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Abstract

Consider truthful reporting in a continuum-of-agents model of risk sharing with
private ‘shocks’. A ‘Law of Large Numbers’ constrains shock profiles. Any unilateral
deviation from truthfulness might also have been truthful under that assumption,
so outcomes need only be defined on such profiles in order to verify Bayesian in-
centive compatibility. Might there be another, Pareto inferior, equilibrium? This
phenomenon, akin to a bank run in the Diamond-Dybvig (JPE, 1983) model, can
occur in an Atkeson-Lucas (REStud, 1993) model, reformulated with production
and costly capital adjustment, if the full contract is required to be renegotiation
proof.

1 Introduction

A theoretical model of a continuum of infinite-lived agents is widely used to study macroe-
conomic aspects of optimal risk sharing. Agents in this model economy each maximize
the expectation of a time-separable utility function, and they experience idiosyncratic,
private shocks (independent across both agents and also, for each agent, across time peri-
ods) to their respective endowments or preferences. A feasible allocation (subject to both
technical and incentive constraints) in this environment is represented as an incentive-
compatible contract. That is, each agent’s consumption is a function of his reported shocks,
and truth telling is a Bayesian Nash equilibrium. An assumption that the realized distri-
bution of shocks in the population almost surely mirrors the probability law of the shock
distribution tightly constrains the shock profiles that can occur. Any unilateral devia-
tion from truthfulness results in a reporting profile that also might have been truthful
under that assumption, so the contract need only be defined on such profiles in order to

∗This article is a revised and extended version of chapter 2 of Pan (2008)
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verify its Bayesian incentive compatibility. However, this partial-definition shortcut begs
the question of whether there may be another equilibrium, in which many agents report
untruthfully, that yields an allocation that is Pareto inferior to the one that results from
truthful reporting. We will show here that this phenomenon, akin to a bank run in the
Diamond and Dybvig (1983) model, does occur in a suitably parametrized version of the
Atkeson and Lucas (1993) model with production and costly capital adjustment, if the
contract is extended to cover simultaneous deviations in one, natural, way that is partially
renegotiation proof.
In the language of implementation theory, a direct mechanism is a function that maps
every possible profile of reports (or, in an intertemporal model, every possible profile of
sequences of reports) to the allocation (of dated commodities, in the intertemporal setting)
that will result from that profile.1 A contract is the a pair of functions: a reporting map
that maps each possible state of the world to a profile of reports, and an outcome map
that maps profiles of reports to resulting allocations. The outcome map resembles a direct
mechanism, but it has a smaller domain. Specifically, the outcome map is defined only
on profiles in the image of the state space under the reporting map, and on profiles that
are unilateral deviations from such image profiles. A direct mechanism implements an
allocation as a Bayesian Nash equilibrium (BNE) if it has a unique BNE strategy profile
(which is a reporting map), and the mechanism assigns the allocation in question to that
strategy profile. A direct mechanism partially implements an allocation if it has a BNE
strategy profile, to which the mechanism assigns the profile. Similarly, we will say that a
contract partially implements a state-contingent allocation if its reporting map is a BNE
(which is well defined, as we observed in the previous paragraph) and the state-contingent
allocation is the image of the reporting map under the outcome map.2

A threshold issue is, does the issue of implementation versus partial implementation mat-
ter? In some circumstances, it seems reasonable to argue that truthful reporting is a ’focal
point’ equilibrium. That is, if it is common knowledge among the agents that truthful
reporting is an equilibrium, then they will report truthfully, regardless of whether there
are other BNE. The case for this view is particularly strong, perhaps, in a case where
truthful reporting results in a Pareto efficient allocation. However, there are other fea-
tures of an equilibrium that various game theorists have proposed as also constituting a
plausible focal point. What both a truthful and a non-truthful equilibrium exist, and the
non-truthful equilibrium possesses some such focal-point feature? Diamond and Dybvig
(1983) have argued that bank runs (and perhaps, by implication, some other forms of
financial-instability episode) should be understood in precisely this way.3

1The concepts of direct mechanism, Bayesian implementation, and partial implementation are defined
formally by Jackson (1991). Definitions specific to the model studied here will be formulated later in this
paper.

2Strictly speaking, the condition is that the allocation in each state of the world is the image under
the outcome map of the image of that state under the reporting map.

3Diamond and Dybvig’s analysis is not a fully satisfactory application of implementation theory. Ennis
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If one is not satisfied with partial implementation, then there is a way of extending the
outcome function of a contract to a direct mechanism in a way that guarantees full im-
plementation, in the context of a continuum-of-agents model. This domain-extension
procedure, due to Mas-Colell and Vives (1993), involves reversion to a ‘punishment allo-
cation’ after a detectable, simultaneous deviation from truth telling by a positive measure
of agents.4

However, there is an issue that, from an ex post perspective, the punishment allocation
is Pareto inefficient. It might be supposed, then, that agents would unanimously agree
to re-write the contract after a deviation that triggered the punishment allocation had
occurred. If the punishment allocation would not actually be imposed in the event that
it had been triggered, then the proposed extension of the domain of the outcome function
to such an event should not be taken seriously
Immunity to renegotiation is a subtle issue. In principle, the contract could be renegoti-
ated after profiles of reports that are made in equilibrium, as well as after those that are
made out of equilibrium. In the type of model to be studied here, if what agents receive
in the current period (that is, immediately following the receipt of their reports) can be
renegotiated, then the incentive for truthful reporting is undermined. We take a prag-
matic approach to this issue. We believe that we observe economic arrangements that are
modeled well as incentive-compatible contracts, and that those arrangements are largely
immune to renegotiation on a day-to-day basis. However, when those arrangements per-
form in ways that have not been anticipated to occur in equilibrium, then significant
renegotiation does occur. Typically, the renegotiation process takes time, so what agents
receive immediately when the unanticipated event occurs is not renegotiated. We assume
that the current-period allocation specified as a consequence of a report profile cannot be
renegotiated, but that the future allocation could be renegotiated, and that it must thus
be ex post Pareto efficient in order that there should be no scope for renegotiation. In
particular, the form of punishment allocation imposed by Mas-Collel and Vives cannot
be imposed.
In the specific model environment that we will consider, a deviation from equilibrium by
a positive measure of agents implies a loss of capital when contractual promises of current
consumption are honored. In such a situation, it is natural to consider proportionately
scaling down promises regarding future consumption so that the aggregate of promised
consumption is feasible to produce using the diminished capital stock. In the model envi-
ronment, this form of renegotiation is ex post Pareto efficient, so it satisfies the constraint
that has just been proposed. If agents’ coefficient of relative risk aversion is greater than

and Keister (2008) provide a fully satisfactory theoretical example of a bank run in an amended version
of their model.

4recall that, by the ‘Law of Large Numbers’ assumption made at the beginning of this discussion,
some such deviations are detectable, although the identities of the deviators may not be known. Mas
Collel and Vives specifically considered autarky as the punishment allocation, but both their idea and
the issue regarding renegotiation that will be discussed next are more general.
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1, then the direct mechanism derived from an efficient contract by such extension-by-
rescaling has at least two Bayesian Nash equilibria. One BNE is truthful reporting, which
leads to a Pareto efficient allocation. The other BNE qualitatively resembles a bank run
in the Diamond-Dybvig model, and is Pareto inefficient.

2 Economic Environment

Time is discrete, t = 1, 2, . . . .

• Production Technology:

Assume there is only one type of good in the economy, which can be used either
in production or consumption. There is an illiquid production technology with a
linear gross rate of return RI > 1 in each period. It is illiquid in the sense that
any interruption from the technology will encounter an adjustment cost. Assume
the adjustment cost is linear in the value that is adjusted, i.e. given the investment
level of the current period It, and the investment decision of the next period It+1,
the adjustment cost is given by β(RIIt − It+1), where β is called the adjustment
cost factor, and given exogenously.

• Agents:

There are a continuum of agents in the economy i ∈ A. Without loss of generality,
assume the measure of agents is 1. Agents are born at the beginning of period 1 with
an investment portfolio I1. To consume in later periods, agents have 2 choices. They
can either keep their endowments and manage their investment portfolio themselves,
or they may transfer their endowments to the bank and get consumption from the
bank in later periods. In each period t, agents face an idiosyncratic consumption
time preference shock, which can be specified as the way follows: let CRRA function

ρ(c) =
cγ

γ
, where γ ≤ 1, be the utility function for one period and θt ∈ (θl, θh) be

the multiplication factor to ρ(ct). Without loss of generality, assume δh > δl. Thus
the utility of an agent for one period is given by θtρ(·). Agents with θh in the period
t are relatively impatient compared with agents with θl, since they value current
consumption higher5. Assume agents’ consumption time preference types are pri-
vate information.

