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Abstract

This paper is motivated by the idea that self-control is more difficult to exert
the more it is exerted. We extend the theory of temptation and self-control intro-
duced by Gul and Pesendorfer [8] to allow for an increasing marginal cost of resisting
temptation, that is, convex self-control costs. We also prove a general representa-
tion theorem that admits a general class of self-control cost functions. Both models
maintain Gul and Pesendorfer’s Order, Continuity and Set-Betweenness axioms but
violate Independence.

1 Introduction

Gul and Pesendorfer [8] (henceforth GP) introduce a theory of choice under temptation.
They model an agent who experiences temptation at the moment of choice, and anticipates
this in an ex-ante period where he selects what choice problem to face. In this ex-ante
period he has a particular perspective on what he should choose, embodied in a ‘normative
preference’. He understands that his choice from menus will not necessarily respect nor-
mative preference, but rather will seek to balance his normative preference with the cost
of resisting temptation.

GP axiomatize the following model (1)-(2). Denote the space of alternatives (lotteries)
by ∆ and the space of menus (nonempty subsets of ∆) by Z. The primitive is a preference %
over menus Z, and reflects the ex-ante choice between menus prior to ex-post (unmodelled)
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choice from a menu. The general class of models that captures an abstract version of the
story in GP is reflected in the following representation for %:

W (x) = max
µ∈x

{u(µ) − c(µ, x)}, x ∈ Z, (1)

where u : ∆ → R represents a vNM normative preference and c(µ, x) reflects the self-control
cost of choosing µ from the menu x. The representation suggests that the utility of a menu
is its indirect utility: the maximum of normative utility less self-control costs. GP’s model
is a specialization that tells a very specific story about the self-control cost function c. Their
model identifies a vNM function v : ∆ → R that represents the temptation perspective, and
measures self-control costs c in terms of the difference between the maximum temptation
utility achievable in a menu x and the actual temptation utility achieved by a choice µ ∈ x:

c(µ, x) = max
η∈x

v(η) − v(µ). (2)

That is, the self-control cost of choosing µ from x is identified with the corresponding
degree of ‘frustration’ of the temptation perspective.

A peculiar feature of GP’s cost function is its linearity in the degree to which temptation
preferences are frustrated, that is, in maxη∈x v(η) − v(µ). Intuitively, the agent has a
constant marginal cost of exerting self-control. This paper is based on the idea that the
marginal cost may not be constant. Introspection suggests that the exertion of self-control
involves an uphill battle: the marginal cost appears to increase with the exertion of self-
control. This is supported by research in psychology that demonstrates that self-control
is a limited resource.1 Motivated by the idea of uphill self-control, this paper axiomatizes
two models.

General Self-Control Representation: The first model takes the form

W (x) = max
µ∈x

{
u(µ) − c(µ, max

η∈x
v(η))

}
, x ∈ Z,

where u and v are linear and c satisfies some minimal regularity properties that support its
interpretation as the cost of self-control. This expunges from GP’s model all but the basic
linearity required for the existence of linear normative and temptation utilities, without
departing from the basic qualitative story underlying GP’s model. Thus, the agent max-
imizes normative utility net of self-control costs, and the cost c(µ, ·) is increasing for any
given possible choice µ.

Convex Self-Control Representation: The second model is a nonlinear extension of GP’s
model given by

W (x) = max
µ∈x

{
u(µ) − ϕ

(
max
η∈x

v(η) − v(µ)

)}
, x ∈ Z, (3)

1This is noted by Fudenberg and Levine [6, 7]; see their paper for references.
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for some increasing function ϕ : R+ → R+ that is convex on the part of the domain that
‘matters for behavior’. This model enriches the general model by requiring self-control
costs to depend on the degree of frustration of temptation preference, as in the GP model,
but without forcing this dependence to be linear.

The convex self-control model behaviorally differs from the GP model in significant
ways. As expressed by one of our axioms, a peculiar feature of convex self-control is that
randomization never makes it harder to exert self-control. For instance, if an agent can
choose a risky lottery r despite being tempted by a safe lottery s, then he can also choose
the risky lottery when both are mixed with a common third lottery, that is, he can choose
αr + (1− α)ν over αs + (1− α)ν even if the latter is tempting. Intuitively, randomization
reduces the difference in temptation utility between the alternatives which in turn reduces
the marginal cost of exerting self-control, thereby enhancing self-control. Notably, this
feature generates the Allais paradox: an agent who may choose s over r may also choose
αr + (1 − α)ν over αs + (1 − α)ν. Overlapping with our companion paper (Noor and
Takeoka [14]) is also the behavioral implication that convex self-control costs will typically
cause ex-post choice to violate the Weak Axiom of Revealed Preference: an agent may
resist temptation and choose αr + (1− α)ν over αs + (1− α)ν in a direct comparison, but
when the more tempting option s is available, the increased marginal cost of self-control
may make αs + (1 − α)ν an attractive compromise.

Further motivation for studying the foundations of the convex self-control can be de-
rived from Fudenberg and Levine [6, 7]. These authors study a (non-axiomatic) dual-self
model that features convex self-control costs. While independently making some of the
above observations, they also show that their model can explain a wide range of behavioral
anomalies, such the Allais paradox, Rabin’s paradox, intertemporal preference reversals, the
relationship between time and risk preferences observed in experiments, and the relation-
ship between cognitive load and risk preferences. They also show that plausible parameter
values allow them to quantitatively fit their model to data on a range of behaviors.

To offer some additional perspective on our paper, we point out where it stands relative
to the current development of the axiomatic literature on temptation. GP’s axiomati-
zation of their model makes use of four axioms: Order, Continuity, Independence and
Set-Betweenness. The first three are natural extensions of the von Neumann-Morgenstern
axioms to a sets of lotteries setting, and the fourth expresses the agent’s temptation and
anticipated choice from menus. Of the four axioms, Set-Betweenness is clearly a substantive
axiom for a model of decision under temptation. Indeed, existing generalizations of GP’s
model (Chatterjee and Krishna [3], Dekel, Lipman and Rustichini [4], Stoval [17]) have
focused on relaxing Set-Betweenness while maintaining Independence. This paper (and
the companion paper [14]) seeks to understand what is potentially lost if one maintains
Independence, a convenient and standard axiom in the literature that seems less important
than Set-Betweenness from the point of view of decision under temptation. We show that
the axiom is not auxiliary in nature in that it rules out intuitive qualitative stories about
decision under temptation, even if Set-Betweenness is retained. In fact, both the models
axiomatized in this paper satisfy Set-Betweenness.
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The remainder of the paper is organized as follows. This Introduction concludes with a
mention of related literature. Sections 2 and 3 axiomatize our general and convex models
respectively. Section 4 concludes with some observations of the convex model’s implied
properties for ex post choice. All proofs are contained in appendices.

1.1 Related Literature

In a game-theoretic setting, Fudenberg and Levine [6, 7] study the interaction of a long-run
patient self and a sequence of short-run impulsive selves, each of which is a primitive of
their model. They show that the equilibria of the game played by those selves can be
regarded as the solution to a maximization problem analogous to (1). Their general setup
allows for cases where the cost function might be convex, which would then correspond to
specializations of (1) which include the convex self-control model. In [7] they construct and
analyze a model with convex self-control costs that explains and quantitatively fits a range
of experimental findings.

In the temptation literature, Chatterjee and Krishna [3], Dekel, Lipman and Rustichini
[4] and Stoval [17] generalize GP’s model. They model agents who are uncertain about
temptation (e.g. uncertain about the temptation preference itself, or uncertainty regarding
the strength of self-control, etc.), and Dekel et al also axiomatize a model where multiple
temptations are experienced by the agent. These models relax Set-Betweenness but main-
tain Independence. This paper explores an alternative direction where Set-Betweenness is
maintained and Independence relaxed. We interpret violations of Independence in terms
of non-linear self-control costs. In a companion paper (Noor and Takeoka [14]), we fo-
cus on another possible source of violations of Independence, specifically the possibility of
menu-dependent self-control.

Nehring [12] is interested in a more careful description of the notion of self-control,
which he interprets in terms of a preference over preferences (second order preferences).
Olszewski [15] relaxes the single-dimensionality of temptation in GP’s model by permit-
ting different alternatives in a menu to be tempted by different alternatives in the menu.
Though not specifically motivated by the idea of uphill self-control, these authors provide
foundations for functional forms that can accommodate uphill self-control. On a techni-
cal level these papers differ substantially from ours in that they focus on discrete settings
whereas we provide an axiomatic generalization of GP’s model in a sets-of-lotteries setting.

Finally, we mention Gul and Pesendorfer [10] who, also in a discrete setting, axiomatize
a general model. Their representation for preference over menus is of the form

W (x) = f(max
µ∈x

w(µ), max
η∈x

v(η)),

which admits the interpretation that the agent is tempted to maximize some temptation
utility v but choice is determined by the maximization of some function w. The two
utilities are then aggregated by the function f . To compare, we note that our general
model corresponds to the form

W (x) = max
µ∈x

f(µ, max
η∈x

v(η)).
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Thus, while ex post choice in the Gul and Pesendorfer [10] model maximizes a utility w, in
our model ex post choice from x maximizes the menu-dependent utility f(µ, maxη∈x v(η)).
Indeed, ex post choice in their model satisfies the Weak Axiom of Revealed Preference, and
this in turn suggests that the model is not suitably interpreted as one involving non-linear
self-control.

