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Abstract

This paper analyzes the problem of bilateral trade of a divisible good in a
continuous-time environment with stochastic transaction costs. In our basic setup,
each of two parties is endowed with a durable good that is valued only by the other
party, and the cost of transferring the good to the other party follows a geomet-
ric Brownian motion. The first-best solution to the problem requires each agent
to transfer all of her good to the other agent when the transaction cost reaches
a certain threshold value. However, in the absence of court-enforceable contracts,
such a policy is not incentive-compatible, because an agent is unwilling to transfer
her own good once she has received all of the other agent’s good. This paper pro-
vides a closed-form solution for a second-best transaction scheme in which agents
can realize some gains from trade as part of a subgame-perfect equilibrium. In
the second-best solution, agents transfer the good in a sequential manner with the
transfers becoming smaller over time. Moreover, as the discount rate approaches
zero, the expected discounted payoffs from the first- and second-best policies con-
verge, provided that the drift of the cost process is not excessively high relative
to its volatility. In addition to obtaining a number of comparative statics results
for the basic model, we prove an equivalence result stating that a model with de-
cay or volatility in the amount of the good can be analyzed in terms of our basic
framework. An implication of this result is that as long as there is some volatility
in the amount of the good, positive gains from trade can be realized, even if the
transaction cost is bounded away from zero.
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1 Introduction

This paper is motivated by the following situation. Two firms that operate in different
markets find it potentially profitable to exchange trade secrets, but there is a cost for
transferring knowledge from one firm to the other. This cost might represent the resources
spent training employees of the other firm or the expense of encrypting data to protect
secrets from outsiders. Because of the intangible nature of information, it is infeasible for
the two parties to write a court-enforceable contract specifying the goods to be traded.
Moreover, if the first party immediately reveals all of its information to the second party,
then the second party would have no incentive to reveal its information to the first party.
In this situation, how can the two parties exchange their knowledge with each other?

This paper studies the bilateral exchange of a divisible good in a continuous-time
setting. Each of two agents possesses an equal amount of a good that is valued only
by the other agent. In order to transfer some amount of her good to the other agent,
an agent must pay a transaction cost that evolves according to a geometric Brownian
motion. Although the first-best solution requires each agent to make a single transfer
of all her goods to the other agent once the cost reaches a certain cutoff value, such a
policy cannot be supported as part of a subgame-perfect equilibrium, because each agent
is unwilling to transfer her own good once she has received all of the other agent’s good.

The main objective of this paper is to solve for an incentive-compatible transaction
scheme in which agents can realize positive gains from trade by making a sequence of
gradually decreasing transfers. We obtain a closed-form solution that enables us to derive
a number of comparative-statics results. Moreover, as agents become infinitely patient,
the expected discounted payoff from the second-best policy converges to the efficient
outcome, provided that the drift of the cost process is not excessively high relative to its
volatility. We also prove an equivalence result stating that a model with a decaying or
volatile good can be analyzed in terms of our basic setup. An important implication of
this result is that positive volatility in the amount of the good enables agents to realize
positive gains from trade, even if the cost process is bounded away from zero.

Our model is related to a line of literature on gradualism in contribution games and
concession bargaining.1 In these models, parties arrive at an agreement in a step by step
fashion, and there is an efficiency loss due to delay in reaching an agreement. Likewise,
cooperation between the two parties in our model is sustained through a gradual sequence
of transactions over time. Nonetheless, our model differs from much of the literature
in that transactions continue indefinitely in equilibrium; so that, our model cannot be
solved using an iterated dominance procedure. The paper most closely related to ours is
Pitchford and Snyder (2004). Those authors consider a holdup problem between a buyer
and a seller in which no investment occurs in the equilibrium of the static game. In a
dynamic version of their model, however, positive investment can be supported as part
of an equilibrium in which the seller’s investment and the buyer’s repayment take place
alternately.

There are a number of differences between the model in Pitchford and Snyder (2004)
and the framework developed in this paper. Pitchford and Snyder (2004) consider a
discrete-time model with no uncertainty in the cost of transacting with the other party or
the gains from trade that can be realized. By contrast, this paper analyzes a continuous-

1See Admati and Perry (1991); Compte and Jehiel (1995, 2003, 2004); Marx and Matthews (2000).
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time setting that accommodates volatility in both the cost of transferring goods between
parties and the quantities of goods available for trade. Furthermore, as Pitchford and
Snyder (2004) observe, the equilibrium of their model is not robust to the inclusion of
a fixed cost of making a transaction. If the seller must incur a fixed cost for investing
instead of a variable cost that decreases to zero with the size of the investment, then an
equilibrium with positive investment by the seller cannot be supported in an equilibrium
of their model. Our model provides two ways of resolving this issue. If there is uncertainty
in either the fixed cost of making a transaction or the quantity of goods available for trade,
then agents might be able to realize positive gains from trade as part of a subgame-perfect
equilibrium.

In addition, the efficiency properties of our model are somewhat more nuanced than
those of Pitchford and Snyder (2004). Those authors demonstrate that as discounting
frictions disappear, the solution to their model converges to the efficient outcome. In
our model, the fixed cost of making a transaction acts as an additional friction in the
bargaining process. Consequently, in the limit as the discount rate approaches zero, the
solution to our model converges to the efficient outcome if and only if the drift of the
transaction cost process is sufficiently low relative to its volatility. Even if this condition
is satisfied, the efficiency of the equilibrium is not obvious given the results in Pitchford
and Snyder (2004), because the timing of transactions in our model is endogenous. As
agents become infinitely patient, not only does the cost of the first transaction decrease
but the expected waiting time until this transaction increases. What our efficiency result
demonstrates is that the positive effect of a lower discount rate dominates the negative
effect of a higher waiting time.

A few models of finite-horizon games in continuous time have also been developed
recently. Ambrus and Lu (2009) study a coalitional bargaining model, and Kamada and
Kandori (2009) consider a revision process for strategies. In these models, opportunities
to move arrive according to a Poisson process, and payoffs are realized only after an
agreement or deadline is reached. In Kamada and Kandori (2009), the actions taken on
the equilibrium path converge to the static best responses, because there is an increas-
ingly small probability that other agents will receive another opportunity to move as
the deadline approaches. Unlike much of the literature on gradualism, these models are
similar to ours in that the gains from deviating progressively decrease over time, making
it possible to support a nontrivial equilibrium.

