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1 Introduction

The role of repeated play in facilitating cooperation is one of the main themes of
game theory. Past work has shown that reciprocation can lead to more cooperative
equilibrium outcomes even if thereirmperfect public monitoringso that players

do not directly observe their opponents’ actions but instead observe noisy public
signals whose distribution depends on the actions played. This work has covered
a range of applications, from oligopoly pricing (e.g. Green and Porter (1984)
and Athey and Bagwell (2001)), repeated partnerships (Radner, Myerson, and
Maskin (1986)) and relational contracts (Levin (2003)). These applications are
accompanied by a theoretical literature on the structure of the set of equilibrium
payoffs and its characterization as the discount factor approdchesst notably
Abreu, Pearce, and Stachetti (1986), Abreu, Pearce, and Stachetti (1990, here-
after APS), Fudenberg and Levine (1994, hereafter FL), Fudenberg, Levine, and
Maskin (1994, hereafter FLM), and Fudenberg, Levine, and Takahashi (2007). All
of these papers assume that the players know the distribution of public signals as
a function of the actions played. In some cases this assumption seems too strong:
For example, the players in a partnership may know that high effort makes good
outcomes more likely, but not know the exact probability of a bad outcome when
all agents work hard. This paper allows for such uncertainty, and also allows for
uncertainty about the underlying payoff functions.

Specifically, we study repeated games in which the state of the world, chosen
by Nature at the beginning of the play, influences the distribution of public signals
and/or the payoff functions of the stage game. The effect of the state on the payoff
functions can be direct, and can also be an indirect consequence of the effect of
the state on the distribution of signals. For example, in a repeated partnership,
the players will tend to have higher expected payoffs at a given action profile at
states where high output is most likely, so even if the payoff to high output is
known, uncertainty about the probability of high output leads to uncertainty about
the expected payoffs of the stage game.

Because actions are imperfectly observed, the players’ posterior beliefs need
not coincide in later periods, even when they share a common prior on the dis-
tribution of states. This complicates the verification of whether a given strategy

1Cripps and Thomas (2003), Gossner and Vieille (2003), and Wiseman (2005) study
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profile is an equilibrium, and thus makes it difficult to provide a characterization
of the entire equilibrium set. Instead, we consider a subset of Nash equilibria,
calledperfect public ex-post equilibriar PPXE A strategy profile is a PPXE if

it is public- i.e. it depends only on publicly available information- and if its con-
tinuation strategy constitutes a Nash equilibrium given any state and given any
history. In a PPXE, a player’s best reply does not depend on her belief, so that
the equilibrium set has a recursive structure and the analysis is greatly simplified.
As with ex-post equilibrium, PPXE are robust to variations in beliefs about the
underlying uncertainty- a PPXE for a given prior distribution is a PPXE for an
arbitrary prior?

Before launching into the general characterization of PPXE, we give a few
examples to illustrate how these equilibria work. One important fact is that even
though players start out not knowing the state, conditioning play on outcomes can
indirectly allow the state to determine play and equilibrium payoffs. For example,
if the outcome perfectly reveals the state, there can be PPXE where flayer
preferred PPE is played from peri@dn in statew;, and playe’s preferred PPE
is played from perio® on in statewy. The first two examples consider special
structures that make it easy to give explicit constructions of PPXE; the last two
examples use our non-constructive characterization of the limits of PPXE pay-
offs. In particular, applying our linear programming characterization to Example
4 shows that payoffs can be bounded away from efficiency even though the distri-
bution of outcomes can reveal the state and the folk theorem would hold in each
state if the state were known.

To characterize the limit of the set of PPXE payoffs as the discount factor

symmetric-information settings where actions and payoffs are perfectly observed, so players al-
ways have the same beliefs, and this difficulty does not arise. In Aumann and Hart (1992), Aumann
and Maschler (1995), dtner and Lovo (2009), Wiseman (2008), andrker, Lovo, and Tomala
(2008), players receive private signals about the payoff functions and so can have different beliefs.
(In Wiseman (2008) the players privately observe their own realized payoff each period, in the
other papers the players do not observe their own realized payoffs, and the private signals are the
players’ initial information or “type.”)

2See Bergmann and Morris (2007) for a discussion of various definitions of ex-post equilib-
rium. Miller (2007) analyzes a different sort of ex-post equilibrium: he considers repeated games
of adverse selection, where players report their types each period, as in Section 8 of FLM, and
adds the restriction that announcing truthfully should be optimal regardless of the announcements
of the other players.



goes to 1, we extend the linear programming characterization of the limit payoffs
of PPE. That is, we show in Section 4 that the limit of the set of payoff vectors
to PPXE as the discount factor goedlt the intersection of the “maximal half-
spaces” in various directions, where each compoaghof the direction vector

A corresponds to the weight attached to playgpayoff in stateco. The main

new feature is that in a PPXE, the equilibrium payoffs are allowed to vary with
the state, and can do so even if the state does not influence the expected payoffs
to each action profile- for example there can be PPXE where plagiees better

in statew, and player2 does better in state,. Thus PPXE can involve a form

of “utility transfer” across states. For this reason, the “maximal half space” in
these “cross-state directions” can be the whole space, while in FL the maximal
half space in each direction is bounded by the feasible set.

In Section 5, we use this characterization to prove an “ex-post” folk theorem:
For any map from states to payoff vectors that are feasible and individually ra-
tional in that state, there is a PPXE whose payoffs in each state approximate the
target map as the discount factor tendsltoThis theorem uses individual and
pairwise full rank conditions as in FLM, and adds the assumption that for every
pair (i,w) and( j, @) of individuals and states, there is a profil¢hat has “state-
wise full rank,” which means roughly that the observed signals reveal the state
regardless of whetheror j (but not both!) unilaterally deviate from.

As in FLM, a weaker, “static-threats,” version of the folk theorem holds under
milder informational conditions. Section 6 shows that pairwise full rank can be
replaced by the condition of “pairwise identifiability,” which can be satisfied with
a smaller number of signals and that statewise full rank can be relaxed to “state-
wise identifiability.” Both of these identifiability conditions are equivalent to their
full-rank analogs when individual rank conditions are satisfied, but in general they
are weaker and can be satisfied in models with fewer signals relative to the size
of the action spaces. Even the statewise identifiability condition is stronger than
needed, as shown in Section 6.2. In particular, when the individual full rank con-
ditions are satisfied, statewise identifiability requires more signals than in FLM,
but statewise distinguishability can be satisfied without a larger signal space. Very
roughly speaking, the key is that for every pair of playiergand pair of states
w, @, there be a strategy profile whose signal distribution distinguishes between
the two states regardless of the deviations of plgyand such that continuation



payoffs can give a large reward to playen statew without increasing playefs
incentive to deviate and without affecting playjés payoff in stated.

While the study of uncertain monitoring structures is new, there is a substan-
tial literature on repeated games with unknown payoff functions and perfectly ob-
served actions, notably Aumann and Hart (1992), Aumann and Maschler (1995),
Cripps and Thomas (2003), Gossner and Vieille (2003), Wiseman (200&)eH
and Lovo (2009), Wiseman (2008), andtrer, Lovo, and Tomala (2008)Our
work makes two extensions to this literature- first to the case of unknown payoff
functions and imperfectly observed actions but a known monitoring technology,
and from there to the case where the monitoring structure is itself unknown.

PPXE is closely related to the “belief-free” equilibria used bgrier and
Lovo (2009) and HWrner, Lovo, and Tomala (2008). This equilibrium concept al-
lows players to condition on their type, while PPXE does not, as it requires public
strategies. Nevertheless, PPXE can be used to analyze incomplete-information
games; here it amounts to a “pooling equilibrium” as players are not allowed to
condition on their type. We say more about the comparison of these equilibrium
concepts in Section 7. PPXE is also related to belief-free equilibria in repeated
games with private monitoring, as in Piccione (2002), Ely atddiraaki (2002),

Ely, Horner, and Olszewski (2005), Yamamoto (2007), Kandori (2008), and Ya-
mamoto (2009%. However, unlike the belief-free equilibria in those papers, PPXE
does not require that players be indifferent, and so it is not subject to the robust-
ness critiques of Bhaskar, Mailath, and Morris (2008); this is what motivates our
choice of a different name for the concept.

3Cripps and Thomas (2003), Gossner and Vieille (2003), and Wiseman (2005) study
symmetric-information settings. In Aumann and Hart (1992), Aumann and Maschler (1995),
Horner and Lovo (2009), Wiseman (2008), andrher, Lovo, and Tomala (2008), players re-
ceive private signals about the payoff functions and so can have different beliefs. (In Wiseman
(2008) the players privately observe their own realized payoff each period, in the other papers the
players do not observe their own realized payoffs, and the private signals are the players’ initial
information or “type.”

“Belief-free equilibria and the use of indifference conditions have also been applied to repeated
games with random matching (Takahashi (2008), Deb (2008)).
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2 Unknown Signal Structure and Perfect Public Ex-Post
Equilibria

2.1 Model

Letl ={1,---,1} represent the set of players. At the beginning of the game, Na-
ture chooses the state of the wodhdfrom a finite seQ = {wy, ..., o }. Assume
that players cannot observe the true staf@and letu € AQ denote the players’
common prior ovew.® For now we assume that the game begins with symmetric
information: Each player’s beliefs abowtcorrespond to the prior. We relax this
assumption in Section 7.

Each period, players move simultaneously, and player chooses an action
a from a finite setA;. Given an action profila = (a)ic; € A= x| A, players
observe a public signglfrom a finite sety according to the probability function
m“(a) € AY; we call the functionrt® the “monitoring technology.” Players
realized payoff isu-‘”(a; y), so that her expected payoff conditional @€ Q and
onac Aisg’(a) = yyey °(@)u(a,y); g”(a) denotes the vector of expected
payoffs assomated with action profie

In the infinitely repeated game, players have a common discount factor
(0,1). Let(af,y") be the realized pure action and observed signal in periadd
denote playei’s private history at the end of peridd> 1 by ht = (af,y*)t_,.
Let hO 0, and for each > 1, letH! be the set of alh!. Likewise, a public history
up to periodt > 1 is denoted byn' = (y")}_,, andH! denotes the set of dif. A
strategy for player is defined to be a mappirg: Ui oH! — AA. LetS be the
set of all strategies for playérand letS= xic|S. Note that the case of a known
public monitoring structure corresponds to a single possible $ate{ w}.

SBecause our arguments deal only with ex-post incentives, they extend to games without a
common prior. However, as Dekel, Fudenberg, and Levine (2004) argue, the combination of

equilibrium analysis and a non-common prior is hard to justify.
6As written, this formulation assumes that players do not observe their realized payoffs

u®(a;,y), unless the realized payoff does not dependwrSince we restrict attention to ex-post
equilibria, where players’ belief about the state do not matter, we do not need to impose this restric-
tion, with the exception of Lemma 9, where the restriction is explicitly stated. If players observe
the realized payoff, then play&s private history after periotialso includegu®(al,y"))%_;
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We define the set of feasible payoffs in a given stat® be

V(w) = cof(g”(a))lac A} = {g“(n)|n € A(A)};

whereA(A) is the set of all probability distributions ovér. As in the standard
case of a game with a known monitoring structure, the feasible set is both the set
of feasible average discounted payoffs in the infinite-horizon game when players
are sufficiently patient and the set of expected payoffs of the stage game that
can be obtained when players use of a public randomizing device to implement
distributionn over the action profiles.

Next we define the set of feasible payoffs of the overall game to be

V= XweQV(w)a

so thata point € V = (V& .- ve0) = (V{2 W), -, (ViP, -+ V().