2 General Model

For any compact metric space C, ∆(C) denotes the set of all probability measures on the
Borel σ-algebra of C, endowed with the weak convergence topology; ∆(C) is compact and
metrizable [1, Thm 14.11], and we often write it simply as ∆. Let Z = K(∆) denote the set
of all nonempty compact subsets of ∆. When endowed with the Hausdorff topology, Z is a
compact metric space [1, Thm 3.71(3)]. An element x ∈ Z is referred to as a menu. Generic
elements of Z are x, y, z whereas generic elements of ∆ are µ, η, ν. For α ∈ [0, 1], µαη ∈ ∆
is the α-mixture that assigns αµ(A) + (1− α)η(A) to each A in the Borel σ−algebra of C.
Similarly, xαy ≡ {µαη : µ ∈ x, η ∈ y} ∈ Z is an α-mixture of menus x and y.

As in GP, the primitive is a preference % over Z.

2.1 Axioms

The first three axioms are familiar from GP.

Axiom 1 (Order) % is complete and transitive.

Axiom 2 (Continuity) The sets {y ∈ Z : y % x} and {y ∈ Z : x % y} are closed for
each x ∈ Z.

Axiom 3 (Set-Betweenness) For all x, y ∈ Z,

x % y =⇒ x % x ∪ y % y.

We refer the reader to GP for a more complete discussion of Set-Betweenness, which
involves interpreting the ranking of x and x∪ y as indicating whether there temptation lies
in y, and the ranking of x∪y and y as indicating whether (unmodelled) ex post choice from
the menu x ∪ y lies in y. What needs to be noted for the purpose of this paper is that the
interpretation of Set-Betweenness does not hinge on any precise properties of how exertion
of self-control in the menu x∪ y affects its desirability. This suggests that Set-Betweenness
is not inconsistent with generalizations of GP that relax the structure on self-control costs.

GP’s fourth axiom formulates the standard vNM independence axiom to the menus-
setting: for all x, y, z and α ∈ (0, 1),

x Â y =⇒ xαz Â yαz.

We relax Independence so as to impose vNM structure on commitment preference and
temptation preference only.

5



Axiom 4 (Commitment Independence) For any µ, η, ν and α ∈ (0, 1),

{µ} Â {η} =⇒ {µαν} Â {ηαν}.

Axiom 5 (Temptation Independence) For any µ, η, ν and α ∈ (0, 1) s.t. {µ} Â {η},

{µ} % {µ, η} ⇐⇒ {µαν} % {µαν, ηαν}.

Moreover, for any µ, η, η′ and α ∈ (0, 1) s.t. {µ} Â {η}, {η′},

{µ} Â {µ, η} and {µ} Â {µ, η′} =⇒ {µ} Â {µ, ηαη′}
{µ} ∼ {µ, η} and {µ} ∼ {µ, η′} =⇒ {µ} ∼ {µ, ηαη′}.

Commitment Independence is readily interpreted. The first part of Temptation Inde-
pendence states that η tempts (resp. does not tempt) µ if and only if ηαν tempts (resp.
does not tempt) µαν. The second part states that if η and η′ both tempt (resp. do not
tempt) µ, then the mixture ηαη′ tempts (resp. does not tempt) µ. These are properties
that would be expected from a vNM temptation preference.

To introduce the next axiom, consider some rankings of menus that are presumably
associated with temptation preference. Say that η is at least as tempting as µ if either
{µ} Â {µ, η} or {η} ∼ {µ, η} Â {µ} holds. As in the previous axiom, the first condition is
a typical behavior revealing that η is more tempting than µ. The second condition says that
η is normatively superior to µ, and the agent does not exhibit preference for commitment
to η. This preference pattern reveals that µ is not more tempting than η, in other words,
η is at least as tempting as µ.

The key axiom we adopt for our general model is:

Axiom 6 (Temptation Dependence) If {µ} Â {µ, η} Â {η} for some µ, η, then for
any ν,

η is at least as tempting as ν =⇒ {µ, ν} % {µ, η}.

The axiom simply says that if we replace η with something less tempting, then the agent
is not worse-off. Intuitively, the lower the temptation in a menu, the lower the self-control
costs associated with resisting temptation. However, the axiom covers also the following
possibility: if ν is less tempting than η and also normatively superior, then ex-post the
agent may optimally choose to submit to temptation, rather than incur any self-control
cost. However, even in this case, the agent would be better off with {µ, ν} than {µ, η}, as
he would submit to temptation in {µ, ν} only because the normative cost of doing so would
be smaller than the self-control cost of resisting, which itself is smaller than the self-control
cost incurred in {µ, η}.
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2.2 Representation Theorem

The most general representation result in this paper is:

Theorem 1 A preference % satisfies Order, Continuity, Set-Betweenness, Commitment
Independence, Temptation Independence and Temptation Dependence if and only if there
exists a representation W : Z → R for % defined by:

W (x) = max
µ∈x

{
u(µ) − c(µ, max

η∈x
v(η))

}
,

where u, v : ∆ → R+ are continuous linear functions and c : ∆×v(∆) → R+ is a continuous
function that is weakly increasing in its second argument, and satisfies:

(i) if v(µ) ≥ l then c(µ, l) = 0;
(ii) if u(µ) > u(η) and l = max{µ,η} v then v(µ) < v(η) ⇐⇒ c(µ, l) > 0.

A preference % that satisfies the noted axiom is referred to as a temptation-dependent
self-control preference, and the representation is a temptation-dependent self-control rep-
resentation. The function c possesses minimal properties required to interpret it as a
self-control cost function. Monotonicity in its second argument reflects the fact that choos-
ing any given alternative µ is more costly from menus with greater temptation. Condition
(i) says that the self-control cost of submitting to temptation is zero. Condition (ii) says
that the self-control cost of resisting temptation is strictly positive.

The model accommodates cost functions which embody the idea that any deviation
from the most tempting alternative is costly:

c(µ, l) > 0 ⇐⇒ v(µ) < l.

However, the model’s uniqueness properties are such that this is not ensured by the axioms
for all µ, l. If (µ, l) is such that v(µ) < l and there is no η with v(η) = l such that

{µ} Â {µ, η} Â {η},

then c(µ, l) is unrestricted. The intuition is that alternatives that are always dominated
in both normative and temptation terms are never chosen. Note that the only way that
unchosen alternatives ‘affect’ the ex-ante preference % is if they are most tempting, and in
particular, unchosen alternatives that are never most tempt have no impact on %. Pref-
erences over menus are not rich enough data in order to recover the cost of choosing such
unchosen alternatives, and consequently any cost can be assigned to them – this is reflected
formally in the following theorem. This lack of uniqueness is a minimal detraction, if at
all: alternatives that are never most tempting nor ever chosen are also not of interest either
from a descriptive standpoint or a normative one.

Theorem 2 Suppose that (u, v, c) and (u′, v′, c′) are both representations of a nondegen-
erate temptation-dependent self-control preference. Then there exist constants αu, αv > 0
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and βu, βv such that u′ = αuu + βu and v′ = αvv + βv. Moreover, c′(µ, l) = αuc(µ, l−βv

αv
) on

the set:

{(µ, l) : v′(µ) ≥ l or {µ} Â {µ, η} Â {η} for some η with v′(η) = l}.

The straightforward proof is omitted.

3 Convex Model

In this section we present a specialization of our general model that reflects two things:
First, the cost of self-control depends on the difference between temptation utility from
choice and maximum temptation utility possible. Second, the cost of self-control is convex,
thereby capturing the idea of uphill self-control. We first formally describe the functional
form and then present its axiomatization.

3.1 Functional Form

As in the general model, let u be a normative utility function and v be a temptation utility
function over lotteries. Both functions are continuous and mixture linear. If µ is chosen
with self-control in {µ, η}, we refer to the difference w = v(η) − v(µ) as the magnitude of
temptation frustration, or frustration for short. We now describe a functional form where
the cost of self-control is a convex transformation of w. This requires us to define the
maximum benefit from self-control among binary menus where the frustration is equal to
w: for all w > 0, let

F (w) ≡ sup{u(µ)−u(η) |w = v(η)−v(µ) for some µ, η s.t. v(η)−v(µ) > 0 > u(η)−u(µ)}.

Note that v(η) − v(µ) > 0 > u(η) − u(µ) states that µ is normatively preferred to η, yet η
is more tempting.2 Since u(µ)−u(η) is the benefit from self-control, F (w) is the maximum
benefit from self-control among binary menus {µ, η} where frustration, v(η)− v(µ), equals
w.

Definition 1 A preference % is a convex self-control preference if there exists a represen-
tation W : Z → R for % defined by:

W (x) = max
µ∈x

{
u(µ) − ϕ

(
max
µ′∈x

v(µ′) − v(µ)

)}
, (4)

where u, v : ∆ → R+ are continuous mixture linear functions and ϕ : [0, max∆ v−min∆ v] →
R+ is a continuous strictly increasing function such that ϕ(0) = 0 and ϕ is convex on a
non-degenerate interval [0, w] and satisfies ϕ(w) ≥ F (w) for w > w.

2This condition is equivalent to {µ} Â {µ, η}.
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Identify any convex self-control representation (4) with the corresponding tuple (u, v, ϕ).
This model describes an agent for whom the costs of self-control increase at an increasing
rate as more self-control is exerted. This is unlike the GP model, where the marginal cost
of exerting self-control is constant. The restriction on ϕ says simply that the agent does
not exercise self-control when frustration exceeds a threshold level w. Since F defines an
upper bound on the benefit of self-control, it is the case that whenever η tempts µ and
v(η) − v(µ) = w > w, the normative benefit u(µ) − u(η) of self-control is always less than
the self-control cost ϕ(w):

ϕ(w) ≥ F (w) ≥ u(µ) − u(η).

Hence self-control is never exerted outside the interval [0, w]. Indeed, the condition ensures
that self-control costs are convex where it is meaningful.

