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Abstract

We investigate the problem of Nash implementation in the pres-
ence of “partially honest” individuals. A partially honest player is
one who has a strict preference for revealing the true state over ly-
ing when truthtelling does not lead to a worse outcome (according to
preferences in the true state) than that which obtains when lying. We
show that when there are at least three individuals, the presence of
even a single partially honest individual (whose identity is not known
to the planner) can lead to a dramatic increase in the class of Nash
implementable social choice correspondences. In particular, all social
choice correspondences satisfying No Veto Power can be implemented.
We also provide necessary and sufficient conditions for implementa-
tion in the two-person case when there is exactly one partially honest
individual and when both individuals are partially honest. We provide
examples which illustrate the possibilities for implementation in these
cases.
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1 Introduction

The theory of mechanism design investigates the goals that a planner or
principal can achieve when these goals depend on private information held
by various agents. The planner designs a mechanism and elicits the private
information from the agents. The cornerstone of the theory is the assump-
tion that agents are fully strategic in their behavior; moreover their decision
regarding the messages that they send to the principal is based entirely on
their preferences over the outcomes that they believe will obtain as a result
of the messages they send.

In this paper we investigate the consequences of assuming that some
agents have preferences not just on the outcomes but also directly on the
messages themselves. In particular we assume that there are some agents
who have a “small” intrinsic preference for honesty. Specifically, we assume
the following: there are some agents who when asked to report the state of
the world, strictly prefer to report the “true” state rather than a “false” state
when reporting the former leads to an outcome (given some message profile of
the other agents) which is at least as preferred as the outcome which obtains
when reporting the false state (given the same message profile of the other
agents) according to her preferences in the true state. Suppose for instance,
that an agent i believes that the other agents will send the message profile
m−i. Suppose that the true state is R and the message mi reports R while
the message m′

i reports a false state. Now suppose that the message profiles
(mi,mi

) and (m′
i,m−i) leads to the same outcome in the mechanism, say a.

Then this agent will strictly prefer to report mi rather than m′
i while in the

conventional theory, the agent would be indifferent between the two.
It is important to emphasize that the agent whose preferences have been

described above has only a limited or partial preference for honesty.1 She has
a strict preference for telling the truth only when truthtelling leads to an
outcome which is not worse than the outcome which occurs when she lies.
We consider such behaviour quite plausible at least for some agents.

We investigate the theory of Nash implementation pioneered by Maskin
[5]2 in the presence of partially honest individuals. Our conclusion is that
even a small departure from the standard model in this respect can lead
to dramatically different results. In the case where there are at least three

1Of course, if agents have a very strong or outright preference for telling the truth,
then the entire theory of mechanism design may be rendered trivial and redundant.

2See Jackson [4] for a comprehensive survey of the literature.
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or more individuals, the presence of even a single partially honest individual
implies that all social choice correspondences satisfying the weak requirement
of No Veto Power can be Nash implemented. The stringent requirement of
Monotonicity is no longer a necessary condition. It is vital to emphasize here
that the informational requirements for the planner are minimal; although
he is assumed to know of the existence of at least one partially honest agent,
he does not know of her identity (or their identities).

We also investigate the important case of two agents. We consider sepa-
rately the case where there is exactly one partially honest individual and the
case where both individuals are partially honest. We derive necessary and
sufficient conditions for implementation in both cases under the assumption
of strict order preferences over outcomes. We show that though non-trivial
restrictions remain, the possibilities for implementation increase substantially
at least in the case where both individuals are partially honest. In particular,
the negative result of Hurwicz and Schmeidler [3] and Maskin [5]no longer
applies.

Some recent papers very similar in spirit to ours, though different in
substance are Matsushima [6] and Matsushima[7]. We discuss his work in
greater detail in Section 4.

In the next section we describe the model and notation. Section 3 intro-
duces the notion of partially honest individuals. Sections 4 and 5 present
results pertaining to the many-person and the two-person implementation
problems respectively while Section 6 concludes.

2 The Background

Consider an environment with a finite set N = {1, 2, ..., n} of agents or indi-
viduals and a set X of feasible outcomes. Each individual i has a preference
ordering Ri over X. A preference profile (R1, . . . , Rn) specifies a preference
ordering for each i ∈ N . Letting R be the set of all orderings over X, Rn

will denote the set of all preference profiles. Let P denote the set of strict
orderings over X, and Pn the set of profiles consisting of strict preference
orderings. A domain is a set D ⊂ Rn. An admissible preference profile will
be represented by R, R′ ∈ D. In case these admissible profiles involve only
strict orders, they will be denoted by P ,P ′ etc. We will also refer to an
admissible preference profile as a state of the world.

We assume that each agent observes R, the state of the world, so that
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there is complete information. Of course, the planner does not observe the
state of the world. This gives rise to the implementation problem since her
objective or goal does depend upon the state of the world.

Definition 1 A social choice correspondence (scc) is a mapping f that spec-
ifies a nonempty set f(R) ⊆ X for each profile R ∈ D. A scc which is always
singlevalued will be called a social choice function (scf).

The social choice correspondence represents the goals of the planner. For
any R ∈ D, f(R) is the set of “socially desirable” outcomes which the planner
wants to achieve. Since the planner does not observe the state of the world,
she has to use a mechanism which will induce individuals to reveal their
private information.