5Although the utility function of this model is the same as that in Atkeson and Lucas (1983), we can
not directly use their solution. This is because in Atkeson and Lucas (1983), they assume the feasible
constraint is a constant in every period. While in this model, the feasible is endogenously determined by
the investment decision of the bank
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If agents decide to deposit into the bank in the initial period, then the initial in-
vestment level of the bank is given by I1 =

∫
A
I1d i.

6 In each period, agents can
withdraw (get consumption goods) from the bank by reporting their current pref-
erence types.

In period t + 1, the agent i’s history of preference types can be denoted by θi,t =
{θi1, . . . , θit}. Correspondingly, the history of the consumption level of an agent i
is ci,t = {ci1, . . . , cit}, and the history of the bank’s investment portfolio is I t+1 =
{I1, . . . , It+1}7.

Definition 2.1 Let Θ1 be the space of consumption preference shocks for one pe-
riod, {θl, θh}, and Θt+1 be the (t + 1)-fold product space. Let µ be the measure on
Θ, and µt+1, the product measure, be the distribution of the history of consumption
time preference shocks. Let Θ∞ and µ∞ be the corresponding infinite product space
and probability measure.

• the Bank:
The bank acts as a social planner in the economy. It maximizes the ex ante expected
discounted utility of all depositors. The bank accepts the deposits from agents at
the beginning of the initial period and then manages the investment portfolio for
all depositors. The bank satisfies depositors’ consumption needs by adjusting its
investment level. The withdrawal amounts of agents’ depend on their current and
historical reporting profiles.

• Reporting Strategy:
The reported current consumption time preference type of a single agent depends on
his/her realized current preference type as well as his/her own history of preference
types, consumption levels and the bank’s investment decisions.

Definition 2.2 Let jt,zi = zit(θ
t, ct−1, I t) be the report type of any agent i in period t

given the historical and current preference types θt−1, θt, the history of consumption
values ct and the history of the bank’s investment decisions I t. Denote zi = {zit}∞t=1

as the reporting strategy of any agent i. Let Z be the space of reporting strategies
that an agent can adopt. Denote jtzi as the history of the reported types of agent i.

6Since all agents are identical ex ante, if there exists an agent who deposits his/her endowment into
the bank, all agents deposit into the bank. Thus in this case we consider that all agents deposit in the
bank.

7Note that the bank’s investment level of current period is determined in the previous period.
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Definition 2.3 The truth telling reporting strategy is the reporting strategy z∗ ∈
Z, which satisfies, for all t ≥ 1, θt ∈ Θt, ct−1 ∈ Rt−1

+ , and I t ∈ Rt
+, jt,z∗ =

zt(θ
t, ct−1, I t) = θt.

3 An Incentive Compatible Deposit Contract

Due to the assumption that the time preference types of agents are private information,
the first best allocation (full insurance allocation) violates the incentive compatible con-
dition8. In this section, we want to design an optimal deposit such that it maximizes the
agents’ utility. At the same time it is subject to the incentive compatible constraints that
prevent full insurance being offered9.

The incentive compatible problem here is solved by conditioning the current consumption
value (current withdrawal) of agents not only on their current consumption preference
reports but also on the history of their reported preference types.
Denote the agents’ expected discounted utility in each periodas their bank balanceof
that period.

wt+1 =
∞∑
τ=1

δt+τ−1

∫
Θτ
θt+τρ(Ct+τ (w1, {θt, θt+1, . . . , θτ}))dµτ .

Assume when agents get the consumption goods ct from the bank, they will be notified
of their updated balance wt+1.
Thus by allowing the current impatient agents to have a higher current consumption and
a lower bank balance in the next period, it is incentive compatible for them to report their
true types. For patient agents, although they will have a lower current consumption, the
bank balance in the next period is higher. Therefore, it is also incentive compatible for
patient agents to report their true consumption types.

Let Ct be the allocation function in each period t, Ct : R+ × Θt 7→ R+, that is the
consumption value of an agent in each period depends on his/her own current reported
preference type jt,z as well as the historical reports jtz. As all agents are identical ex ante,
moreover assume they all use the truthful reporting strategy, they will have an identical
initial bank balance, which is uniquely determined by the endowment level I1. Denote it
as w1.

8Under the first best allocation, in each period, all agents have the same marginal utility value. That
is, patient agents can get a higher consumption value by claiming to be impatient. Thus it is not incentive
compatible for current patient agents to tell the truth.

9Recall that the allocation of a deposit contract only specifies the consumption of agents on the truth
telling equilibrium path. In this section, we do not consider the joint deviation case.
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Let D be the space of utility values10. ρ−1(v) denotes its inverse function of ρ(c),
ρ−1 : D 7→ R+ characterizes the consumption goods which is needed to have utility value
v in one period. Thus ρ defines a one-to-one mapping between an allocation {Ct(w1, θ

t)}
and a sequence of utility functions {ut(w1, θ

t)}∞t=1 = {ρ(ct(w1, θ
t))}∞t=1. Let uC be the

utility sequence corresponding to a given allocation C. Afterwards, we focus on studying
the utility sequence as well.

Definition 3.1 Define U as the ex ante expected discounted utility function given the
allocation C and reporting strategy z,

U(w1, uC , z) =
∞∑
t=1

δt−1

∫
Θt
θtu(w1, j

t
z)dµ

t.

Definition 3.2 Define Ut as the present expected discounted utility function in period t
for t > 1, given the ex ante expected discounted utility value w1, the allocation C, the
reporting history jtẑ, and the future reporting strategy z,

Ut(w1, uC , j
t
ẑ, z) =

∞∑
τ=t

δt−1

∫
Θτ−t

θτu(w1, (j
t
ẑ, j

τ−t
z ))dµτ−t.

Next we focus on the allocations of the deposit contract whose corresponding utility value
function sequence satisfies the conditions described below:

1. Transversality condition: {ut(w1, θ
t)} satisfies:

lim
t→∞

∞∑
τ=1

δt+τ−1

∫
Θτ
θt+τut+τ (w1, θ

t+τ ) dµτ = 0. (1)

2. Promise keeping condition: {ut(w1, θ
t)}∞t=1 delivers the ex ante expected discounted

utility value to each agent,
w1 = U(w1, u, z

∗) (2)

3. Incentive compatible condition: {ut(w1, θ
t)}∞t=1 satisfies

U(w1, u, z
∗) ≥ U(w1, u, z) (3)

for all z ∈ Z
10Assume that both the utility value for one period ρ(ct) and the ex ante expected discounted utility

value
∑

t δ
t−1θtρ(ct) belong to D, i.e. D is an interval on R.
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4. Feasibility condition: it is feasible for uC to deliver the ex ante expected discounted
utility w1 to all agents with initial investment level I1

11:

∞∑
t=1

(
1

RI(1− β)

)t
{
∫
A

ρ−1(ut) di} ≤ I1 (4)

Let S be the space of all utility sequences u which satisfy the above conditions (1), (2),
(3) and (4). Thus, for any u = {ut} ∈ S, {ρ−1(ut)} defines a feasible allocation of the
deposit contract.

Following the same approach as in Atkeson and Lucas (1993), instead of solving the
maximization problem of the bank we consider the following problem: let D be the Borel
measurable subsets on D and let M be the space of all probability measures on D. Denote
ϕ∗(ψ) as the greatest lower bound of initial investment level needed to attain the expected
discounted utility distribution ψ, which maps distributions of utility to the real line.

ϕ∗(ψ1) = inf{ut}∈S

∞∑
t=1

∫
D×Θt

(
1

RI

)t(1 + β)ρ−1[ut(w1, δ
t)] dψdµt}.

For the problem stated here, the expected discounted utility value distribution in the
initial period is a degenerate distribution with P (w = w1) = 1,

In order to solve the functional form of ϕ∗, we formulate the problem in a recursive
way. The consumption value in period 1 C1(w1, j1,z) and the updated balance value
w2 = g1(w1, j1,z) depend on the initial bank balance value w1 and the reported consump-
tion preference type j1,z in period 1. In period 2, the consumption value C2(w2, j2,z) and
the updated bank balance w3 = g2(w2, j2,z) are given according to the updated balance
value w2 and consumption preference report j2,z. In period 3, the bank chooses another
pair of functions of w3, j3,z and so on. Identify each agent with their bank balance value
wt, all agents with the bank balance value wt will have the same treatment.

