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Abstract
A quantum Cournot game whose classical form game has multiple Nash
equilibria is examined. Although the classical equilibria fail to be Pareto
optimal, the quantum equilibrium exhibits the following two properties: (i) if
the measurement of entanglement between strategic variables chosen by the
competing firms is sufficiently large, the multiplicity of equilibria vanishes, and
(ii) the more strongly the strategic variables are entangled, the more closely the
unique equilibrium approaches to the optimal one.

PACS numbers: 03.67.−a, 02.50.Le

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Game theory is a powerful mathematical tool to analyze various natural and social phenomena
[1–3]. After the publication of Meyer [4], there has been a great deal of effort to extend
the classical game theory into the quantum domain, and it has been shown that quantum
games may have significant advantages over their classical counterparts [4–6]. The classical
game theory has a fatal drawback, namely the multiplicity of equilibria. Battle of sexes,
chicken game and stag hunt are famous examples of games with multiple equilibria. For
a game possessing multiple equilibria, the classical game theory can say nothing about the
predictability of the outcome of the game: there is no particular reason to single one out of
these equilibria. Until now, several quantum extensions are considered to resolve this problem,
e.g. battle of sexes [7–13], chicken game [14–17] and stag hunt [16–18]. Du et al [19, 20]
analyzed the relation between the entanglement parameter and the number of equilibria in
quantum prisoners’ dilemma, and found thresholds in the entanglement parameter where the
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number of equilibria changes. We also attack this problem by analyzing a quantum extension
of a game which describes market competition.

In economics, many important markets are neither perfectly competitive nor perfectly
monopolistic, that is, the action of individual firms affects the market price [21]. These
markets are usually called oligopolistic and can be analyzed based on game theory. Recently,
Li et al [22] investigated the quantization of games with continuous strategic space, a classic
instance of which is the Cournot duopoly [23], in which firms compete on the amount of
output they will produce, which they decide on independently of each other and at the same
time. Li et al [22] showed that the firms can escape the frustrating dilemma-like situation
if the structure involves a maximally entangled state. A key feature in [22] is the linearity
assumption, that is, both the cost function and the inverse demand function are linear. It is
well known that linear Cournot games have exactly one equilibrium [21]. On the other hand,
in nonlinear settings, there may be multiple equilibria, and hence we may not predict the
market price. A natural question is whether the uniqueness of equilibria is guaranteed in the
quantum Cournot duopoly. We are trying to answer this question in this paper. To quantize
the model, we apply Li et al’s [22] ‘minimal’ quantization rules to Cournot duopoly in a
nonlinear setting, where there are one symmetric equilibrium and two asymmetric equilibria
in the zero entanglement case3. We observe the transition of the game from purely classical
to fully quantum, as the game’s entanglement increases from zero to maximum. We show
that if the entanglement of the game is sufficiently large, then all asymmetric equilibria vanish
and there remains one symmetric equilibrium. Furthermore, similar to Li et al [22], in the
maximally entangled game, the unique symmetric equilibrium is exactly Pareto optimal. In
other words, the multiplicity of equilibria as well as the dilemma-like situation in the classical
Cournot duopoly is completely resolved in our quantum extension.

2. Classical Cournot duopoly

We consider Cournot competition between two firms, firm 1 and firm 2. They simultaneously
decide the quantities q1 and q2, respectively, of a homogenous product they want to put on the
market. Let P(Q) be the inverse demand function, where Q = q1 + q2. Each firm j ∈ {1, 2}
has the common cost function C(qj ). Then the firm j ’s profit can be written as

uj (q1, q2) = P(Q)qj − C(qj ). (1)

We assume that

P(Q) = a + b − Q, (2)

C(qj ) = 1
4 (qj − a)4 − q2

j + bqj − d, (3)

where a, b, d > 0.
Given any q2, we have ∂2u1(q1, q2)/∂q2

1 � 0. Thus, to maximize her profit, firm 1
chooses q1 such that ∂u1/∂q1 = 0, that is,

−q2 − (q1 − a)3 + a = 0. (4)

Similarly, given any q1, firm 2 chooses q2 such that

− q1 − (q2 − a)3 + a = 0. (5)