Definition 2 A mechanism g consists of a pair (S, π), where S is the product
of individual strategy sets Si and π is the outcome function mapping each
vector of individual strategies into an outcome in X.

A mechanism g together with any state of the world R induces a game
with player set N , strategy sets Si for each player i, and payoffs given by
the composition of the outcome function π and the preference orderings Ri.
Let N(g, R) represent the set of Nash equilibrium outcomes in the game
corresponding to (g, R).

Definition 3 A scc f is implementable in Nash equilibrium if there is some
game form g such that for all R ∈ D, f(R) = N(g, R).

We introduce some notation which we will need later on.
For any set B ⊆ X and preference Ri, M(Ri, B) = {a ∈ B|aRib ∀b ∈ B},

is the set of maximal elements in B according to Ri.
The lower contour set of a ∈ X for individual i and preference ordering

Ri is L(Ri, a) = {b ∈ X|aRib}.

3 Partially Honest Individuals

With a few exceptions, the literature on implementation assumes that in-
dividuals are completely strategic - they only care about the outcome(s)
obtained from the mechanism. However, it is not unrealistic to assume that
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at least some individuals may have an intrinsic preference for honesty. Of
course, there are various options about how to model such a preference for
honesty. In this paper, we adopt a very weak notion of such preference for
honesty. In particular, we assume the following. Suppose the mechanism
used by the planner requires each agent to announce the state of the world.
Then, an individual is said to have a preference for honesty if she prefers
to announce the true state of the world whenever a lie does not change the
outcome given the messages announced by the others. Notice that this is a
very weak preference for honesty since an “honest” individual may prefer to
lie whenever the lie allows the individual to obtain a more preferred outcome.
An alternative way of describing an honest individual’s preference for honesty
is that the preference ordering is lexicographic in the sense that the preference
for honesty becomes operational only if the individual is indifferent on the
outcome dimension.

We focus on mechanisms in which one component of each individual’s
message set involves the announcement of the state of the world. We know
from Maskin [5] that there is no loss of generality in restricting ourselves to
mechanisms of this kind. Therefore, consider a mechanism g in which for
each i ∈ N , Mi = Rn × Ai, where Ai denotes the other components of the
message space. For each i and R ∈ D, let Ti(R) = {R}×Ai. For any R ∈ D
and i ∈ N , we interpret mi ∈ Ti(R) as a truthful message as individual i is
reporting the true state of the world.

Given such a mechanism, we need to “extend” an individual’s ordering
over X to an ordering over the message space M since the individual’s pref-
erence between being honest and dishonest depends upon what messages
others are sending as well as the outcome(s) obtained from them. Let ºR

i

denote individual i’s ordering over M in state R.

Definition 4 Let g = (M,π) be a mechanism where Mi = D × Ai. An
individual i is partially honest whenever for all states R ∈ D and for all
(mi,m−i), (m

′
i,m−i) ∈ M ,

(i) If π(mi,m−i)Riπ(m′
i,m−i) and mi ∈ Ti(R), m′

i /∈ Ti(R), then
(mi,m−i) ÂR

i (m′
i,m−i).

(ii) In all other cases, (mi, m−i) ºR
i (m′

i,m−i) iff π(mi, m−i)Riπ(m′
i,m−i).

The first part of the definition captures the individual’s (limited) pref-
erence for honesty - she strictly prefers the message vector (mi,m−i) to
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(m′
i,m−i) when she reports truthfully in (mi, m−i) but not in (m′

i,m−i) pro-
vided the outcome corresponding to (mi,m−i) is at least as good as that
corresponding to (m′

i,m−i).
Since individuals who are not partially honest care only about the out-

comes associated with any set of messages, their preference over M is straight-
forward to define. That is, for any state R, (mi,m−i) ºR

i (m′
i,m−i) iff only

π(mi,m−i)Riπ(m′
i,m−i).

Any mechanism together with the preference profile ºR now defines a
modified normal form game, and the objective of the planner is to ensure
that the set of Nash equilibrium outcomes corresponds with f(R) in every
state R.3 We omit formal definitions.

4 Many Person Implementation

The seminal paper of Maskin [5] derived a necessary and “almost sufficient”
condition for Nash implementation. Maskin showed that if a social choice
correspondence is to be Nash implementable, then it must satisfy a mono-
tonicity condition which requires that if an outcome a is deemed to be socially
desirable in state of the world R, but not in R′, then some individual must
reverse her preference ranking between a and some other outcome b. This
condition seems mild and innocuous. However, it has powerful implications.
For instance, only the dictatorial single-valued social choice correspondence
can satisfy this condition if there is no restriction on the domain of prefer-
ences. Maskin also showed that when there are three or more individuals,
this monotonicity condition and a very weak condition of No Veto Power are
sufficient for Nash implementation. No veto power requires that (n− 1) in-
dividuals can together ensure that if they unanimously prefer an alternative
a to all others, then a must be socially desirable. Notice that this condition
will be vacuously satisfied in environments where there is some good such
as money which all individuals “like”. Even in voting environments where
preferences are unrestricted, most well-behaved social choice correspondences
such as those which select majority winners when they exist, scoring corre-
spondences and so on, satisfy the No Veto Power condition.