Note that a giverv € V may be generated using different action distributions
n(w) in each statev. If players observev at the start of the game and are very
patient, then any payoff id can be obtained by a state-contingent strategy of the
infinitely repeated game. Looking ahead, there will be equilibria that approximate
payoffs inV if the state isdentifiedby the signals, so that players learn it over
time. Note also that, even if players have access to a public randomizing device,
the set of feasible payoffs of the stage game is the smaller set

VY = {g®(n)|n € AA) }oea,

because play in the stage game must be a constant independent of

2.2 Perfect Public Ex-Post Equilibria

This paper studies a special class of Nash equilibria caiéetect public ex-post
equilibria or PPXE; this is an extension of the concept of perfect public equi-
librium that was introduced by FLM. Given a public strategy pradite Sand a
public historyht € H!, let s|;x denote its continuation strategy profile aftér

Definition 1. A strategys € S is publicif it depends only on public information,
i.e., forallt>1,h = (a,y")t_; € H, andhf = (&, 7). _, € H! satisfyingy” =
forall T <t, s(h!) = s(ﬁ}). A strategy profiles € Sis publicif s is public for all
iel.



Definition 2. A strategy profiles € Sis aperfect public ex-post equilibriumhfor
everyw € Q the profile is a perfect public equilibrium of the game with known
monitoring structurer®.’

Given a discount factod € (0,1), let E(d) denote the set of PPXE payoffs,
i.e., E(J) is the set of all vectors = (V?); w)c1 <o € R'/?l such that there is a
PPXEs € Ssatisfying

1-0)E( ¥ o 1gi(@
( )(tz g'(@)

s, w) =V

forallie | andw € Q. Note thatv € E(d) specifies the equilibrium payoff for all
players and for all possible states. Note also that the set of PPXE can be empty,
in contrast to the case of perfect public equilibria of games with a known%tate.
However, the conditions of our ex-post folk theorem imply that PPXE exist for
sufficiently large discount factors.

The notion of minmax payoff extends to PPXE in a natural way. Wt
ming_; maxg, g (a;, a—i) be the minmax payoff for playerin statew, and let

Vi ={veV|Vviel,YwecQ, v >’}

be the subset of the feasible payoff state where each player receives at least her
minmax payoff in each state. Thd&f(d) C V*, since any perfect public equi-
librium of the game with known monitoring structuremust give each playar
payoff at least.

By definition, any continuation strategy of a PPXE is also a PPXE. Thus any
PPXE specifies PPXE continuation play after each signelhere the continua-
tion payoffsw(y) = (W(y))i,w)ci xq cOrresponding to this signal specify payoffs
for every player and every state. We will writé’(a ) - w® for playeri’s expected

"That s, s is a public strategy, and for evesy= Q, and any public historit € H!. the continu-
ation strategy profilg|;; constitutes a Nash equilibrium of the “continuation game” corresponding
to {h', w}. In this continuation game, players know that the state,iand because all opponents
are using public strategies, each player can compute the expected payoff to any of their strategies
(public or private) even thougfht, w} is not the root of a proper subgame.

8Wwith a known state, repeated play of a static Nash equilibrium is a perfect public equilibrium
of the repeated game. Similarly, repeated play of a static ex-post equilibrium is a PPXE, but static
ex-post equilibria need not exist.



continuation payoff at statev under action profilen, wherew is the vector
(W®(y))yey. This recursive structure of the equilibrium payoff set motivates the
following definition.

Definition 3. For & € (0,1) andW C R'™*I? a pair(a,v) € (xjc; AA) x R*I€

of an action profile and a payoff vector éx-post enforceable with respectdo
andW if there is a functiorw = (W®) ycq : Y — W such that

Vi’ = (1-9)g”(a) + on®(a) - w”
foralli el andw e Q, and
vi? > (1-9)g”(ai,0-i) + om“(ai, a—i) - W’
foralliel, we Q, andg € A.
For eachd € (0,1), W C R*I®l anda e xic| AA, letB(5,W, a) denote the
set of all payoff vectorsy € R'*I®l such that(a,V) is ex-post enforceable with
respect tad andW. LetB(d,W) be a union oB(d,W, a) over alla € xic| AA;.

To prove our main results, we will use the fact that various useful properties
of PPE extend to PPXE.

Definition 4. A subset of R' %12 is ex-post self-generating with respectddf

W C B(3,W).

Theorem 1. If a subsew of R' %19l is bounded and ex-post self-generating with
respect tod, thenwW C E(9).

Proof. See Appendix. The proof is very similar to APS. The key is that when
W is ex-post self-generating, the continuation payeffy) used to enforce €

V ¢ R™*9l have the property that for eaghe Y, the vectow(y) € R'*®l can

in turn be ex-post generated using a single next-period actiindependent of

w) so that the strategy profile constructed by “unpacking” the ex-post generation
conditions does not directly depend an Q.E.D.

Definition 5. A subseW of R'*|9 is locally ex-post generatinig for eachv e W,
there existd, € (0,1) and an open neighborhodd|, of v such thatW nU, C
B(dy,W).

Theorem 2. If a subsewV of R <€ is compact, convex, and locally ex-post gen-
erating, then there i$ € (0,1) such thaw C E(5) for all § € (8, 1).

Proof. See Appendix; this is a straightforward generalization of FLMQ.E.D.
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3 Examples

Before proceeding with the general analysis, we present several examples to illus-
trate properties of PPXE. The first two examples make special assumptions that
permit the explicit construction of PPXE strategies. The third and fourth exam-
ples are similar variants of a repeated partnership game. Here we use our linear
programming bounds and folk theorem to show how incentive problems can lead
to inefficiency even if there are action profiles that reveal the state and if the folk
theorem would hold in each state if the state were known.

Example 1. There are two players, = {1,2}, and two possible state§) =
{w1,wn}. In every stage game, play&rchooses an action from; = {U,D},
while player2 chooses an action frody, = {L, R}. Their expected payofig®(a)
are as follows.

L | R L | R
Uji22|(01 Ul|11|00
D| 00|11 D|10[22

Here, the left table shows expected payoffs for stateand the right table shows
payoffs for statev,. Suppose that the set of possible public signa¥isA x Q,
and that the monitoring technology is such tig(a) = £ > Ofory # (a, w), and
n’(a) =1-T7efory=(a w).

Note that(U,L) is a static Nash equilibrium for each state. Hence, play-
ing (U,L) in every period is a PPXE, yielding the payoff vec{@®, 2),(1,1)).
Likewise, playing(D,R) in every period is a PPXE, yielding the payoff vector
((1,1),(2,2)). “Always (U,L)” Pareto-dominates “alwayf,R)” for state cy,
but is dominated for state),. Note that these equilibrium payoff vectors are in
the setvY. LetY(wy) be the sefy = (a,w) € Y|w = w;}, andY(w,) be the set
{y=(a,w) € Y|w= wp}. Consider the following strategy profile:

e In period one, playU,L).
e If ye Y(wy) occurs in period one, then pldy, L) afterwards.

e If ye Y(wp) occurs in period one, then pldp, R) afterwards.

10



After every one-period public histohy € H1, the continuation strategy profile
is a PPXE. Also, given any state € Q, nobody wants to deviate in period one,
since(U, L) is a static Nash equilibrium and players cannot affect the distribution
of the continuation play. Therefore, this strategy profile is a PPXE; its payoff
vector converges to* = ((2—4€,2—4¢),(2—4¢,2—4¢)) asd — 1. Observe
thatv* ¢ VY if € € (0, %). In particular, this equilibrium approximates the efficient
payoff vector((2,2),(2,2)) as the noise parameteigoes to zero.

The idea of this construction is that continuation play depends on what players
have learned about the state. When players obseev¥(w;) and learn thato
is more likely, they choose “alway¥,L),” which yields an efficient payoff2, 2)
in statew,, but gives an inefficient outcon(d, 1) in wy,. Likewise, when players
observey € Y(wp) and learn thato, is more likely, they choose “alway®, R)”
to achieve an efficient payof®,2) in statew, but an inefficient payoff irw;. In
this sense PPXE allows “utility transfers” across states.

Example 1 is misleadingly simple, because there is an ex-post equilibrium of
the static game, and for this reason there is a PPXE for all discount factors. It
is also very easy to construct equilibria that approximate efficient payoffs in this
example: simply specify thgU,L) is played forT periods, and then eith¢d, L)
or (D,R) is played forever afterwards, depending on which state is more likely. In
the next example there is no static ex-post equilibrium, and hence no PPXE for a
range of small discount factors, but where the folk theorem still applies.

Example 2. Suppose that there are two playdrs; {1,2}, and two states) =
{w1,wp}. In every stage game, playgchoosed) or D while player2 choosed.
or R. Players’ expected payoft§’(a) are as follows.

Wy L R wy | L R
U 10-4 1,1 Uu 00 1,1
D 11 0,0 D|11]|10 -4

Note that these are the payoff matrices in Example 2a@ifndr and Lovo (2009).
Note also that the minimax payoffévi™, va*), (vi2,v52)) are((1, 3),(1,2)), and
that the seV* has non-empty interior: diwt = dimV* () +dimV*(wp) = 2+

2 =4, whereV*(w) is the set of feasible and individually rational payoffs given a
statew € Q.
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This stage game does not have a static ex-post equilibrium, so we know that
regardless of the monitoring structure it does not have a PPXE for a range of
discount factors nedb.

We will now consider two repeated games with these payoff matrices and dif-
fering monitoring structures.

Example 2a. First suppose that actions are observable, but states (and rewards)
are not, so thaY = Aandrn’(a) = 1if y= a. In this case, it is easy to adapt the
argument of Wrner and Lovo (2009) to show that there is no PPXE. In a PPXE,
a player’s equilibrium payoff conditional ow cannot fall below the minimax
payoff for thatw. In particular, playe@’s equilibrium payoff conditional o
must be positive. This implies that the outcorfi®, —4) realizes at most the
fifth of the time, and hence playéis equilibrium payoff conditional orw; is at
most%'. Likewise, player’s equilibrium payoff conditional omw, is at most1—54.
However, if playerl randomizeg.5U, .5D) independent of the state, she earns at
least3 in one of the states. Therefore, there is no PPXE for any discount factor.

Note that with this monitoring structure, the outcome gives no information at
all about the state, so it is impossible for the players to learn it.

Example 2b. Now suppose that the set of possible public signafsisAx Q, and

that the monitoring technology is perfeet’(a) = 1if y = (a, w), andrg’(a) =0
otherwise. As we will see, this example satisfies all of the full-rank conditions
of our general ex-post folk theorem, so in particular a PPXE exists, but our proof
of the general folk theorem is not constructive. Because this example has perfect
monitoring, it is easy to give an explicit construction of a PPXE whose payoffs
converge to the efficient frontier in each state. Claim 7 in the appendix shows
that the idea of this construction extends to any case where actions and states
are perfectly observed; the idea is to wait one period, learn the state, and play a
subgame-perfect equilibrium for the corresponding known-state game. However,
the strategies used in the construction need to be a bit more complicated. In partic-
ular, as in Example 2b, the stage game need not have a static ex-post equilibrium,
so the subgame-perfect equilibrium strategies for the known states must provide
future incentives to prevent current deviations, and the recursive nature of PPXE
requires that these future incentives correspond to equilibrium play in each state,
including states that past signals have ruled out. (Note that in Example 1, there

12



is no need for intertemporal incentives, so the PPXE we constructed there could
prescribe play from period on that is constant regardless of future signals about
the state.)

Section 6.2 below present a detailed analysis of two variants of a two player
partnership game; we summarize the main findings here to help preview and mo-
tivate our results. In these partnership games, each piayes the two actions
{Gi,Di}, and the stage game payoffs in each state nixke dominant strategy,
so (D1,D») is a static ex-post equilibrium. There are three possible outcomes,
and two states, corresponding to differences in the productivity of effort, i.e. the
probabilities ofH andM if both players choosP are independent of the state. Fi-
nally, in each state the monitoring structure is additive: the change in probabilities
induced by playei’s changing fronC; to D; is the same regardless of the action
of the other player.