Finally, our model is related to the large literature on repeated games. In standard
models of repeated games, agents play a stage game for infinitely many periods, and the
payoff structure for the stage game is typically constant over time.2 For such models, the
folk theorem states that any individually rational and feasible payoff can be achieved in a
subgame-perfect equilibrium of the supergame if the discount rate is sufficiently low. Such
equilibria are sustained by using the threat of future punishment to enforce cooperation in
the current period. Likewise, the loss of future utility from deviating provides an incentive
for agents in our model to exchange goods with each other. Nonetheless, there are two
important differences between our model and the standard framework. First, in the case
where the total supply of each good is fixed, the present discounted value of the relation-
ship must eventually decrease with time if each agent is transferring a positive quantity

2See, for example, Fudenberg and Maskin (1986).
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of her good. Hence, it is not immediately obvious that a non-degenerate equilibrium
can be sustained in our model. Indeed, we obtain an impossibility result demonstrating
that a positive expected discounted payoff cannot be supported in a subgame-perfect
equilibrium of our model if the transaction cost is bounded below by a positive number
and the quantity of each good available for trade is fixed. Second, the timing of moves
is exogenously specified in standard models of repeated games, but in our model it is an
endogenous strategic response to the realization of the cost process.

The remainder of this paper is organized as follows. Section 2 outlines our basic
model of bilateral trade with stochastic transaction costs and defines the concept of
subgame-perfect equilibrium in the context of our model. In section 3, we analyze the
model in several steps. First, we prove an impossibility result stating that if (a) the
transaction cost is bounded below by a positive number and (b) the quantities of goods
available for trade are fixed, then there is no subgame-perfect equilibrium in which an
agent obtains a positive expected discounted payoff. We then relax assumption (a) by
considering the case where the transaction cost follows a geometric Brownian motion. In
this case, we demonstrate the existence of a subgame-perfect equilibrium in which the
agents obtain a positive expected discounted payoff by exchanging the goods through
a sequence of transfers of decreasing size. We provide a closed-form solution for the
equilibrium strategies and derive a number of comparative statics for the solution. Finally,
we prove an efficiency result stating that the first-best expected discounted payoff can be
approximated as the agents become infinitely patient, provided that the drift of the cost
process is not excessively high relative to its volatility. In section 4, we relax assumption
(b) by extending the basic model to allow the quantities of the goods to follow a geometric
Brownian motion. We prove an equivalence result stating that the extended model can
be analyzed in terms of our basic framework. If there is some volatility in the quantities
of goods, then positive gains from trade can be realized in a subgame-perfect equilibrium,
even if the transaction cost is a positive constant. All proofs, except the one for the main
result (theorem 2), are given in the appendix.

2 Model of Stochastic Transaction Costs

There are two agents, A and B, who take actions in continuous time t ∈ [0,∞). The
discount rate is ρ > 0. There are two divisible goods, 1 and 2. The allocation of the goods
at time t is represented by st = [(sA1

t , sA2
t ), (sB1

t , sB2
t )], where sijt denotes the amount of

good j that agent i possesses at time t. The total supply s > 0 of each good is taken to
be constant over time; so that, sAjt + sBjt = s > 0 for j ∈ {1, 2} and t ∈ [0,∞).3 The
initial endowment vector is assumed to be s0 = [(s, 0), (0, s)]; that is, agent A is endowed
with all of good 1, and agent B is endowed with all of good 2. This assumption is without
loss of generality provided that sA1

0 = sB2
0 . In addition, there is a transaction cost Ct for

transferring goods between the two parties.4 For ease of exposition but without loss of
generality, the initial state C0 of the transaction cost is assumed to be sufficiently high
(e.g., C0 > s/ρ).

3Section 4 extends the model to the case where the supply of each good can vary over time.
4In much of the analysis, the transaction cost Ct is assumed to evolve according to a geometric

Brownian motion. The impossibility result of theorem 1 indicates that some restriction on the cost
process is necessary to support a non-degenerate equilibrium.
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In every instant of time, each agent observes the current realization of the cost and
chooses an amount to transfer to the other agent. Formally, let Ht denote the set of all
histories up to time t, and let ht = ({Cτ , sτ}τ∈[0,t), Ct) be a generic element of this set.
By convention, let h0 be the null history consisting of a singleton set. Denote the set of
all histories by H = ∪t∈R+Ht. Then a strategy for agent i is a function πi : H → R+

satisfying πi(ht) ∈ [0, ŝijt ] for ht ∈ H and ŝijt = limτ→t− s
ij
τ with j = 1 if i = A and j = 2

if i = B.5,6 Hence, the transfer made at time t is given by xijt = ŝijt − s
ij
t with j = 1 for

i = A and j = 2 for i = B. Finally, let Πi with generic element πi denote the set of all
possible strategies for player i.

We restrict attention to symmetric strategies. In particular, we assume that if agent
A transfers a certain amount of good 1 after history ht, then agent B transfers an equal
amount of good 2 after this history. If {st} is the time path of allocations induced by a
given strategy profile (πA, πB) and a realization of the cost {Ct}, then let t(k) denote the
time when the kth transfer is made;7 so that, the present discounted payoff received by
agent i is given by:

Ui(πA, πB, {Ct}) =
∑
k

∫ ∞
t(k)

e−ρtsijt(k)dt−
∑
k

e−ρt(k)Ct(k),

where j = 2 if i = A and j = 1 if i = B.
The equilibrium concept used in this paper is subgame-perfect equilibrium. Because

there is no uncertainty regarding past play and past events, this is a sensible choice of
equilibrium concept. Let Π∗ denote the nonempty set of all subgame-perfect equilibria.8

Definition 1. A subgame-perfect equilibrium π is maximal if there is no π′ ∈ Π∗ such
that E[Ui(π

′
A, π

′
B, {Ct})] ≥ E[Ui(πA, πB, {Ct})] for each i ∈ {A,B} with at least one

inequality strict.

There are several reasons for focusing on a maximal equilibrium. First, the equilibrium
is salient. Second, we consider a situation in which the two parties have made an informal
agreement with each other. Hence, it is reasonable to assume that agents can coordinate
their play on their preferred outcome as long as it does not violate the incentive constraints
of either party. Third, restricting attention to such an equilibrium makes it possible to
obtain strong comparative statics results and derive meaningful economic implications.

As stated in proposition 2, every SPE payoff can be achieved by an SPE involving
grim-trigger strategies in which no further transfers are made if an agent deviates from
the prescribed strategy profile. Hence, there is no loss of generality from assuming that
agents use grim-trigger strategies.

5Note that the limit exists because sij
t is a monotonic function of time. Defining strategies in con-

tinuous time involves a number of difficulties in general, as discussed in Simon and Stinchcombe (1989).
Nonetheless, the monotonicity of sij

t implies that agents take only a countable number of actions along
any path of play; so that, this definition of strategies is innocuous.

6We restrict attention here to pure strategies. We do not expect that any of our conclusions depend
on this restriction.