These two conditions are defined formally below.

Definition 5 The scc f satisfies Monotonicity if for all R, R′ ∈ D, for all

3We denote this set as N(g,ºR).

6



a ∈ X, if a ∈ f(R) \ f(R′), then there is i ∈ N and b ∈ X such that aRib
and bP ′

ia.

Definition 6 A scc f satisfies No Veto Power if for all a ∈ X, for all
R ∈ D, if |{i ∈ N |aRib for all b 6= a}| ≥ n− 1, then a ∈ f(R).

In this section we make the following assumption.

Assumption A: There exists at least one partially honest individual. This
fact is known to the planner. However, the identity of this individual is not
known to her.

We show here that the presence of even one partially honest individual -
even when the identity of the individual is not known - results in a dramati-
cally different result. In particular, we show that Monotonicity is no longer
required, so that any social choice correspondence satisfying No Veto Power
can now be implemented.

Theorem 1 Let n ≥ 3 and suppose Assumption A holds. Then, every scc
satisfying No Veto Power can be implemented.

Proof. Let f be any scc satisfying No Veto Power.
We prove the theorem by using a mechanism which is similar to the canon-

ical mechanisms used in the context of Nash implementation. In particular,
the message sets are identical, although there is a slight difference in the
outcome function.

For each i ∈ N , Mi = D × X × {1, . . . , n}. Hence, for each agent i, a
typical message or strategy consists of a state of world R, an outcome a, and
an integer in {1, . . . , n}. The outcome function is specified by the following
rules :

(R.1) : If at least (n − 1) agents announce the same state R, together with
the same outcome a ∈ f(R), then the outcome is a.

(R.2) : In all other cases, the outcome is the one announced by i∗, where
i∗ ≡ ∑

j∈N

kj mod n where kj is the integer announced by j.

Let us check that this mechanism implements f .
Suppose the “true” state of the world is R ∈ D. Let a ∈ f(R). Sup-

pose for each i ∈ N , mi = (R, a, ki) where ki ∈ {1, . . . , n}. Then, from
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(R.1), the outcome is a. No unilateral deviation can change the outcome.
Moreover, each individual is announcing the truth. Hence, this unanimous
announcement must constitute a Nash equilibrium, and so f(R) ⊆ N(g,ºR).

We now show that N(g,ºR) ⊆ f(R). Consider any n-tuple of messages
m. Suppose no more than (n − 1) individuals announce the same state of
the world R′ (where R′ may be distinct from R) and the same a ∈ f(R′).
Let the outcome be some b ∈ X. Then, any one of (n − 1) individuals can
deviate, precipitate the modulo game, and be the winner of the modulo
game. Clearly, if the original announcement is to be a Nash equilibrium,
then it must be the case that b is Ri-maximal for (n − 1) individuals. But,
then since f satisfies No veto Power, b ∈ f(R).

Suppose now that all individuals unanimously announce R′ and b ∈ f(R′),
where R′ 6= R. Then, the outcome is b. However, this n-tuple of announce-
ments cannot constitute a Nash equilibrium. For, let i be a partially honest
individual. Then, i can deviate to the truthful announcement of R, that is
to some mi(R) ∈ Ti(R). The outcome will still remain b, but i gains from
telling the truth.

Remark 1 Matsushima [7] also focuses on Nash implementation with honest
players. However, there are several differences between his framework and
ours. In his framework, the social choice function selects a lottery over the
basic set of outcomes. Individuals have vNM preferences over lotteries. He
also assumes that all players have an intrinsic preference for honesty, suffering
a small utility loss from lying. In his framework, the planner can also impose
small fines on the individuals. In this setting, he shows that when there
are three or more individuals, every social choice function is implementable
in the iterative elimination of strictly dominated strategies, and hence in
Nash equilibrium when there are three or more individuals. Matsushima
[6] focuses on the incomplete information framework and proves a similar
permissive result for Bayesian implementation when players suffer a small
utility loss from lying.

5 Two-person Implementation

The two-person implementation problem is an important one theoretically.
However it is well-known that analytically, it has to be treated differently
from the “more than two” or many-person case. The general necessary and
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sufficient condition for the two-person case are due to Dutta and Sen [2]
and Moore and Repullo [8] (see also Busetto and Codognato [1]). These
conditions are more stringent than those required for implementation in the
many-person case. Monotonicity remains necessary; in addition, some non-
trivial conditions specific to the two-person case also become necessary.

Theorem 1 and Matsushima’s result show that when there are at least
three individuals, the presence of a partially honest player even though her
identity is not known to the planner allows for a very permissive result since
monotonicity is no longer a necessary condition for implementation. In this
section, we investigate social choice correspondences which are implementable
under two alternative scenarios - when there is exactly exactly one partially
honest individual, as well as when both individuals are partially honest. In
order to simplify notation and analysis, we shall assume throughout this
subsection that the admissible domain consists of strict orders, i.e. D ⊂ Pn.
Later we shall discuss some of the complications which arise when indifference
in individual orderings is permitted.