In Example 3, the uncertainty is symmetric in the state and across players: In
statewy, if player 1 choose<C; instead ofD;, then the probabilities di andM
increase bypy and py, while player2’s choice ofC, increases the probabilities
by g4 andqgu. In statewp, the roles are reversed: playEs effort increase the
probabilities bygy andqgw, and playe2’s effort increases the probabilities Ipy,
and pv. In Example 4, the states only influences the productivity of pl&ger
effort: If player 1 choose<C; instead ofD4, then the probabilities o andM
increase bypy andpy, independent of the state. In contrast, if plagehooses
C, instead oD», then the probabilities di andM increase byyy andqy in state
wy, but they increase only b§gy andBqy in statecw.

In each example, the conditions of FLM’s Theorem 6.1 apply in each state
considered in isolation, so if the state were known the folk theorem would apply.
Moreover in each example there are action profiles that reveal the state, in the
sense that the outcome distribution at that profile is different at statban at
statewp. However, we will show that our ex-post-threats folk theorem applies
to Example 3, while in Example 4 the folk theorem fails, and moreover PPXE
payoffs can be bounded away from efficiency.

The key difference between these examples is that in Example 4, the two
states are “entangled” in the sense that for apythe distributionrt®2(ay,C,)
is a convex combination oft*(a;,Cp) and m*2(a1,D>), while this is not the
case in Example 3 provided thaf assigns positive probability to both actions.

13



Hence in Example 4, lowering the expected value of the continuation payoffs un-
der m2(ay,D>) also lowers the continuation payoffs undef2(a,Cs). Using

this fact and our linear programming characterization. we can show that the sum
of playerl's PPXE payoff in statey, and player2’s PPXE payoff in statew is
strictly less than the sumi™(C1,C,) + g52(C1,Cz) — e where the efficiency gap

e > 0 depends o8 and the parameters of the payoff matrix. Because no player’s
payoff in either state can be less than the corresponding minmax level, this cross-
state bound implies that for some parameter values plagePPXE payoff in
statewy, is strictly less tham,?(Cy,Cy).

4 Characterizing E(9)

4.1 Using Linear Programming to BoundE(9d)

In this subsection, we provide a bound on the set of PPXE payoffs that holds
for any discount factor; the next subsection shows that this bound is tight as the
discount factor converges to one.

Consider the following linear programming problem. loet x| AA;, A €
R'*I2 ands € (0,1).

(LP-Average) k*(a,A,0) = m.a)\é\ A-v subject to
RX
W:VY€—>R|X‘Q|

(i) v’=(1-9)g"(a)+on’(a) w’
foralli €| andw € Q,

(i) v°>(1-9)g”(a,a-i)+on“(a,a_i) W’
foralliel, we Q, anda € A,

@iy A-v>A-w(y) forallye.
If there is no(v,w) satisfying the constraints, l&t(a,A,d) = —co. If for ev-
ery K > 0 there is(v,w) satisfying all the constraints andl- v > K, then let

K*(a,A,0) = co.

Here condition (i) is the “adding-up” condition, condition (ii) is ex-post in-
centive compatibility, and condition (iii) requires that the continuation payoffs lie
in half-space corresponding to direction vectoand payoff vectow. Note that
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whenA® # 0 and)\j‘b # 0 for somew # @, condition (iii) allows “utility trans-

fer” across states. This utility transfer is the most significant way that LP-average

differs from the linear program in FL, so we will discuss it in more detail below.
As we show in Lemma 1(a), the valk&(a, A, d) is independent od, so that

we denote it byk*(a,A). Now let

K*(A) =supk(a,A)

a

be the highest score that can be approximated in diredtiby any choice ofx.
For eacm € R™*191\ {0} andk € R, letH (A, k) = {ve R™I?|A .v <k}. For
k=, letH(A,k) = R™I9l, Fork = —oo, letH(A,k) = 0. Then, let

H*(A) =H(A,K*(A))
be the maximal half-space in directidn and set

Q= (1 HA).
A€RXIQ1\ {0}
Lemma 1.

(a) k*(a,A,d) is independent ad.

(b) If (A®)ic) # 0 for somew and (A
sup, A -g(a).

@y, = 0forall @+ w, thenk*(A) <

() If A® < 0 for some(i,w) andA® = 0 for all (j,&) # (i,w) thenk*(A) <
APV,

(d) Consequentl) CV*.

Proof. As in past work, part (a) follows from the fact that the constraint set in
(ii) is a half-space: Suppose thét w) satisfies constraints (i) through (iii) in
LP-Average for{a,A,d). Ford € (0,1), let

5-5  35(1-9)

"= 5026 5 )

w(y).

Then (v,W) satisfies constraints (i) through (iii) in LP-Average f(cu,)\,g), o)
that the set of feasibkein LP-Average is independent 6f and thus so ik*(a, A, J).
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Let A* be the set ot € R'™¥/? such that(A®)ic; # 0 for somew € Q and
()\ia))iel = Ofor all @ # w. Since parts (b) and (c) consider a single statiey
follow from FL Lemma 3.1. Thu§),ca- H*(A) C V¥, and part (d) follows from

QC MenH(A). Q.E.D.

Since we already know th&(d) C V*, part (d) of this lemma shows th&t
is “not too big”: it doesn’t contain any payoff vector we can rule outaopriori
grounds. The next lemma shows tlaats “big enough” to contain all the payoffs
of PPXE.

Lemma 2. For everyd € (0,1), E(d) C E*(d) C Q, whereE*(9) is the convex
hull of E(9).

Proof. The proof is the same as in Fudenberg, Levine, and Takahashi (2007); we
restate it in the Appendix to make it easy to see that the proof applies to the present
setting. Q.E.D.

To help explain the role of cross-state utility transfers, we will show that the
conclusion of Lemma 2 does not hold if constraint (iii) is replaced by the uniform-
over-states version

(iii ") Z)\i‘*’vi‘*’ > Z/\f"wi‘*’(y) forall we QandyeY.
le le

The resulting “uniform” LP problem corresponds to a form of ex-post enforce-
ability on half-spaces. This condition is too restrictive to capture all of the payoffs
of PPXE, as shown by the combination of the following claim and the example
that follows it.

Claim 1. In the LP-Uniform problem formed by replacing (iii) in LP-Average with
(iii"), the solutiork (a, A, 8) < A -g(a) for eacha andA. ThereforekY (A, 8) =
sup, kY (a,A,8) <sup, A -g(a), and the computed s is a subset of payoffs
VY that can be attained with actions that are independent of the state.

Proof. Inspection of the constraints in the LP-Uniform problem shows that it
is equivalent to solving a separate LP problem for each stateQ in isola-
tion. As FL show, a solution to the LP problem for givéa, w) cannot ex-
ceedSic A%g®(a). Thereforek!(a,A,d), the maximal score in LP-Uniform
for a givena, is at mosty ,cq Sic) A%g®(a) = A -g(a), sosup, kY (a,A,0) <
sup, A -g(a). Q.E.D.
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In both Examples 1 and 2b, we constructed PPXE with payoffs outsid¥ of

4.2 Computing the Limit of E(d) as Players Become Patient

Now we show that the sé&(d) of PPXE payoffs expands to equal all@fas the
players become sulfficiently patient, provided that a full-dimensionality condition
is satisfied. For each sBt let intB denote the interior oB, and bdB denote the
boundary ofB.

Definition 6. A subset of R/l is smoothif it is closed and convex; it has a
nonempty interior; and there is a unique unit normal for each point W hd

Lemma 3. If dimQ =1 x |Q|, then for any smooth strict sub3&t of Q, there is
5 € (0,1) such thaW C E(J) for 6 € (5,1).

Proof. From lemma 1(d)Q is bounded, and hend¥ is also bounded. Then,
from Theorem 2, it suffices to show that is locally ex-post generating, i.e., for
eachv € W, there existd, € (0,1) and an open neighborhoddj of v such that
WnUy C B(&,W).

First, consider € bdW. Let A be normal toV atv, and letk = A -v. Since
W C QC H*(A), there existx, V, and(W(y) )yey such thatt -¥ > A -v=Kk, (a,V)
is enforced using continuation payoff(y))ycy for somed € (0,1), andw(y) €
H(A,A-V)forallyeY. Foreachd (3, 1) andy e, let

5-5 6(1-8)(. . v-V
51-3)  31-3) (W(y)_ 5 )

W(y7 5) = 3

By construction(a,V) is enforced byw(y, ) )yey for 8, and there ik > 0 such
that|w(y,d) —v| < K(1—9). Also, sinceA -V > A -v=Kkandw(y) € H(A,A - V)
for ally € Y, there ise > 0 such thatv(y) — %7 isinH(A k—e¢) forallyeY,

thereby

5(1- ) s)

0(1-9)
for ally € Y. Then, as in the proof of FL's Theorem 3.1, it follows from the
smoothness &l thatw(y, &) € intW for sufficiently larged, i.e.,(a, V) is enforced

w(y,0) € H ()\,k—

9A sufficient condition for each point on W to have a unique unit normal is that\Wdis a
C?-submanifold ofR' <1,
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with respect to inV. To enforceu in the neighborhood of, usea and a translate
of (W(y, 8))yev-

Next, considen € intW. ChooseA arbitrarily, and letor and (w(y, d))yey be
as in the above argument. By constructi¢a, V) is enforced by(w(y,d))yey.
Also, w(y,d) € intW for sufficiently larged, since|w(y,d) —v| < k(1 —9d) for
somek > 0 andv € intW. Thus,(a,V) is enforced with respect to Wt whend
is close to one. To enforagin the neighborhood of, usea and a translate of
(w(y, d))yey, as before. Q.E.D.

These two lemmas establish the following theorem.
Theorem 3. If dimQ =1 x |Q], thenlims_,E(d) = Q.

Itis possible thatimQ < | x |Q|, so that this theorem does not apply, but that
lims_,E(d) # 0. A trivial example of this occurs when the statehas no effect
on either the monitoring structure or the payoffs, so that it cannot possibly be ob-
served, but is simply a nuisance parameter. InE{i8) is a subset of the space
VY of payoff that can be generated with actions that are independent of the state,
soQ C E(d) has dimension at most In this particular case, the solution is obvi-
ously to ignore the state and characterize the perfect public equilibria of the game
where (any)w is known; these equilibria correspond to the full set of PPXE of the
game with the noise parameter added. More generally, the full-dimension condi-
tions could fail due to the imperfect observability @f but o might matter for
the payoff functions. In this case one might be able to charactimize,; E(J)
using an extension of the iterative algorithm in Fudenberg, Levine, and Takahashi
(2007), but this remains a topic for future research.

5 A Perfect Ex-Post Folk Theorem

In this section we give simple and easy-to verify sufficient conditions for a folk
theorem to hold in PPXE. This theorem shows that any map from states of the
world to payoffs that are feasible and individually rational in that state can be
approximated by equilibrium payoffs as the discount factor gods amd in par-
ticular by payoffs of a PPXE. More formally, our folk theorem gives conditions
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under whichiim5_,; E(6) = V*.10 When this is true, so that efficient payoffs can

be approximated by PPXE, the players have little reason to play other sorts of
equilibria or to try to change the monitoring structure. Conversely, when the set
of PPXE is empty, or when all PPXE are far from efficient but there are efficient
sequential equilibria, the PPXE restriction might be less compelling.