Fix ρ(·) as the utility function for one period, the above problem can be reformulated
in the following way: given the bank balance wt and current reporting preference type
jt,z, the bank chooses a pair of Borel measurable functions (ft, gt) in each period, where
ft(wt, jt,z) = ρ(Ct(wt, jt,z)) is the utility value from current period consumption, and
gt(wt, jt,z) = wt+1 is the updated bank balance. Thus the agents’ bank balance values
will be updated every time they make a preference type report. Moreover, the current

11The allocation function fully determines the investment plan of the bank by RIIt − It+1 =∫
A
c(w1, j

t
zi)di + β(RIIt − It+1). Thus if it is feasible for uC to deliver ex ante expected discounted

utility value with the initial investment level I1, then there must exist a feasible investment plan {It}∞t=2,
for all t ≥ 2, It > 0.
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consumption value and the updated balance value depend on their current balance values
and current preference reports.

Given the distribution of initial balance values ψ1 in the initial period, g1 defines an
operator Sg1 : M 7→M for any D0 ∈ D

(Sg1ψ1)(D0) =

∫
Bg1 (D0)

dµdψ1

where Bg1(D0) = {(w1, θ1) ∈ D ×Θ : g1(w1, θ) ∈ D0}. Thus Sg1ψ1 determines the utility
distribution in period 2. Repeating the steps above, {ft, gt} generates a sequence of utility
distribution {ψt}∞t=1, where ψt+1 = Sgtψt.

Let σ be defined as σ = {ft, gt} : ft, gt : D ×Θ :7→ D ×D, σ is called an allocation rule
if it satisfies the following conditions:

1. Transversality condition:
a. if ut(w1, j

t
z) = ft[Wt(w1, j

t−1
z ), jt,z] is the utility sequence generated by σ, then it

satisfies the equation (1);
b.For t > 1, let Wt be a function induced by wt, Wt(w1, j

t
z) = wt : D × Θt−1 7→ D.

{Wt} satisfies the transversality condition as follows: given w1 ∈ D and all {θt} ∈
Θ∞

lim
t7→∞

δt−1Wt(w1, θ
t) = 0; (5)

2. Temporary promise keeping condition: in each period t, ft, gt delivers the expected
discounted utility value wt to all agents with wt as their bank balance value,

wt =

∫
Θ

[θtft(wt, θ) + δgt(wt, θ) dµ]. (6)

3. Temporary incentive compatible condition 12: for all t ≥ 0 all wt ∈ D, and θt =
θi, θj ∈ Θ, i 6= j,

θift(wt, θ
i) + δgt(wt, θ

i) ≥ θift(wt, θ
j) + δgt(wt, θ

j). (7)

4. Feasibility constraint: it is feasible for the allocation rule σ to attain the utility
distribution ψ1 with initial investment level I1, if

∞∑
t=1

(
1

(1− β)RI

)t{
∫
D×Θ

ρ−1(ft(wt, θt)) dψtdµ} ≤ I1. (8)

12The terminology follows the name in Green (1987)
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The following proposition shows the equivalence between an allocation C (uC) and an al-
location rule σ. Thus the optimal allocation of the deposit contract can be characterized
by the optimal allocation rule.

Proposition 3.3 Let ψ1 be a degenerate distribution of the ex ante expected discounted
utility value P (w = w1) = 1 for any w1 ∈ D,. If there exists an allocation C, such
that it is feasible for C to deliver the ex ante expected discounted utility w1 with the initial
investment level I1, then there exists a feasible allocation rule σ that attains ψ1 with initial
investment I1. If there exists an allocation rule σ attains ψ1 with initial investment I1, let
{ut} be the expected discounted utility sequence generated by σ, and {ut} ∈ S.

In order to show the equivalence between these 2 problems, we need the following lemma,
which says that if an allocation is incentive compatible, then given an arbitrary reporting
history ĵr−1

ẑ , it is always optimal to adopt the truthful reporting strategy from period r
and on.

Lemma 3.4 A utility sequence satisfies (3) if and only if it satisfies :

θrur(w1, (j
r−1
ẑ , θr)) + δUr+1(w1, u, j

r−1
ẑ , z∗)

≥ θrur(w1, (j
r−1
ẑ , jz,r)) + δUr+1(w1, u, j

r−1
ẑ , z)

(9)

for any w1 ∈ D, r ≥ 0, ĵr−1
ẑ ∈ Jr−1 , reporting strategies z ∈ Z and jz,r 6= θr ∈ Θ.

With lemma (3.4) we can verify proposition (3.3). The logic of this proof is very similar
to the proof of Lemma (3.2) and Lemma (3.3) in Atkeson and Lucas (1993). Their feasi-
bility constraint models an exogenous, constant endowment in each period, while in our
problem, the feasibility constraint is endogenously determined by the bank’s investment
decision. The detail of the proof is given in the appendix.

Recall that the definition of ϕ∗ : M 7→ R+ ∪ {+∞}: for any utility distribution ψ ∈ M,
ϕ∗(ψ) is the infinimum of the investment levels needed such that there exists an allocation
rule σ that attains ψ. Let ϕ∗(ψ) = +∞ if the distribution of utility value ψ can not be
attained by any finite investment level. Define that an allocation rule σ is efficient if it
attains ψ with investment level ϕ∗(ψ).

To characterize ϕ∗(·), we consider a Bellman equation as follows: denote B as the set of
Borel measurable functions D ×Θ 7→ D ×D,

ϕ(ψ) = inf
f,g∈B
{ 1

RI

∫
D×Θ

(1 + β)ρ−1[f(w, θ)] + ϕ(Sgψ)dµdψ} (10)
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such that f < and g13 satisfy the temporary promise keeping condition: for all w ∈ D,

w =

∫
Θ

[θf(w, θ) + δg(w, θ)]dµ; (11)

and the temporary incentive compatible condition,

θif(w, θi) + δg(w, θi) ≥ θif(w, θj) + δg(w, θj) (12)

for all w ∈ D and θi, θj ∈ Θ and i 6= j.
In the remaining part of this section, we will show that ϕ∗ is the solution to the Bellman
equation (10) first. And then we will illustrate the steps to solve this Bellman equation.

Let X be the set of functions ϕ : M 7→ R+ ∪ {+∞}. Define the operator T : X 7→ X as
follows:

(Tϕ)(ψ) = inf
f,g∈B
{ 1

RI

∫
D×Θ

(1 + β)ρ−1[f(w, θ)] + ϕ(Sgψ)dµdψ} (13)

subject to condition (11) and (12).

Proposition 3.5 ϕ∗ is the fixed point of T .

See the detail of the proof in the appendix.

Since we assume the return from the liquid investment is homogeneous of degree 1 and

we use a CRRA function as the utility function for one period ρ(c) =
cγ

γ
with γ < 1,

the distribution of utility value (the bank balance value) is multiplicate to the cost min-
imization problem. Thus we can solve the Bellman equation by solving a static problem
as follows:

φ(α) = min
r,y
{ 1

RI

∫
Θ

ρ−1(r(θ))

(1− β)
+ α(

γ

|γ|
y(θ))

1
γ dµ} (14)

subject to
γ

|γ|
=

∫
Θ

θr(θ) + δy(θ) dµ (15)

and
θir(θi) + δy(θi) ≥ θir(θj) + δy(θj) (16)

for i 6= j ∈ {l, h}.
The static problem above is in fact a special case of the Bellman equation (10). The fixed
point α∗ to the static problem (14) is the greatest lower bound of the initial investment
level to attain the degenerate distribution of the ex ante expected discounted utility value,

P (w1 =
γ

|γ|
) = 1.

13Since (ft gt) is the solution to the time invariant Bellman equation (10), (ft gt) is in fact time
invariant. Thus afterwards, it is equivalent to write (f g) as well.
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Lemma 3.6 For any α > 0, the minimum in problem (14) is attained by a unique
(r(θ, α), y(θ, α).

Lemma 3.7 The function φ defined in problem (14) has a unique fixed point α∗ ∈ [αc, αa]
and limn→∞ φ

n(α) = α∗.

The details of the proof for lemma (3.6) and lemma (3.7) can be found in the appendix.

Lemma (3.6) and lemma (3.7) guarantee that there exists a unique fixed point to the
static problem (14).