3.2 Axioms

We augment the general model with three axioms. Each are implied by Independence and
are therefore weaker.

Axiom 7 (Weak Binary Independence) For all µ, µ′, η, η′, ν, ν ′ ∈ ∆ and all α ∈ (0, 1),

{µ, µ′}α{ν} % {η, η′}α{ν} =⇒ {µ, µ′}α{ν ′} % {η, η′}α{ν ′}.

This is a weakening of an axiom introduced by Ergin and Sarver [5], who impose the
axiom on all menus rather than just binary menus. Note that Independence implies that
for all µ, µ′, η, η′, ν, ν ′ ∈ ∆ and all α, β ∈ (0, 1),

{µ, µ′}α{ν} % {η, η′}α{ν} =⇒ {µ, µ′}β{ν ′} % {η, η′}β{ν ′}.

Weak Binary Independence is the implication of Independence in which the mixing coef-
ficients α, β are equal. The axiom states that the ranking of binary menus {µ, µ′} and
{η, η′} when mixed with a common singleton {ν} is independent of the lottery in the
singleton. Intuitively, this reflects a ‘translation invariance’ property that states that if
a common ‘translation’ is applied to the elements of both the menus {µ, µ′} and {η, η′},
then the ranking of the menus is unaffected.3 This behavior arises when self-control cost
is measured in terms of the deviation from the most tempting alternative.4

3For any signed measure θ and lottery µ ∈ ∆ such that µ+θ ∈ ∆ is a lottery, µ+θ is a translate of µ in the
direction θ. Translation Invariance is the property that {µ, µ′} % {η, η′} =⇒ {µ+θ, µ′+θ} % {η+θ, η′+θ}
for all suitable θ.

4To see this in terms of representations, note that choice from a menu is determined by a comparison
of the cost and benefit of self-control. If these costs and benefits are ‘differences in utilities’, common
translations of all elements leaves these differences unchanged, and thus leaves choice unaffected. This in
turn ensures that the ranking of any two menus is unaffected by common translations of all elements in
the menus.
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Axiom 8 (Mixing Preserves Self-Control (MPSC)) For all µ, η and α ∈ (0, 1),

{µ} Â {µ, η} Â {η} =⇒ {µ} Â {µ, ηαµ} Â {ηαµ}.

MPSC says that, if the agent exhibits self-control at {µ, η}, then he does so at {µ, ηαµ}.
Notice that the temptation frustration between µ and ηαµ is smaller than that between µ
and η, as the first pair of alternatives are ‘closer’ to each other. Since we are modelling an
agent whose self-control ability is greater for small deviations from the tempting alternative,
it follows that self-control must be preserved as stated in the axiom.

While the previous axiom describes an implication of uphill self-control on anticipated
choice from menus, the next axiom is a direct expression of uphill self-control in the ranking
of menus. For any menu x, define its singleton equivalent ex ∈ ∆ by {ex} ∼ x. Under
Order, Continuity and Commitment Independence, every menu has a singleton equivalent.

Axiom 9 (Self-Control Concavity) For all µ, µ′, η, η′ and α ∈ (0, 1),

{µ} Â {µ, η} Â {η} and {µ′} Â {µ′, η′} Â {η′}

=⇒ {µαµ′, ηαη′} % {e{µ,η}αe{µ′,η′}}.

Observe that, due to the vNM structure imposed on underlying temptation preference,
the temptation frustration in the mixed menu {µαµ′, ηαη′} is an average of the temptation
frustration in each of the two menus. Thus, the evaluation of {µαµ′, ηαη′} contains the
self-control cost associated with this average frustration. On the other hand, due to the
linearity of commitment preference, the mixture {e{µ,η}αe{µ′,η′}} of singleton equivalents
embodies an average of the self-control costs at the two levels of temptation frustration.
Convexity of self-control costs implies that the self-control cost of the average must be lower
than the average of the self-control costs. The axiom reflects precisely this.

3.3 Representation Theorem

Say that % on Z is a self-control preference if there exist µ, µ′ ∈ ∆ with {µ} Â {µ, µ′} Â
{µ′}. The main result of this section is:

Theorem 3 A self-control preference % satisfies all the axioms of Theorem 1, Weak Binary
Independence, MPSC, and Self-Control Concavity if and only if % is a convex self-control
preference.

This establishes the behavioral foundations of the convex self-control model. A discus-
sion of the proof of the result is deferred to the next subsection.

Observe that the convex self-control representation requires ϕ to be convex only on an
interval [0, w]. Our axioms do not guarantee that a convex extension to R+ exists. The
issue is technical: in order for the extension to exist it is necessary that ϕ be Lipschitz
continuous on [0, w]. It is possible to describe restrictions on preference that guarantee
this, but we omit them because of their lack of transparency.

As a corollary of the theorem, we obtain the GP model when Self-Control Concavity is
strengthened to a Self-Control Linearity condition:
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Corollary 1 A convex self-control preference % admits a GP representation if and only if
it satisfies Self-Control Linearity: For all µ, µ′, η, η′ and α ∈ (0, 1) s.t. {µ} Â {µ, η} Â {η}
and {µ′} Â {µ′, η′} Â {η′},

{µαµ′, ηαη′} ∼ {e{µ,η}αe{µ′,η′}}.

Thus, we see that it is Self-Control Linearity that forces the linear self-control costs
property in GP’s model. This alternative axiomatization of GP’s model provides perspec-
tive on the behavioral foundations of their model by highlighting the various implications
of Independence in the presence of Order, Continuity and Set-Betweenness. Indeed, this
permits a more transparent evaluation of that axiom and, in turn, of the model.

Now turn to the uniqueness properties of the convex self-control representation. Given
a representation (u, v, ϕ), the self-control subdomain is defined as follows:

R = {w ∈ [0, max
∆

v − min
∆

v] |w = v(η) − v(µ)

for some µ, η s.t. {µ} Â {µ, η} Â {η}}.

If v(η) − v(µ) /∈ R, self-control is never exerted at {µ, η}. Thus, the actual shape of ϕ
outside R is immaterial in the description of choice behavior. Note that since preference
satisfies the MPSC axiom, R is an interval with inf R = 0. Notice also that the threshold
level w associated with the representation must satisfies R ⊂ [0, w] because self-control is
never exerted when v(η) − v(µ) > w.

The uniqueness properties of the representation mirror those of the general representa-
tion.

Theorem 4 Suppose that (u, v, ϕ) and (ũ, ṽ, ϕ̃) are both representations of a convex self-
control preference. Then there exist constants αu, αv > 0 and βu, βv such that ũ = αuu+βu

and ṽ = αvv + βv. Moreover, when R and R̃ are the self-control subdomains for ϕ and ϕ̃
respectively, R̃ = αvR and ϕ̃(αvw) = αuϕ(w) for all w ∈ R.

The theorem states that u and v are unique up to positive affine transformation. When
ϕ, ϕ̃ are differentiable, the stated condition on ϕ and ϕ̃ implies that for w̃ = αvw and
w ∈ R,

w̃ϕ̃′′(w̃)

ϕ̃′(w̃)
=

wϕ′′(w)

ϕ′(w)

where f ′ and f ′′ denote the first and the second derivatives of f , respectively. Thus the
curvature of ϕ is uniquely determined within the self-control subdomain.

3.4 Proof Outline for Theorem 3

The main technical difficulty is not establishing convexity, but rather showing that the
self-control cost function in the general model takes the form

c(µ, max
η∈x

v(η)) = ϕ

(
max
η∈x

v(η) − v(µ)

)
.
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We explain next how the function ϕ is derived from preference.
The functions u, v, and W are determined as in the general model. Take any µ, η

satisfying {µ} Â {µ, η} Â {η}. This ranking suggests that µ is chosen with self-control in
{µ, η}. Hence, the difference u(µ)−W ({µ, η}) should exactly express the cost of self-control
at {µ, η}. On the other hand, the temptation frustration is w = v(η) − v(µ). Define

ϕ(v(η) − v(µ)) := u(µ) − W ({µ, η}). (5)

The key step in the proof is to show that ϕ is indeed well-defined. This is demonstrated
by establishing that for all µ, µ′, η, η′ such that {µ} Â {µ, η} Â {η} and {µ′} Â {µ′, η′} Â
{η′},

v(η) − v(µ) ≥ v(η′) − v(µ′) =⇒ u(µ) − W ({µ, η}) ≥ u(µ′) − W ({µ′, η′}). (6)

The bulk of the proof for this claim concerns the case where µ, µ′, η, η′ have finite supports
and belong to the interior of ∆µ,µ′,η,η′ , the finite-dimensional set of lotteries over the union
of the supports. The result for general lotteries then obtains by a continuity argument
together with the fact that the set of lotteries with finite supports is dense in ∆ under the
weak convergence topology. So take such lotteries µ, µ′, η, η′ that satisfy the hypothesis of
(6). An implication of MPSC and Self-Control Concavity is that for any α ∈ [0, 1],

{µαµ′} Â {µαµ′, ηαη′} Â {ηαη′}.

That is, since η tempts µ and η′ tempts µ′, it is also true that the mixture ηαη′ tempts the
mixture µαµ′. We observe that there is an open neighborhood O(α) ⊂ [0, 1] of α such that
for any α̃ ∈ O(α),

α̃ ≥ α ⇐⇒ u(µα̃µ′) − W ({µα̃µ′, ηα̃η′}) ≥ u(µαµ′) − W ({µαµ′, ηαη′}).