Since we have already shown tiaC V* and thatim 5_,; E(8) = Q under the
full-dimension condition, it remains to show that C Q, which is equivalent to
showing thak*(A) > max.cy- A - v for each directio . Our sufficient conditions
are actually stronger than that: they will imply tH&t{A) = o for directionsA
with non-zero components in two or more states. Conversely, the folk theorem
fails if there is aA such thak*(A) < maxey+A -v; we use this fact in Example 4
below.

Foreach € I, a € xjg/ AA, andw € Q, letT; ., () be a matrix with rows

(T(ay, 0_i))yey for all & € A,

Definition 7. Profile a hasindividual full rank for (i, w) if M ., (a) has rank
equal to|A;|. Profilea hasindividual full rankif it has individual full rank for all
players and all states.

Individual full rank implies that at each state, every possible deviation of any
one player leads to a statistically different distribution on outcomes; on this con-
dition there are continuation payoffs that make every player indifferent between
all actions. However, as we discuss in Section 6.2, many of our results hold under
weaker but harder-to-verify conditions.

Let i o) (j,a) () be a matrix constructed by stacking matri€gs,, (a) and

I"I(La,)(a)

Definition 8. For each €I, j #i, andw € Q, profile a haspairwise full rank for
(i,w) and (j, @) if T )(j.w) (@) has rank equal tpAj| 4 [Aj] — 1.

Pairwise full rank implies that deviations by playean be distinguished from
deviations byj.

Definition 9. Foreach €1, j €|, w e Q, and® # w, profile a hasstatewise full
rank for (i, w) and (j, @) if M ,)(j.@) (a) has rank equal tpA | +|A].

ORecall thalv* = {ve V|Vi € |, Vw € Q, v¥ > v¥}.
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Note that both pairwise full rank and statewise full rank imply individual full
rank. Note also that the pairwise full rank conditions require as many signals as in
FLM, and the statewise full rank conditions require at most twice as many signals.
(Statewise full rank requires only one more signal than FLM if all players have
the same number of actions; it requires twice as many signals if one player has
more than two actions and all the other players have only two.)

The statewise full rank condition guarantees that the observed signals will re-
veal the state, regardless of the play of playier statew and the play of player
j (possibly equal to) in state@, assuming that everyone else plays according to
a. This condition is more restrictive than necessary for the existence of a strat-
egy that allows the players to learn the state: For that it would suffice that there
be a single profilead where the distributions on signals are all distinct, which
requires only two signalst On the other hand, the condition is less restrictive
than the requirement that the state is revealed to an outside observer even if a
pair of players deviates. For example, statewise full rank is consistent with a sig-
nal structure where a joint deviation by playdrand?2 could conceal the state
from the outside observer, as in a two-player game Witk= A, = {L,R} and
n’(L,R) = r(f’(R, L). Intuitively, since equilibrium conditions only test for uni-
lateral deviations, the statewise full rank condition is sufficient for the existence
of an equilibrium where the players eventually learn the state. In Section 6.2, we
introduce the more complicated but substantially weaker condition of statewise
distinguishability, and show that it is sufficient for a static-threat version of the
folk theorem.

The following is an ex-post folk theorem. Note that the set of assumptions of
this theorem is generically satisfied¥f| > 2|A| for alli € I.

Condition IFR. Every pure action profile has individual full rank.

Condition PFR. For each(i,w) and (j,w) satisfyingi # j, there is an action
profile a that has pairwise full rank fofi, w) and(j, w).

Condition SFR. For each(i, w) and(j, &) satisfyingw # ¢, there is an action
profile a that has statewise full rank.

UNote that players only need to distinguish between a finite set of signal distributions, and not
between all possible convex combinations of them.
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Theorem 4. Suppose that (IFR), (PFR), and (SFR) hold. Then, for any smooth
strict subseW of V*, there isd € (0,1) such thatv C E(5) for all & € (3, 1).

The following lemmas are useful in this proof.

Lemma 4. Suppose that (PFR) holds. Then, there is an open and dense set of
profiles each of which has pairwise full rank for &ll w) and (j, w) satisfying
I # .

Proof. Analogous to that of Lemma 6.2 of FLM. Q.E.D.

Lemma 5. Suppose that (IFR) holds. Then, for anyl, w € Q, ande > 0, there
is a profilea® such thaio® € argmax, g*(ai, a®)); |g”(a®) —v®| < g; anda®
has individual full rank for all(j, @) # (i, ).

Proof. Analogous to that of Lemma 6.3 of FLM. Q.E.D.

Lemma 6. Suppose that a profile has statewise full rank fofi, w) and (j, &)
satisfyingw # @ and thata has individual full rank for all players and states.
Thenk*(a,A) = eo for directionA such that\® # 0 andA® # 0.

Remark 1. Becaus&*(a,A) < A -g(a) in the known-monitoring-structure case

of FL, this lemma shows a key difference between that setting and the uncertain
monitoring structure case we consider here. The idea is that under statewise full
rank, the continuation payoffs in such half-spaces can give plagefery large
payoff in statew by giving playerj a very low payoff in that state, while reversing
this transfer in staté.

Remark 2. The proof of this lemma is complicated, so we illustrate it here with

a simple example. Assum = {&,a'} andAj = {a],a]}, and consider LP-
Average problem for directioh such thai\® = )\j“’ = 1 and all other components

of A are zero. Constraints (i) and (i) fdt,w) € | x Q\ {(i,w),(j,&)} can

be satisfied by some choice 6f{(y))yey because of individual full rank, and
constraint (iii) is vacuous for these coordinates. So the LP problem reduces to

finding (W’ (y))yey and(w’(y))yev to solve

k*(a,)\,é):maxvi“’jtvjb
V,W
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subject to

v’ =(1-90)g"(a) +om®(a) - w,
VP = (1-8)g(a) + om®(a) - we,
Ve > (1-8)g°(ar, a_i) + O (&, a_i) W, Va € A
VO > (1-8)g®(ay,a-j) +6m®(aj,a_j) -w?, Vaj € A|
VPV > wWE(y) +wi(y), Yy eY.
We claim thatk*(a,A,0) = « if a has statewise full rank. It suffices to show

that for any sufficiently large® andv“’ there exisfw®(y), W(y))ygy that satisfy
the first four constraints with equalltles and

W (y)+wo(y) =0, VyeY.

Eliminate this last equation by solving fwjb(y). Then the coefficient matrix for
the set of the remaining four equations is

(m°(a, i) )yev
(TR}"(a{’ a-i))yey
(P (8], a—j))yey

(ﬂff(a’,’,a i)yey

The statewise full rank condition guarantees that this matrix has rank four, so the
system has a solution for ar(yi‘*’,vf’), and thusk*(a,A) = . Intuitively, this
construction makes(y) large for signaly that are more likely under in state
than in statelo and makesv®(y) negative for signals that are more likely under
@, while keeping player indifferent between all actions in stad& and player]
indifferent in statedo. This would not be possible if the signal distribution were
the same at the two states, or more generally if the above matrix were singular.

This example only explains why theé can be made arbitrarily large when
exactly two components of are non-zero. And a similar idea applies even if
has other nonzero components. For example, supposa, ‘tha:t)\“’ AP =1
and other components are zero. First, cho(o$év‘*’,wf*’,w‘*’) as in the above
example, so that constraints (i) and (i) forw) and(j, &) are satisfiedy®” and
vj:’ are large, anav(y) +W§:’(y) = 0for all y € Y. What remains is to fine’
that satisfies constraints (i) and (ii) fdr, w) and the feasibility constraint

VPV P > w(y) + WP (y) +w(y), Wy EY.
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The individual full rank condition implies there ¥“(y) that satisfies constraints
(i) and (ii), and sincev®(y) +sz’(y) = 0 andv® +vf“ can be arbitrarily large, the
feasibility constraint can be satisfied for any value/\E’f(y).

Proof of Lemma 6Let (i, w) and(j, @) be such thad® 0, )\j‘:’ #0, and® # w.
Let a be a profile that has statewise full rank for @llw) and (], ¢) satisfying
W # Q.

First, we claim that for everK > 0, there existz® = (zZ”(y))yey andz‘]?J =

(Z°(y))yey such that

K
n“’(aa,afi)-a-“’zm (1)
for all g € A,
n(aj,a-j)-2° =0 2)
for all aj € Aj, and
ACZy) +APZP(Y) = (3)

for ally € Y. To prove that this system of equations indeed has a solution, elimi-
nate (3) by solving fozf’(y). Then, there remaifAi| + |Aj| linear equations, and
its coefficient matrix id1; ,,(j,@) (a). Since statewise full rank implies that this
coefficient matrix has rand;| + |A;|, we can solve the system.

Next, for each(l, @) € | x Q, we chooséW®(y))ycy So that

(1-3)g°(ay,0-) +0m®(ay, ) WP =0 (4)

for all 3 € A;. Note that this system has a solution, simcéas individual full
rank. Intuitively, continuation payoff&® are chosen so that players are indifferent
over all actions and their payoffs are zero.
Let K > maxey A -W(y), and chooséz®(y))yey and(zj*’( Y))yey to satisfy (1)
through (3). Then, let
B WE(y) +2°(y) if (I w)=(i,w)
wWP(y) =4 W) +2(y) if (1L,w) = (j,®)
Wi (y) otherwise
for eachy € Y. Also, let

% it (.0 = ()

otherwise



We claim that thigv, w) satisfies constraints (i) through (iii) in LP-Average. It
follows from (4) that constraints (i) and (ii) are satisfied for@llw) € (1 x Q) \
{(i,w),(j,6)}. Also, using (1) and (4), we obtain

(1_ 5)giw(aiva—i) + 6nw(aiva—i) Wlw
=(1-9)g"(ai,a-i) +om*(aj, ai) - (W" +27”)
K
N

for all & € A;. This shows thafv,w) satisfies constraints (i) and (ii) fdr, w).
Likewise, from (2) and (4)(v,w) satisfies constraints (i) and (ii) fdyj, ¢). Fur-
thermore, using (3) and > maxcy A - W(y),

A-w(y) = A -W(y) +APZ2(y) +APZE(y)
=AWy <K=A-v

for all y €'Y, and hence constraint (iii) holds.

Thereforek*(a,A) > A -v=K. SinceK can be arbitrarily large, we conclude
K*(a,A) = oo, Q.E.D.
Lemma 7. Suppose that a profile has pairwise full rank for alli, w) and(j, w)
satisfying # j. Thenk*(a,A) = A -g(a) for directionA such thatA,*)ic| has at
least two non-zero components for soma/hile}\j‘b =0forall jel and® # w.
Proof. It follows from Lemma 1(b) thak*(A,a) < A -g(a). Thus, in what fol-
lows, we establish th&t*(A,a) > A -g(a). To do so, we need to show that there
exist continuation payoffs ifl (A, A - g(a)) that enforcga,g(a)).

As in the proof of Lemma 6, for eadhe | andd # w, there exis(wfz’(y))yey

such that
Viw = (1_ 5)g|w(a|> a*i) + 57'[00(84,04) Wlw

for all & € A;. Moreover, it follows from Lemmas 4.3, 5.3, and 5.4 of FLM that
there exis{w°(y))iy) such that

Viw: (1_5)giw(aiaa—i)+6nw(aiva—i>'Wiw
foralli € | andg € Aj, and

A-w(y) = I;Aiwwiu)(y) = g)‘iwviw =A-v.
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Obviously, the specified continuation payoffs areH(A,A - g(a)) and enforce
(a,9(a)), as desired. Q.E.D.

Lemma 8. Suppose thatr has individual full rank for all(j, @) # (i, w) and has
the best-response property for playeand for statew. Thenk*(a,A) =A -g(a)
for directionA such thatz,® # 0 and)\f’ =0forall (j,®) # (i, w).

Proof. This is a straightforward generalization of Lemmas 5.1 and 5.2 of FLM.
Q.E.D.

