qα(b). Moreover, if (α, β̂) has zero probability in all states, then

clearly the decision maker maintains his belief after having observed the realization α
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with probability 1. In sum, we have shown that the probability that a realization of

signal s̃2 changes the decision maker’s belief if realization α of signal s̃1 has been observed

is zero. Symmetrically, the probability that a realization of signal s̃2 changes the decision

maker’s belief if realization β of signal s̃1 has been observed is zero. But this means that

the marginal value of signal s̃2, if signal s̃1 is available, is zero in all decision problems.

Hence, signals are substitutes.

We next consider the case qβ̂(b) ≥ qβ(b). In this case, conditions (13) and (14) become:

qα,α̂(a) = qα(a), qβ,β̂(b) = qβ̂(b). (47)

We first argue that this implies

p12,a(α, β̂) = p12,b(α, β̂) = 0. (48)

Indeed, suppose the contrary were true. Then because for i, j, qsi
(a) is a convex combi-

nation of qsi,sj
(a), sj ∈ Sj, (47) would imply that qα,β̂(a) = qα(a), and qα,β̂(a) = qβ̂(a),

a contradiction to our assumption that realization α indicates state a and realization β̂

indicates state b.

We now demonstrate that signals are substitutes. Suppose first that the realization

(β, α̂) has zero probability in all states. Then (48) implies that signals are perfectly

correlated. Therefore, the probability that a realization of one signal changes the decision

maker’s belief if the other signal is available is zero. Hence, signals are substitutes.

Suppose next that (β, α̂) has strictly positive probability in some state. (47) together

with the fact that for i, j, qsi
(a) is a convex combination of qsi,sj

(a), sj ∈ Sj and the

assumption that α provides the strongest and β̂ the weakest individual evidence for state

a implies the ordering:

qβ,β̂(a) = qβ̂(a) ≤ qβ(a) ≤ qβ,α̂(a) ≤ qα̂(a) ≤ qα(a) = qα,α̂(a). (49)

We now use Lemma 1 to demonstrate that signals are substitutes. By Lemma 1, it is

sufficient to verify that signals are substitutes in all two action problems of Figure 5 for

all x ∈ (0, 1). We show that for any x there is a signal s̃i so that V12(A, u)− Vi(A, u) = 0

holds for the two action decision problem (A, u) with parameter x.

• x ≤ qβ,β̂(a) or x ≥ qα,α̂(a): Then all realizations of (s̃1, s̃2), s̃1, s̃2 induce the same

optimal action, so that V12(A, u)− V1(A, u) = V12(A, u)− V2(A, u) = 0.
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• x ∈ (qβ,β̂(a), qβ,α̂(a)]: Then the probability that a realization of signal s̃1 moves the

decision maker’s belief when realization β̂ of signal s̃2 has been observed is zero,

and no realization of signal s̃1 changes the optimal action if realization α̂ of signal

s̃2 has already been observed. Therefore, V12(A, u)− V2(A, u) = 0.

• x ∈ (qβ,α̂(a), qα,α̂(a)]: Then the probability that a realization of signal s̃2 moves the

decision maker’s belief if realization α of signal s̃1 has been observed is zero, and no

realization of signal s̃2 changes the optimal action if realization β of signal s̃1 has

already been observed. Therefore, V12(A, u)− V1(A, u) = 0.

B Proof of the Sufficiency Part of Proposition 3

We begin with the observation that the conditions in Proposition 3 imply that all signal

realizations have strictly positive prior probability. Suppose, for example, (15) were true

and p̄12(α, β̂) = 0. Then qα(a) = qα,α̂(a) ≤ π(a) which would contradict our assumption

that qα(a) > π(a). The argument can be completed by repeating this step a number of

times.

By Lemma 1, it suffices to verify complementarity for all two action problems described

in Figure 5. Below, we shall assume that x ≤ 0.5 = π(a). If x ≤ 0.5, then it is optimal

under the prior belief to choose B. We shall assume that qβ(a) < x and qβ̂(a) < x so that

after observing β or β̂ it is strictly optimal to choose T . If this were not true, at least

one of the signals would by itself never provide a strict incentive to switch away from

the action that maximizes expected utility under the prior, and thus this signal by itself

would have zero value. Signals would then trivially be complements.