That is, small movements from α respect the implication (6).5 This observation makes use
of Weak Binary Independence and in particular Temptation Dependence. But now observe
that {O(α)}α∈[0,1] is an open cover of [0, 1]. Therefore there exists a finite subcover, and
indeed, we can find a finite number of mixing coefficients 1 = α0 ≥ α1 ≥ .. ≥ αI = 0 such
that

u(µ) − W ({µ, η}) = u(µα0µ′) − W ({µα0µ′, ηα0η′})
≥ ... ≥ u(µαIµ′) − W ({µαIµ′, ηαIη′}) = u(µ′) − W ({µ′, η′}).

Thus, via this ‘chain’ linking u(µ)−W ({µ, η}) and u(µ′)−W ({µ′, η′}) we are able to prove
(6).

An immediate implication of (6) is that

v(η) − v(µ) = v(η′) − v(µ′) =⇒ u(µ) − W ({µ, η}) = u(µ′) − W ({µ′, η′}).

It then follows that ϕ as defined in (5) is indeed well-defined (in fact it also follows that it
is increasing).

5By linearity of v, if v(η)−v(µ) ≥ v(η′)−v(µ′), then α̃ ≥ α ⇐⇒ v(ηα̃η′)−v(µα̃µ′) ≥ v(ηαη′)−v(µαµ′)
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4 Concluding Remarks: Ex post Choice

While the convex self-control model is a representation for an ex ante preference over menus,
it suggests that ex post choice is given by the choice correspondence defined by:

Cϕ(x) = arg max
µ∈x

{
u(µ) − ϕ

(
max
µ′∈x

v(µ′) − v(µ)

)}
. (7)

We conclude this paper with some observations about this choice correspondence in the
context of choice under risk.

An immediate observation is that Cϕ is menu-dependent via its dependence on the
most tempting alternative in the menu. If ϕ is convex, for instance, this would imply
that while an agent can pick a ‘good’ alternative over a moderately tempting alternative,
adding an even more tempting alternative to the menu may induce the agent to choose the
moderately tempting alternative, thereby violating the Weak Axiom of Revealed Preference.
The intuition for such choice is that the loss of self-control ability due to the presence of
a great temptation may make the agent unable to choose the ‘good’ alternative, but he
may nevertheless have enough self-control to resist the great temptation. He chooses the
moderately tempting alternative as a compromise. An analysis of the notion of menu-
dependent self-control can be found in a companion paper (Noor and Takeoka [14]).

The choice structure as given by (7) has an interesting implication for choice under
risk: choice between risky prospects may not be explicable by expected utility theory. In
fact, the model may accommodate the common ratio effect (Allais [2], Kahneman and
Tversky [11]). To illustrate, consider an agent who normatively prefers a risky lottery r to
a riskless one s but is tempted by the latter. Moreover, suppose he exhibits

{r} Â {r, s} ∼ {s}, and {rαs} Â {rαs, s} Â {s} for some α ∈ (0, 1).

The former ranking suggests that the agent yields to temptation at {r, s} and ends up with
choosing tempting option s, while the latter ranking says that he exercises self-control at
{rαs, s} and chooses rαs over s, that is, mixing r with s induces self-control. Since {rαs, s}
is obtained by mixing {r, s} and {s} with proportion α, this preference reversal has the
spirit of the common ratio effect. In the convex self-control model, this choice pattern is
rationalized if both

u(s) ≥ u(r) − ϕ(v(s) − v(r)), and u(rαs) − ϕ(v(s) − v(rαs)) > u(s)

hold. That is,

ϕ(v(s) − v(r)) ≥ u(r) − u(s) >
1

α
ϕ(α(v(s) − v(r))).

These inequalities can hold when ϕ is convex.
Observe that the utility function in (7) is concave in µ when ϕ is convex. This feature

distinguishes choice behavior of this model from that of other non-expected utility models
satisfying monotonicity with respect to first-order stochastic dominance. Given the fact
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that s is preferred to r, the monotonicity condition requires that s should be preferred to
any mixed options rαs, whereas some rαs may be strictly preferred to both r and s when
ϕ is convex. Intuitively, this is because the mixed option rαs is a good compromise for the
conflict between normative and temptation utilities. In terms of preference over menus,
this property implies that {r, rαs, s} may be strictly preferred to {r, s}.

To conclude, we note that the convex model lends itself to an infinite horizon extension
in the spirit of [9, 13]. In this setting, convexity potentially has interesting implications for
the interaction of risk and time preferences and also for the timing of resolution of risk.

A Appendix: Proof of Theorem 1

The proof of necessity of the axioms is routine. For Temptation Dependence, observe
that since v(ν) ≤ v(η) and c(µ, ·) is weakly increasing, W ({µ, η}) = u(µ) − c(µ, v(η)) ≤
u(µ) − c(µ, v(ν)) ≤ W ({µ, ν}).

Suffiency of the axioms is established in a sequence of lemmas.

Lemma 1 (i) There exists a continuous linear function u : ∆ → R+ such that

{µ} % {η} ⇐⇒ u(µ) ≥ u(η)

(ii) There exists a continuous function W : Z → R+ that represents % and satisfies
W ({µ}) = u(µ) for all µ ∈ ∆.

(iii) There exists a continuous linear function v : ∆ → R+ such that if {µ} Â {η} then

{µ} Â {µ, η} ⇐⇒ v(η) > v(µ).

Proof. (i) The first assertion follows from Order, Continuity, Commitment Independence,
and the mixture space theorem.

(ii) Since u is continuous on ∆, there exist a maximal and a minimal lottery µ∆, µ∆ ∈ ∆
with respect to u. Without loss of generality, we can assume u(µ∆) = 1 and u(µ∆) = 0.
From Continuity and Set Betweenness, {µ∆} % x % {µ∆} for all x ∈ Z. By a standard argu-
ment, for all x ∈ Z, there exists a unique number α(x) ∈ [0, 1] such that x ∼ {µ∆α(x)µ∆}.
Define

W (x) ≡ u(µ∆α(x)µ∆) ∈ [0, 1].

Then W represents %. Moreover, W ({µ}) = u(µ) for all µ ∈ ∆.
To show continuity of W , let xn → x. Since u(µ∆) = 1 and u(µ∆) = 0, W (x) = α(x).

So we want to show α(xn) → α(x). By contradiction, suppose otherwise. Then, there exists
a neighborhood B(α(x)) of α(x) such that α(xm) /∈ B(α(x)) for infinitely many m. Let
{xm} denote the corresponding subsequence of {xn}. Since xn → x, {xm} also converges to
x. Since {α(xm)} is a sequence in [0, 1], there exists a convergent subsequence {α(x`)} with
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a limit α 6= α(x). On the other hand, since x` → x and x` ∼ {µ∆α(x`)µ∆}, Continuity
implies x ∼ {µ∆αµ∆}. Since α(x) is unique, α(x) = α, which is a contradiction.

(iii) See Noor and Takeoka [14, Lemma 9].

Without loss of generality, assume that v(∆) = [0, 1]. By construction, if {µ} Â {µ, η},
then v(η) > v(µ). If {µ} ∼ {µ, η} Â {η}, then v(µ) ≥ v(η).

Lemma 2 For all µ, η, ν ∈ ∆, if {µ} Â {µ, η} Â {η} and v(ν) ≤ v(η), then {µ, ν} %
{µ, η}.

Proof. The first case is where {ν} % {η}. Since {µ} Â {µ, η}, we know u(µ) > u(η)
and v(µ) < v(η). For all α ∈ (0, 1), v(η) > v(ναµ) and u(ναµ) > u(η). Thus {ναµ} Â
{ναµ, η}. By Temptation Dependence, {µ, ναµ} % {µ, η}. By Continuity, we have {µ, ν} %
{µ, η} as α → 1.

Next suppose {η} Â {ν}. If {η} Â {η, ν}, we have v(ν) > v(η), which contradicts
the assumption. Hence Set Betweenness implies {η} ∼ {η, ν} Â {ν}. By Temptation
Dependence, {µ, ν} % {µ, η}.

Define the correspondence L : v(∆) Ã ∆ by:

L(l) := {η : v(η) ≤ l}.

By continuity and linearity of v, it is clear that L(l) is a nonempty compact convex set for
each l. Define the self-control cost function by:

c(µ, l) = max

[
0, max

ν∈L(l)
{u(µ) − W ({µ, ν})}

]
.

The following Lemma clarifies various properties of c. Properties (iii)-(vi) correspond to
the properties in the statement of the Theorem.

Lemma 3 (i) For any µ, l, if {µ} Â {µ, η} Â {η} for some η with v(η) = l, then c(µ, l) =
u(µ) − W ({µ, η}) > 0.

(ii) For any µ, l, if {µ} Â {µ, η} for some η ∈ L(l), then c(µ, l) > 0.
(iii) For any µ, l, if l ≤ v(µ) then c(µ, l) = 0.
(iv) If u(µ) > u(η) and l = maxµ,η v then

v(µ) < v(η) ⇐⇒ c(µ, l) > 0.

(v) For any µ, c(µ, ·) is weakly increasing.
(vi) The function c is continuous.

Proof. (i) For any ν ∈ L(l), v(ν) ≤ v(η), and thus by Lemma 2, u(µ) − W ({µ, ν}) ≤
u(µ) − W ({µ, η}). Since η ∈ L(l), it follows that maxν∈L(l){u(µ) − W ({µ, ν})} = u(µ) −
W ({µ, η}) > 0 and thus c(µ, l) = u(µ) − W ({µ, η}).

(ii) Obvious from the definition of c.
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(iii) Under the hypothesis, {µ} 6Â {µ, η} for all η ∈ L(l). Consequently maxν∈L(l){u(µ)−
W ({µ, ν})} ≤ 0 and so c(µ, l) = 0.