Proof of Theorem 4From Lemma 3, it suffices to show th@t=V*. To do so,
we will compute the maximum scoké(A ) for each directiom .

Case 1. Considek such thatA® # 0 and /\f’ # 0 for somed # w andi
possibly equal toj. In this case, players can transfer utilities across different
statesw and @ while maintaining the feasibility constraint, and this construction
allowsk*(a,A,d) > A -g(a), as Example 1 shows. In particular, from (SFR) and
Lemma 6 we obtaik*(A ) = o for this directionA .

Case 2. Considet such that(A,“)ic; has at least two non-zero components
for somew while A® = 0 for all ic | and@® # w. Lemma 4 shows that every
profile a can be approximated arbitrarily closely by a profile that has pairwise full
rank for all players, and it follows from Lemma 7 that(A ) = sup, k" (A, a) =
maXcy A - V.

Case 3. Consider such that,* # 0 for some(i, w) and)\j‘:’ =O0forall (j,w)#
(i,w). Suppose first that, > 0. Since every pure action profile has individual
full rank, a* € argmaxecag®(a) also has individual full rank. Therefore, from
Lemma 8,

K'(A) > Kk*(a@,A) = A%g”(@") = maxA -v.

veV
On the other hand, from Lemma 1(l&;(A) < maxev A -v. Hence, we have
K*(A) = maxey A - V.

Next, suppose that® < 0. It follows from Lemmas 5 and 8 that for every
€ > 0, there is a profilex® such thatk*(a®,A) — A®v®| < €. Lemma 3.2 of FL
shows thak*(A) < A®v®, sok*(A) = A2,

Combining these cases, we obt&n=V*. Q.E.D.
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6 Weaker Sufficient Conditions for Folk Theorems

In this section we present a few alternative theorems that use weaker informational
conditions to prove “static-threats” folk theorems, meaning that the theorems only
ensure the attainability of payoffs that Pareto-dominate the payoffs of a static ex-
post equilibrium. Consequently, these theorems assume that a static ex-post equi-
librium exists. This is always true when the state only matters for the monitoring
structure but has no impact on the expected payoffs (tlét(s) = g(a)), and itis

also satisfied for generic payoff functiogsvhen the state has a sufficiently small
impact on the payoff function. Several of our other assumptions in this section
seem more likely to be satisfied if the uncertainty is “small,” though that is not
necessary, as shown by Example 3, and we have not tried to prove formal results
along those lines.

6.1 Relaxing Full Rank to Identifiability

This subsection develops informational conditions that are analogous to the iden-
tifiability conditions of FLM. These conditions do not require individual full rank,

so that a given player may have several actions that generate the same signal dis-
tributions, and not all actions need be enforceable, but deviations by different
players can still be distinguished.

Definition 10. Foreach €1, j #i, andw € Q, a profilea is pairwise identifiable
for (i, ) and (|, w) if rankl; ) (j,e) (0) = rank; ) (a) +rankj ) (a) — 1.

This is exactly the FLM definition of pairwise identifiability. (Recall that pair-
wise full rank is equivalent to the combination of individual full rank and pairwise
identifiability.)

Definition 11. For eachi€ |, je |, we Q, and® # w, a profilea is state-
wise identifiable for(i,w) and (j, @) if rankl; ,)(j @ (a) = rankl o (a) +
rankj ) (a).

Note that statewise full rank is the combination of individual full rank and
statewise identifiability. Thus when individual full rank is satisfied, statewise
identifiability requires just as many signals as statewise full rank, in contrast to
the statewise distinguishability condition in the next subsection.
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We say thatr is ex-post enforceable if it is ex-post enforceable with respect to
R!'*I? and & for somed € (0,1). This is equivalent tar being enforceable with
respect toR' andé for each information structurg® in isolation.

Condition X-Eff. If a pure action profilea gives a Pareto-efficient payoff vector
for somew € Q, then it is ex-post enforceable.

FLM show that any Pareto-efficient action profile is enforceable. (X-Eff) ex-
tends this to ex-post enforceability, so it is automatically satisfied when there is a
single state.

Condition U-Eff. If a pure action profilea gives a Pareto-efficient payoff vector
for somed € Q, then it gives a Pareto-efficient payoff vector for every

(U-Eff) says roughly that efficient actions are uniformly efficient. It is typ-
ically satisfied ifu®(y,a;) is independent of (or very insensitive ta) and the
various distributionsgt® are sufficiently similar.

Condition PID. For eachi € I, | #1i, andw € Q, every pure action profile is
pairwise identifiable fofi, w) and(j, w).

(PID) is stronger than needed, it is sufficient that it applies to the pure action
profiles that yield Pareto-efficient payoffs.

Lemma 9. If u®(y,a) is independent of and (U-Eff) holds, then (X-Eff) holds.

Proof. Because each player’'s payoff depends only on their own action and the
realized signal, Lemma 6.1 of FLM applied to each stata isolation implies
that profilea is enforceable for eactw. Q.E.D.

Condition SID. Foreach €1, je |, we Q, and® # w, there is a profile that is
ex-post enforceable and statewise identifiablgfap) and(j, ).

Intuitively, it is this condition that will allow the players to “learn the state” in
a PPXE. It can be replaced by the less restrictive but harder to check condition of
statewise distinguishability, as we show in the next subsection.

Theorem 5. Suppose (PFR) holds or (X-Eff) and (PID) hold. Suppose also that
(SID) holds. Assume that there is a static ex-post equilibritfinand letv® =
{veVViel Ywe Q v > g®(a®}. Then, for any smooth strict subgat of

VO, there isd € (0,1) such thaW C E() for all & € (5,1).
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This theorem is established by the following lemmas that determine the max-
imal scorek* in various directions. The next lemma says that score of a static
ex-post equilibrium can be enforced in any direction; this score will be used to
generate the score in directions that minimize a player’s payoff.

Lemma 10. Suppose that there is a static ex-post equilibratn Thenk*(a®,A) >
A -g(a®) for any directionA.

Proof. Letv® =w®(y) =g®(a®) foralli € I, w€ Q, andy € Y. Then, this(v,w)
satisfies constraints (i) through (iii) in LP-Average, andv = A -g(a®). Hence,
k*(a% 1) > A-g(a?). Q.E.D.

The next lemma determines the maximal score for directitimat considers a
single statew and has a positive component or at least two nonzero components,
when (X-Eff) holds.

Lemma 11.

(a) Suppose that (PFR) or (X-Eff) and (PID) hold, and delbe a profile that
gives a Pareto-efficient payoff for somes Q. Thenk*(a,A) = A -g(a) for
direction A such that(A,“)ic; has at least two non-zero components while
A@=0forall jeland®# w.

(b) Suppose that (PFR) or (X-Eff) and (PID) hold. THe®A ) = maxey A - v
for directionA such than,” > 0 and)\ja’ =O0forall (j,®) # (i,w).

Proof. Part (a). Lemma 1(b) shows that the maximum score in directichat
mostA -g(a). Because is a pure action profile, and it is enforceable foralhnd
pairwise identifiable from (X-Eff) and (PID), is enforceable on hyperplanes cor-
responding to\ from Theorem 5.1 of FLM, so the scole g(a) can be attained.

If (PFR) holds this follows from Lemmas 4 and 7.

Part (b). Leta be a Pareto-efficient profile that maximizes playgpayoff in
statew. If (X-Eff) holds, a is ex-post enforceable, and since the profile has the
best-response property in stabeLemma 5.2 of FLM implies it is enforceable on
A. If (PFR) holds, this follows from Lemma 8. Q.E.D.

Lemma 12. Suppose (SID) holds. Theki(A ) = o« for directionA such that there
existie l, jel, weQ, and® # w such tha® £ 0 and)\j‘:’ # 0.
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Proof. See Appendix. As in Lemma 5.5 of FLM, the idea is that if prodiie en-
forceable, then any actiaj # a leading to the same distribution of public signals
asg; cannot increase play€&s payoff and so can be ignored. Statewise identifi-
ability implies that once we delete these redundant actions, the niatrix ;o)
corresponding to the remaining actions satisfies statewise full rank. Therefore, as
in Lemma 6, we can choose continuation payoffs to attain infinitely large maximal
score while maintaining exact indifference among the remaining actions. These
continuation payoffs also deter deviations to the deleted actions.  Q.E.D.

6.2 Relaxing Statewise Identifiability

When individual full rank holds, statewise identifiability implies statewise full
rank, which can require that there be twice as many signals as required by the FLM
folk theorem. The following, more complex, condition can be satisfied with far
fewer signals. In part, this condition is related to the fact that linear independence
of the outcome distributions is not needed for an action profile to be enforceable,
as linear independence tests all linear combinations of the distributions, while it
is sufficient to rule out convex combinatioffs.

Definition 12. Profile o statewise distinguisheg$, w) from (j, @) if there is a
vectoré = (£(y))yev € R such that

() & n¥a)>¢&-n®a),
(i) &-m®(a)=& n®(a,a_i) > & -n®&,a_) for all g € supm; and§; € A,
(i) & m®(a) =& n®(aj,a_)foralla; € A,.

We illustrate these conditions in Figure 1. Clause (i) implies that the sig-
nals generated by statistically distinguishw from @. Clearly, there must be
some such profile for there to be equilibria where the play varies with the state.
Clause (ii) says that changing playi&s continuation payoff function in stat@

12See Kandori and Matsushima (1998). In the study of mechanism design with transferable util-
ity, Kosenok and Severinov (2008) and Rahman and Obara (2008) gave a weaker sufficient condi-
tion for budget-balanced implementation; the balanced-budget constraint roughly corresponds to
directionsA where every component is strictly positive.
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from w®(y) to w*(y) + & (y) preserves incentive compatibility, and clause (iii)
says that the change in playiés continuation payoff (of\w’(y) = £(y)) can be
offset to preserve the feasibility constrainf{Aw® (y) + A j‘bAwf’(y) = 0) without
changing player’s expected continuation payoff to any action. Note that this
transfer scheme increases playgexpected continuation payoff B{Aw®|a| =

& -n®(a). Thus the maximal score farwith A* > 0 can be made infinitely large
by utility transfer between states from .13

Figure 1: Statewise Distinguishability.

Condition SD. For each(i,w) and(j,®) satisfyingw # ¢, there is an ex-post
enforceable action profile that statewise distinguishés w) from (j, @).

(SD) is sulfficient for the static-threat folk theorem, as it implies that profile
a can generate an infinite score in all of the “cross-state” directions. The folk
theorem holds with even weaker conditions, because different profiles can be used
in different directions.

Definition 13. Profile a n-statewise distinguishds$, w) from (j, @) if there is a
vectoré = (€(y))yey € RYI such that

(i) & m®(a)> & na),

13If A @ < 0, then playei’s continuation payoff must be decreased to achieve a high score. This
requires a different sort of transfer and in turn requires a different condition on the information
structure, but this condition is not needed for a static-threats folk theorem.

30



(i) &-m®(a)=¢& n®&,a-i) > & -n¥(&,a_) for all g € supm; andg; € A,
(i) & m®(a) =& n®(aj,a_j) > &-n®(&;,a_j) for all aj € supprj and4j €

\, Loss by deviating td;
n®(a)  n®(&,a-)

Figure 2:n-Statewise Distinguishability.

Note that this condition relaxes statewise distinguishability by replacing the
last equality in (iii) with an inequality. We will show that a profitestatewise
distinguisheq(i, w) from (j, ) can be used to generate an infinite score for all
A such than® > 0 and/\j‘b < 0. Intuitively, if playeri’s continuation payoff in
statew is increased by, andA” > 0 andA{¥ <0, then to satisfy the feasibility
constraint it is sufficient thad“Aw{*(y) + A{°Aw{’(y) = 0, which implies that
AW = ¢ andAwf’ = ——;—E give the same direction. When this is true clause (iii)
implies that the change preserves incentive compatibility for playerstate®,
as Figure 2 shows. Thus the maximal score can be made infinitely large by utility
transfer between statesfrom ¢.