7Recall that only a countable number of transfers can occur along a given path of play.
8The strategy profile in which each agent never makes a transfer is an element of Π∗; therefore, the

set Π∗ is nonempty.
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3 Analysis of Model

We begin with the following lemma that greatly simplifies the analysis as well as exposi-
tion.

Proposition 1. Maximizing the payoffs of the agents subject to the cost process Ct is
equivalent to maximizing

∑
k x

A2
k e−ρt(k)−

∑
k e
−ρt(k)ct(k) and

∑
k x

B1
k e−ρt(k)−

∑
k e
−ρt(k)ct(k)

subject to the cost process ct with ct = ρCt.

In other words, with an appropriate rescaling of the cost process, each agent can be
regarded as consuming the good as soon as it is received. Because of its tractability, we
work directly with the process ct in our analysis, but we always keep in mind the original
maximization problem involving Ct.

The following theorem is an impossibility result. If the transaction cost is bounded
below by a positive number and the quantities of goods available for trade are fixed, then
there is no equilibrium in which an agent receives a positive expected discounted payoff.
Note that this result does not depend on assuming symmetric or maximal equilibrium
strategies. Furthermore, the theorem only relies on the notion of iterated dominance as
opposed to the more restrictive concept of subgame perfection. The restriction to pure
strategies made above does not play any role in proving the theorem.

Theorem 1. Assume that {c̃t} is an arbitrary cost process defined on the probability space
(Ω,F , P ) and that each random variable c̃t for t ≥ 0 takes values in the state space (S,J )
with S ⊂ R and inf(S) = k > 0. Then any strategy profile surviving iterated dominance
satisfies sijt = s for all t with j = 2 (resp., j = 1) if i = A (resp., i = B).

There are two approaches to resolve the issue above and to proceed with the analysis.
Section 4 analyzes a model with uncertainty in the quantities of goods available for trade
and demonstrates that the impossibility result does not hold in such a setting. In the
current section, we relax the assumption that the transaction cost is bounded below by
a positive number. Specifically, we assume that the cost process ct follows a geometric
Brownian motion dct = µctdt+σctdzt. The cost process is assumed to be non-degenerate
(i.e., σ2 > 0).

The following proposition provides justification for restricting attention to SPE in
grim-trigger strategies. The basic idea behind the proof is that each agent can always
obtain a continuation payoff of zero by transferring nothing. If an opponent uses a grim-
trigger strategy, then zero is the maximum payoff that can be achieved after a deviation.
Thus, the grim-trigger strategy is the most severe punishment available. The full proof
of the result is given in appendix.

Proposition 2. Given an arbitrary SPE, there exists an SPE in grim-trigger strategies
that achieves the same continuation payoff after any history on the equilibrium path.

In particular, this proposition implies that given an arbitrary maximal SPE, there
exists a maximal SPE in grim-trigger strategies that achieves the same continuation
payoff after any history on the equilibrium path.

Hereafter, we restrict attention to maximal SPE in grim-trigger strategies. We as-
sume that the equilibrium has the form {ct(k), xk}k. This notation indicates that the kth

transaction occurs when the cost is ct(k) and that each agent transfers the amount xk in
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that state. From now on, we sometimes abuse notation by writing ck = ct(k) when what
is meant by the subscript is clear.

The maximality assumption imposes the following restriction on the form of the SPE.
The intuition for the result is that when a transaction takes place, the continuation
value must equal the transaction cost incurred. Otherwise, the agents could achieve a
welfare gain by decreasing the size of future transfers and increasing the amount currently
transferred.

Proposition 3. There is an infinite, positive, decreasing sequence {ck}∞k=1 of transaction
costs paid with positive probability in any maximal SPE.

We can now state the main theorem of this paper, which provides a closed-form
solution for the model.

Theorem 2. There exists a maximal SPE of the form z = {ck, xk}∞k=1 where

xk =
s

1− β−

(
β−

β− − 1

)k−1

and

ck =

(
s

1− β−

)(
β−

β− − 1

)k−β−
with

β− = 1
2
− µ/σ2 −

√
(µ/σ2 − 1

2
)2 + 2ρ/σ2.

Proof. Given that the incentive constraint must bind for every index k, the optimization
problem can be solved by generating an infinite sequence of asset-pricing equations. In
particular, suppose that each agent has made a total of k transfers and that the current
transaction cost c is greater than ck+1. Note that sijt = sijt(k). Then the value Vi(c, st; π)
of the relationship to each agent is the same as the value of an asset that pays xk+1 when
the transaction cost is ck+1. Because the cost ck+1 must be equal to the continuation
value Vi(ck+1, st(k+1); π), it is only necessary to consider the instantaneous payoff xk+1

when calculating V (c, st; π). Thus, the solution involves maximizing over a sequence of
individual asset-pricing problems. The Bellman equation for asset-pricing problem k + 1
is given by the following for c > ck+1:

ρVi (c, st; π) = E(dVi). (1)

Our proof relies on a sequence of five lemmata. All proofs are given in appendix 5.5.

Lemma 1. The unique solution to the Bellman equation (1) is

Vi
(
c, st(k); π

)
= xk+1

(
c

ck+1

)β−
where

β− = 1
2
− µ/σ2 −

√
(µ/σ2 − 1

2
)2 + 2ρ/σ2.
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Thus, the optimal trading policy z = {ck, xk}∞k=1 is a solution to the optimization
problem:

max
c1,{xi}∞i=1

x1

(
c

c1

)β−
, subject to

∞∑
k=1

xk ≤ s and ck = xk+1

(
ck
ck+1

)β−
for all k ≥ 1. (2)

Given a technical condition that is satisfied by the solution, we can further simplify the
maximization problem in (2) by eliminating each ck.

Lemma 2. Under the assumption that limn→∞[β−/(β−−1)]n ln(cn+k) = 0, maximization
problem (2) is equivalent to

max
{xk}∞k=1

∞∑
k=1

(
β−

β− − 1

)k−1

ln(xk), subject to
∞∑
k=1

xk ≤ s. (3)

Next, we solve the maximization problem in (3).

Lemma 3. The solution to maximization problem (3) is

xk =
s

1− β−

(
β−

β− − 1

)k−1

.

In turn, the solution for the xk yields the solution for the ck.

Lemma 4. Under the assumption that limn→∞[β−/(β− − 1)]n ln(cn+k) = 0, the optimal
cutoff rule ck is given by

ck =

(
s

1− β−

)(
β−

β− − 1

)k−β−
.

Using the solution for the ck, we can confirm that the technical assumption made in
lemma 2 is indeed satisfied by the solution.

Lemma 5. The assumption that limn→∞[β−/(β− − 1)]n ln(cn+k) = 0 is satisfied by the
solution z = {ck, zk}∞k=1.