(iv) Sufficiency obtains from part (ii). For the converse, note that if v(µ) ≥ v(η) then
l = v(µ), and thus part (iii) implies c(µ, l) = 0.

(v) For any l, l′ ∈ v(∆),
l′ < l
=⇒ L(l′) ⊂ L(l)
=⇒ maxν∈L(l′){u(µ) − W ({µ, ν})} ≤ maxν∈L(l){u(µ) − W ({µ, ν})}
=⇒ c(µ, l′) ≤ c(µ, l).
(vi) We show below that L : v(∆) Ã ∆ is a continuous correspondence. The assertion

then follows from the following argument: Since u and W are continuous, the Maximum
Theorem implies that (µ, l) 7→ maxν∈L(l){u(µ)−W ({µ, ν})} is continuous. Moreover, since
the upper envelope of two continuous functions is continuous, the function c is continuous.

To show that L is upper hemicontinuous, take any sequence {ln} ⊂ v(∆) that converges
to some l ∈ v(∆), and suppose that ηn ∈ L(ln) for each n. We must show that there is a
subsequence {ln(m)} s.t. ηn(m) → η for some η ∈ L(l). Since {ηn} is a sequence in a compact
set ∆, it has a convergent subsequence ηn(m) → η for some η. Since v(ηn(m)) ≤ ln(m) for
each m, and since v is continuous, it follows that v(η) ≤ l, and thus η ∈ L(l), as desired.

To show that L is lower hemicontinuous, take any sequence {ln} ⊂ v(∆) that converges
to some l ∈ v(∆), and suppose that η ∈ L(l). We must show that there exists a subsequence
{ln(m)} s.t. ηn(m) → η, where ηn(m) ∈ L(ln(m)) for each m. Consider two possibilities:

i - There exists N s.t. ln ≥ v(η) for all n ≥ N .
Then η ∈ L(ln) for each n ≥ N . In particular, lower hemicontinuity is established

by taking the subsequence {lN , lN+1, ...} and the corresponding trivial sequence {η} that
converges to η.

ii - For all N there exists nN ≥ N s.t. ln < v(η).
Take the subsequence {ln(m)} satisfying ln(m) < v(η) for all m. Construct {ηn(m)} as

follows: Let η∗ be the minimizer of v over ∆ (normalized so that v(η∗) = 0) and let αn(m)

satisfy v(ηαn(m)η∗) = ln(m)
v(η)

l
≤ ln(m).

6 Then ηn(m) ∈ L(ln(m)), where ηn(m) := ηαn(m)η∗ for
each m. To see that ηn(m) → η, observe that

v(ηαn(m)η∗) = ln(m)
v(η)

l

=⇒ αn(m)v(η) = ln(m)
v(η)

l
(since v is linear and v(η∗) = 0)

=⇒ αn(m) =
ln(m)

l
(note that v(η) > 0 since v(η) > ln(m) ≥ 0, and also note that

ln(m)

l
< 1 since lnm < v(η) ≤ l).

Since ln(m) → l, it follows that αn(m) → 1, and in turn, ηn(m) → η, as desired.

Lemma 4 For all µ, η ∈ ∆,

W ({µ, η}) = max
ν∈{µ,η}

{
u(ν) − c

(
ν, max

{µ,η}
v

)}
.

6Note that l > 0, otherwise 0 ≤ ln(m) < v(η) ≤ l = 0 is a contradiction. Recall also that η ∈ L(l)
implies v(η) ≤ l, and thus ln(m)

v(η)
l ≤ ln(m).

16



Proof. Consider the various cases. In each case, let l = max{µ,η} v.
(i) {µ} Â {µ, η} Â {η}.
Since v(µ) < v(η) = l, Lemma 3(i) implies W ({µ, η}) = u(µ) − c(µ, l) = u(µ) −

c(µ, max{µ,η} v). Since c(η, l) = 0, we have u(η)−c(η, max{µ,η} v) = u(η), and since {µ, η} Â
{η}, it follows that

u(µ) − c(µ, max
{µ,η}

v) > u(η) − c(η, max
{µ,η}

v).

Indeed, W ({µ, η}) = maxν∈{µ,η} u(ν) − c(ν, max{µ,η} v), as desired.
(ii) {µ} Â {µ, η} ∼ {η}.
By definition of c(µ, l),

c(µ, l) ≥ max
ν∈L(l)

{u(µ) − W ({µ, ν})} ≥ u(µ) − W ({µ, η}).

In particular, W ({µ, η}) ≥ u(µ) − c(µ, l) = u(µ) − c(µ, max{µ,η} v). Then

u(η) − c(η, max
{µ,η}

v) = u(η) = W ({µ, η}) ≥ u(µ) − c(µ, max
{µ,η}

v),

and hence W ({µ, η}) = maxν∈{µ,η} u(ν) − c(ν, max{µ,η} v).
(iii) {µ} ∼ {µ, η} Â {η} or {η} ∼ {η, µ} % {µ}.
Suppose {µ} ∼ {µ, η} Â {η}. Then l = v(µ) ≥ v(η), and in particular, c(µ, l) = 0.

Since c(η, l) ≥ 0,
W ({µ, η}) = u(µ)
= u(µ) − c(µ, max{µ,η} v)
= u(η) since {µ} Â {η} and c(µ, l) = 0
≥ u(η) − c(η, l) since c(η, l) ≥ 0. This establishes the result.
For the case where {η} ∼ {η, µ} % {µ}, we have l = v(η) ≥ v(µ) (this is wlog when

{µ} ∼ {µ, η} ∼ {η}), c(η, l) = 0 and c(µ, l) ≥ 0. Arguing as above yields the result.
(iv) {η} Â {η, µ} % {µ}.
The argument is analogous to that in cases (i) and (ii).

Lemma 5 For all finite menus x ∈ Z,

W (x) = max
ν∈x

{
u(ν) − c

(
ν, max

x
v
)}

.

Proof. The argument is similar that used in the conclusion of the proof [8, Thm 1]. Gul
and Pesendorfer [8, Lemma 2] show that if % satisfies Set Betweenness, for all finite menus
x ∈ Z,

W (x) = max
µ∈x

min
η∈x

W ({µ, η}) = min
η∈x

max
µ∈x

W ({µ, η}). (8)

Fix µ ∈ x arbitrarily. Since c(ν, ·) is weakly increasing for all ν,

min
η∈x

W ({µ, η}) = min
η∈x

max
ν∈{µ,η}

u(ν) − c

(
ν, max

{µ,η}
v

)
≥ min

η∈x
max

ν∈{µ,η}
u(ν) − c

(
ν, max

x
v
)

= max
ν∈{µ,ηµ}

u(ν) − c
(
ν, max

x
v
)

,
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where ηµ is a minimizer of the associated minimization problem. Since the above inequality
holds for all µ ∈ x, if follows from (8) that

W (x) ≥ max
µ∈x

max
ν∈{µ,ηµ}

u(ν) − c
(
ν, max

x
v
)

= max
ν∈x

{
u(ν) − c

(
ν, max

x
v
)}

. (9)

On the other hand, fix η ∈ x arbitrarily. Since c(ν, ·) is weakly increasing,

max
µ∈x

W ({µ, η}) = max
µ∈x

max
ν∈{µ,η}

u(ν) − c

(
ν, max

{µ,η}
v

)
≤ max

µ∈x
max

ν∈{µ,η}
u(ν) − c

(
ν, min

µ∈x
max
{µ,η}

v

)
= max

ν∈x
u(ν) − c

(
ν, min

µ∈x
max
{µ,η}

v

)
= max

ν∈x
u(ν) − c

(
ν, max

{µη ,η}
v

)
,

where µη is a minimizer of the associated minimization problem. Since c(ν, ·) is weakly
increasing and the above inequality holds for all η ∈ x, if follows from (8) that

W (x) ≤ min
η∈x

max
ν∈x

{
u(ν) − c

(
ν, max

{µη ,η}
v

)}
= max

ν∈x

{
u(ν) − max

η∈x
c

(
ν, max

{µη ,η}
v

)}
= max

ν∈x

{
u(ν) − c

(
ν, max

x
v
)}

. (10)

Taking (9) and (10) together, the desired result holds.

Lemma 6 For all x ∈ Z, W can be written as the desired form.

Proof. By Lemma 0 of Gul and Pesendorfer [8, p.1421], there exists a sequence of subsets
xn of x such that each xn is finite and xn → x in the Hausdorff metric. By Lemma 5,

W (xn) = max
ν∈xn

{
u(ν) − c

(
ν, max

xn
v
)}

. (11)

Since c is continuous by Lemma 3 (vi), the maximum theorem implies that the RHS of (11)
converges to

max
ν∈x

{
u(ν) − c

(
ν, max

x
v
)}

.

On the other hand, by Lemma 1 (ii), W (xn) → W (x). This completes the proof.

B Appendix: Proof of Theorem 3

Proof of necessity of axioms is omitted. The proof of suffiency is as follows.
Let (u, v,W ) be the objects guaranteed by Lemma 1. Since u and v are mixture linear,

assume that u(∆) = v(∆) = [0, 1].
Let

A ≡ {w ∈ [0, 1] |w = v(η) − v(µ), for some µ, η such that {µ} Â {µ, η} Â {η}}.

Since % is a self-control preference, A is non-empty.
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Lemma 7 (i) A is an interval with inf A = 0, and (ii) if sup A ∈ A, then sup A = 1.