The next condition is similar, but it is tailored to be useful forsuch that
A®>0andA® > 0.

Definition 14. Profile a p-statewise distinguishe$, w) from (j, &) if there is a
vectoré = (&(y))yey € RYI such that

(i) &-m®(a)>& n®(a),
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(i) &-m®(a)=¢& n®&,a-i) > & -n¥(&,a_) for all g € supm; andg; € A,
(i) & m®(a) =& n®(aj,a_j) < &-n®(&,a_j) for all aj € supprj and4j €

Figure 3:p-Statewise Distinguishability.

For A such thatA®” > 0 and )\j‘b > 0, the feasibility constraint implies that
Aw® andAWj" give the opposite directions, and clause (iii) assures that piéyer
incentive compatibility is preserved whénis added to player's continuation
payoffs. This is illustrated in Figure 3.

Note that ifa statewise distinguishe$, w) from (], &), then itn-statewise
distinguishes this pair anp-statewise distinguishes this pair. So the following
condition is weaker than (SD).

Condition Weak-SD. For each(i, w) and( j, @) satisfyingw # @, there is an ex-
post enforceable action profitethatn-statewise distinguishésg w) from (j, @),
and an ex-post enforceable action profilghat p-statewise distinguishegs, w)
from (j, ).

This is sufficient for the static-threat folk theorem as shown by the following
lemmas. See the Appendix for their proofs.
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Lemma 13. Suppose thatr is ex-post enforceable andstatewise distinguishes
(i, w) from(j, ). Thenk*(a,A) = o for directionA such tha,” >0 and)\ja’ <
0.

Lemma 14. Suppose thatr is ex-post enforceable anstatewise distinguishes
(i, w) from (j, ). Thenk*(a,A) = o for directionA such tha,” > 0 and)\j‘:’ >
0.

Combining Lemmas 10, 11, 13 and 14 yields the following folk theorem:

Theorem 6. Suppose (X-Eff) and (Weak-SD) hold. Assume that there is a static
ex-post equilibriuna®, and letv® = {ve V|vi € IYw € Q v* > g®(a®)}. Then,

for any smooth strict subs@¥ of VO, there isd € (0,1) such thatW C E(J) for

all 6 € (3,1).

To illustrate statewise distinguishability, we return to the two partnership games
that we introduced in Section 3.

Example 3. There are two players, two states, and three outcomegH M, L}.
Each playei’s action space iy = {C;,D;}. The probabilities oH andM if both
players choos® are independent of the state, and in each state the monitoring
structure is additive: the change in probabilities induced by plégahanging
from C; to D; is the same regardless of the action of the other player. Moreover,
in this example the uncertainty is symmetric in the state: In stafef player 1
choose<; instead ofD4, then the probabilities dfi andM increase bypy and
pm, While player2's choice ofC, increases the probabilities lmy andqy; in
statewy, the roles are reversed.

The realized payoff functions are independentucdind given by

ui(Ci,y) =ri(y)—& and u(Di,y) =ri(y)
foreachi € |, w € Q, andy € Y. We assume that for eack I,

I’i(H) > I’i(l\/l) > I’i(L),

H) —ri(L)) + pm(ri(M)
H)

& > PH(ri ri
(L) r

(L),
& > gn(ri .

(H) =ri(L)) (M) =T
(H) =ri(L)) +am(ri(M) —ri(L))
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Here the left-hand side of the second inequality is the cost of plHyehoice of

C, for statew, (or the cost of playe?’s choice ofC, for statewy,), and the right-
hand side is an increase in playles benefit from the project when he choo€is
instead ofD; for statew, (or an increase in playét's benefit when he chooses
C, for statewp). Since the left-hand side is greater than the right-hand side, we
conclude thaD; strictly dominate<C; for statew,, andD-, strictly dominate<,

for statew,. Likewise, the third inequality asserts tHat strictly dominatesC,

for statewy, andD, strictly dominate£, for statew,. Thus,D; strictly dominates

C; for each state. Moreover, we assume that for each,

& < pu(ra(H)+ra(H) —ra(L) —ra(L)) + pm(ra(M) +r2(M) —ry(L) —ra(L))

and

& <gu(ra(H)+rz(H) —ra(L) —ra(L)) +am(ra(M) +r2(M) —ry(L) —rz(L)),

so that choosing; instead ofD; always increases the total surplus. Summing
up, the payoff matrix of the stage game corresponds to a prisoner’s dilemma for
each sate; henc&,* has a non-empty interior an@1,D>) is a static ex-post
equilibrium.

Note that individual full rank is satisfied, and that pairwise full rank is satisfied
at every profile and every state if the matrix

PH Pwm
g4 QJm

has full rank. For example, the matiliXy ¢, )(2,e;)(D1,C2) is represented by

OH + OH Om + Qm 1—(OH+0H+Om+0m)
OH+PH+OH OM+PvM+0dvm 1—(OH + PH +0OH +Om+ Pm +0m)
OH + OH OmM + Owm 1—(oH+0n+0m+0awm) ’
OH oM 1—(on+0m)

and this matrix has rank three if the above two-by-two matrix has full rank. There-
fore, the profile(D1,Cz) has pairwise full rank fof1,w;) and(2,cw;). On the
other hand, statewise identifiability is not satisfied at any profile, as there are only
three signals, while four signals would be needed to satisfy statewise identifiabil-
ity and individual full rank.
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Claim 2. In Example 3(D1,Cp) statewise distinguishds, w) from (j, &) satis-
fying w # @.

Proof. First, consider((i,w), (j,®)) = ((1,w1),(2,a)). In this case, le€ =
(&(y))yey be a solution to the system

EH)pH+EM)pm+E(L)(L—py—pm) =0
EMH)H+EM)au+E(L)(1—agn —am) =K

for someK > 0. This system has a solution, since the matrix
PH  Pwm
O+ Qwm
has full rank. Then, we can check that
é- T[wl(Cl,Cz) =¢- T[wl(Dl,Cz) =¢. T[wz(Dl,Cz) +K=¢&- T[@(Dl, Do) +K

so that all the desired conditions are satisfied.(Fow), (j,)) = ((2,w1), (2, wp)),
we can use the sande

Likewise, for((i, w), (j, &) = (1, &), (1, @1)) or (i, w), (J,@))
useé that solves

((2,2), (1, 1)),

EH)pH+EM)pm+E(L)(L—pH—pw) =0
EH)H +EM)au +&(L)(1—an —au) = —K

for someK > 0. For((i, w), (j,@)) = ((1, @), (1, wp)) or (i, w), (j, @)) = ((2, w), (1, @2)),
useé that solves

E(H)pn +EM)pm+&(L)(1—py —pw) = —K
EH)H+EM)aw+E(L)(1—an4 —am) =0

for someK > 0. Finally, for ((i, ), (j,@®)) = ((1, wy),(2,w)) or ((i,w), (j, &) =
((2,an), (2,01)), use€ that solves

EH)pH+EM)pm+E(L)(1—pr— pum) =K
EH)gn +EM)au+&(L)(1—an —au) =0

for someK > 0. Q.E.D.
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We conclude that the static-threat folk theorem applies to Example 3. In con-
trast, payoffs are bounded away from efficiency in Example 4, which is a related
partnership game. As we remarked earlier, this is because the states are “entan-
gled”:

Definition 15. Profile a entangles state@ and @ for player j if there isTt €
co{n®(aj,a_j)|a; € Aj} such thatr®(a) = kt®(a) + (1 — k)Tt for somek €
(0,1].

Lemma 15. If profile a p-statewise distinguishds, w) from (j, @) thena does
not entanglew and & for player j.

Proof. If a entangles state® and @ for player j then for anyé such thaté -
n®(a) < &-m®(aj,a_j) for all a; € Aj, we haveé - n®(a) < & -Tifor all TTe
co{m®(aj,a_j)|aj; € Aj}, so thaté - n®(a) > & - ®(a). Thusa does notp-
statewise distinguishi, w) from (j, @). Q.E.D.

Example 4. As in the previous example, there are two players, two actors
{Gi,Di}, two states, and three outcomés- {H, M, L}. The state only influences
the productivity of playel's effort: If player 1 choose<C; instead ofD4, then
the probabilities oH andM increase bypy and py, independent of the state.
In contrast, if playe2 choose<C, instead ofD,, then the probabilities afi and
M increase bygy andqy in statew,, but they increase only bggy and Bqwm
in stateay. If B < 1, the states have different outcome distributions, so can be
identified by repeated observation. However, every profile where plaptys
C, with positive probability entangles the states for pla3eand if player 2 plays
D, the states cannot be distinguished, so no profile satisfies statewise distinguishes
(L) and (20).

As in Example 3, the payoffs are

u(G,y) =ri(y)—e and u(Di,y) =ri(y)

for eachi € | andy € Y. We again make assumptions on theo that the stage
game payoffs in each state correspond to a prisoner’s dilerbmia:a dominant
strategy, sqD1,D>) is a static ex-post equilibrium{Cy,C,) is efficient, andv*
has a non-empty interidf:

1The conditions on the payoffs areri(H) > ri(M) > ri(L); e > pu(ra(H) —ro(L)) +
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Individual full rank and the pairwise full rank are satisfied at every profile and
every state, if the matrix
( PH  Pm )
Q4 Om

has full rank, as in Example 3. However, no profile can statewise distinguish
(1, ) from (2, wp), as the following claim shows.

In what follows, we prove that the folk theorem fails in this example. Specif-
ically, we show that the maximal scok&(A) in directionA’ = ((1,0),(0,1)) is
strictly less than the valug’ - g(Cy,Cp) < maxeyv+A’-v. To do this, we use the
fact that the monitoring technology has an additive form, so that it suffices to
consider only the pure action profiles, as in Lemma 4.1 ofFL.

Claim 3. For a = (C1,Cy),

K*(a,A") <A"-g(Cq1,Cp) — - B

Proof. See Appendix. As we mentioned in Section 3, this inefficiency result
comes from the fact that the two states are entangled for plagad hence the
profile (Cq,Cz) does notp-statewise distinguisfil, w;) from (2, wp). Q.E.D.

B(gz (C1,D2) — g‘z*’z(cl,Cz)).

Claim4. Fora = (Dl,Cz), k*(a,)\’) < A/-g(Dl,Cz) (92 (Dl, Dz) —gg)z(D]_,Cz)).
Proof. The same as in the previous claim. Q.E.D.
Claim 5. For a = (C1,D2), k*(a,A’) < A’-g(Cy,D>).

Proof. Sincenr®1(Cy,Dy) = n*2(Cq,D5) andn“®(Dq,D5) = n*2(D1,D>), the set
of the constraints in the LP-Average problem fdris isomorphic with that for
A" =((0,0),(1,1)). Then the maximal score for’ equals that fon”, and the
statement follows from Lemma 1(b). Q.E.D.

Claim 6. For a = (D1,D5), k*(a,A’) < A’-g(D1,Dy).

pm(ri(M) —ra(L)); & > gu(ra(H) —ra(L)) +am(ra(M) —rz(L)); €1 < pu(ri(H) +ra(H) -
ri(L) —ra(L)) + pm(ra(M) +r2(M) —ry(L) — ( )); andez < Bou(ra(H) +ra(H) —ra(L) —

ra(L)) +Bam(ri(M) +ra(M) —ra(L) —ra(L)).
15FL used a more restrictive definition of “additive monitoring structure,” but the proof of their

Lemma 4.1 applies to any case where the effect of one player’s action on the distribution of signals
is independent of the action of the other player.
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Proof. The same as in the last lemma. Q.E.D.