Our results establish two general facts. The first is that the necessary
conditions for implementation are restrictive in the two-person case even
when both individuals are partially honest. For instance, no correspondence
which contains the union of maximal elements of the two individuals, is im-
plementable. We also show that if the number of alternatives is even, then
no anonymous and neutral social choice correspondence is implementable.
The second fact is that the presence of partially honest individuals makes
implementation easier relative to the case when individuals are not partially
honest. Consider, for instance, a classic result due to Hurwicz and Schmeidler
[3] and Maskin [5] which states that if a two-person, Pareto efficient, social
choice correspondence defined on the domain of all possible strict orderings
is implementable, then it must be dictatorial. We show that this result no
longer holds when both individuals are partially honest. To summarize: the
presence of partially honest individuals, ameliorates the difficulties involved
in two-person implementation relative to the case where individuals are not
partially honest; however, unlike the case of many-person implementation
with partially honest individuals, it does not remove these difficulties com-
pletely.

We now proceed to the analysis of the two cases.
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5.1 Both Individuals Partially Honest

In this subsection, we make the following informational assumption.

Assumption A2: Both individuals are partially honest and the planner
knows this fact.

A fundamental condition for implementation in this case is stated below.
In what follows, we shall refer to the players as i and j.

Definition 7 A scc f satisfies Condition β2 if there exists a set B which
contains the range of f , and for each i ∈ N , R ∈ D and a ∈ f(R), there
exists a set C(Ri, a) ⊆ B with a ∈ C(Ri, a) ⊆ L(Ri, a) such that

(i) C(Ri, a) ∩ C(R1
j , b) 6= ∅ for all R1 ∈ D and b ∈ f(R1).

(ii) [a ∈ M(Ri, B) ∩M(Rj, B)] ⇒ [a ∈ f(R)].

Condition β2 comprises two parts. The first is an intersection property
which requires appropriate lower contour sets to have a non-empty interesc-
tion. The second is a unanimity condition which requires alternatives which
are maximal in an appropriate set for both individuals, to be included in
the value of the scc at that state. Conditions of this sort are familiar in the
literature on two-person Nash implementation.

Theorem 2 Assume n = 2 and suppose Assumption A2 holds. Let f be a
SCC defined on a domain of strict orders. Then f is implementable if and
only if it satisfies Condition β2.

Proof. We first show if a scc f is implementable, it satisfies Condition β2.4

Let f be an implementable scc and let g = (M,π) be the mechanism which
implements it. Let B = {a ∈ X|π(m) = a for some m ∈ M}. For each R ∈
D and a ∈ f(R), let m∗(R, a) be the Nash equilibrium strategy profile with
π(m∗(R, a)) = a. Such a strategy profile must exist if f is implementable.
For each i, let C(Ri, a) = {c ∈ X|π(mi,m

∗
j(R, a)) = c for some mi ∈ Mi}. It

follows that a ∈ C(Ri, a) ⊆ L(Ri, a) and that C(Ri, a) ⊆ B.
Take any R1 ∈ D and b ∈ f(R1), and suppose x = π(m∗

i (R, b),m∗
j(R

1, a)).
Then, x ∈ C(R1

i , a) ∩ C(Rj, b). Hence, f satisfies (i) of Condition β2.

4This argument is quite close to that in Dutta and Sen [2] and Moore and Repullo [8].
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Now fix a state R ∈ D and let a ∈ A be such that a ∈ M(Ri, B) ∩
M(Rj, B). Since a ∈ B, there exists a message profile m such that π(m) = a.
If m is a Nash equilibrium in state R, then a ∈ f(R). If m is not a Nash
equilibrium, then there is an individual, say i and m̂i ∈ Ti(R) such that
π(m̂i,mj)Ria. However, a ∈ M(Ri, B) and π(m̂i,mj) ∈ B implies that
π(m̂i,mj)Ria. Since Ri is a strict order, we must have π(m̂i,mj) = a. If
(m̂i,mj) is a Nash equilibrium, then again a ∈ f(R). Otherwise, j 6= i
deviates to some m̂j ∈ Tj(R) with π(m̂i, m̂j) = a (using the same argument
as before). But there cannot be any further deviation from (m̂i, m̂j), and so
a ∈ f(R). Hence f satisfies (ii) of Condition β2.

To prove sufficiency, let f be any scc satisfying Condition β2. For all
R ∈ D and a ∈ f(R), let C(Ri, a) and B be the sets specified in Condition
β2.

For each i, let Mi = D×X ×X ×{T, F}×{1, 2}. The outcome function
π is defined as follows.

(i) If mi = (R, a, b, T, ki) and mj = (R, a, c, T, kj) where a ∈ f(R), then
π(m) = a.

(ii) If mi = (R, a, c, T, ki) and mj = (R1, b, d, T, kj) where a ∈ f(R) and
b ∈ f(R1) with (a,R) 6= (b, R1), then π(m) = x where x ∈ C(R1

i , b) ∩
C(Rj, a).

(iii) If mi = (R, a, c, F, ki) and mj = (R1, b, d, T, kj), with a ∈ f(R) and
b ∈ f(R1), then π(m) = c if c ∈ C(R1

i , b) and π(m) = b otherwise.