The preceding theorem demonstrates the existence of an SPE in which agents realize
some gains from trade. Note, however, that we have not yet established the uniqueness
of the solution. In particular, there might be a solution to the Bellman equation that
does not satisfy the technical condition assumed in lemma 2. We have not yet been able
to show uniqueness, although we expect this conclusion to be likely. The proof is left to
future work.

The closed-form solution for the model enables us to obtain a number of comparative
statics results, which are helpful in understanding how changes in the parameters of
the model affect the properties of the equilibrium. These results are enumerated in the
corollaries below. Proofs are given in appendix 5.6 unless otherwise noted.

Corollary 1. limk→∞ xk = limk→∞ ck = 0.
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That is, both the amount of each good transferred and the cost paid at each transac-
tion tend to zero over time.

Corollary 2. If µ < σ2

2
, then limt→∞ s

A2
t = limt→∞ s

B1
t = s with probability one.

The proof simply involves calculating the sums of infinite series and is therefore omit-
ted. This corollary states that with probability one the agents eventually transfer all of
the goods available for trade, provided that the drift of the cost process is not excessively
high relative to its volatility. As can easily be seen, this conclusion is the consequence
of the maximality assumption. Given an SPE in which the amount of goods transferred
is r < s, a Pareto superior SPE in which the agents transfer all of the goods, can be
constructed by requiring the agents to transfer the additional amount s − r at the first
transaction.

Corollary 3. If k − 1 > |β−|, then xk is increasing in µ and decreasing in σ2. If
k − 1 < |β−|, then xk is decreasing in µ and increasing in σ2.

This is an intuitive result. If the drift µ of the cost process decreases, then the
cost is more likely to fall enough in the near future for the agents to make another
transaction. The greater proximity of a future transaction raises the continuation value of
the relationship and relaxes the incentive constraints for the problem; so that, agents can
make larger transfers at early stages and smaller transfers at later stages. If the volatility
σ2 of the cost process increases, then both extremely high and low realizations of the
cost process become more likely. Because the solution has a cutoff form, the favorable
impact of low cost realizations dominates the adverse impact of high cost realizations.
This option-value argument suggests that a high volatility σ2 has a similar effect on the
solution as a low drift µ.

Corollary 4. For all k, ck is decreasing in µ and increasing in σ2.

Intuitively, if the drift µ decreases, then the continuation value of the relationship
rises; so that, higher cost payments can be elicited from each agent without violating her
incentive constraints. As has already been noted, a high volatility σ2 has an effect similar
to a low drift µ.

Corollary 5. limρ→0 x1 = s and limρ→0 ck = 0 for all k. In addition, limρ→∞ x
ij
k =

limρ→∞ ck = 0 for all k.

The proof is omitted, because it follows immediately from theorem 2. On the one hand,
as the agents become infinitely patient, it is optimal for them to wait for an extremely
low cost realization before making a transfer. Furthermore, a large initial transfer can be
supported in equilibrium, because the incentive constraints are weak when the transaction
cost is low and a high continuation value is not needed to prevent deviations. On the
other hand, as the agents become infinitely impatient, it is impossible to induce them
to incur a large transaction cost, because the continuation value from the relationship is
low and the incentive to deviate is high. The size of each transfer must also be small, in
order to ensure that the continuation value is sufficiently high to sustain cooperation.

Note that both extremely high and low values of the discount rate result in a very
small cost cutoff ck for each k. Thus, the expected waiting time to reach the allocation
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s∗(K) = [(s −K,K), (K, s −K)] for any fixed K with 0 < K < s is very high in these
extreme cases. This suggests that the waiting time is non-monotonic in the discount rate.
Letting c∗(K) denote the value of ct at which the sum of the transferred good (sA2

t or
sB1
t ) exceeds K, figures 1-4 plot c∗(K) against β− for K ∈ {10, 20, 30, 40} and s = 50.

Note that β− is decreasing in µ and ρ as well as increasing in σ2. In these figures, the
expected waiting time rises as c∗(K) decreases and becomes infinite as c∗(K) approaches
zero.

Since the waiting time becomes infinite as the discount rate approaches zero, it is not
immediate that the first-best outcome can be approximated as agents become infinitely
patient. The next theorem confirms that the second-best payoff converges to the first-
best payoff in the limit as the discount rate approaches zero, provided that the drift of
the cost process is not excessively high relative to its volatility.

Theorem 3. In the limit as ρ approaches zero, the expected discounted payoff of each
agent in the SPE of theorem 2 converges to the first-best outcome if and only if µ ≤ σ2

2
.

On the one hand, if trading frictions are low in the sense that the drift of the cost
process is sufficiently small relative to its volatility, then the first-best outcome can be
approximated as the the agents become infinitely patient. On the other hand, if the drift
is high and the volatility is low, then the trading environment tends to deteriorate over
time, and there is uncertainty about whether a future transaction will take place. In this
case, the second-best solution fails to converge to the first-best outcome.

The proof of preceding theorem results in the following corollary.

Corollary 6. If µ > σ2

2
, then in the limit as ρ approaches zero, the ratio of the second-best

payoff to the first-best payoff is decreasing in µ and increasing in σ2.

Intuitively, a lower drift or a higher volatility results in a more favorable trading
environment in which future transactions are more likely to occur. Consequently, the
continuation value from the relationship is higher, and larger transfers can be sustained
in equilibrium.

4 Model with Stochastic Supplies of Goods

This section extends the basic model to allow for decay or volatility in the supplies of
the goods available for trade. The setup here is the same as that described in section 2,
except that the remaining stock of each agent’s good is assumed to follow a geometric
Brownian motion. Letting j = 1 if i = A and j = 2 if i = B, we assume that sijt evolves
according to the process dsijt = −δsijt dt + ξsijt dzt, where zt is a Wiener process, δ > 0 is
the decay rate of each good, and ξ2 is the volatility in the stock of goods. The following
result is an equivalence theorem that characterizes the solution of the extended model in
terms of the basic model with a fixed supply of each good.

Theorem 4. The maximal SPE of a model in which each good decays at rate δ and has
volatility ξ2, is equivalent to the maximal SPE of a model with a constant supply of each
good in which the discount rate is ρ+ δ instead of ρ, the drift of the cost is µ+ δ instead
of µ, and the volatility of the cost is σ2 + ξ2 instead of σ2.
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The result is intuitive. A greater depreciation rate δ lowers the value of the relationship
by increasing the effective discount rate from ρ to ρ+ δ and the effective drift from µ to
µ + δ. Greater volatility ξ2 in the stock of goods raises the value of the relationship by
increasing the effective volatility of the cost from σ2 to σ2 + ξ2.