Now we combine these claims to show thafA’) < A’-g(Cy,Cp). Since
9:*(C1,D2) = g5%(C1, D), we have

A’-g(Cq,Dz) = g3*(Cy,D2) + g52(C1,D2) = 972(C1,D2) +952(C1,D2)
< 072(C1,C2) +052(C1,Cp) < 91(C1,Co) +03%(C1,Co) = A’ -g(C1,Co).

Also,

A’-9(D1,C2) =0 (D1,C2) +93%(D1,C2)
=07*(C1,C2) +952(C1,C2)
+(91*(D1,C2) + 95*(D1,C2) — 97 (C1,C2) — g3 (C1,C))
<071 (C1,C2) +952(C1,Cy)
=A".g(C1,Cy).

Here, the second equality comes from the additive structure, which implies that
gg’l(Dl,Cz) — gg)l (Cl,Cz) = gg’Z(Dl,Cz) — g‘z"z (Cl,Cz). Combined with the previ-

ous claims, it follows from the above claims thé&fA’) < A’-g(Cq,Cz), so that the

folk theorem fails. Moreover, because the player’s equilibrium payoffs cannot be
below their minmax level in any state, this bound implies that for some parameter
values playeR’s PPXE payoff in stateu; is strictly less thamy?(Cy,Cp).1°

7 Incomplete Information and Belief-Free Equilibria

7.1 PPXE of Incomplete-Information Games

So far we have assumed that the players have symmetric information about the
state. Now suppose that each playebserves a private signél € ©; at the be-
ginning of the game, wher®; is a partition ofQ. Any public strategys of the

game where playdrhas a trivial partition@; = {(Q)} induces a public strategy

18For example, suppose that = .5, py = 0,04 =0, gu = .5, B = .8, ri(H) = 100, r{(M) =
99 ri(L) =0, e1 =99, ande; = 79. Then the minmax payoffs are 0 for all players and all
states g1 (C1,C) = 0.5, g52(C1,C2) = 10.6, andgy?(Cy,Dz) = 50. Using Claim 3, we have
vi+Vv3 < 1.25, and sincest > 0, V3 < 1.25, so it cannot achieve payagh?(Cy,Cz) = 10.6.

38



for any non-trivial partition®;: playeri simply ignores the private information
and sets(h, 6) = s(h) for all hand all6. Since by definition play in a PPXE

is optimal regardless of the state, any PPXE for the symmetric-information game
(where all players have the trivial partition) induces a PPXE for any incomplete-
information game (any partition®;) with the same payoff functions and prior.
That is, if strategy profiles is a PPXE of the symmetric-information game, then
the profiles' wheres/(h, 6)) = s(h) for all playersi, types@, and historied is

a PPXE of the incomplete-information game. Moreover, si@ces private in-
formation, any strategy that conditions énwill not be a function of only the
public information. Thus the PPXE of the incomplete-information games are iso-
morphic to the PPXE of the associated symmetric-information game, so the limit
PPXE payoffs can be computed using LP-average, and our sufficient conditions
for the folk theorem still apply.

However, we would expect the folk theorem to hold under weaker conditions
if players are allowed to condition their play on their private information. Players
cancondition on their private information in the “belief-free equilibrium” studied
by Horner and Lovo (2009) anddtiner, Lovo, and Tomala (2008). These papers
define a belief-free equilibrium for games with observable actions and incomplete
information to be a strategy profikesuch that for each stai@, profile sis a
subgame-perfect equilibrium of the game where all players know the stt&’is

When the information partitions are trivial (and actions are perfectly observed)
belief-free equilibrium is equivalent to PPXE. In this case the game is one of com-
plete information, and players have no way to learn the state, so one way to study
the game is to replace the payoff functions in each state with their expected value,
and apply subgame-perfect equilibrium to the resulting standard game. It may be
that the folk theorem holds in this game, but the set of PPXE is empty, which
might raise some questions about the strength of the robustness argument for ex-
post equilibria; we are agnostic on the status of PPXE when the folk theorem fails
but efficient payoffs can be supported by other sorts of equilibria.

"Horner and Lovo (2009) study two-player games where the information partition has a product
structure; Hhrner, Lovo, and Tomala (2008) extends the analysis to general partitioh plager
games. These papers assume that players do not observe their realized payoffs as the game is
played: The players’ only information is their initial private sig@lahnd the sequence of realized
actions.
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When the information partitions are non-trivial, belief-free equilibrium allows
a larger set of strategies than does symmetric-information PPXE, so the limit
PPXE payoffs must be a weak or strict subset of the limit payoffs of belief-free
equilibria. In the next subsection we study games with the monitoring structure
of Horner and Lovo (2009) anddtner, Lovo, and Tomala (2008), and show that
the inclusion is strict: some limit payoffs of belief-free equilibria are not limit
payoffs of PPXE. In ongoing work Fudenberg and Yamamoto (2009), we define
the notion of a “type-contingent perfect public ex-post equilibrium,” which allows
players to condition on their initial private information in addition to the public
history. This equilibrium concept reduces to the belief-free equilibriumarhidr
and Lovo (2009) and &rner, Lovo, and Tomala (2008) when actions are perfectly
observed. We then develop the appropriate linear programming characterization
of limit equilibrium payoffs, which we hope to use to extend the resultsahidr,
Lovo, and Tomala (2008) to games where actions are imperfectly observed and the
monitoring structure is unknown.

7.2 Incomplete Information and Perfectly Observed Actions

Consider the following example fromdfiner and Lovo (2009). There are two
players,| = {1,2}, and two states) = {w,wp}. Playerl knows the state, but
player2 does not:©; = {(wy),(wp)} and®2 = {(Q)}. Playeri € | chooses
actionsa € Aj = {T,B}, and observes a public signat A. Assume thatt’(a) =

1for y = a, so that actions are perfectly observable, and players cannot learn the
state from the signals. The payoff matrix conditionalconis

T B
T 11 -L,1+G
Bl 1+G,—L 0,0

where0 < L — G < 1. This game can be regarded as prisoner’s dilemma where
is cooperation anB is defection. On the other hand, the payoff matrix conditional
on anw is

L R
U 0,0 -L,1+G
D|-L1+G 1,1

40




Note that this game is also prisoner’s dilemma, but now the role of each action is
reversedB is cooperation and is defection.

Horner and Lovo (2009) show that play®s best limit payoff in belief-free
equilibrium is1+ FGL in each state, which is the highest payoff consistent with
individual rationality for playe® in the games where the state is known. We will
show that PPXE cannot attain as high a limit payoff. Intuitively, this is because
(a) the public signals do not directly reveal the state, so with trivial partitions
(G ={(Q)}) learning the state is impossible, and (b) the same conclusion obtains
if player 1 does start out knowing the state but we restrict attention to equilibria in
which playerl's play doesn’t depend on his prior information.

Because the PPXE payoff set for games with asymmetric information is iden-
tical with that for the corresponding symmetric-information game, we can com-
pute the limit set of PPXE payoffs for asymmetric-information games by using
LP-Average.

Lemma 16. Suppose tha¥ = A and ii’(a) = 1 for y = a. Thenk*(a,A) <
A-g(a) forall a andA.

Proof. Let (v,w) be a solution to LP-Average associated with a,d). By def-
inition, (v,w) satisfies all the constraints in LP-Average, and siviee A we can
treat the continuation payoffs as a function of the realized actions. Then,

C@n=3 5 AW

‘ZM (1 o9 +5 3 ale )

(1-8)A-g(a +52\ a)A -w(a)

<(1-9)A-g(a)+0o Z a(a)k'(a,A)

acA

= (1—8)A -g(a) + 8K (a, A).

Here, the inequality follows from constraint (iii) in LP-Average. Subtracting
ok*(a,A) from both sides and dividing bjd — d), we obtairk*(a,A) <A -g(a),
as desired. Q.E.D.

41



ConsiderA such thaA;* = A[%2 = 1 andA,* = A,% = 0. It follows from the
above lemma that for any,

K(a,A) <A-g(a) =gr*(a) +9r*(a).

Note that the valug;™(a) +g72(a) is maximized bya = (T,T) or a = (B,B),
and its value id. Hence,

k*(A) =supk*(a,A) =1.

This result shows tha is contained in the hyperplamé(A, 1) = {ve R/ <@y +
V% < 1}, so thatv* + V&2 < 1 for anyv € lims_; E(8). In words, the sum of
player1's equilibrium payoffs for statesn, and forw, cannot exceed. On the
other hand, since the equilibrium payoff must be above the minimax payoff for
each state, we hawé™ > 0 andv;? > 0 for all v € lim_,; E(8). Therefore, we
obtain

0<v{*<1 and 0<Vv{%<1

for all v e lims_1E(J). Obviously, this value is less than the best belief-free
equilibrium payoff,1+ ;..

8 Concluding Remarks

This paper has restricted attention to the set of PPXE, and analyzed them with
extensions of the techniques used to analyze PPE in games where the monitoring
structure is known. When the statewise full rank conditions hold, along with the
standard individual and pairwise full rank conditions, the set of PPXE satisfies an
ex-post folk theorem, even if the set of static ex-post equilibria is empty. When a
static ex-post equilibrium does exist, there is an ex-post PPXE folk theorem under
even milder informational conditions.

Of course for a given discount factor the full set of sequential equilibria of
these games is larger than the set of PPXE, and can permit a larger set of payoffs.
In particular, because the game has finitely many actions and signals per period
and is continuous at infinity, sequential equilibria exist for any discount factor,

42



even if the set of PPXE is empt§,so PPXE is not well-adapted to the study

of games with uncertain monitoring structures and very impatient players. Con-

versely, when players are patient and mostly concerned with their long-run payoff,

our informational conditions imply that there are PPXE where players eventually

learn what the state is, and obtain the same payoffs as if the state was publicly
observed.

Appendix

A.1 Proof of Theorem 1

Theorem 1. If a subsew of R' %1€l is bounded and ex-post self-generating with
respect tad, thenwW C E(9).

Proof. Let ve W. We will construct a PPXE that yields Sincev € B(d,W),
there exist a profiler and a functiow:Y — W such thata, v) is ex-post enforced
by w. Set the action profile in period one to &g = a and for eacth! =yl €Y,
setv|,. =w(h') € W. The play in later periods is determined recursively, usipg
as a state variable. Specifically, for each2 and for eactn' =1 = (y*)! 4 e H'L,
given av|i1 € W, let o|—1 andw|p1 1Y — W be such thata|i—1,V|p1) IS
ex-post enforced by|,;—1. Then, set the action profile after histany ! to be
8- = a1, and for eacly' € Y, setv|p_ -1 ) = Wip-1(y') € W.

BecausaV is bounded and € (0,1), payoffs are continuous at infinity so
finite approximations show that the specified strategy prefileS generates as
an average payoff, and its continuation strategyyields v|;x for eachh' € H!.
Also, by construction, nobody wants to deviate at any moment of time, given any
statew € Q. Because payoffs are continuous at infinity, the one-shot deviation
principle applies, and we conclude tlsas a PPXE, as desired. Q.E.D.

8This follows from the facts that sequential equilibria exist in the finite-horizon truncations
(Kreps and Wilson (1982)) and that the set of equilibrium strategies is compact in the product
topology (Fudenberg and Levine (1983)).

43



A.2 Proof of Theorem 2

Theorem 2. If a subsetV of R' %1€l is compact, convex, and locally ex-post gen-
erating, then there i$ < (0,1) such thaW C E(J) for all & € (,1).