A signal has positive value by itself if it sometimes induces the decision maker to

switch to T , and the value of the signal is the expected utility increase arising from these

switches. If the decision maker attaches probability q(a) < x to state a, and switches

from B to T , then the increase in expected utility is:

(1− q(a))x− q(a)(1− x) = x− q(a). (50)

Observing a second signal realization sometimes induces the decision maker to switch

back from T to B. If some signal observation induces the decision maker to hold beliefs
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q(a) > x, and to switch from T to B, then the increase in expected utility is:

q(a)(1− x)− (1− q(a))x = q(a)− x. (51)

Building on these considerations, we can now calculate for the two action decision

problem (A, u) that corresponds to the parameter value x:

V2(A, u)− V∅(A, u) = p̄2(β̂)[x− qβ̂(a)]

= p̄12(β, β̂)[x− qβ,β̂(a)] + p̄12(α, β̂)[x− qα,β̂(a)]. (52)

The first line uses the assumption qβ̂(a) < x. The first and the second line are equal

because the expected value of the posterior belief after observing both signal realizations,

taking expected values over the realizations of signal 1, is the posterior belief after ob-

serving the realization of signal 2 only. We next compute the marginal value of signal s̃2

when signal s̃1 is available:

V12(A, u)− V1(A, u) = p̄12(β, α̂)[qβ,α̂(a)− x]+ + p̄12(β, β̂)[qβ,β̂(a)− x]+

+p̄12(α, α̂)[x− qα,α̂(a)]+ + p̄12(α, β̂)[x− qα,β̂(a)]+. (53)

Here, we use for any real number z the following notation: z+ ≡ z if z ≥ 0, and z+ ≡ 0

if z < 0. We have also made use of our assumption qβ(a) < x.

We now prove first that (15) implies that signals are complements. Condition (15)

implies that qβ,α̂(a) > 0.5 > x because otherwise we could not have qα̂(a) > 0.5 = π(a).

Thus,

V12(A, u)− V1(A, u) ≥ p̄12(β, α̂)[qβ,α̂(a)− x]. (54)

Therefore, we obtain for the difference:

V12(A, u)− V1(A, u)− (V2(A, u)− V∅(A, u))

≥ p̄12(β, α̂)[qβ,α̂(a)− x] + p̄12(β, β̂)[qβ,β̂(a)− x] + p̄12(α, β̂)[qα,β̂(a)− x]. (55)

Now we add and subtract p̄12(α, α̂)[qα,α̂(a) − x] on the right hand side. Using the fact

that
∑

(s1,s2)∈S1×S2
p̄12(s1, s2)qs1,s2(a) = π(a) = 0.5, the right hand side of (55) becomes

equal to

0.5− x− p̄12(α, α̂)[qα,α̂(a)− x] ≥ 0.5− x− p̄12(α, α̂)[0.5− x] ≥ 0. (56)
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The first inequality follows because qα,α̂(a) ≤ 0.5 by (15). The second inequality follows

because x ≤ 0.5 and since p̄12(α, α̂) < 1. This establishes that (15) implies that signals

are complements.

We next prove that (16) implies that signals are complements. Condition (16) implies:

qβ,β̂(a) ≥ π(a) = 0.5 ≥ x, and hence we have:

V12(A, u)− V1(A, u) ≥ p̄12(β, β̂)[qβ,β̂(a)− x] + p̄12(α, β̂)[x− qα,β̂(a)]+. (57)

Thus,

V12(A, u)− V1(A, u)− (V2(A, u)− V∅(A, u))

≥ p̄12(β, β̂)[qβ,β̂(a)− x] + p̄12(α, β̂)[x− qα,β̂(a)]+

+p̄12(β, β̂)[qβ,β̂(a)− x] + p̄12(α, β̂)[qα,β̂(a)− x] ≥ 0. (58)

The sum in (58) is non-negative since qβ,β̂(a) ≥ π(a) = 0.5 ≥ x by (16), and because the

sum of the second and the fourth term is always non-negative. Thus we have again shown

that signals are complements.
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