3 Several quantum extensions of oligopolistic competition, applying Li et al’s [22] ‘minimal’ quantization rules,
have been considered, e.g. the quantum Cournot duopoly game [24, 25], the quantum Bertrand duopoly game
[26, 27], the quantum Stackelberg duopoly game [28, 29] and the quantum oligopoly game [30].
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A pair (q1, q2) is a Nash equilibrium iff it solves equations (4) and (5). Then, there are three
equilibria, (q1, q2) = (a, a), (a − 1, a + 1) and (a + 1, a − 1). At these equilibria the profits
are

(u1(q1, q2), u2(q1, q2)) =
⎧⎨
⎩

(d, d) if (q1, q2) = (a, a)

(3/4 − a + d, 3/4 + a + d) if (q1, q2) = (a − 1, a + 1)

(3/4 + a + d, 3/4 − a + d) if (q1, q2) = (a + 1, a − 1).

(6)

However, these equilibria fail to be Pareto optimal. The reason why they fail is that
both firms can be better off by jointly decreasing their outputs, since ∂ui/∂qi = 0 and
∂ui/∂qj = −qi < 0 at equilibria. On the other hand, if the two firms can cooperate and
restrict their quantities, then they can increase their joint profit u1 + u2. In particular, the joint
profit is maximized at (q∗

1 , q∗
2 ) such that ∂(u1(q

∗
1 , q∗

2 ) + u2(q
∗
1 , q∗

2 ))/∂qi = 0 for i = 1, 2,
that is,

q∗ ≡ q∗
1 = q∗

2 = a + 2αβ−1 − 1
2α2β, (7)

where α ≡ (2/3)1/3 and β ≡ (
9a +

√
96 + 81a2

)1/3
. (Obviously (q∗, q∗) is Pareto optimal.)

For example,

u1(q
∗, q∗) = u2(q

∗, q∗) = 7/4 + d, (8)

for a = 3. Thus, the joint profit at (q∗, q∗) is greater than that of any equilibrium.
With regard to the asymmetric equilibria, the situation is similar to that of a chicken game

if we correspond the equilibria (a − 1, a + 1), (a + 1, a − 1), respectively, to the equilibria
(cooperate, defect), (defect, cooperate) in the chicken game. Below we will see that, as the
measure of entanglement goes to infinitely large in a quantum form of Cournot competition,
the unique equilibrium comes to be optimal, as if the unique cooperative equilibrium is attained
in the chicken game [15].

3. Quantum Cournot duopoly

To model Cournot duopoly on a quantum domain, we follow Li et al’s ‘minimal’ extension,
which utilizes two single-mode electromagnetic fields, the quadrature amplitudes of which
have a continuous set of eigenstates. The tensor product of two single-mode vacuum states
|vac〉1⊗|vac〉2 is identified as the starting state of the Cournot game, and the state consequently
undergoes a unitary entanglement operation Ĵ (γ ) ≡ exp

{−γ
(
â
†
1â

†
2 − â1â2

)}
, in which â1 and

â2
(
â
†
1 and â

†
2

)
are the annihilation (creation) operators of the electromagnetic field modes.

The operation is assumed to be known to both firms and to be symmetric with respect to the
interchange of the two field modes. The resultant state is given by |ψi〉 ≡ Ĵ (γ )|vac〉1 ⊗|vac〉2.
Then firm 1 and firm 2 execute their strategic moves via the unitary operations D̂1(x1) ≡
exp

{
x1

(
â
†
1 − â1

)/√
2
}

and D̂2(x2) ≡ exp
{
x2

(
â
†
2 − â2

)/√
2
}
, respectively, which correspond

to the quantum version of the strategies of the Cournot game. The final measurement is made,
after these moves are finished and a disentanglement operation Ĵ (γ )† is carried out. The final
state prior to the measurement, thus, is |ψf 〉 ≡ Ĵ (γ )†D̂1(x1)D̂2(x2)Ĵ (γ )|vac〉1 ⊗ |vac〉2. The
measured observables are X̂1 ≡ (