Proof. (i) It suffices to show that for all w ∈ A, αw ∈ A for all α ∈ (0, 1). Let w ∈ A.
There exist µ, η such that w = v(η) − v(µ) and {µ} Â {µ, η} Â {η}. By MPSC, {µ} Â
{µ, ηαµ} Â {ηαµ}. Thus αw = α(v(η) − v(µ)) = v(ηαµ) − v(µ) ∈ A.

(ii) Since sup A ∈ A, there exist µ, η such that {µ} Â {µ, η} Â {η} and v(η) − v(µ) =
sup A. By contradiction, suppose sup A < 1. Then, either max∆ v > v(η) or min∆ v < v(µ).
In case of the former, Continuity implies that there exists ν sufficiently close to η such that
{µ} Â {µ, ν} Â {ν} and v(ν) > v(η). Thus sup A < v(ν) − v(µ) ∈ A, which is a
contradiction. The symmetric argument can be applied to the latter case.

Define ϕ : A → (0, 1] by
ϕ(w) ≡ u(µ) − W ({µ, η}),

where µ, η satisfy {µ} Â {µ, η} Â {η} and w = v(η) − v(µ).
The lemmas below establish that ϕ is well-defined.

Lemma 8 For all µ, η, µ′, η′ ∈ ∆ and α ∈ (0, 1), If {µ} Â {µ, η} Â {η} and {µ′} Â
{µ′, η′} Â {η′}, then {µαµ′} Â {µαµ′, ηαη′} Â {ηαη′} for all α ∈ [0, 1].

Proof. Since {µ} Â {µ, η} and {µ′} Â {µ′, η′}, we have u(µ) > u(η), v(η) > v(µ),
u(µ′) > u(η′), and v(η′) > v(µ′). Since u and v are mixture linear, u(µαµ′) > u(ηαη′) and
v(ηαη′) > v(µαµ′), and, hence, {µαµ′} Â {µαµ′, ηαη′}. As shown in Lemma1 (ii), there
exist ν, ν ′ ∈ ∆ such that {µ, η} ∼ {ν} and {µ′, η′} ∼ {ν ′}. By Self-Control Concavity,
{µαµ′, ηαη′} % {ναν ′}. Since {ν} Â {η} and {ν ′} Â {η′}, Commitment Independence im-
plies that {ναν ′} Â {ηαη′} for all α ∈ [0, 1]. Therefore, we have {µαµ′} Â {µαµ′, ηαη′} Â
{ηαη′}.

Take any finite subset c = {c1, · · · , cN} ⊂ C. Define

∆(N,c) ≡

{
ν ∈ RN

+

∣∣∣∣∣
N∑

i=1

ν(ci) = 1

}
⊂ ∆, Θ(N,c) ≡

{
θ ∈ RN

∣∣∣∣∣
N∑

i=1

θ(ci) = 0

}
.

For all µ ∈ ∆(N,c) and θ ∈ Θ(N,c), if µ + θ ∈ ∆(N,c), we can view µ + θ as the lottery
obtained by shifting µ toward θ. For all µ ∈ ∆(N,c), say that θ ∈ Θ(N,c) is admissible for µ
if µ + θ ∈ ∆(N,c).

Lemma 9 Given any two menus x, y ⊂ ∆(N,c), the following statements are equivalent:
(a) For all α ∈ [0, 1] and µ, η ∈ ∆(N,c), xα{µ} % yα{µ} =⇒ xα{η} % yα{η}.
(b) For all θ ∈ Θ(N,c) that are admissible for x, y, x % y ⇐⇒ x + θ % y + θ.

Proof. Inspecting the proof of Ergin and Sarver [5, Lemma 6] reveals that the proof works
for any two fixed menus x, y.

The preceding lemma yields that Weak Binary Independence is equivalent to the con-
dition that for all µ, µ′, η, η′ ∈ ∆(N,c) and admissible translations θ ∈ Θ(N,c) for these
lotteries,

{µ, µ′} % {η, η′} =⇒ {µ + θ, µ′ + θ} % {η + θ, η′ + θ}, (12)
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which is referred to as Translation Invariance.
For all θ ∈ Θ(N,c), let u(θ) denote

∑
i u(ci)θ(ci).

Lemma 10 For all µ, µ′ ∈ ∆(N,c) and θ ∈ Θ(N,c), if µ + θ, µ′ + θ ∈ ∆(N,c), then W ({µ +
θ, µ′ + θ}) = W ({µ, µ′}) + u(θ).

Proof. By Set Betweenness, assume that {µ} % {µ, µ′} % {µ′}. Since u is continuous,
there exists α ∈ [0, 1] such that W ({µ, µ′}) = u(µαµ′). If µ+ θ, µ′ + θ ∈ ∆(N,c), µαµ′ + θ =
(µ + θ)α(µ′ + θ) ∈ ∆(N,c). Hence Translation Invariance implies that

W ({µ + θ, µ′ + θ)}) = u(µαµ′ + θ) = u(µαµ′) + u(θ) = W ({µ, µ′}) + u(θ).

Lemma 11 Take all µ, µ′, η, η′ ∈ ∆ with finite supports. Assume that {µ} Â {µ, η} Â {η}
and {µ′} Â {µ′, η′} Â {η′}. Then,

v(η) − v(µ) ≥ v(η′) − v(µ′) ⇒ u(µ) − W ({µ, η}) ≥ u(µ′) − W ({µ′, η′}).

Proof. Let c ≡ {c1, · · · , cN} ⊂ C be the union of the supports of µ, µ′, η, η′. Hence, these
lotteries belong to ∆(N,c).

Step 1 : We claim that if θ ≡ µ′−µ ∈ Θ(N,c) is admissible for η, then u(µ)−W ({µ, η}) ≥
u(µ′) − W ({µ′, η′}). Since v is mixture linear,

v(η + θ) − v(µ′) = v(η + θ) − v(µ + θ) = v(η) − v(µ) ≥ v(η′) − v(µ′).

Thus v(η + θ) ≥ v(η′). Furthermore, by Translation Invariance as given in (12), {µ +
θ} Â {µ + θ, η + θ} Â {η + θ}, that is, {µ′} Â {µ′, η + θ} Â {η + θ}. By Lemma 2,
{µ′, η′} % {µ′, η + θ}. Thus, from Lemma 10,

u(µ′) − W ({µ′, η′}) ≤ u(µ′) − W ({µ′, η + θ})
⇔ u(µ′) − W ({µ′, η′}) ≤ u(µ + θ) − W ({µ + θ, η + θ})
⇔ u(µ′) − W ({µ′, η′}) ≤ u(µ) + u(θ) − W ({µ, η}) − u(θ)

⇔ u(µ′) − W ({µ′, η′}) ≤ u(µ) − W ({µ, η}).

Take a lottery ν in the interior of ∆(N,c). For all α ∈ (0, 1) sufficiently close to one, let
a ≡ µαν, b ≡ ηαν, a′ ≡ µ′αν, b′ ≡ η′αν ∈ ∆(N,c). Continuity implies {a} Â {a, b} Â {b}
and {a′} Â {a′, b′} Â {b′}. Furthermore, v(b)−v(a) = v(ηαν)−v(µαν) = α(v(η)−v(µ)) ≥
α(v(η′) − v(µ′)) = v(b′) − v(a′). From Lemma 8, for all β ∈ [0, 1], {aβa′} Â {aβa′, bβb′} Â
{bβb′}. Notice also that aβa′, bβb′ ∈ ∆(N,c) for all β ∈ [0, 1].

Step 2 : We claim that for all β ∈ [0, 1], there exists a relative open interval O(β)
containing β such that for all β̃ ∈ O(β),

β̃ ≥ β ⇐⇒ u(aβ̃a′) − W ({aβ̃a′, bβ̃b′}) ≥ u(aβa′) − W ({aβa′, bβb′}). (13)
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Since v(b) − v(a) ≥ v(b′) − v(a′), we have, for all β̃ ∈ (0, 1) with β̃ ≥ β,

v(bβb′) − v(aβa′) = β(v(b) − v(a)) + (1 − β)(v(b′) − v(a′))

≤ β̃(v(b) − v(a)) + (1 − β̃)(v(b′) − v(a′)) = v(bβ̃b′) − v(aβ̃a′).

Let θ ≡ aβa′ − aβ̃a′ ∈ Θ(N,c). Notice that

bβ̃b′ + θ = (ηβ̃η′)αν + (β − β̃)(a − a′).

Since (ηβη′)αν is in the interior of ∆(N,c), there exists a relative open interval O(β) con-

taining β such that (ηβ̃η′)αν + (β − β̃)(a − a′) ∈ ∆(N,c) for all β̃ ∈ O(β). That is, for all

β̃ ∈ O(β), θ is admissible for bβ̃b′. Thus, by Step 1, we have (13).
Step 3 : We claim that u(a) − W ({a, b}) ≥ u(a′) − W ({a′, b′}). Let O(β) be an open

interval containing β ∈ [0, 1] guaranteed by Step 2. Since {O(β)|β ∈ [0, 1]} is an open
cover of [0, 1], there exists a finite subcover, denoted by {O(βi)|i = 1, · · · , I}. Without
loss of generality, assume βi ≤ βi+1. Define β0 = 0 and βI+1 = 1. Since β0 ∈ O(β1) and
βI+1 ∈ O(βI), from Step 2,

u(a′) − W ({a′, b′}) ≤ u(aβ1a′) − W ({aβ1a′, bβ1b′}) ≤
... ≤ u(aβIa′) − W ({aβIa′, bβIb′}) = u(a) − W ({a, b}).

From Step 3, for all α ∈ (0, 1) sufficiently close to one,

u(µαν) − W ({µαν, ηαν}) ≥ u(µ′αν) − W ({µ′αν, η′αν}).

Continuity ensures that u(µ) − W ({µ, η}) ≥ u(µ′) − W ({µ′, η′}) as α → 1.