Proof. Suppose thalV is locally ex-post generating. Sindély }vew is an open
cover of the compact s&¥, there is a subcoveiym}r, of W. Let & = maxydym.
Chooseu € W arbitrarily, and letUym be such thati € Uym. SinceW NUym C
B(dm, W), there existry andwy : Y — W such that ay, u) is ex-post enforced by
w for &m. Given ad € (8,1), let

0—dy u(1-9)

") = Si-ay s -a)

wu(y)

for ally € Y. Then, it is straightforward thdtr, u) is enforced by(w(y))yey for
0. Also, w(y) € W for all y € Y, sinceu andw(y) are inW andW is convex.
Therefore,u € B(5,W), meaning thaWw C B(5,W) for all & € (5,1). (Recall
thatu and d are arbitrarily chosen frot and (5,1).) Then, from Theorem 1,
W C E(8) for & € (,1), as desired. Q.E.D.

A.3 Proof of Lemma 2

Lemma 2. For everyd € (0,1), E(d) C E*(d) C Q, whereE*(9) is the convex
hull of E(9).

Proof. Itis obviousthaE(d) C E*(d). Suppos&*(d) ¢ Q. Then, since the score
is a linear function, there i< E(J) andA such that -v > k*(A). In particular,
sinceE(9d) is compact, there exist € E(d) andA such thatA - v* > k*(A) and
A-v*> A -Vforall Ve E*(d). By definition,v* is enforced by(w(y))yey such
thatw(y) € E(8) CE*(8) CH(A,A -v") forally € Y. But this implies thak*(A)
is not the maximum score for directian a contradiction. Q.E.D.

A.4 An Ex-Post Folk Theorem with Perfect Monitoring

Claim 7. Suppose that monitoring is perfect, that¥s= Ax Q and i’(a) = 1
if y=(a,w). Fix a payoff vectow € intV*. Then there i such that for all
5 € (8,1) there is a PPXE where players play a pure action profiléin period

44



one and then along the equilibrium path pls$§(d) from period two, where®(9)
is a subgame-perfect equilibrium for stateand discount factod with payoffv®.

Proof. Letv= (V¥)necq € intV*, and lete > 0 be such that for eaals, any payoff
vector withine of V¥ is in the setV*(w). Then letd € (0,1) be such that (i)
£> 1;55 Yiel (MaXacai(a) — Minaeagi(a)), (ii) for eachw, there is a subgame-
perfect equilibriuns®¥* for statecw and discount factad with payoffv®, and (iii)
for eachw € Q and for any payoff vectov within & of v, there is a subgame-
perfect equilibriums®? for statew and discount factod. Note that these three
conditions hold ifd is close to one; the last condition (iii) comes from Theorem
6.2 of FLM.

Consider the following strategy profile:

Phasel : Play a pure action profila in period one. If there is no unilateral
deviator fromaandw is observed, then go to Phage, v*). If playeri unilaterally

~

deviates froma andw is observed, then go to Phage, (v; — %(ma@@gi (8)
MiNngeadi(&)), (Vi) j=i))-

Phase(w,V*) (Here,w € Q and V¥ is within £ of v*.) : Play a subgame
perfect equilibriums®¥ in the remaining periods, as long asis observed in
every period of this phase. (Recall trst" is a subgame-perfect equilibrium
for statew with payoffs ¥©.) If in any periodt, o' # w'~1 then go to phase
(!, w® (@) in the next period, where' (al) = (w® (a!))i¢; is chosen so that

t t 1-0 ¢ t
w (@) = + === — g (@)
foralliel.
This strategy profile is well-defined, as (a') is within & of v by construc-
tion, and it is easy to see that this strategy profile is a PPXE. Q.E.D.

A.5 Proof of Lemma 12

Lemma 12. Suppose that SID holds. Theki(A) = o for directionA such that
thereexisic |, j €|, we Q, and® # w such tha,” # 0 and)\j‘z’ # 0.

Proof. Let (i, w) and(]j, &) be such thad® # 0, Aj‘:’ #0,and® # w. Leta be a
profile that is ex-post enforceable and statewise identifiabléi far) and( j, &).
In what follows, we show that*(a,A) = .
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First, we claim that for everK > 0, there existz® = (zZ°(y))yey andzj-b =
(zﬁ"(y))yey such that (1) holds for ally € A;, (2) holds for alla; € A;j, and (3)
holds for ally € Y. To prove that this system of equations indeed has a solution,
let Al C A provide a basis for the space spannecﬂmfy(a{, a_i))yey, meaning that
the set{(n)‘,"(ai’,a_i))yey}ai,e&_/ is a basis for the space, so that rr?ilfm)(a) =
rank; ., (a) = |A]|l. Then if (1) holds for allaj € A, then (1) fora’ ¢ A{ is
satisfied as well. Likewise, Ielt’j C Aj provide a basis for the space spanned by
(rg’(aj, a—j))yey for all &j € Aj; if (2) holds for alla| € Aj, then (2) fora ¢ A|
is satisfied. Thus, for the above system to have a solution, it suffices that there
existz* andzfJ such that (1) holds for al € A}, (2) holds for allaj € A}, and
(3) holds for ally € Y. Eliminate (3) by solving forzj"(y). Then, there remain
Al + [Aj] linear equations, and its coefficient matrixl‘l%@)(m)(a), which is
constructed by stacking two matricﬁﬁivw)(a) and I'I’(j’&))(a). It follows from
statewise identifiability that

rankly; o, j o) (@) = rank; ,, (a) +ranky; o (a) = |A] + |Aj.
Therefore, we can indeed solve the system.
Let (V,W) be a pair of a payoff vector and a function such tiieénforces
(V,a). LetK > maxey A -W(y) — A -V, and choose” andzf’ to satisfy (1) through
(3). Then, let

W) +2y) i (1,®) = (,w)
Wy) = R +22y) i (1,®) = (1,®)

@iy X @) = i,w)
Vlw: l
e otherwise

Then, as in the proof of Lemma 6, thig w) satisfies constraints (i) through (iii)
in LP-Average. Therefor&k*(a,A) > A -v= A -V+K. SinceK can be arbitrarily
large, we conclud&*(a,A) = co. Q.E.D.
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A.6 Proof of Lemma 13

Lemma 13. Suppose thatr is ex-post enforceable andstatewise distinguishes
(i,w) from(j, ). Thenk*(a,A) = o for directionA such thai,” >0 and)\j‘:’ <
0.

Proof. Let & = (&(y))yey be as in the definition af-statewise distinguishability.
Without loss of generality, assunde () = 0. Letz” = (Z°(y))yey andz” =
(Z°(y))yey be such that

K
Z°(y) = Wf@)
and ) K
Zj”(y) = —Wf()’)
forallyeY. Then, sinc€ - n®(a) = & - n“(a;,a_;) > 0for g € supm;, we have
K K
T[“’(ai,a_i)-z‘”:mr[“’(a;,a_i)-ézm (5)

for all g € suppmi. Also, sinceé - n®(a) > 0andé - n®(a) > & - n®(a,a-_;) for
g ¢ supm;, we have

K K

mnw(ai;afi)'fﬁ— (6)

nm(aiaa*i)'zl'w: SA®

for all a ¢ suppi. Likewise, sincef - m®(a) > 0, & - 1®(aj,a_j) = O for all
a;j € supmj, andé - ®(aj,a_i) < Ofor all a; ¢ supmj,

~ K

n“’(aj,a_j)-zj*’:—Wn‘*’(aj,a_j)-f(y):o (7)
for all aj € supmj, and
. . K .
”w(aj;aj)'#z—mn‘“(aj,ap-fgo (8)
for all aj ¢ suppj. Finally, it is obvious that
AZ(y) + A2 (y) = (9)
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forallyeY.
Let (V,W) be a pair of a payoff vector and a function such tiieénforces
(V,a). LetK > maxey A -W(y) — A - V. Then, let

W) +2y) i (1,®) = (,w)
wy) = R +22y) i (1L®) = (1,®)

Wi (y) otherwise

for eachy € Y. Also, let

~ K . N
- Vlw_i_)‘_o_) if (law):(law)
Ve = |
e otherwise

We claim that thigv, w) satisfies all the constraints in LP-Average. Obviously,
constraints (i) and (ii) are satisfied for &ll,w) € (I x Q) \ {(i,w), (j,&)}, as
VP = ¥ andw®(y) = WP(y). Also, since (5) and (6) hold anl enforces(a, V),
we obtain

(1-9)g”(ai,a_i)+on®(a,a_;) - w”
=(1-0)g"(a,a-i) +on”(a, a-i) - (W +7")
:\7{*’+%

:vi‘"

(1-9)g”(ai,a_i)+on®(a,a_;) - w”
=(1-0)g"(a,a-i) +om”(a, a—i) - (W +7")
S\Z‘M%

:vi‘"

for all & ¢ supmi. Hence,(v,w) satisfies constraints (i) and (ii) fdr, ). Like-
wise, it follows from (7) and (8) thatv,w) satisfies constraints (i) and (ii) for
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(j,@). Furthermore, using (9) arfl > maxcy A - W(y) — A -V,
A-w(y) = A -W(Y) +A%Z°(y) + AP ZP(y)
= A -W(y)
<A-V+K
—A-v
for ally € Y, and hence constraint (iii) holds.

Thereforek™(a,A) > A-v=A -V+K. SinceK can be arbitrarily large, we
concludek™(a,A) = oo, Q.E.D.

A.7 Proof of Lemma 14

Lemma 14. Suppose thatr is ex-post enforceable an@statewise distinguishes
(i,w) from (], ). Thenk*(a,A) = o for directionA such thatz,® >0 and)\j‘:’ >
0.

Proof. Let £ = (£(y))yey be as in the definition op-statewise distinguishability.
Without loss of generality, assunfe m®(a) = 0. Let
K
z°(y) = Wf()’)

and K

Z?(Y) = —Wf(y)
forally €Y. Then, as in the proof of Lemma 13, we have (5) foraakk supp;,
(6) for all a ¢ suppi, (7) for all aj € suppj, (8) for all aj ¢ suppxj, and (9) for
allyey.

Let (V,W) be a pair of a payoff vector and a function such tiieénforces
(V,a). LetK > maxey A -W(y) — A -V, and choosév, w) as in the proof of Lemma
13. Then, thigv,w) satisfies all the constraints in LP-Average, so #iatr,A) >
A-v=A-V+K. LettingK — o, we getk*(a,A) = . Q.E.D.

A.8 Proof of Claim 3
Claim 3. For a = (C1,Cy),

€(a,2') <A g(C1.Cr) — 5 (G2(C1. D) ~ 6°(Ca,Co)).
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Proof. Consider the associated LP-Average problem, and ch@os to satisfy
constraints (i) through (iii) of this problem. From play2s IC constraint for state
wp, we have

B(a (W3”(H) —w5? (L)) + aw (W5> (M) —w5?(L)))

1-90
> T(g‘z"%cl, D2) —052(C1,C2)).
Then,

Vit V2 =(1-3)(97™(C1,C2) + 952(C1,C2))
+ &(M™(Cq,Cp) - Wi + TT*2(Cq, Cp) - Wo?)
=(1-8)(g{*(C1,Ca) + 05%(C1,C2)) + 8T (C1, Cp) - (W™ + W5%)
—3(1—B)(am (W5*(H) —w5?(L)) +am(wy* (M) —w5?(L)))
<(1-0)(97*(C1,C2) +952(C1,Ca)) + (Vi* +V5?)

_ (1_5)’#(9%’2 (C1.D2) — g2(C1,C2))

Arranging,

1_
Vit + Vg2 < g% (Cq,Co) + 052(C1,C) — TB(QEL’Z(CL D) — g52(C1,C2)).

So we have

A-v<A-g(C,Co) — %(gg&(cb D2) - 65%(C1,C2))-

This proves the desired result. Q.E.D.
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