â
†
1 + â1

)/√
2 and X̂2 ≡ (

â
†
2 + â2

)/√
2, and the measurement

is done by the homodyne measurement with an infinitely squeezed reference light beam (i.e.
the noise is reduced to zero). When quantum entanglement is not present, namely γ = 0, this
quantum structure faithfully represent the classical game, and the final measurement provides
the original classical results: q1 ≡ 〈ψf |X̂1|ψf 〉 = x1 and q2 ≡ 〈ψf |X̂2|ψf 〉 = x2. Otherwise,
namely when quantum entanglement is present, the quantities the two firms will produce are
determined by
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q1 = x1 cosh γ + x2 sinh γ, (9)

q2 = x2 cosh γ + x1 sinh γ. (10)

Note that the classical model can be recovered by choosing γ to be zero, since the two firms
can directly decide their quantities. On the other hand, both q1 and q2 are determined by x1

and x2 when γ 	= 0. It leads to the correlation between the firms.
Substituting qj into equation (1) provides the quantum profits u

Q
j for firm j :

u
Q
j (x1, x2) = P(x1, x2)(xj cosh γ + xi sinh γ ) − C(xj , xi), (11)

where i 	= j and

P(x1, x2) = a + b − eγ (x1 + x2), (12)

C(xj , xi) = 1
4 (xj cosh γ + xi sinh γ − a)4

− (xj cosh γ + xi sinh γ )2 + b(xj cosh γ + xi sinh γ ) − d. (13)

Similar to the classical game, we also have ∂2uj (xj , xi)/∂x2
j � 0 for any xi. To maximize

her profit, thus, firm j chooses xj such that ∂uj/∂xj = 0, that is,

−xj sinh 2γ − xi cosh 2γ − (xj cosh γ + xi sinh γ − a)3 cosh γ + a cosh γ = 0. (14)

Solving equation (14) for both firms provides the quantum Nash equilibria and the symmetric
one is uniquely given as

x∗(γ ) ≡ x∗
1 = x∗

2 = a

eγ
+ sech γ · α η−1 − 1

2
α2 η

eγ
, (15)

where η ≡ (
9a tanh γ +

√
12e3γ sech3γ + 81a2 tanh2 γ

)1/3
. As easily seen from equation (15),

the quantity produced by each firm in the equilibrium, equal to eγ x∗(γ ), monotonically
increases and approaches to the Pareto optimal one q∗, as the entanglement γ increases. In
fact, given limγ→∞ tanh γ = 1 and limγ→∞ eγ sech γ = 2, we have limγ→∞ η = β, and thus,

lim
γ→∞ eγ x∗(γ ) = q∗. (16)

As we have observed above, in addition to the symmetric one there are two asymmetric
equilibria in the classical model. Hence, it is expected that the quantum model also possesses
asymmetric equilibria at least as far as the entanglement is not too large. In fact, we can
see that this conjecture is valid for the case of a = 3 as follows. By substituting xj with qj,
equation (14) can be rewritten as

BRj : (a + qj − qi − (qj − a)3) cosh γ − eγ qj = 0. (17)

BRj is a locus of quantities, which is determined by firm j ’s best response strategy xj to the
opponent’s strategy xi. Each intersection of BR1 and BR2 represents quantities produced in
some equilibrium. Figure 1 depicts BR1 and BR2 for γ = 0, 0.285 and 0.6, respectively.
Figure 1 displays that the number of equilibria varies as γ changes. Figure 1(i) corresponds
to the classical model, where there are three equilibria. Figure 1(ii), in which five equilibria
exist, shows the possibility that the number of equilibria increase by the existence of the
entanglement. In figure 1(iii), asymmetric equilibria disappear and the only one symmetric
equilibrium remains. Evidently from these figures, there is the possibility of multiple equilibria
even if the entanglement exists. However, we can prove that asymmetric equilibria vanish
when γ goes large.
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Figure 1. BR1 and BR2 for a = 3.
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Figure 2. The profits at quantum Nash equilibria as a function of the entanglement parameter
γ , where a = 3 and d = 10. The dash-dotted and dotted lines, colored green or red, represent
the profits at the asymmetric equilibria. Each pair of lines, dash-dotted or dotted, corresponds
to the profits gained at one of the asymmetric equilibria. For instance, when firm j earns the
profit indicated by the red dash-dotted (resp. dotted) line, the opponent earns the profit the green
dash-dotted (resp. dotted) line points to, and vice versa. The blue line, depicted at the center,
represents the profit at the unique symmetric equilibrium.