Three remarks are in order. First, as the proof in appendix 5.8 demonstrates, the
theorem is still valid whenever ρ + δ > 0; that is, the result holds even when there is
growth in goods, provided that the growth rate is sufficiently low. An analysis of the
case where ρ + δ < 0 is left to future work, although we conjecture that the problem
is not well defined in this case. In particular, there might exist an SPE that generates
an infinitely high expected discounted payoff. Second, note that even in the case where
the goods decay over time, transactions do not end in finite time. As the goods decay,
the size of the transfers decreases accordingly to ensure that agents receive a sufficient
continuation value after the current transaction is completed.

Finally, the result offers a counterpoint to theorem 1 in the following sense. Consider
a cost process with nonnegative drift and no volatility. If the supply of each good is fixed
over time, this cost process satisfies the conditions of theorem 1; so that, no transactions
can occur in any SPE of the model. However, if there is some volatility in the stock of
goods as in the model developed in this section, then our equivalence result states that
such a model can be transformed into a model with volatility in the cost but no volatility
in the goods; thus, positive transfers can be supported in equilibrium.
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5 Appendix

5.1 Proof of Proposition 1

Proof. Because transactions costs are paid only a countable number of times, sA2
t and

sB1
t are step functions in time, which we define to be continuous from the right. Thus,

we have:∫ ∞
0

e−ρtsA2
t dt−

∑
k

e−ρt(k)Ct(k) =
∑
k

∫ ∞
t(k)

e−ρτ [sA2(k)− sA2(k − 1)]dτ −
∑
k

e−ρt(k)Ct(k)

=
∑
k

[sA2(k)− sA2(k − 1)][−1

ρ
e−ρτ ]∞t(k) −

∑
k

e−ρt(k)Ct(k)

=
1

ρ

∑
k

[sA2(k)− sA2(k − 1)]e−ρt(k) − 1

ρ

∑
k

e−ρt(k)ρCt(k)

=
1

ρ

[∑
k

xA2
k e−ρt(k) −

∑
k

e−ρt(k)ct(k)

]
,

where sA2(k) denotes the allocation at time t(k). That is, sA2
t(k) = sA2(k). In addition, we

set xA2
k = sA2(k)− sA2(k − 1) and ck = ρCk.

Similarly, we have:∫ ∞
0

e−ρtsB1
t dt−

∑
k

e−ρt(k)Ct(k) =
1

ρ

[∑
k

xB1
k e−ρt(k) −

∑
k

e−ρt(k)ct(k)

]
,

with the obvious notational change.
The equations above imply that maximizing the agents’ payoffs is equivalent to max-

imizing the discounted sum of amounts transferred (the xijk ) minus the discounted sum
of transaction costs paid (the ct(k)).

5.2 Proof of Theorem 1

Proof. We prove by induction that there are no SPE strategies in which some agent i
makes a positive transfer xijt at some history ht. Consider any history ht with the current
allocation being s = [(sA1

t , sA2
t ), (sB1

t , sB2
t )]. If sB2

t < k, then there is no SPE strategy
where agent A makes a positive transfer at history ht, because such a strategy would give
agent A an expected discounted payoff no greater than sB2

t − k < 0, whereas agent A
could obtain an expected discounted payoff of at least zero by making no transfers after
history ht. Because there is no SPE strategy where agent A makes a positive transfer at
some history ht with sB2

t < k, agent B would obtain an expected discounted payoff no
greater than −k < 0 by making a positive transfer at a history ht with sB2

t < k but would
obtain an expected discounted payoff of zero by making no transfers after such a history.
Thus, there is no SPE strategy where agent B makes a positive transfer at some history
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ht in which sB2
t < k. A symmetric argument shows that there are no SPE strategies

where agent A or B makes a positive transfer at some history ht in which sA1
t < k.

Suppose now that for some integer n ≥ 1, there are no SPE strategies where agent A
or B makes a positive transfer at some history ht in which sA1

t < nk or sB2
t < nk. Given

this assumption, we show that there are no SPE strategies where agent A or B makes a
positive transfer at some history ht in which nk ≤ sA1

t < (n+1)k or nk ≤ sB2
t < (n+1)k.

Consider in particular a history ht in which nk ≤ sA1
t < (n+ 1)k. If agent A is using an

SPE strategy, then the greatest amount of the good that agent A can transfer at history
ht is sA1

t −nk, because if agent A made a transfer greater than sA1
t −nk at history ht, then

the remaining amount sA1
τ of agent A’s good for τ > t would be such that agent B makes

no further transfers, implying that agent A could obtain a higher expected discounted
payoff by instead making no transfers after history ht. Thus, if agent A is using an SPE
strategy and history ht is reached, then it must be that sA1

t ≥ nk for every history hτ
with τ > t; so that, the total amount transferred by agent A after history ht is at most
sA1
t − nk < k.

It follows that there is no SPE strategy in which agent B makes a positive transfer
after history ht, because making a positive transfer would give agent B an expected
discounted payoff no greater than sB2

t − (n + 1)k < 0, whereas agent B could obtain
an expected discounted payoff of at least zero by making no transfers after history ht.
Thus, there is no SPE strategy where agent A makes a transfer at history ht, because
agent A would obtain an expected discounted payoff no greater than −k < 0 by making a
transfer at history ht but would obtain an expected discounted payoff of zero by making
no transfers after history ht. Thus, there are no SPE strategies where agent A or B makes
a transfer at some history ht in which nk ≤ sB2

t < (n+1)k. A symmetric argument holds
for any history ht in which nk ≤ sA1

t < (n+ 1)k. This completes the induction.

5.3 Proof of Proposition 2

Proof.
Consider any SPE π = (πA, πB). We construct an SPE using grim-trigger strategies

π′ = (π′A, π
′
B) that achieves the same continuation payoff after any history ht on the

equilibrium path. Given the history ht, let ui(ht, π) denote the expected discounted
payoff to player i from following the equilibrium strategy from time t onwards, and let
vi(ht, π) denote the supremum of the expected discounted payoffs to player i from any
sequence of deviations. Then it must be that ui(ht, π) ≥ vi(ht, π), because π is an SPE.

Now consider the grim-trigger strategy π′i which is the same as πi on the equilibrium
path induced by π and requires both players to stop making transfers if either player
deviates. We show that π′ is an equilibrium strategy profile. Given history ht from
above, the payoff to player i from following the equilibrium strategy from time t onwards
is again ui(ht, π); so that, ui(ht, π

′) = ui(ht, π).
If agent −i uses the grim-trigger strategy π′−i, then a deviation at time t gives agent

i an expected discounted payoff of at most zero, because agent −i makes no further
transfers. Furthermore, agent i can ensure that she receives an expected discounted
payoff of zero by transferring nothing herself. Hence, vi(ht, π

′) = 0.
Now note that vi(ht, π) ≥ 0 for all ht because by transferring nothing agent i can

always ensure that she receives an expected discounted payoff of zero. Thus, we have
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ui(ht, π
′) = ui(ht, π) ≥ vi(ht, π) ≥ 0 = vi(ht, π

′) for all ht ∈ H. Hence, the strategy
profile π′ constitutes a SPE. Because ui(ht, π

′) = ui(ht, π) for all ht ∈ H, the equilibrium
payoff ui(h0, π) can be achieved using grim-trigger strategies.