Lemma 12 For all µ, µ′, η, η′ ∈ ∆ such that {µ} Â {µ, η} Â {η} and {µ′} Â {µ′, η′} Â
{η′},

v(η) − v(µ) ≥ v(η′) − v(µ′) ⇒ u(µ) − W ({µ, η}) ≥ u(µ′) − W ({µ′, η′}).

Proof. Let µ+ and µ− be a maximal and a minimal lottery in ∆ with respect to v. By
continuity and mixture linearity of v, for all α sufficiently close to one, v(ηαµ+) − v(µ) >
v(η′αµ−) − v(µ′). Since the set of lotteries with finite supports is dense in ∆ under the
weak convergence topology (Aliprantis and Border [1, p.513, Theorem 15.10]), there exist
sequences {µn}, {ηn}, {µ′

n}, and {η′
n} with finite supports such that µn → µ, ηn → ηαµ+,

µ′
n → µ′, and η′

n → η′αµ−. Moreover, by continuity of W , W ({µn}) > W ({µn, ηn}) >
W ({ηn}) and W ({µ′

n}) > W ({µ′
n, η

′
n}) > W ({η′

n}), and, by continuity of v, v(ηn)−v(µn) >
v(η′

n)−v(µ′
n). By Lemma 11, for all n, we have u(µn)−W ({µn, ηn}) ≥ u(µ′

n)−W ({µ′
n, η

′
n}).

Continuity of u and W implies that u(µ) − W ({µ, ηαµ+}) ≥ u(µ′) − W ({µ′, η′αµ−}) as
n → ∞. Again, by continuity, u(µ) − W ({µ, η}) ≥ u(µ′) − W ({µ′, η′}) as α → 1.

Lemma 13 ϕ : A → (0, 1] is (i) well-defined, (ii) weakly increasing, and (iii) continuous.
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Proof. (i) Take any µ, µ′, η, η′ such that {µ} Â {µ, η} Â {η} and {µ′} Â {µ′, η′} Â {η′}.
From Lemma 12, if v(η) − v(µ) = v(η′) − v(µ′), u(µ) − W ({µ, η}) = u(µ′) − W ({µ′, η′}).
Hence, ϕ is well-defined.

(ii) Take w,w′ ∈ A such that w′ < w. There exist µ, µ′, η, η′ such that {µ} Â {µ, η} Â
{η}, {µ′} Â {µ′, η′} Â {η′}, w = v(η) − v(µ), and w′ = v(η′) − v(µ′). By Lemma 12,
ϕ(w) = u(µ) − W ({µ, η}) ≥ u(µ′) − W ({µ′, η′}) = ϕ(w′).

(iii) Take any w0 ∈ A. For any sequence wn → w0, n = 1, 2, · · · , we want to show
that ϕ(wn) → ϕ(w0). First suppose w0 < sup A. Take any w ∈ (w0, sup A). There exist
µ, η such that {µ} Â {µ, η} Â {η} and w = v(η) − v(µ). Since wn → w, wn < w for
all sufficiently large n. Define αn ≡ wn

w
for n = 0 and all sufficiently large n. By MPSC,

{µ} Â {µ, ηαnµ} Â {ηαnµ} and wn = v(ηαnµ) − v(µ). By continuity of W ,

lim
n→∞

ϕ(wn) = lim
n→∞

u(µ) − W ({µ, ηαnµ}) = u(µ) − W ({µ, ηα0µ}) = ϕ(w0).

Next suppose w0 = sup A. Since w0 ∈ A, There exist µ, η such that {µ} Â {µ, η} Â {η}
and w0 = v(η) − v(µ). Define αn ≡ wn

w0 ∈ (0, 1]. By MPSC, {µ} Â {µ, ηαnµ} Â {ηαnµ}.
Moreover, wn = v(ηαnµ) − v(µ). By continuity of W ,

lim
n→∞

ϕ(wn) = lim
n→∞

u(µ) − W ({µ, ηαnµ}) = u(µ) − W ({µ, η}) = ϕ(w0).

Denote the closure of A by A. By Lemma 7 (i), A is a closed non-degenerate interval
including 0. Let w = sup A. Define ϕ(0) = inf{ϕ(w) |w ∈ A} and ϕ(w) = sup{ϕ(w) |w ∈
A}.
Lemma 14 ϕ : A → [0, 1] is a unique continuous and weakly increasing extension of ϕ.
Moreover, (i) ϕ(0) = 0, (ii) ϕ is weakly convex, and (iii) strictly increasing.

Proof. Since ϕ is continuous and weakly increasing, the former statement holds.
(i) We show that ϕ(0) = 0. Take any w ∈ A. There exist µ, η such that w = v(η)−v(µ)

and {µ} Â {µ, η} Â {η}. By MPSC, {µ} Â {µ, ηαµ} Â {ηαµ} for all α ∈ (0, 1). Thus,

ϕ(0) = lim
α→0

ϕ(αw) = lim
α→0

u(µ) − W ({µ, ηαµ}) = 0.

(ii) We show that ϕ is convex on A. Then, by continuity, ϕ is convex on A. Take
any wi ∈ (0, w), i = 1, 2. Without loss of generality, assume w1 < w2. There exists
µ, η2 ∈ ∆ such that {µ} Â {µ, η2} Â {η2} and w2 = v(η2) − v(µ). Let η1 = η2

w1

w2
µ. Then,

w1 = v(η1) − v(µ). Moreover, by MPSC, {µ} Â {µ, η1} Â {η1}. Since v is mixture linear,
αw1+(1−α)w2 = v(η1αη2)−v(µ) for all α ∈ (0, 1). By MPSC, {µ} Â {µ, η1αη2} Â {η1αη2}.
In the proof of Lemma 1 (ii), we show that for all x ∈ Z, there exists ν ∈ ∆ such that
{ν} ∼ x. Let νi ∈ ∆ satisfy {νi} ∼ {µ, ηi}. By Self-Control Concavity, {µ, η1αη2} %
{ν1αν2}. Thus, we have

ϕ(αw1 + (1 − α)w2) = u(µ) − W ({µ, η1αη2})
≤ u(µ) − u(ν1αν2) = α(u(µ) − u(ν1)) + (1 − α)(u(µ) − u(ν2))

= α(u(µ) − W ({µ, η1})) + (1 − α)(u(µ) − W ({µ, η2}))
= αϕ(w1) + (1 − α)ϕ(w2).
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(iii) First of all, since ϕ(0) = 0, ϕ(0) < ϕ(w) for all w 6= 0. Next, take w,w′ ∈ A such
that w′ > w > 0. There exists α ∈ (0, 1) with w = αw′. Since ϕ is convex,

ϕ(w) = ϕ(αw′) ≤ αϕ(w′) + (1 − α)ϕ(0) < ϕ(w′),

as desired.

Lemma 15 Let {µ} Â {µ, η} ∼ {η}. If v(η)−v(µ) ∈ A, then u(η) ≥ u(µ)−ϕ(v(η)−v(µ)).

Proof. There exist µ′, η′ such that {µ′} Â {µ′, η′} Â {η′} and v(η′) − v(µ′) = v(η) − v(µ).
Since ϕ(v(η) − v(µ)) = ϕ(v(η′) − v(µ′)) = u(µ′) − W ({µ′, η′}), it suffices to show that
u(µ′) − W ({µ′, η′}) ≥ u(µ) − u(η).

We will claim that u(µ′)−u(η′) > u(µ)−u(η). Suppose otherwise, that is, u(µ)−u(η) ≥
u(µ′) − u(η′). Let

L ≡ {α ∈ [0, 1] | {µαµ′} Â {µαµ′, ηαη′} Â {ηαη′}}.

By assumption, 0 ∈ L and 1 /∈ L. Moreover, by Continuity, L is open in [0, 1]. Let
ᾱ ≡ sup L ∈ (0, 1]. By Continuity, ᾱ /∈ L, and hence

{µᾱµ′} Â {µᾱµ′, ηᾱη′} ∼ {ηᾱη′}. (14)

Since u(µ) − u(η) ≥ u(µ′) − u(η′) > ϕ(v(η′) − v(µ′)) and v(η′) − v(µ′) = v(η) − v(µ),

u(µαµ′) − u(ηαη′) > ϕ(v(ηαη′) − v(µαµ′)) (15)

for all α ∈ [0, 1]. On the other hand, since ᾱ is a supremum of L, there exists a sequence
{αn} in L converging to ᾱ. We have {µαnµ′} Â {µαnµ′, ηαnη′} Â {ηαnη′}, and hence
u(µαnµ′)−u(ηαnη′) > ϕ(v(ηαnη′)−v(µαnµ′)) = u(µαnµ′)−W ({µαnµ′, ηαnη′}). Continuity
and (15) imply u(µᾱµ′) − u(ηᾱη′) > ϕ(v(ηᾱη′) − v(µᾱµ′)) = u(µᾱµ′) − W ({µᾱµ′, ηᾱη′}),
that is, W ({µᾱµ′, ηᾱη′}) > u(ηᾱη′), which contradicts (14).

Since v(η′) − v(µ′) = v(ηαη′) − v(µαµ′) for all α ∈ L, by Lemma 13 (i), u(µ′) −
W ({µ′, η′}) = u(µαµ′) − W ({µαµ′, ηαη′}). Thus taking Continuity and the above claims
together,

u(µ′) − W ({µ′, η′}) = u(µᾱµ′) − W ({µᾱµ′, ηᾱη′}) = u(µᾱµ′) − u(ηᾱη′)

= ᾱ(u(µ) − u(η)) + (1 − ᾱ)(u(µ′) − u(η′)) ≥ u(µ) − u(η),

as desired.
Let

B ≡ {w ∈ [0, 1] |w = v(η) − v(µ) for some {µ} Â {µ, η}}. (16)

By Continuity, B is open in [0, 1]. If {µ} Â {µ, η}, then {µ} Â {µ, ηαµ} for all
α ∈ (0, 1). Hence, B is an interval satisfying inf B = 0. Moreover, by definition, A ⊂ B,
or sup A ≤ sup B.