Let α∗ be the fix point of the static problem (3.5) and (r(θ, α∗), y(θ, α∗)) be the solution
to the problem φ(α∗). Denote r∗(θ) = r(θ, α∗), and y∗(θ) = y(θ, α∗). (r∗(θ), y∗(θ)) can
generate the optimal solution to the Bellman equation (10) as follows:

f(w, θ) =
γ

|γ|
wr∗(θ)

g(w, θ) =
γ

|γ|
wy∗(θ).

(17)

ϕ∗(ψ) can be derived in the following way:

ϕ∗(ψ) = α

∫
D

(
γ

|γ|
w)

1
γ dψ. (18)

To characterize the solution to the static problem (14), we rewrite the discrete form of
the static problem (14) as follows: given µ(θ = θl) = p, µ(θ = θh) = 1− p,

φ(α) = min(r(θl),y(θl)),(r(θh),y(θh)){
1

RI

{p
[
ρ−1(r(θh))

(1− β)
+ α(

γ

|γ|
y(θh))

1
γ

]
+(1− p)

[
ρ−1(r(θl))

(1− β)
+ α(

γ

|γ|
y(θl))

1
γ

]
}

(19)

subject to:

p(θhr(θh) + δy(θh)) + (1− p)(θlr(θl) + δy(θl)) =
γ

|γ|
; (20)

θhr(θh) + δyh ≥ θhr(θl) + δy(θl); (21)

θlr(θl) + δy(θl) ≥ θlr(θh) + δy(θh) (22)

Let λ, ζ, η be the Lagrange coefficient to the above 3 constraints correspondingly. The
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first order condition with respect to rl, rh, yl, yh can be written as follows:

1

RI(1− β)
p(ρ−1)′(rl) = λθhp+ ζθh − ηθl; (23)

1

RI(1− β)
(1− p)(ρ−1)′(rh) = λθl(1− p)− ζθh + ηθl; (24)

1

RI

α
1

|γ|
p(
γ

|γ|
yl)

1
γ
−1 = λpδ + ζδ − ηδ; (25)

1

RI

α
1

|γ|
(1− p)( γ

|γ|
yh)

1
γ
−1 = λ(1− p)δ − ζδ + ηδ (26)

Lemma 3.8 The optimal solution to problem (19) satisfies:

θhr(θh, α∗) + δy(θh, α∗) > θhr(θl, α∗) + δy(θl, α∗)
θlr(θl, α∗) + δy(θl, α∗) = θlr(θh, α∗) + δy(θh, α∗)

See the appendix for the proof.

Corollary 3.9 Under the optimal allocation rule, patient agents in the current period
are indifferent with claiming to be impatient or patient, and impatient agents are strictly
better off by telling the truth.

Proof The proof of this corollary directly follows from lemma (3.8) and equation (17).
�

Given the set of parameter values of RI , β, θh, θl, p, γ and δ, the static problem (14) can
be solved numerically.14

Example 3.10 Let RI = 1.2, β = 0.2, θl = 0.5, θh = 1.5, p = 0.5 and γ = −1. The nu-
merical solution to (14) is given by α = 54.3344, r(θh, α) = −0.1139, y(θh, α) = −0.9845
and r(θl, α) = −0.1916, y(θl, α) = −0.9414.

According to the computation result, if the initial investment level of the bank’s portfolio
is given by I1 = 1, then the ex ante discounted utility value of each agent by deposit-

ing in the bank is given by w1 = −(
1

54.3344
)−1 = −54.3344. The expected discounted

utility value in the autarkic case is ŵ = −54.6664.15 As expected, depositing in the bank
can give agents a higher ex ante discounted utility value than in the autarkic case w1 > ŵ1.

14See the appendix for the numerical algorithm
15The procedure can be found in the appendix.
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In the initial period, an agent with current preference type θl will have the current utility
value f(w1, θ

l) = −(−54.3344)(−0.1916) = −10.4105, that is, the current consumption

value is given by c1 =
1

10.4105
= 0.0961, and the updated bank balance is g(w1, θ

l) =

−50.2090. Similarly an agent with current preference type θh will have the current utility
value f(w1, θ

h) = −(−54.3344)(−0.1139) = −6.1887, that is, the current consumption

value is given by c1 =
1

6.249
= 0.1616, and the updated bank balance is g(w1, θ

h) =

−52.5077.

4 A Direct Mechanism

This section will describe an efficient direct payment mechanism such that the truth telling
reporting strategy can be supported as an equilibrium result. This allocation of the mech-
anism is constructed according to the optimal allocation rule of the incentive compatible
deposit contract in the previous section. Moreover, we show that except for the truth
telling equilibrium, there may also exist an inefficient equilibrium where all agents claim
to be impatient regardless of their true consumption preference types.16

The allocation rule of the incentive compatible deposit contract only characterizes what
happens when all agents report truthfully. In this section, we would like to specify the
allocation rule given any arbitrary reporting strategy profile, i.e. the case when there
exists a joint deviation.17 Then we will show that the truth telling reporting strategy is
a Perfect Bayesian Nash equilibrium of this mechanism, according to our specification.
Further analysis shows that truth telling may not be the unique equilibrium. In fact,
if γ < 0, then we verify that all agents claim to be impatient regardless of their true
preference types is also an equilibrium of the mechanism. While for γ > 0, we use a nu-
merical examples, when γ = 0.5, to show that truth telling may be the unique equilibrium
reporting strategy, and we believe this is correct for all 0 < γ < 1.

4.1 Equilibrium

4.1.1 Reporting Strategy Profile

Since all agents are identical ex ante, it is adequate to consider the set of symmetric
reporting strategy profiles.

16This inefficient equilibrium is an analogue of ”run equilibrium” in Diamond and Dybvig (1983).
17In this section, “joint deviation” means that a group of agents with positive measure will deviate.

Since we only consider the symmetric reporting strategy profile, there are only 3 possible scenarios of the
reporting profiles: all agents are telling the truth; all agents claim tobe patient regardless of their true
preference types or all agents claim to be impatient regardless of their true preference types.
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Definition 4.1 Let Z̃t = {z̃t : I 7→ Zt|z̃t is a constant map}. Let j̃t,ez =
∏

i∈I jt,zi, where

z̃t =
∏

i∈I z
i
t ∈ Z̃t. Thus Z̃ = {z̃|z̃ = limt→∞ z̃t} is the space of symmetric reporting

strategy profiles and J̃ t = ΘI×t.

4.1.2 Allocation Function

Given any history of reporting profiles, the allocation function of an agent {C̃t} depends
on the investment portfolio of the bank in the current period 18 as well as the ex ante
expected discounted utility value 19, his/her current, and historical reporting preference
type.

Definition 4.2 Define the allocation function of an agent in period t, C̃t(w1, j
t
zi , It) :

D ×Θt ×R+ 7→ R+.

4.1.3 Feasibility Constraint

Definition 4.3 The bank’s investment decision function in each period Kt is a function
of the reporting profile of the current period j̃ezt ∈ ΘI and the investment level of the
current period It: Kt : ΘI ×R+ 7→ R+.

Definition 4.4 Given the reporting strategy profile z̃ =
∏

i∈A z
i ∈ Z̃, define p̂t,ez as the

measure of agents claiming to be impatient in period t,

p̂t,ez = µ(i ∈ A|jt,zi = θl).

Thus the feasibility constraint of the bank is given by the following:
for t ≥ 0 and all z̃ ∈ Z̃:

0 ≤ It+1 = K(j̃t,ez, It),∫
Θ
C̃t(w1, j

t
z, It) dµ+ β(RIIt − It+1) = RIIt − It+1,

(27)

where It+1 = K(j̃t,ez, It).
18The investment portfolio of the bank in the current period contains the information of the reporting

profile history
19Given the initial endowment level, and if all agents choose to use the truthful reporting strategy,

then each agent will have an identical ex ante expected discounted utility value w1. In turn, the initial
endowment level is determined, given the allocation function and the ex ante expected discounted utility
value when all agents adopt the truthful reporting strategy.
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4.1.4 Definition of Equilibrium

The equilibrium concept we will use in this paper is the Perfect Bayesian Nash equilib-
rium, which means in each period, agents choose their reporting types to maximize their
utility conditional on his/her information of that period.

In this economy, agents can use one reporting strategy first and switch to another one at
any time with no cost.20

As in the previous section, the allocation sequence determines a unique utility sequence
ũ eC corresponding to the given allocation C̃.