5.4 Proof of Proposition 3

Proof.
Given the current endowment vector st and the current transaction cost ct, let agent i’s

value function Vi(ct, st; π) represent the expected present discounted value of her payoffs
if both players following strategy profile π. First, we prove the following lemma.

Lemma 6. In any maximal SPE, ck = Vi(ck, st; π) and xk+1 = Vi(ck, ŝt; π) hold for every
k ≥ 1.

Proof.
In order to be technologically feasible, a strategy profile π must satisfy the budget

constraint
∑∞

k=1 xk ≤ s. Moreover, incentive compatibility requires π to satisfy the
constraint ck ≤ Vi(ck, st(k); π) for every k ≥ 1, which states that the cost of making each
transfer must be less than the expected present discounted value of the relationship after
the transfer has been made. We show that the inequality must be satisfied with equality
if π is a maximal SPE.

Suppose to the contrary that ck < Vi(ck, st(k); π) for some index k ≥ 1. Note first
that we must have cl > 0 for each index l ≥ 1 in any non-degenerate solution, because
there is zero probability that the cost process reaches the state ct = 0 in finite time.
Otherwise, choose l to be the smallest index such that cl = 0. If l ≥ 2, then it must
be that Vi(cl−1, st(l−1); π) = 0 with cl−1 > 0, which violates the incentive constraint for
transaction l − 1. If l = 1, then Vi(ct, st; π) = 0 for all t. Now note that transfer k
cannot be the final transaction. Otherwise, it must be that ck > 0 ≥ V (ck, st(k); π),
which violates the incentive constraint for transaction k. Furthermore, it must be that
xk+1 > 0. Otherwise, if xk+1 = 0 and ck+1 > 0, then the agents could get a higher payoff
by deleting (xk+1, ck+1) from π.

Thus, ck < Vi(ck, st(k); π) implies that the present value of the relationship could
be increased by lowering xk+1 and raising xk, because this perturbation would move a
future payoff forward in time, as well as possibly increase the probability that the payoff is
realized. In a maximal SPE, it must therefore be that ck = Vi(ck, st(k); π). It is immediate
that ck = Vi(ck, st(k); π) implies xk+1 = Vi(ck+1, ŝt(k+1); π).

If follows from the proof of the preceding lemma that there is an infinite, positive
sequence {ck}∞k=1 of transaction costs paid with positive probability in any maximal SPE
π. We show that the sequence {ck}∞k=1 must be decreasing. Suppose to the contrary that
there exists an index l such that cl+1 ≥ cl. Let m denote the least index greater than
l + 1 satisfying cm < cl. Note that such an integer m must exist. Otherwise, the result
that ck = Vi(ck, st(k); π) for all k ≥ 1 implies that all of each good is exhausted before
transaction l + n takes place, where n is the least integer greater than s/cl.

Now consider the grim-trigger strategy profile π′ obtained from π by requiring agents
to transfer xl+

∑m−1
k=l+1 xk instead of xl at transaction l and to transfer zero instead of xk at

each transaction k ∈ {l+ 1, . . . ,m− 1}. In order to confirm that π′ is an SPE, it suffices
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to show that the incentive constraint cl ≤ Vi(cl, st(l); π
′) for transaction l is satisfied.

Because π is an SPE, the incentive constraint for transaction m− 1 must hold; so that,
cm−1 ≤ Vi(cm−1, st(m−1); π). By construction, we have Vi(cl, st(m−1); π) = Vi(cl, st(l); π

′).
Noting that ct follows a continuous Markov process, it must be that Vi(cm−1, st(m−1); π) ≤
Vi(cl, st(m−1); π) because cm < cl ≤ cm−1. All together, we obtain:

cl ≤ cm−1 ≤ Vi(cm−1, st(m−1); π) ≤ Vi(cl, st(m−1); π) = Vi(cl, st(l); π
′),

confirming that the incentive constraint for transaction l under π′ is satisfied. Moreover,
each agent receives a higher expected discounted payoff under π′ than under π, which
contradicts the assumption that π is maximal. Thus, the sequence of transaction costs
{ck}∞k=1 must be decreasing in any maximal SPE.

5.5 Proof of Lemmata in Theorem 2

5.5.1 Proof of Lemma 1

Proof.
A straightforward application of Ito’s lemma yields:

ρVi (c, st; π) = µc
∂Vi (c, st; π)

∂c
+

1

2
σ2c2

∂2Vi (c, st; π)

∂c2
,

which provides a second-order linear differential equation for Vi(c, st; π). Seeking a so-
lution of the form g(c; ck+1, xk+1) = B(ck+1, xk+1)c

β, the following quadratic equation is
obtained by substituting the functional form into the differential equation:

1
2
σ2β(β − 1) + µβ − ρ = 0,

whose solution is given by:

β = 1
2
− µ/σ2 ±

√
(µ/σ2 − 1

2
)2 + 2ρ/σ2.

Letting β+ and β− respectively denote the positive and negative roots of the quadratic,
the general solution to the differential equation is given by Vi (c, st; π) = B+(ck+1, xk+1)c

β+
+

B−(ck+1, xk+1)c
β− . It must be the case that B+(ck+1, xk+1) = 0, because Vi(c, st; π) would

otherwise become unboundedly large in absolute value as c goes to ∞. Moreover, the

boundary condition Vi
(
ck+1, st(k); π

)
= xk+1 yields B−(ck+1, xk+1) = xk+1/c

β−

k+1. Hence,
the solution to the Bellman equation (1) is:

Vi
(
c, st(k); π

)
= xk+1

(
c

ck+1

)β−
.

Uniqueness obtains because the solution to a second-order linear differential equation is
generally unique.
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5.5.2 Proof of Lemma 2

Proof.
Note that each incentive-compatibility constraint in (2) can be rewritten as:

ln(ck) =
β− ln(ck+1)− ln(xk+1)

β− − 1
.

Iterating the incentive-compatibility constraint n times starting with transfer k, it can
be shown by induction that ck satisfies:

ln(ck) =

(
β−

β− − 1

)n
ln(cn+k)− (β− − 1)−1

n−1∑
j=0

(
β−

β− − 1

)j
ln(xk+j+1).

Assuming that limn→∞[β−/(β− − 1)]n ln(cn+k) = 0, ln(ck) can be expressed as follows:

ln(ck) = −(β− − 1)−1

∞∑
j=0

(
β−

β− − 1

)j
ln(xk+j+1).