(iv) In all other cases, the outcome is the alternative figuring as the third
component of mi∗ , where i∗ is the winner of the modulo game.

The mechanism is similar, but not identical to that used by Dutta and
Sen [2]. Essentially, when both individuals announce the same (R, a) where
a ∈ f(R) and T , then the mechanism identifies this as the “equilibrium”
message for (R, a). However, if the two individuals send these equilibrium
messages corresponding to different states of the world, then the planner
cannot identify which individual is telling the truth, and so the outcome
corresponding to these conflicting messages has to be in the intersection of
the appropriate lower contour sets. If one individual appears to be sending
the equilibrium message corresponding to (R, a), while the other individual i
announces F instead of T (even if the other components correspond to some
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equilibrium), then the latter individual is allowed to select any outcome in
C(Ri, a). Finally, in all other cases, the modulo game is employed.

Let us check that this mechanism implements f in Nash equilibrium.
Throughout the remaining proof, let the true state be R.

Consider any a ∈ f(R). Let m∗
i = (R, a, ., T, ki) for both i. where ki is

any positive integer. Then, π(m∗) = a. Any deviation by i can only result
in an outcome in L(Ri, a), and so m∗ must be a Nash equilibrium.

We complete the proof of Sufficiency by showing that all Nash equilibrium
outcomes are in f(R). Consider a message profile m and suppose that it is
a Nash equilibrium in state R. We consider all possibilities below.

Case 1: Suppose mi = (R1, a, ., T, ki) for all i, where a ∈ f(R1).5 Then,
π(m) = a. If R = R1, there is nothing to prove, since a ∈ f(R). Assume
therefore that R 6= R1. Let i deviate to m′

i = (R, b, a, F, ki), where b ∈ f(R).
Then π(m

′
i, mj) = a. But, this remains a profitable deviation for i since

m′
i ∈ Ti(R). Hence m is not a Nash equilibrium.

Case 2: Suppose mi = (R1, a, c, T, ki) and mj = (R2, b, d, T, kj) where a ∈
f(R1) and b ∈ f(R2) with (a,R) 6= (b, R1). Then π(m) = x where x ∈
C(R2

i , b) ∩ C(R1
j , a). Suppose that R = R1 = R2 does not hold. So, either

R1 6= R or R2 6= R. Suppose w.l.o.g that R1 6= R. Then, i can deviate to
m′

i ∈ Ti(R) such that m′
i = (R, b, x, F, ki). Since x ∈ C(R2, b) by assumption,

π(m
′
i,mj) = x. However, m

′
i ∈ Ti(R) so that i gains by deviating. Hence m is

not a Nash Equilibrium. Suppose instead that R = R1 = R2 holds and m is a
Nash equilibrium. Then it must be the case that x ∈ M(Ri, C(Ri, b)) (Recall
that R = R2), i.e. xRib. However bRix since x ∈ C(Ri, b) by assumption.
Since Ri is a strict order, we have b = x. Since b ∈ f(R), it follows that
π(m) ∈ f(R).

Case 3: Suppose mi = (R1, a, c, F, ki) and mj = (R2, b, d, T, kj) where a ∈
f(R1) and b ∈ f(R2). Then π(m) = x where x ∈ C(R2

i , b). Suppose that
R = R1 = R2 does not hold. So, either R1 6= R or R2 6= R. Suppose first,
that R1 6= R. Then, replicating the argument in Case 2 above, it follows
that i can profitably deviate to m′

i ∈ Ti(R) such that m′
i = (R, b, x, F, ki)

establishing that m is not a Nash Equilibrium. Suppose then that R2 6= R.
Then, j can deviate to m′

j ∈ Ti(R) such that m′
j = (R, b, x, F, kj) and win the

modulo game (by a suitable choice of kj). Then π(mi,m
′
j) = x. and m

′
j is a

profitable deviation since m
′
j ∈ Tj(R). Hence m is not a Nash Equilibrium.

5That is, both individuals “coordinate” on a lie about the state of the world.
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The only remaining case is R = R1 = R2. Observe that since m is a Nash
equilibrium, x ∈ M(Ri, C(Ri, b)), i.e xRib. Since bRix as well, we have b = x
since Ri is a strict order. Since b ∈ f(R) by hypothesis, we conclude that
π(m) ∈ f(R).

Case 4: The remaining possibility is that m is such that the modulo game
decides the outcome. In this case, if m is a Nash equilibrium, then π(m) ∈
M(Ri, B) ∩M(Rj, B). From (ii) of Condition β2, we have π(m) ∈ f(R).

As we have seen above, assuming that all admissible preferences are strict
orders leads to a simple characterization of implementable sccs. Matters are
more complicated and subtle when we allow for indifference. For instance,
even Unanimity is no longer necessary. Let R be a state of the world where
the maximal element for i and j are {a, b} and {a, c}. We can no longer
argue that a is f -optimal at this state for the following reason. Suppose that
the message profile m which leads to a involves individual i announcing a
non-truthful state of the world. However a truthful message from i (holding
j’s message constant) may lead to the outcome b which is not maximal for j.
If this is the case, then m is no longer a Nash equilibrium. It is not difficult
to show that a weaker Unanimity condition is necessary. The complications
associated with weak orders extend beyond that arising from Unanimity.
However, we can establish weaker necessary conditions and prove a version
of Theorem 2 with a “gap” between the necessary and sufficient conditions.
This requires considerable investment in notation, which we do not consider
worthwhile at this point since the main points of this exercise are brought
out by Theorem 2 in its present form.