Proposition. For a sufficiently large γ , (x∗(γ ), x∗(γ )) is the unique equilibrium.

It is worth pointing out that the quantifier ‘sufficiently large’ in the proposition is not
so restrictive by the following reason. To obtain the proposition, we use the fact that
sech γ /eγ → 0 as γ → ∞. Since sech γ /eγ converges very quickly, the lower bound
for γ , which guarantees the uniqueness of equilibria, is not so large. For instance, any
asymmetric equilibrium cannot exist for γ > γ2 � 0.296 when a = 3 (as we will see in
figure 2).

Finally, we consider the transition of equilibria of the game from purely classical to fully
quantum, as γ increases from zero to infinity. Figure 2 depicts the transition process for the
case of a = 3 and d = 10: the number of equilibria changes, as γ grows large, from 3 to 5,
from 5 to 3 and from 3 to 1 at last. More precisely, there are two thresholds, namely γ1 � 0.255
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and γ2 � 0.296: for 0 � γ < γ1, there are three equilibria; for γ1 � γ < γ2, there are five;
for γ = γ2, there are three; and for γ2 < γ , the symmetric (and unique) one remains. The
horizontal line at 11.75 (=7/4 + d) represents the half of the maximum joint profit, and the
horizontal line at 10 represents the profit at the symmetric Nash equilibrium of the classical
Cournot game. As easily seen from the figure, asymmetric equilibria vanish and the unique
symmetric equilibrium monotonically approaches to the optimal one as γ goes large.

It is worth mentioning that in quantum prisoners’ dilemma the thresholds in the
entanglement parameter, which give rise to different equilibria, can depend on the strategy
space available to the players and on the quantization method, as shown in [15]. Similar to
[15], the thresholds in our model are sensitive to the choice of strategy space or the quantization
method. For instance, one can easily check how the thresholds changes in a model where
outputs are determined by qi = xi cosh γ + 2xj sinh γ . However, we conjecture that our
asymptotic result stated in the proposition is robust to those changes provided that changes are
continuous in some sense. In particular, consider another quantized model such that outputs
are determined by functions which are homotopic to equations (9) and (10). Then, there exists
the unique symmetric equilibrium for sufficiently large entanglement parameters.
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Appendix. Proof of the proposition

Given a sufficiently large γ , let (q1, q2) be equilibrium outputs. Suppose in contrast
q2 − q1 = δ 	= 0. Then, equation (17) implies

(a − δ − A3) cosh γ − eγ q1 = 0, (A.1)

(a + δ − (A + δ)3) cosh γ − eγ (q1 + δ) = 0, (A.2)

where A ≡ q1 − a. Subtracting equation (A.1) from equation (A.2), we have

(2δ − B) cosh γ − δeγ = 0, (A.3)

where B ≡ 3A2δ + 3Aδ2 + δ3. It implies

B cosh γ = δ(2 cosh γ − eγ ) = δe−γ . (A.4)

Since we assume that δ 	= 0, we have B/δ = e−γ / cosh γ , that is,

δ2 + 3Aδ + 3A2 − sech γ

eγ
= 0. (A.5)

It is necessary for equation (A.5) having a real solution that
4

3

sech γ

eγ
� A2, (A.6)

which implies that A must be sufficiently close to zero since sech γ /eγ → 0 as γ → ∞. The
solution of equation (A.5) is given by

δ =
−3A ±

√
−3A2 + 4 sech γ

eγ

2
� 0. (A.7)
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On the other hand, equation (A.1) implies that

δ = a − A3 − q1e
γ sech γ = a − A3 − (A + a)eγ sech γ. (A.8)

Since eγ sech γ → 2 and A → 0 as γ → ∞, we obtain

δ � −a, (A.9)

which implies that δ is bounded away from zero, a contradiction. Thus, for a sufficiently large
γ , any equilibrium must be symmetric. However, (x∗(γ ), x∗(γ )) is the unique symmetric
solution of equation (14).
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