For any z̃ ∈ Z̃ and zi ∈ Z, denote (z̃\izi)(j) as

(z̃\izi)(j) =

{
zj if j 6= i
zi if j = i

(28)

With the above notation, we define the total expected discounted utility value function
as follows:

Definition 4.5 Denote Ũ(w1, uC , z
i × z̃\zi) as the total expected discounted utility func-

tion of agent i.

Ũ(w1, u eC , zi × z̃\zi) =
∞∑
t=1

δt−1

∫
Θt
θtũt(w1, jt,zi , It)dµ

t (29)

Similarly we can define Ũt as the present expected discounted utility function in period t:

Definition 4.6 In period t > 1, the function of the present expected discounted utility
in period t, Ũt(w1, u eC , jt−1

ẑi
, zi × z̃\zi, It) is a function of the ex ante expected discounted

utility value w1 the allocation C̃, his/her reporting history jt−1
ẑi

, his/her reporting strategy
planned to use in the future zi, and the investment portfolio of the bank in the current
period It,

Ũt(w1, u eC , jt−1
ẑi
, zi × z̃\zi, It) =

∞∑
τ=1

∫
Θτ
δτθt+τ ũt+τ (w1, (j

t
ẑi , j

τ
zi), It+τ )) dµ

τ .

Thus for each agent, i ∈ A, will choose zi ∈ Z to maximize their total expected discounted
utility value.

Definition 4.7 Given the ex ante expected discounted utility w1, the allocation C̃, z̃ is
then a Bayesian Nash Equilibrium reporting strategy profile if it satisfies
for all i ∈ A, and zi ∈ Z,

Ũ(w1, ũ eC , z̃) ≥ Ũ(w1, ũ eC , zi × z̃\izi). (30)

20In general, this switch can be done repeatedly in any period.
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Definition 4.8 An allocation is incentive compatible if the truthful reporting strategy
satisfies the condition (30).

Definition 4.9 Given the ex ante expected discounted utility w1, and the allocation C̃,
the truthful reporting strategy z∗ is a Perfect Bayesian Nash Equilibrium if it is incentive
compatible and satisfies the following condition: for any Ir, j̃

r
ẑ , z

i ∈ Z, r > 1,

Ũr(w1, u eC , j̃rẑ , z̃∗) ≥ Ũr(w1, u eC , j̃rẑ , zi × z̃∗\izi).
Given the underlying probability of agents being impatient in each period is p, denote
σ̃p = {f̃p, g̃p} as the optimal allocation rule of the direct mechanism, where f̃p(wt, θt) is
the current utility value, and it is only a function of the current bank balance wt and the
current preference report jt,z; g̃

p(wt, θt) is the updated bank balance and it is a function of
the investment level of the bank in the next period It as well as the current bank balance
wt, and the current preference report θt.

Let {ũt} be the utility sequence generated by the allocation rule of the direct mechanism,

ũt(w1, j
t
z, It−1) = f̃p(wt, jt,z),

where wt is given by
wt = g̃pt−1(wt−1, jt−1,z, It).

The allocation rule of the direct mechanism can be specified as follows:

1. The allocation rule of the direct mechanism coincides with the optimal allocation
rule of the deposit contract if there is no joint deviation.

2. If there does exist a joint deviation:
the current consumption f̃p(wt, jt,z) is not affected by the deviation,

f̃p(wt, jt,z) = fp(wt, jt,z),

while the bank balance is updated according to the actual investment level of the
bank.

Given the reporting strategy profile z̃, the law of motion of the bank’s investment
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portfolio It+1 = K(j̃t,ez, It) is:

K(j̃t,ez, It) = RIIt −
1

1− β

∫
D×Θ

(ρ−1)(fp(wt, jt,z, I
t−1)) dψt dµ

= RIIt −
1

1− β

∫
D×Θ

(ρ−1)(wtr
p(jt,z)) dψt dµ

= RIIt −
1

1− β

∫
D×Θ

(
γ

|γ|
wt)

1
γ (ρ−1)(rp(jt,ez) dψt dµ

= RIIt −
1

1− β
(p̂t,ez(ρ−1)(rp(θl))

+(1− p̂t,ez)(ρ−1)(rp(θh)) ·
∫
D

(
γ

|γ|
wt)

1
γ dψt

The updated bank balance of agents should be feasible for the actual investment
portfolio of the bank:

αp · ( γ
|γ|

∫
D

wt+1 dψt+1)
1
γ ≤ It+1 = K(j̃t,ez, It)

and this constraint is binding in the optimal case.

In this paper we consider the most straight forward way of adjustment in which
N(·, ·) is linear in its first argument21:

wt+1 = g̃pt (wt, jt,z, K(j̃t,ez, It)) = N(gpt (wt, jt,z), K(j̃ez∗,t, It))
=

γ

|γ|
(
K(j̃t,ez, It)
α(p)

)γ
gpt (wt, jt,z)∫

D×Θ
gpt (wt, jt,z) dµ dψt

Thus in each period t, given the expected discounted utility value wt, and current pref-
erence type shock θt, an agent chooses the reporting type jt,z ∈ Θ to maximize his/her
expected discounted utility value:

max
jt,z∈Θ

{θtf̃pt (wt, jt,z) + δg̃pt (wt, jt,z, K(j̃t,ez, It))} (31)

Theorem 4.10 Given the allocation rule specified as above, the truth telling reporting
strategy is an equilibrium reporting strategy of the direct mechanism.

Proof According to the definition of an equilibrium reporting strategy, given the ex
ante expected discounted utility value w1, and utility sequence {ũt}, where ũt(w1, j

t
z, It) =

21Due to the homogeneity 1 of both investment and preference, this functional form works.
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fpt (wt, jt,z), and wt = N(gPt−1(wt−1, jt,z), K(j̃t−1,ez, It−1)) are generated by the allocation
rule we defined above, we need to show that for any r > 1, jr−1

ẑi
, It, and ẑi, zi ∈ Z,

Ũt(w1, u eC , jt−1
ẑi
, z̃∗, It) ≥ Ũt(w1, u eC , jt−1

ẑi
, zi × z̃∗\zi, It).

Since that all the other agents are using the truth telling reporting strategy in period t,
then g̃p(wt, jt,z, K(j̃t,ez∗ , It)) = gpt (wt, jt,z). Thus for any wt ∈ D and θt = θi,

θif̃pt (wt, θ
i) + δg̃pt (wt, θ

i, K(j̃t,ez∗ , It))
= θifpt (wt, θ

i) + δgpt (wt, θ
i)

≥ θifpt (wt, θ
j) + δgpt (wt, θ

j)

= θif̃pt (wt, θ
j) + δg̃pt (wt, θ

j, K(j̃t,ez∗ , It))
for j 6= i and θi, θj ∈ Θ.

Therefore, given any arbitrary reporting history, if all the other agents are telling the
truth, it is temporary incentive compatible for an agent to tell the truth in the current
period. As shown in the proof of proposition (3.3), the truth telling reporting strategy
is a Nash equilibrium reporting strategy. Apply lemma (3.4), the truth telling reporting
strategy is a Perfect Bayesian Nash equilibrium. �

Proposition 4.11 If γ < 0, the reporting strategy that all agents claiming to be impatient
regardless of their true preference types is an equilibrium of the direct mechanism.