Substituting for ln(c1) in the maximization problem after taking the logarithm of the
maximand, we obtain maximization problem (3).

5.5.3 Proof of Lemma 3

Proof.
The Lagrangian is given by:

L =
∞∑
k=1

(
β−

β− − 1

)k−1

ln(xk) + λ

(
s−

∞∑
k=1

xk

)
,

which yields a first-order condition for each index k ≥ 1:

xi =
1

λ

(
β−

β− − 1

)k−1

.

The budget constraint provides:

s =
1

λ

∞∑
k=1

(
β−

β− − 1

)k−1

=
1− β−

λ
.

Thus, we obtain λ = (1− β−)/s, leading to the following sequence of transfers:

xk =
s

1− β−

(
β−

β− − 1

)k−1

.
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5.5.4 Proof of Lemma 4

Proof.
Substituting xk obtained in lemma 3 into the last expression in the proof of lemma 2,

we have:

ln(ck) = (1− β−)−1

∞∑
j=0

(
β−

β− − 1

)j [
ln

(
s

1− β−

)
+ ln

(
β−

β− − 1

)j+k]

= ln

(
s

1− β−

)
+ (k − β−) ln

(
β−

β− − 1

)
,

where the standard formulas for geometric series and their derivatives provide:

(1− β−)−1

∞∑
j=0

(
β−

β− − 1

)j
ln

(
s

1− β−

)
= ln

(
s

1− β−

)
.

(1− β−)−1

∞∑
j=0

(
β−

β− − 1

)j (
β−

β− − 1

)k+j
= (1− β−)−1 ln

(
β−

β− − 1

) ∞∑
j=0

(k + j)

(
β−

β− − 1

)j
= (1− β−)−1 ln

(
β−

β− − 1

)
[k(1− β−)− β−(1− β−)]

= (k − β−) ln

(
β−

β− − 1

)
.

Thus, the sequence of cost thresholds is given by:

ck =

(
s

1− β−

)(
β−

β− − 1

)k−β−
.

5.5.5 Proof of Lemma 5

Proof.

lim
n→∞

(
β−

β− − 1

)n
ln(cn+k)

= lim
n→∞

(
β−

β− − 1

)n(
ln

(
s

1− β−

)
+ (n+ k − β−) ln

(
β−

β− − 1

))
= lim

n→∞

(
β−

β− − 1

)n
ln

(
s

1− β−

)
+ lim

n→∞

(
β−

β− − 1

)n
(n+ k − β−) ln

(
β−

β− − 1

)
= lim

n→∞

(
β−

β− − 1

)n
(n+ k − β−) ln

(
β−

β− − 1

)
= 0.
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5.6 Proof of Corollaries

5.6.1 Proof of Corollary 3

Proof.

sgn

[
∂xk
∂β−

]
= sgn

[
∂

(
s

1− β−

(
β−

β− − 1

)k−1
)/

∂β−

]
= sgn

[
−(k − 1)(β−)k−2(β− − 1)k + k(β−)k−1(β− − 1)k−1

]
= sgn

[(
−(k − 1)(β− − 1) + kβ−

)
(β−)k−2(β− − 1)k−1

]
= sgn

[
(k − 1)(β− − 1)− kβ−

]
= sgn

[
1− k − β−

]
.

Thus, ∂xk/∂β
− is negative if k − 1 > |β−| and positive if k − 1 < |β−|. In addition, we

have ∂β−/∂µ < 0 and ∂β−/∂(σ2) > 0. Combining, we obtain the desired result.

5.6.2 Proof of Corollary 4

Proof.

sgn

[
∂ck
∂β−

]
= sgn

[
∂ ln (ck)

∂β−

]
= sgn

[
∂ (ln (s)− ln (1− β−) + (k − β−) (ln (−β−)− ln (1− β−)))

∂β−

]
= sgn

[
1

1− β−
+
(
k − β−

)(
− 1

β−
+

1

1− β−

)
−
(
ln
(
−β−

)
− ln

(
1− β−

))]
= sgn

[
1

1− β−
+
(
k − β−

)( 1

−β−
+

1

1− β−

)
+
(
ln
(
1− β−

)
− ln

(
−β−

))]
= 1.

In addition, we have ∂β−/∂µ < 0 and ∂β−/∂(σ2) > 0. Combining, we obtain the desired
result.

5.7 Proofs of Theorem 3 and Corollary 6

5.7.1 Proof of Theorem 3

Proof. We begin by computing the solution to the second-best problem. From the proof
of theorem 2, the value function V sb

i [c0, s0; β(ρ)] of agent i ∈ {A,B} for the second-best
problem is as follows:

V sb
i [c0, s0; β(ρ)] =

f [β(ρ)]s

[k(s)]β(ρ)
cβ(ρ), f [β(ρ)] =

1

1− β(ρ)
, k[s; β(ρ)] =

s

1− β(ρ)

(
−β(ρ)

1− β(ρ)

)1−β(ρ)

,
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where β(ρ) < 0 is given by:

β(ρ) = 1
2
− µ/σ2 −

√
(µ/σ2 − 1

2
)2 + 2ρ/σ2.

Note that the notation here differs from that used in the proof of theorem 2 in that
the value function here depends on β instead of strategy profile π. In addition, let β(ρ)
denote the value of β given the discount rate ρ.

Substituting for f [β(ρ)] and k[s; β(ρ)] in the expression for V sb
i [s, c; β(ρ)] results in:

V sb
i [c0, s0; β(ρ)] = {a[β(ρ)]}1−β(ρ)s1−β(ρ)cβ(ρ),

where the constant a[β(ρ)] ∈ (0, 1) is given by:

a[β(ρ)] = [−β(ρ)]−β(ρ)[1− β(ρ)]−[1−β(ρ)].

We next compute the solution to the first-best problem. In the absence of incentive-
compatibility constraints, the optimal policy requires the agents to make at most one
transfer. Given that the agents use a stationary threshold policy, the value function
V fb
i [c0, s0; β(ρ)] for the first-best problem for i ∈ {A,B} can be obtained by finding the

number k that maximizes the value V fb
i [c, s, k; β(ρ)] of an asset that pays s− k when the

cost reaches k starting from c. From the previous results, the value of such an asset is:

V fb
i [c, s, k; β(ρ)] = (s− k)(k/c)−β(ρ).

Note that the optimal threshold k∗ must lie in the interval (0, s). Differentiating with
respect to k yields the following first-order condition for k∗:

−β(ρ)(s− k∗)c−1(k∗/c)−β(ρ)−1 − (k∗/c)−β(ρ) = 0 ⇒ k∗ = −β(ρ)[1− β(ρ)]−1s,

where the derivative is positive for k < k∗ and negative for k > k∗. Thus, the value
function for the first-best problem is:

V fb
i [c0, s0; β(ρ)] = a[β(ρ)]s1−β(ρ)cβ(ρ).