Define F : B → R+ by

F (w) ≡ sup{u(µ) − u(η) |w = v(η) − v(µ) for some {µ} Â {µ, η}}. (17)
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Lemma 16 F is weakly concave.

Proof. Take wi ∈ B, i = 1, 2, and α ∈ (0, 1). There exist µn
i , η

n
i ∈ ∆ such that {µn

i } Â
{µn

i , ηn
i }, v(ηn

i ) − v(µn
i ) = wi, and, u(µn

i ) − u(ηn
i ) → F (wi). Since v(ηn

i ) > v(µn
i ) and

u(µn
i ) > u(ηn

i ), we have v(ηn
1 αηn

2 ) > v(µn
1αµn

2 ) and u(µn
1αµn

2 ) > u(ηn
1 αηn

2 ). Thus {µn
1αµn

2} Â
{µn

1αµn
2 , η

n
1 αηn

2 }. Since

αw1 + (1 − α)w2 = α(v(ηn
1 ) − v(µn

1 )) + (1 − α)(v(ηn
2 ) − v(µn

2 )) = v(ηn
1 αηn

2 ) − v(µn
1αµn

2 ),

F (αw1 + (1 − α)w2) ≥ lim sup u(µn
1αµn

2 ) − u(ηn
1 αηn

2 )

= lim sup α(u(µn
1 ) − u(ηn

1 )) + (1 − α)(u(µn
2 ) − u(ηn

2 ))

= αF (w1) + (1 − α)F (w2).

By Theorem 10.3 [16, p.85], F can be uniquely extended to the closure of B in a
continuous and concave way.

Lemma 17 (i) F (w) > ϕ(w) for all w ∈ A. (ii) F (w) ≥ ϕ(w). (iii) If w /∈ A, F (w) =
ϕ(w).

Proof. (i) There exist µ, η such that {µ} Â {µ, η} Â {η} and w = v(η) − v(µ). By
definition,

F (w) ≥ u(µ) − u(η) > u(µ) − W ({µ, η}) = ϕ(w).

(ii) By Lemma 13 (iii), ϕ is continuous. Moreover, since F is concave, F is continuous.
For any sequence wn → w, by part (i), F (wn) > ϕ(wn). By continuity of F and ϕ,
F (w) ≥ ϕ(w).

(iii) Take any sequence wn ∈ A satisfying wn → w. By part (ii), F (w) ≥ ϕ(w). By
contradiction, suppose F (w) > ϕ(w) = sup{ϕ(w)|w ∈ A}. For all w ∈ A and µ, η ∈ ∆
such that w = v(η) − v(µ) and {µ} Â {µ, η} ∼ {η}, by Lemma 15, we must have ϕ(w) ≥
u(µ) − u(η). Thus there exist sequences wn → w, {µn}∞n=1 and {ηn}∞n=1 such that wn =
v(ηn) − v(µn) ∈ A, {µn} Â {µn, ηn} Â {ηn}, and u(µn) − u(ηn) > c > sup{ϕ(w)|w ∈ A},
where c > 0 is a constant number. Since {µn}∞n=1 and {ηn}∞n=1 are sequences in ∆, we can
assume µn → µ0 and ηn → η0 without loss of generality. Since

u(µn) − u(ηn) > c > ϕ(v(ηn) − v(µn)) = u(µn) − W ({µn, ηn}),

continuity implies u(µ0) − u(η0) > u(µ0) − W ({µ0, η0}), that is, W ({µ0, η0}) > u(η0). On
the other hand, since w = v(η0) − v(µ0) > 0 and u(µ0) > u(η0), we have {µ0} Â {µ0, η0}.
Hence {µ0} Â {µ0, η0} Â {η0}, which contradicts w /∈ A.

Since v(∆) = [0, 1], maxx v − v(µ) ∈ [0, 1] for all x ∈ Z and µ ∈ x. Now we define a
function ϕ : [0, 1] → R+ as follows:

ϕ(w) ≡
{

ϕ(w) if w ∈ [0, w]
ϕ(w)

w
w if w ∈ (w, 1].

(18)
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Lemma 18 ϕ is continuous, strictly increasing, and satisfies

ϕ(w)

{
= ϕ(w) if w ∈ A
≥ F (w) elsewhere.

Proof. By Lemma 13, ϕ is continuous and strictly increasing on [0, w]. Moreover, since
ϕ(w)

w
> 0, ϕ(w)

w
w is continuous and increasing on (w, 1]. Since ϕ(w) = ϕ(w), ϕ is continuous

and strictly increasing on [0, 1].
If w ∈ A, w = 1 by Lemma 7 (ii). Assume w 6∈ A. Since F is concave, there exists a

supporting affine function L at (w,F (w)). That is, L satisfies that L(w) ≥ F (w) for all w
and L(w) = F (w). Since L is an affine function, L(w) can be written as aw + b for some
a, b ∈ R. If b < 0, for small w, L(w) < 0 and hence ϕ(w) < F (w) ≤ L(w) < 0, which is a
contradiction. Thus, we must have b ≥ 0. Since F (w) = L(w),

F (w)

w
= a +

b

w
≥ a.

Moreover, by Lemma, ϕ(w) = F (w). Thus, we have ϕ(w)
w

≥ a. Therefore,

ϕ(w)

w
w − L(w)


= 0 if w = w
≥ 0 if w > w
≤ 0 if w < w.

(19)

Now take any w ∈ (w, 1]. By (19),

ϕ(w) =
ϕ(w)

w
w ≥ L(w) ≥ F (w),

as desired.

Lemma 19 For all µ, η ∈ ∆,

W ({µ, η}) = max
ν∈{µ,η}

{
u(ν) − ϕ

(
max
{µ,η}

v − v(ν)

)}
.

Proof. Without loss of generality, assume {µ} % {η}. By Set Betweenness, {µ} % {µ, η} %
{η}. There are four cases:

Case (i) {µ} Â {µ, η} Â {η}. In this case, v(η) > v(µ). By definition of ϕ, W ({µ, η}) =
u(µ) − ϕ(v(η) − v(µ)) > u(η). Thus W ({µ, η}) can be expressed as the desired form.

Case (ii) {µ} Â {µ, η} ∼ {η}: We have v(η) > v(µ). If v(η) − v(µ) ∈ A, by Lemma 15,
W ({µ, η}) = u(η) ≥ u(µ) − ϕ(v(η) − v(µ)) as desired. If v(η) − v(µ) /∈ A, we have either
v(η)−v(µ) = sup A or v(η)−v(µ) /∈ A. The former case implies ϕ(v(η)−v(µ)) = F (v(η)−
v(µ)) by Lemma 17 (iii). For the latter case, by Lemma 18, ϕ(v(η)−v(µ)) ≥ F (v(η)−v(µ)).
Thus, in each case,

ϕ(v(η) − v(µ)) ≥ F (v(η) − v(µ)) ≥ u(µ) − u(η).
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Thus, W ({µ, η}) = u(η) ≥ u(µ) − ϕ(v(η) − v(µ)).
Case (iii) {µ} ∼ {µ, η} Â {η}. By construction of v, v(µ) ≥ v(η). Since W ({µ, η}) =

u(µ) > u(η) − ϕ(v(µ) − v(η)), W ({µ, η}) is represented by the desired form.
Case (iv) {µ} ∼ {µ, η} ∼ {η}. If v(η) ≥ v(µ), W ({µ, η}) = u(η) ≥ u(µ)−ϕ(v(η)−v(µ)).

If v(µ) ≥ v(η), we have W ({µ, η}) = u(µ) ≥ u(η)−ϕ(v(µ)−v(η)). In either case, W ({µ, η})
is represented by the desired form.

Finally, we can show that the representation extends to entire domain. The argument
is similar that used in the conclusion of the proof [8, Thm 1]. Briefly, by GP [8, Lemma 2],
Set-Betweenness implies that the representation extends to all finite menus. Then, given
that the set of finite menus is dense in Z in the Hausdorff topology, the continuity of the
representation permits the representation to extend to all menus. For a more detailed
argument, see Lemmas 5 and 6 in the proof of Theorem 1.

C Appendix: Proof of Corollary 1

Let (u, v, ϕ) be a representation constructed as in the proof of Theorem 3. If % satisfies
Self-Control Linearity, we can show a counterpart of Lemma 14 (ii) as follows. A proof is
omitted.

Lemma 20 ϕ : A → [0, 1] satisfies ϕ(αw + (1 − α)w′) = αϕ(w) + (1 − α)ϕ(w′) for all
α ∈ [0, 1].

Since ϕ(0) = 0, we have ϕ(λw) = ϕ(λw + (1 − λ)0) = λϕ(w) for all w ∈ [0, w] and

λ ∈ [0, 1]. Thus, ϕ is linear function on [0, w]. Define K ≡ ϕ(w)
w

. By Lemma 20, for all
w ∈ [0, w],

ϕ(w) = ϕ
(w

w
w

)
= ϕ(w)

w

w
= Kw.

Moreover, by (18), ϕ(w) = Kw for all w ∈ (w, 1]. That is, ϕ is written as a linear function
with a positive slope K. Redefine v as Kv. Then, (u, v) is a GP representation.
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