To prove the proposition, we need the following lemma:

Lemma 4.12 If γ < 0, N(gp(wt, θ
h), K(j̃t,ez, It))−N(gp(wt, θ

l), K(j̃t,ez, It)) is a decreasing
function of p̂t,ez.
Proof Since the expected discounted utility level is multiplicate to f̃pt and g̃pt , and
according to the proof of proposition (3.3), the temporary incentive compatibility implies
the total incentive compatibility, it is enough to consider the following case: assume in

the initial period, all agents have the identical expected utility value w1 =
γ

|γ|
. Thus

given an arbitrary reporting strategy profile z̃, the updated bank balance of an impatient
agent is given by:

N(gp1(w1, θ
l), K(j̃1,ez, I1)) =

γ

|γ|
(
K(j̃1,ez, I1)

α(p)
)γ

gp1(wt, θ
l)∫

Θ
gp1(w1, jzt) dµ

=
γ

|γ|
(
RIα(p)− 1

(1−β)
(p̂1,ezρ−1(rp(θl)) + (1− p̂1,ez)ρ−1(rp(θh)))

α(p)
)γ

· yp(θl)

p̂1,ezyp(θl) + (1− p̂1,ez)yp(θh)
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and the adjusted bank balance value of a patient agent is

N(gp1(w1, θ
h), K(j̃1,ez, I1)) =

γ

|γ|
(
K(j̃1,ez, I1)

α(p)
)γ

gp1(wt, θ
h)∫

Θ
gp1(w1, jzt) dµ

=
γ

|γ|
(
RIα(p)− 1

1−β (p̂1,ezρ−1(rp(θl)) + (1− p̂1,ez)ρ−1(rp(θh)))

α(p)
)γ

· yp(θh)

p̂1,ezyp(θl) + (1− p̂1,ezyp(θh) ,
where K(j̃1,ez, I1) is the actual investment level of the bank at the beginning of period 2
with reporting strategy profile z̃.
Denote d(p̂1,ez) = N(gp(w1, θ

h), K(j̃1,ez, I1))−N(gp(w1, θ
l), K(j̃1,ez, I1)),

d(p̂1,ez) =
γ

|γ|
(
RIα(p)− 1

1−β (p̂1,ezρ−1(rp(θl)) + (1− p̂1,ez)ρ−1(rp(θh)))

α(p)
)γ

yp(θh)− yp(θl)
p̂1,ezyp(θl) + (1− p̂1,ez)yp(θh) .

Taking the derivative of d(p̂1,ez) with respect to p̂1,ez,
d d(p̂1,ez)
d p̂1,ez =

γ2

|γ|
(
K(j̃ez1 , I1)

α(p)
)(γ−1)

− 1
1−β (ρ−1(rp(θl))− ρ−1(rp(θh)))

α(p)

yp(θh)− yp(θl)
p̂1,ezyp(θl) + (1− p̂j1,ez)yp(θh)

+

γ

|γ|
(
K(j̃1,ez, I1)

α(p)
)(γ) (yp(θh)− yp(θl))2

(p̂j1,ezyp(θl) + (1− p̂1,ez)yp(θh))2
.

Thus
d d(p̂1,ez)
d p̂1,ez < 0 if γ < 0,, which concludes the proof. �

Next we will use the conclusion of the lemma to prove the proposition (4.11).

Proof With the same reason stated in the proof of lemma (4.12), it is enough to consider
the following case: assume in the initial period, all agents have the identical expected util-

ity value w1 =
γ

|γ|
.

Then we show that a patient agent chooses to lie about being impatient, given that almost
all patient agents claim to be impatient.

In fact, an impatient agent chooses a reporting type by comparing the difference in the
expected discounted utility between telling the truth or lying about being patient:

(θhfp(w1, θ
h) + δN(gp(w1, θ

h), K(j̃1,ez, I1)))

− (θhfp(w1, θ
l) + δN(gp(w1, θ

l), K(j̃1,ez, I1)))

= (θhrp(θh) + δN(yp(θh), K(j̃1,ez, I1)))− (θhrp(θl) + δN(yp(θl), K(j̃1,ez, I1)))

(32)
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If the above value is greater than 0, then an impatient agent will choose to tell the truth.
While if it is less than 0, he/she chooses to lie.

Similarly a patient agent will make a report by evaluating the following:

(θlfp(w1, θ
l) + δN(gp(w1, θ

l), K(j̃1,ez, I1)))

− (θlfp(w1, θ
h) + δN(gp(w1, θ

h), K(j̃1,ez, I1)))

= (θlrp(θl) + δN(yp(θl), K(j̃1,ez, I1)))− (θlrp(θh) + δN(yp(θh), K(j̃1,ez, I1)))

(33)

The reported type of a patient agent also relies on the sign of the above equation.

If almost all patient agents choose in the first period, that is, 1 = p̂1,ez > p, then according
to lemma (4.12), the value of (32) is greater than 0, which means an impatient agent will
tell the truth given that almost all patient agents lie about being impatient.

Next we consider the value of (33). When p̂1,ez = p, (33) is equal to 0. Since the value of
(33) is decreasing with the increase of p̂1,ez, if p̂ez1 = 1, then (33) is less than 0. Thus a
patient agents will choose to lie if almost all other patient agents claim to be impatient.

Thus all agents claiming to be impatient can also be supported as an equilibrium result
of the direct mechanism if γ < 0. �

The following numerical example shows that if γ ∈ (0, 1), then the truth telling reporting
strategy might be supported as the unique equilibrium.

Example 4.13 Let RI = 1.2, θl = 0.5, θh = 1.5, β = 0.2, δ = 0.9 p = 0.5 and γ = 0.5.
We find the optimal allocation rule for the incentive deposit contract first by solving the
static problem (14), r(θl) = 0.0.0076, y(θl) = 1.0944, r(θh) = 0.0225, y(θh) = 1.0861 and
α = 0.0078.

Now we can verify numerically truth telling is the unique equilibrium in this case. Since
the utility level is multiplicate to function f and g,and according to proposition (3.3), it
is enough to verify that agents are willing to tell the truth in current period for an given
investment portfolio. Assume each agent is born with an investment portfolio I1 = 0.0078.
Consequently, the expected promised utility level of each agent is 1 at the beginning of the
initial period.

• First we verify that all agents claim to be impatient is not an equilibrium. In this
case p̂1,z = 1, f 0.5(1, θl) = 0.0076, f 0.5(1, θh) = 0.0225, I2 = K(

∏
i∈I θ

l, 0.0078) =
0.0092, N(g0.5(1, θl), 0.0092) = 1.09434, and N(g0.5(1, θh), 0.0092) = 1.08604.
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For patient agents

f 0.5(1, θl)θl + δN(g0.5(1, θl), 0.0092) = 0.0076 ∗ 0.5 + 0.9 ∗ (1.09434)

= 0.98871

f 0.5(1, θh)θl + δN(g0.5(1, θh), 0.0092) = 0.0225 ∗ 0.5 + 0.9 ∗ (1.08604)

= 0.98869

f 0.5(1, θl)θl + δN(g0.5(1, θl), 0.0092) > f 0.5(1, θh)θl + δN(g0.5(1, θh), 0.0092). (34)

This means that a patient agent will tell the truth even if almost all other patient
agents will lie about being impatient in the first period.

Then consider impatient agents:

f 0.5(1, θh)θh + δN(g0.5(1, θh), 0.0088) = 0.0225 ∗ 1.5 + 0.9 ∗ (1.0832)

= 1.01119

f 0.5(1, θl)θh + δN(g0.5(1, θl), 0.0088) = 0.0076 ∗ 1.5 + 0.9 ∗ (0.915)

= 0.99631

f 0.5(−1, θh)θh + δN(g0.5(−1, θh), 0.0088) > f 0.5(−1, θl)θh + δN(g0.5(−1, θl), 0.0088).
(35)

This means an impatient agent will tell the truth even almost all patient agents lie.
We can conclude under this set of parameters, that always claiming to be impatient
is not an equilibrium reporting strategy.

• Next we show that always claiming to be patient is also not an equilibrium. In this
case p̂1,z′ = 0, f 0.5(1, θl) = 0.0076, f 0.5(1, θh) = 0.0225, I2 = K(

∏
i∈I θ

h, 0.0075) =
0.009342, N(g0.5(1, θl), 0.009342) = 1.09349, and N(g0.5(−1, θh), 0.009342) = 1.08691.
For patient agents

f 0.5(1, θl)θl + δN(g0.5(1, θl), 0.0092) = 0.0076 ∗ 0.5 + 0.9 ∗ (1.09439)

= 0.988751

f 0.5(−1, θh)θl + δN(g0.5(−1, θh), 0.0092) = 0.0225 ∗ 0.5 + 0.9 ∗ (1.08609)

= 0.988731

f 0.5(−1, θl)θl + δN(g0.5(−1, θl), 0.009) > f 0.5(−1, θh)θl + δN(g0.5(−1, θh), 0.009).
(36)

This means it is optimal for a patient agent to tell the truth even if almost all im-
patient agents lie.
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Consider impatient agents:

f 0.5(1, θh)θh + δN(g0.5(1, θh), 0.009) = 0.0225 ∗ 1.5 + 0.9 ∗ (1.0871)

= 1.011231

f 0.5(1, θl) + θhN(g0.5(1, θl), 0.0739) = 0.5563 + 0.9 ∗ (0.102)

= 0.996351

f 0.5(−1, θh)θh + δN(g0.5(−1, θh), 0.009) > f 0.5(−1, θl)θh + δN(g0.5(−1, θl), 0.009).
(37)

This means an impatient agent will tell the truth even if almost all other impatient
agents lie.