5.2 Exactly One Partially Honest Individual

Here we make the following informational assumption.

Assumption A1: There is exactly one partially honest individual. The
planner knows this fact but does not know the identity of the honest indi-
vidual.

The condition which is necessary and sufficient for implementation under
Assumption A1 (assuming strict orders) is slightly more complicated than
the earlier case.

Definition 8 The scc f satisfies Condition β1 if there is a set B which
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contains the range of f , and for each i ∈ N , R ∈ D and a ∈ f(R), there
exists a set C(Ri, a) ⊆ B with a ∈ C(Ri, a) ⊆ L(Ri, a) such that

(i) C(Ri, a) ∩ C(R1
j , b) 6= ∅ for all R1 ∈ D and for all b ∈ f(R1).

(ii) for all R2 ∈ D, if b ∈ C(Ri, a) and b ∈ M(R2
i , C(Ri, a)) ∩M(R2

j , B),
then b ∈ f(R2).

(iii) for all R2 ∈ D, [a ∈ M(R2
i , B) ∩M(R2

j , B)] ⇒ [a ∈ f(R2)].

The only difference between Conditions β1 and β2 is the extra requirement
(ii) in the former. Our next result shows that Condition β1 is the exact
counterpart of Condition β2 in the case where assumption A1 holds.

Theorem 3 Assume n = 2 and suppose Assumption A1 holds. Let f be a
SCC defined on a domain of strict orders. Then f is implementable if and
only if it satisfies Condition β1.

Proof. Again, we start with the proof of necessity. Let (M, π) be the
mechanism which implements f . Consider part(i) of Condition β1. Clearly,
the intersection condition remains necessary.

Consider part (ii) of Condition β1. Let R2 ∈ D. We need to show that
if b ∈ C(Ri, a) and b ∈ M(R2

i , C(Ri, a)) ∩ M(R2
j , B), then b ∈ f(R2). Let

π(m) = b with mj = m∗
j(R, a) being the equilibrium message of j supporting

a as a Nash equilibrium when the state is R. Suppose the state is R2. Let
i be the partially honest individual. Since b ∈ M(R2

i , C(Ri, a)), i can have
a profitable deviation from mi only if mi /∈ Ti(R

2) and there is m′
i ∈ T (R2)

such that π(m′
i,mj) = b, the last fact following from our assumption that

R2
i is a strict order. But, now consider (m′

i,mj). Individual i cannot have
a profitable deviation since m′

i ∈ T (R2) and b is R2
i -maximal in C(Ri, a).

Neither can j since b is R2
j -maximal in B and j is not partially honest.

So, (m′
i,mj) must be a Nash equilibrium corresponding to R2, and hence

b ∈ f(R2).
The proof of part (iii) of Condition β1 is similar though not identical to

the proof of its counterpart in β2. Let R2 ∈ D and consider a such that
a ∈ M(R2

i , B) ∩ M(R2
j , B). Since a ∈ B, there exists a message profile

m such that π(m) = a. Suppose w.l.o.g. that i is the partially honest
individual. If m is not a Nash equilibrium, then it must be the case that
there exists m̂i ∈ Ti(R

2) such that π(m̂i,mj)R
2
i a. However, a ∈ M(R2

i , B)
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and π(m̂i,mj) ∈ B implies that π(m̂i,mj)R
2
i a. Since R2

i is a strict order,
we must have π(m̂i,mj) = a. Since a ∈ M(R2

j , B), it must be the case that
(m̂i,mj) is a Nash equilibrium and a ∈ f(R2).

We now turn to the proof of sufficiency. Let f be any scc satisfying
Condition β1. Consider the same mechanism used in the proof of Theorem
2.

Let R be the true state of the world. The proof that every a ∈ f(R) is
supported as a Nash equilibrium is identical to that of Theorem 2.

We need to show that every outcome corresponding to a Nash equilibrium
is in f(R). Let m be any candidate Nash equilibrium strategy profile. Once
again, we consider all possibilities exhaustively. Suppose m is covered by
Case 1 of Theorem 2. Then, the proof is identical to that of Theorem 2 since
the partially honest individual can deviate to a truthtelling strategy without
changing the outcome.

Case 2: Suppose mi = (R1, a, c, T, ki) and mj = (R2, b, d, T, kj) where
a ∈ f(R1) and b ∈ f(R2) with (a,R) 6= (b, R1). Let π(m) = x ∈ C(R2

i , b) ∩
C(R1

j , a). Suppose w.l.o.g that i is the partially honest individual. We

claim that R1 = R. Otherwise i can deviate to m
′
i = (R, z, x, F, ki) so

that π(m
′
i,mj) = x since x ∈ C(R2

i , b). Since mi /∈ T (R) while m
′
i ∈ T (R),

it follows that the deviation is profitable and m is not a Nash equilibrium.
Suppose therefore that R1 = R. Since m is a Nash equilibrium, it must

be true that x ∈ M(Rj, C(Rj, a)), i.e xRja. However, since x ∈ C(Rj, a) and
Rj is a strict order, we must have x = a. Since a ∈ f(R) by assumption, we
have shown π(m) ∈ f(R) as required.