We now show that V sb
i [c0, s0; β(ρ)] converges to V fb

i [c0, s0; β(ρ)] as ρ approaches zero from
the right if and only if the condition µ ≤ σ2/2 is satisfied. The limiting value of β(ρ) is
as follows:

lim
ρ→0+

β(ρ) =

{
0, if µ ≤ σ2/2

1− 2µ/σ2, if µ > σ2/2
.

Note that limz→0− a(z) = limz→0−(−z)−z ·limz→0−(1−z)−(1−z), where limz→0−(1−z)−(1−z)

is clearly equal to one, and limz→0−(−z)−z is easily shown to be one by taking the loga-
rithm and applying L’Hôpital’s rule. Thus, the limiting value of a[β(ρ)] is given by:

lim
ρ→0+

a[β(ρ)] =

{
1, if µ ≤ σ2/2

a(1− 2µ/σ2), if µ > σ2/2
.
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It follows that:

lim
ρ→0+

V sb
i [c0, s0; β(ρ)] =

{
s, if µ ≤ σ2/2

[a(1− 2µ/σ2)]2µ/σ
2
s2µ/σ2

c1−2µ/σ2
, if µ > σ2/2

,

lim
ρ→0+

V fb
i [c0, s0; β(ρ)] =

{
s, if µ ≤ σ2/2

a(1− 2µ/σ2)s2µ/σ2
c1−2µ/σ2

, if µ > σ2/2

.

Note that if µ > σ2/2, then:

[a(1− 2µ/σ2)]2µ/σ
2

< a(1− 2µ/σ2);

so that, V sb
i [c0, s0; β(ρ)] does not converge to V fb

i [c0, s0; β(ρ)] in this case.

5.7.2 Proof of Corollary 6

Proof. Let r = µ/σ2. Then the ratio of the second-best value to the first-best value is
given by:

[a(1− 2r)]−(1−2r).

Since a(β) = (−β)−β(1− β)−(1−β), taking the logarithm of both sides results in:

ln[a(β)] = −β ln(−β)− (1− β) ln(−β).

Differentiating with respect to β, we have:

∂ ln[a(β)]

∂β
= − ln(−β)− 1 + ln(−β)− (1− β)

β
= − 1

β
> 0.

This implies that a(β) is increasing in β. Hence, both (1−2r) and a(1−2r) are decreasing
in r. Because a(β) ∈ (0, 1) and (1 − 2r) < 0, the ratio is decreasing in r. Since r is
increasing in µ and decreasing in σ2, this completes the proof.

5.8 Proof of Theorem 4

Proof. In the case of decaying or volatile goods, consider an SPE π that has a threshold
form in which the cutoff rule and the value function are both homogeneous of degree one;
so that, c(ksijt ) = kc(sijt ) and Vi(kc, ks

ij
t ; π) = kVi(c, s

ij
t ; π) for any constant k > 0, where

j = 1 if i = A and j = 2 if i = B. Note that c(sijt ) represents the cost cutoff when the
remaining amount of the good is sijt .

The Bellman equation at state (c, sijt ) is given by:

ρVi(c, s
ij
t ; π) = −δsijt

∂Vi(c, s
ij
t ; π)

∂sijt
+

1

2
ξ2(sijt )2∂

2Vi(c, s
ij
t ; π)

∂(sijt )2
+µc

∂Vi(c, s
ij
t ; π)

∂c
+

1

2
σ2c2

∂2Vi(c, s
ij
t ; π)

∂c2
.

Because of the assumption that kVi(c, s
ij
t ; π) = Vi(kc, ks

ij
t ; π), differentiating with respect

to k results in:

Vi(c, s
ij
t ; π) = c

∂Vi(kc, ks
ij
t ; π)

∂c
+ sijt

∂Vi(kc, ks
ij
t ; π)

∂sijt
. (4)
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Substituting k = 1 yields:

Vi(c, s
ij
t ; π) = c

∂Vi(c, s
ij
t ; π)

∂c
+ sijt

∂Vi(c, s
ij
t ; π)

∂sijt
. (5)

Differentiating (4) with respect to k and setting k = 1 , we have:

0 = c2
∂2Vi(c, s

ij
t ; π)

∂c2
+ 2csijt

∂2Vi(c, s
ij
t ; π)

∂c∂sijt
+ (sijt )2∂

2Vi(c, s
ij
t ; π)

∂(sijt )2
. (6)

Now differentiate (4) with respect to c and set k = 1 to obtain:

∂Vi(c, s
ij
t ; π)

∂c
=
∂Vi(c, s

ij
t ; π)

∂c
+ c

∂2Vi(c, s
ij
t ; π)

∂c2
+ sijt

∂2Vi(c, s
ij
t ; π)

∂sijt ∂c
, or

0 = c
∂2Vi(c, s

ij
t ; π)

∂c2
+ sijt

∂2Vi(c, s
ij
t ; π)

∂sijt ∂c
. (7)

Substituting (7) into (6), we have:

0 = c2
∂2Vi(c, s

ij
t ; π)

∂c2
− 2c2

∂2Vi(c, s
ij
t ; π)

∂c2
+ (sijt )2∂

2Vi(c, s
ij
t ; π)

∂(sijt )2
, or

c2
∂2Vi(c, s

ij
t ; π)

∂c2
= (sijt )2∂

2Vi(c, s
ij
t ; π)

∂(sijt )2
. (8)

Substituting (5) and (8) into the original Bellman equation yields:

ρVi(c, s
ij
t ; π) = −δ

(
Vi(c, s

ij
t )− c∂Vi(c, s

ij
t ; π)

∂c

)
+

1

2
ξ2c2

∂2Vi(c, s
ij
t ; π)

∂c2

+µc
∂Vi(c, s

ij
t ; π)

∂c
+

1

2
σ2c2

∂2Vi(c, s
ij
t ; π)

∂c2
, or

(ρ+ δ)Vi(c, s
ij
t ; π) = (δ + µ)c

∂Vi(c, s
ij
t ; π)

∂c
+

1

2
(σ2 + ξ2)c2

∂2Vi(c, s
ij
t ; π)

∂c2
.
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Figure 1: c*(K) vs. β for (K, s)=(10, 50). 

 

 

 

 

Figure 2: c*(K) vs. β for (K, s)=(20, 50). 

 

 



 

 

Figure 3: c*(K) vs. β for (K, s)=(30, 50). 

 

 

 

 

 

Figure 4: c*(K) vs. β for (K, s)=(40, 50). 