Thus we can conclude, always claiming to be patient is also not an equilibrium reporting
strategy.

All in all, truth-telling reporting strategy can be supported as the unique equilibrium.

5 Conclusion

This paper is aimed at formulating a modern idea of policy making. When policy makers
design a mechanism, they tend to neglect the existence of multiple equilibria of the mech-
anism and focus on the best equilibrium. While in practice, there is no way to prevent all
agents in the economy playing a strategy such that a ”bad equilibrium” happens. Ennis
and Keister (2008) concretely show the existence of ”bank run” equilibrium in addition
to an optimal risk sharing one. Based on the work by Atkeson and Lucas (1993), we show
that the truth telling reporting strategy can be implemented as a Perfect Bayesian Nash
equilibrium of a direct mechanism by an efficient, incentive compatible allocation. More-
over, we demonstrate the existence of a ”bad” equilibrium which is an analogue to the
”bank run” equilibrium in Diamond and Dybvig (1983). We consider this as the first step
of our research. One direction for further investigation might be looking for a mechanism
which shares the optimal equilibrium we have now but without the ”bad” one.

6 Appendix

6.1 Proof

Proof of lemma(3.4):
Proof Sufficiency is given by the fact that (3) is the special case of (9), given r = 0.
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Necessity is proved by contradiction.
Suppose that (3) holds, but (9) fails to hold. Then given w1 ∈ D, for some r ≥ 1,
a preference type history (θr−1, θr), a reporting history jr−1

ẑ , there exists a reporting
strategy z ∈ Z, z 6= z∗22, such that the following inequality holds:

θrur(w1, (j
r−1
ẑ , θr)) + δUr+1(w1, u, j

r−1
ẑ , z∗)

< θrur(w1, (j
r−1
ẑ , jr,z)) + δUr+1(w1, u, j

r−1
ẑ , z).

Thus we can construct a reporting strategy z′ such that if (1) t < r, let jt,z′ = jt,z∗ , for all
θt ∈ Θt; (2) for t ≥ r, continue truth telling unless (jr−1

ẑ , θr)
23 is realized; (3) if (jr−1

ẑ , θr)
is realized, switch to reporting strategy z from period r.

Thus this newly defined reporting strategy z′ yields the same utility as the truthful report-
ing one z∗ does in the first r−1 periods. If (θr−1, θr) has not been realized, it also yields the
same utility as z∗ in t periods, for t ≥ r. While if (θr−1, θr) is realized, z′ yields a strictly
higher expected discounted utility than that of the truth telling one. Since the probability
of having the preference type history as (θr−1, θr) is positive, U(w1, u, z

′) > U(w1, u, z
∗),

which is a contradiction to (3). �

The proposition (3.3) can be proved in the following way:
First we show that an allocation of the deposit contract can induce a sequence of pairs of
Boral measurable functions {(ft, gt)}∞t=1, which in fact satisfies all the condition of being
a feasible allocation rule.
For the inverse direction, we construct a feasible allocation through a feasible allocation
rule. The key step of this direction is to show that the temporary incentive compatibility
implies total incentive compatibility. It can be done in the following manner: first, ac-
cording to the transversality condition, if it is optimal to deviate from the truth telling
reporting strategy in infinitely many periods, then it is also optimal to deviate in N peri-
ods, with a sufficiently large N. Next, using the induction method, we show that it is not
optimal to deviate from truth telling in finite periods. Thus follows the conclusion that
if the allocation satisfies the temporary incentive compatible condition, then the utility
sequence it generates satisfies the inequality (3). According to lemma (3.4), the corre-
sponding allocation sequence is incentive compatible.

Here is the proof for proposition (3.3):
Proof

1. First we prove that if there exists a feasible allocation C to deliver the ex ante
expected discounted utility value w1 to all agents with the initial investment level

22Generally speaking, z is not necessarily the same as ẑ.
23According to the reporting strategy ẑ, in the first r periods, the agent is not necessarily truthfully

reporting his/her preference types.
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I1, then there is an allocation rule σ ∈ Σ such that it attaints ψ1 with the initial
investment level I1, where ψ1 is a degenerate utility value distribution given by
P (w = w1) = 1.

Since the utility function for one period, ρ, defines a one-to-one mapping from an
allocation {Ct} to a sequence of utility value for one period {ut}, the existence of
a feasible allocation C implies the existence of uC ∈ S, which satisfies the bounded
condition (1) , promise keeping condition (2), incentive compatible condition (3),
and feasible condition (4).

Let wt = Ut(w1, u, θ
t−1, z∗), and define (ft, gt) as follows:

ft(wt, θt) = ut(w1, (θ
t−1, θt)),

gt(wt, θt) = Ut+1(w1, u, θ
t, z∗).

Thus the bounded condition (1) and transversality condition (5) hold by the way
that (ft, gt) is defined. According to its definition of Ut+1 and lemma (3.4), (ft, gt)
satisfies the temporary promise keeping condition (6), and the temporary incentive
compatible condition (7).

For the feasibility condition: according to the definition of ψt, we have∫
D×Θ

ρ−1(ft(wt, θt))dψtdµ =

∫
Θ

(∫
D×Θ

ρ−1(ft(gt−1(wt−1, θt−1), θt))dψt−1dµ

)
dµ

Repeating the above step:∫
D×Θ

ρ−1(ft(wt, θt))dψtdµ =

∫
D×Θt−1

{
∫

Θ

ρ−1(ft(gt−1(Ut−1(w1, u, θ
t−1, z∗), θt))dµ}dµt−1dψ1

=

∫
D×Θt

ρ−1(ft(Ut(w1, u, θ
t, z∗), θt))dψ1dµ

t

=

∫
D×Θt

ρ−1(ut(w1, (θ
t−1, θt)))dψ1dµ

t

Thus if the allocation C is feasible, the allocation rule σ defined above is feasible
too.

2. Next we show the inverse direction: if there exists a feasible allocation rule which
satisfies the bounded condition (1) , transversality condition (5) , the temporary
promise keeping condition (6), the temporary incentive compatible condition (7),
and the feasible condition (8), then there is a feasible allocation, whose correspond-
ing utility sequence satisfies the bounded condition (1) , the promise keeping con-
dition (2), the incentive compatible condition (3), and the feasible condition (4).

25



Given an ex ante expected discounted utility value w1 ∈ D, ut, Wt : D ×Θt 7→ R+

can be constructed as follows:

ut(w1, j
t
z) = ft(wt, jt,z),

and
Wt+1(w1, j

t
z) = gt(wt, jt,z) = wt+1.

Instead of showing equation (2), which is the total promise keeping condition, we
prove the following eqaution: for any t ≥ 1,

Wt(w1, θ
t−1) = Ut(w1, u, θ

t−1, z∗). (38)

Equation (2) is the special case of (38), given t = 1.
In fact, according to the definition of Wt, and the fact that (ft, gt) satisfies equation
(6), for all t, w1, and θt−1,

Wt(w1, θ
t−1) =

∫
Θ

{θtut(w1, (θ
t−1, θt)) + δWt+1(w1, θ

t)dµ},

while

Ut(w1, u, θ
t−1, z∗) =

∫
Θ

{θtut(w1, (θ
t−1, θt)) + δUt+1(w1, u, θ

t, z∗)dµ}.

Subtracting the above two equations, we have

|Wt(w1, θ
t−1)−Ut(w1, u, θ

t−1, z∗)| ≤ (δ)s sup
w1,θt+s−1

|Wt+s(w1, θ
t+s−1)−Ut+s(w1, u, θ

t+s−1, z∗)|

for all s and t. As s → ∞, the right hand side of the above inequality goes to 0.
Thus we prove equation (38), as well as equation (2).

For the total incentive compatible condition (3), according to the lemma (3.4), it is
enough to verify that the utility sequence generated by the allocation rule satisfies
inequality (9).

We show this by contradiction.

Consider infinite deviations first. Given an arbitrary reporting history, suppose there
exists a reporting strategy which differs from the truth telling reporting strategy in
infinitely many periods, and yields a higher expected utility than that of the truth
telling one. Since the allocation rule satisfies the transversality condition (1), given
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a sufficiently large N , there exists a reporting strategy, which only differs from the
truth telling reporting strategy in N periods and yields higher expected discounted
utility.

By induction method, we show that, given the ex ante expected discounted utility
value w1, and arbitrary reporting preference type history jr−1

ẑ , there is no reporting
strategy involving a finite-period deviation that yields a higher expected discounted
utility than that of the truth telling one.