Case 3: Suppose mi = (R1, a, c, F, ki) and mj = (R2, b, d, T, kj) where a ∈
f(R1) and b ∈ f(R2). Let π(m) = x. We know that x ∈ C(R2

i , b). Suppose
R 6= R1 and R 6= R2 hold. As we have seen in the proof of Case 3 in Theorem
2, both individuals can unilaterally deviate to a truth-telling strategy without
changing the outcome. The partially honest individual will find this deviation
profitable contradicting our hypothesis that m is a Nash equilibrium.

Suppose R = R1, i.e i is the partially honest individual. Note that
individual j can trigger the modulo game and obtain any alternative in B
by unilateral deviation from m while i can obtain any alternative in C(R2

i , b)
by unilateral deviation from m. Since we have assumed that m is a Nash
equilibrium in state R, it must be the case that x ∈ M(Ri, C(R2

i , b)) ∩
M(Rj, B). Then by part (ii) of Condition β1, we have x ∈ f(R).

Suppose R = R2, i.e j is the partially honest individual. By the same
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argument as in the previous paragraph, we have x ∈ M(Ri, C(Ri, b)), i.e.
xRib. But x ∈ C(Ri, b) implies bRix. Since Ri is a strict order, we have
b = x. Since b ∈ f(R), we have π(m) ∈ f(R) as required.

Case 4: The remaining possibility is that m is such that the modulo game
decides the outcome. We use the same argument as in Case 4, in Theorem
2, i.e if m is a Nash equilibrium, then π(m) ∈ M(Ri, B) ∩ M(Rj, B) and
applying (iii) of Condition β1 to conclude that π(m) ∈ f(R).

5.3 Implications

In this section, we briefly discuss the implications of our results in the two-
player case. It is easy to verify by inspection that Condition β1 implies Con-
dition β2. We first show that Condition β2 imposes non-trivial restrictions
on the class of implementable sccs.

Proposition 1 : For all R ∈ Pn, let M(Ri, A) ∪M(Rj, A) ⊆ f(R). Then,
f is not implementable under Assumption A2.

Proof. : Consider the profiles P ∈ P2 given below.

(i) aPidPib for all d /∈ {a, b}.
(i) bPjdPJa for all d /∈ {a, b}.

Then, L(Pi, b) ∩ L(Pj, b) = ∅, and so Condition β2 is not satisfied.

According to Proposition 1, no scc which is a superset of the correspon-
dence which consists of the union of the best-ranked alternatives of the two
players, is implementable even when both individuals are partially honest.
An immediate consequence of this result is that the Pareto correspondence
is not implementable.

The next proposition is another impossibility result. Anonymity and
Neutrality are symmetry requirements for sccs with respect to individuals
and alternatives respectively. They are pervasive in the literature but we
include formal definitions for completeness. An extensive discussion of these
properties can by found in Moulin [9].

Definition 9 Let σ : N → N be a permutation. The scc f is anonymous if
for every profile P ∈ Pn, we have f(P ) = f(Pσ(1), Pσ(2), ..., Pσ(n)).
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Definition 10 Let µ : A → A be a permutation. Let P ∈ Pn. Let P µ ∈ Pn

be defined as follows. for all a, b ∈ A and i ∈ N , [aPib ⇔ µ(a)P µ
i µ(b)]. The

scc f is neutral if for every profile P ∈ Pn, we have [a ∈ f(P )] ⇔ [µ(a) ∈
f(P µ)].

Proposition 2 Let the number of alternatives in A be even. Then, no
anonymous and neutral scc is implementable under Assumption A2.

Proof. Let f be an anonymous, neutral and implementable scc. Without loss
of generality, let A = {a1, ..., am} where m is even. Consider a preference
profile P ∈ P2 such that a1Pia2....Piam−1Piam and amPjam−1....Pja2Pja1.
Suppose ar ∈ f(P ) for some integer r lying between 1 and m. We claim that
am−r+1 ∈ f(P ). We first note that ar is distinct from am−r+1. Otherwise
m = 2r + 1 contradicting our assumption that m is even. Let P ′ denote the
profile where individual i’s preferences are Pj and individual j’s preferences
are Pi. Since f is anonymous, ar ∈ f(P ′). Now consider the permutation,
µ : A → A where µ(ak) = am−k+1, k = 1, ...,m. Since f is neutral, am−r+1 ∈
f(P ′µ). However P ′µ = P , so that am−r+1 ∈ f(P ). Now observe that
L(Pi, ar) = {ar, ar+1, ..., am} while L(Pj, am−r+1) = {a1, ..., am−r+1}. Since
m is even, it is easy to verify that L(Pi, ar)∩L(Pj, am−r+1) = ∅ contradicting
part (i) of Condition β2.

We now demonstrate the existence of a class of well-behaved social choice
functions (singleton-valued sccs) which can be implemented when both indi-
viduals are partially honest but not when exactly one individual is partially
honest. The possibility result stands in contrast to the negative result of Hur-
wicz and Schmeidler [3] who showed that there does not exist any two-person,
Pareto efficient, non-dictatorial, implementable social choice correspondence.