Given jr−1
ẑ , an arbitrary reporting history, suppose z is the reporting strategy differ-

ent from the truth telling one z∗ only in the first period. According to the definition
of ur, the fact that Ur = Wr, and since (ft, gt) satisfies the temporary incentive
compatible condition (7),

θrur(w1, (j
r−1
ẑ , θr)) + δUr+1(w1, u, j

r−1
ẑ , z∗) ≥ θrur(w1, (j

r−1
ẑ , jr,z))

+ δUr+1(w1, u, (j
r−1
ẑ , jr,z), z

∗).

Denote zN as a reporting strategy which differs from the truth telling one in N
periods and continues with truth telling after that.

Assume that there is no reporting strategy that differs from the truth telling one in
N periods and yields a higher expected discounted utility value,

θrur(w1, (j
r−1
ẑ , θr)) + δUr+1(w1, u, (j

r−1
ẑ , θr), z

∗) ≥ θrur(w1, (j
r−1
ẑ , jr,z))

+ δUr+1(w1, u, (j
r−1
ẑ , jr,z), z

N−1),
(39)

we verify that an analogue of inequality (39) holds for N + 1 periods.

According to the definition of Ur+1:

Ur+1(w1, u, j
r−1
ẑ , jr,z, z

N) =

∫
Θ

{θr+1ur+1(w1, (j
r
ẑ , jr+1,z)) +

δUr+2(w1, u, (j
r
ẑ , jr+1,z), z

N−1)}dµ.

By assumption, inequality (39) holds for N ,

Ur+1(w1, u, (j
r−1
ẑ , jr,z), z

N) ≤
∫

Θ

{θr+1ur+1(w1, (j
r−1
ẑ , jr,z, θr+1))

+ δUr+2(w1, u, (j
r−1
ẑ , jr,z, θr+1), z∗)}dµ

= Ur+1(w1, u, (j
r−1
ẑ , jr,z), z

∗)
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for all jr,z ∈ Θ.

Thus,

θrur(w1, (j
r−1
ẑ , jz,r)) + δUr+1(w1, u, (j

r−1
ẑ , jr,z), z

N)

≤ θrur(w1, (j
r−1
ẑ , jr,z)) + δUr+1(w1, u, (j

r−1
ẑ , jr,z), z

∗)

≤ θrur(w1, (j
r−1
ẑ , θr)) + δUr+1(w1, u, (j

r−1
ẑ , θr), z

∗)

Therefore, the analogue of inequality (39) holds for N + 1 periods. This concludes
the induction.

So an analogue of inequality (39) holds for any reporting strategy which differs from
the truth telling one.

For the feasibility condition, it holds directly.

�

Proof of proposition (3.5).

Proof By contradiction, we first show ϕ∗ ≤ Tϕ∗, then ϕ∗ ≥ Tϕ∗.
Suppose ϕ∗(ψ) > (Tϕ∗)(ψ), then there exists some promised utility level distribution ψ,
and ε0 > 0, for some f , g ∈ B,

ϕ∗(ψ)− 1

(1− β)RI

∫
D×Θ

[ρ−1[f(w, θ)] + ϕ∗(Sgψ)]dµdψ > ε0.

Let ψ′ = Sgψ. According to the definition of ϕ∗ and proposition 3.3, there exists an allo-

cation rule σ′ such that it attains ψ′ with ϕ∗(ψ′) +
RI(1− β)

2
ε0. Define σ0 = {(f, g), σ′}.

Thus σ0 is an allocation rule that uses (f, g) for the first period, then switches to the al-

location rule σ′. Moreover, it attains ψ with resource ϕ∗(ψ)−1

2
ε0, which is a contradiction.

Next we prove that ϕ∗ ≥ Tϕ∗.
Suppose ϕ∗ < Tϕ∗, then there exists some utility value distribution ψ, ε0 > 0, and an
allocation rule σ = {(ft, gt)}∞t=1 such that it attains ψ with (Tϕ∗)(ψ) − ε0. Consider the
pair of Borel measurable function (f1, g1), it belongs to the feasible set of (Tϕ∗)(ψ), and

1

(1− β)RI

∫
D×Θ

[ρ−1[f1(w, θ)] + ϕ∗(Sg1ψ)]dµdψ < (Tϕ∗)(ψ)− ε0,

which is a contradiction. �
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Proof of lemma(3.6):

Proof Given γ, arbitrarily choose a pair of Borel measurable functions (r0, y0) that
satisfy equation (15) and equation (16). Let Y be the set of pairs of Borel measurable
functions r, y ∈ B, which satisfy constraints equation (15), equation (16), and the follow-
ing inequalities:

ρ−1(r) ≤ ρ−1(r0), (
γ

|γ|
y)

1
γ ≤ (

γ

|γ|
y0)

1
γ , if γ 6= 0;

er ≤ er
0
, ey ≤ ey

0
, if γ = 0.

(40)

Evidently, set Y is a nonempty set, and the coordinates of set Y are bounded above. Since
r(θ) and y(θ) satisfy equation (15) and θh > θl > 0 guarantee that set Y is bounded below.

Since both θl and θl have a positive measure in Θ, the set Y is a compact set. Thus
there exists a solution to the problem (14) in set X. The uniqueness is guaranteed by the
concavity of ρ. �

Proof of lemma (3.7)

Proof Denote αa as the lowest initial investment level needed to have a normalized ex

ante expected discounted utility value
γ

|γ|
in the autarkic case. Since the allocation in the

autarkic case (rla, y
l
a), (rha , y

h
a) must be incentive compatible, φ(αa) ≤ αa.

Denote αa as the lowest initial investment level needed in the full insurance case, to have

a normalized ex ante expected discounted utility value
γ

|γ|
. Let αc be the solution to

problem (14) with the incentive compatible constraints discarded. Thus φ(αc) ≥ αc.

The uniqueness of the fixed point is proved by contradiction. Suppose there exist 2
fixed points α′, α. Without loss of generality, assume 0 < α < α′. Thus the solution
((rl(α), yl(α)), (rh(α), yh(α))) is feasible to φ(α′).

α′ − α = φ(α′)− φ(α)

≤
∫

Θ

(
γ

|γ|
y(α)

) 1
γ

(α′ − α)

<
φ(α)

α
(α′ − α),

(41)

which is a contradiction. �

Proof of lemma (3.8)
Proof By subtracting inequality (22) from inequality (21), we can conclude (θh −

29



θl)(r(θh, α∗)− r(θl, α∗)) ≥ 0. θh > θl implies r(θh, α∗)− r(θl, α∗) ≥ 0.

First, suppose r(θh, α∗) = r(θl, α∗), then inequality (21) and inequality (22) imply y(θh, α∗) =
y(θl, α∗). While according to inequality (25) and inequality (26), ζ = η = 0, which is a
contradiction.

Next we assume r(θh, α∗) > r(θl, α∗). Since the consumption function ρ−1 is increasing
and convex in the utility level, (ρ−1)′(r(θh)) > (ρ−1)′(r(θl)). Subtracting equation (23)
from equation (24), and since ζ, η ≥ 0, we can conclude ζ = 0, η > 0. The conclusion that
the constraint (21) is not binding and the constraint (22) is binding directly follows. �

6.2 The Autarkic Case

Consider the autarkic problem, the agent maximizes his/her ex ante expected discounted
utility value with initial investment level I0. According to the principle of optimality, we
can write down the Bellman equation of the agent in autarky:

v(It) = max
It+1≥0

∫
Θ

(1− θ)ρ(ct) + θv(It+1) dµ, (42)

subject to
ct + β(RIIt − It+1) = RIIt − It+1. (43)

Since the gross rate of return of the investment technology is homogeneous of degree 1,
and we use CRRA function as the utility function for one period, the initial investment
level is multiplicate to the ex ante expected discounted utility value,

v(It) = (It)
γv(1). (44)

Thus it is enough to find out the value v(1).

Since the probability that P (θ = θl) = p, we can rewrite equation (42) as follows:

v(1) = max
(cl,Il),(ch,Ih)

[p(ρ(cl)(1− θl) + θl(I l)γv(1)) + (1−p)ρ(ch)(1− θh) + θh(Ih)γv(1)], (45)

where ci + β(RI − I i) = RI − I i, for i ∈ {l, h}.

Thus equation (45) is a discrete static problem of v(1). Given the set of parameter values,
this problem can be computed numerically.
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