Let |A| = m. Choose integers mi and mj such that mi + mj = m− 1. If
m is odd, then we can choose mi = mj = (m− 1)/2. Consider the following
“voting by veto” social choice function f defined on Pn.6 For any P ∈ Pn,
individual i vetoes or eliminates the worst mi elements in A according to Pi.
Denoting this set as Vi, individual j then vetoes the worst mj elements in
A − Vi according to Pj. Denoting this set as Vj, f v(P ) = A − Vi − Vj. In
order to avoid including dictatorial social choice functions within this class,
we assume that 0 < mi,mj < m− 1. Observe that f v has been defined over
the set of all strict order profiles. It is also easy to verify that it is Pareto
efficient.

6See Moulin [9] for a discussion of Voting by Veto rules.
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Proposition 3 The social choice function f v is implementable under As-
sumption A2 but not under A1.

Proof. For all P ∈ P2 and a = f v(P ), let C(Pi, a) = L(Pi, a). Observe that
|L(Pi, a)| ≥ mi + 1 since individual i is vetoing mi alternatives.

Pick an arbitrary pair P, P 1 ∈ P2 and let a = f v(P ) and b = f v(P 1).
Since |C(Pi, a)| ≥ mi + 1 and |C(P 1

j , b)| ≥ mj + 1, mi + mj = m − 1 and
|A| = m, the intersection of the two sets must be non-empty. Hence part (i)
of Condition β2 is satisfied. Part (ii) of β2 follows from the fact that f v is
Pareto efficient. Applying Theorem 2, we conclude that f v is implementable
under Assumption A2.

We now show that f v violates part (ii) of Condition β2. Let A =
{a1, ..., am} and let P 1 be the profile where amP 1

i am−1...P
1
i a2P

1
i a1 and

a1P
1
j a2...P

1
j am−1P

1
j am. Clearly ami+1 = f v(P 1). Note that

a1 /∈ L(P 1
j , ami+1). Now let P be the profile where ami+1Pia1Pia2...Piam and

a1Pjami+1Pja2...Pjam, i.e Pi and Pj rank alternatives a2, ..., am, third through
mth while they switch a1 and ami+i between first and second places. Note
that ami+1 = M(Pj, L(Pj, ami+1)) so that ami+1 = M(Pj, C(Pj, ami+1)) for
any C(Pj, ami+1) ⊂ L(Pj, ami+1). Also ami+1 = M(Pi, A). Hence part (ii) of
β1 requires ami+1 = f v(P ). However f v(P ) = a1. Applying Theorem 3, we
conclude that f v is not implementable under Assumption A1.

Condition β1 is clearly weaker than the conditions required for two-person
implementation without partially honest players. Most obviously, it does not
impose Monotonicity which is otherwise a necessary condition. This raises
the question of whether it is possible to avoid the Hurwicz-Schmeidler and
Maskin impossibility result. We show below that the impossibility result
does not hold by constructing a non-dictatorial sub-correspondence of the
Pareto correspondence which is implementable under Assumption A1.

Example 1 Consider the following scc f on domain Pn. Choose some x∗ ∈
X. For any P ∈ Pn,

f(P ) =

{
{x∗} if x∗ ∈ Q(P )
{y ∈ X|yPix

∗∀i ∈ N} ∩Q(P ) otherwise

where Q(P ) is the Pareto correspondence.

So, f is the correspondence which chooses a distinguished alternative x∗

whenever this is Pareto optimal. Otherwise, it selects those alternatives
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from the Pareto correspondence which Pareto dominate x∗. Notice that this
is not a very “nice” social choice correspondence given its bias in favour of
x∗. However, it does satisfy Condition β1.

To see this, first note that for all P ∈ Pn, and x ∈ f(P ), x∗ ∈ L(Pi, x).
Hence, x∗ ∈ L(Pi, x) ∩ L(P ′

j , z) where z ∈ f(P ′). So, the intersection condi-
tion is satisfied for C(Pi, x) = L(Pi, x).

Next, suppose z ∈ M(P 1
i , L(Pi, x))∩M(P 2

j , X). If z = x∗, then clearly x∗

in f(P 2). Otherwise, since x∗ ∈ L(Pi, x) and z ∈ M(P 1
i , L(Pi, x)), we must

have zPix
∗. Also, if z ∈ M(P 1

i , L(Pi, x)), then zP 2
i ∈ Q(P ). It is also easy

to check that zP 2
j x∗. Hence, it follows that z ∈ f(P ).

6 Conclusion

This paper has investigated the consequence of assuming that players in
the Nash implementation problem are “minimally” honest. Our conclusion
is that this dramatically increases the scope for implementation. In the
case where are at least three individuals, all social choice correspondences
satisfying the weak No Veto Power condition can be implemented. In the
two-person case, the results are more subtle but are nevertheless similar in
spirit. We believe that the notion that players are not driven purely by
strategic concerns based on their preferences over outcomes, is a natural one.
This has an important bearing on mechanism design theory. However, the
exact nature of the departure from standard preferences can be modelled in
multiple ways. It is a fruitful area for future research.
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