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Abstract. The Birkhoff-von Neumann Theorem shows that any bistochastic matrix

can be written as a convex combination of permutation matrices. In particular, in a

setting where n objects must be assigned to n agents, one object per agent, any random

assignment matrix can be resolved into a deterministic assignment in accordance with

the specified probability matrix. We generalize the theorem to accommodate a complex

set of constraints encountered in many real-life market design problems. Specifically,

the theorem can be extended to any environment in which the set of constraints can

be partitioned into two hierarchies. Further, we show that this bihierarchy structure

constitutes a maximal domain for the theorem, and we provide a constructive algorithm

for implementing a random assignment under bihierarchical constraints. We provide sev-

eral applications, including (i) single-unit random assignment, such as school choice; (ii)

multi-unit random assignment, such as course allocation and fair division; and (iii) two-

sided matching problems, such as the scheduling of inter-league sports matchups. The

same method also finds applications beyond economics, generalizing previous results on

the minimize makespan problem in the computer science literature.
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1. Introduction

Suppose a social planner wishes to allocate a set of indivisible objects amongst a set

of agents. A natural method is to use some sort of an auction, but in a wide variety of

allocation problems the use of monetary transfers is either impractical, undesirable, or

illegal. Examples range from the allocation of slots in public schools, to the assignment of
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tasks within an organization, to the allocation of course seats or dormitory rooms at uni-

versities, to the allocation of organs amongst patients needing transplants. Randomness

plays a key role in the design of allocation procedures in such settings, both in theory

and practice. The reason is that, with indivisible objects and no possibility of transfering

utility amongst agents using money, ex-post assignments can be very unfair. Randomness

can help to “even things out”.

This paper answers a fundamental question in non-transferable utility (NTU) market

design: what random assignments can be implemented (and how). To motivate the concep-

tual difficulty, consider a random assignment in which three agents {1, 2, 3} are assigned

to three objects {a, b, c} according to the following matrix:

P =

0.5 0.5 0

0 0.5 0.5

0.5 0 0.5


where entry Pia represents the probability that agent i is assigned to object a. If we resolve

each agent’s lottery independently, we might allocate some object to two agents while some

other object goes unallocated, violating feasibility. Instead, the random assignment should

be resolved by choosing the assignments (1→ a, 2→ b, 3→ c) and (1→ b, 2→ c, 3→ a)

with equal probabilities. Note for example that the event of agent 3 receiving object c

is perfectly correlated with the event of agent 1 receiving object a. The precise method

for correlating one agent’s allocation to another’s is not always obvious from the random

assignment itself, and whether a method can be found to implement any arbitrary random

assignment is unclear. The celebrated Birkhoff-von Neumann theorem (Birkhoff (1946);

von Neumann (1953)) provides an answer for this simple setting. It shows that any

bistochastic matrix1 can be expressed as a convex combination of permutation matrices,

i.e., bistochastic matrices each containing only zeros or ones as entries. This ensures

that any random assignment can be implemented in the single-unit assignment setting, in

which the number of agents equals the number of objects, and agents have unit demand.

The theorem has proved useful in two important NTU market designs, namely the pseudo-

market mechanism by Hylland and Zeckhauser (1979) and more recently the probabilistic

serial mechanism by Bogomolnaia and Moulin (2001).

In real-world assignment problems, however, there are many features and constraints

that are not allowed for in the Birkhoff-von Neumann theorem. (Indeed, despite their

1A square matrix is bistochastic if (i) all entries are between 0 and 1 inclusive, and (ii) all rows and

columns sum to one.
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theoretical appeal, we are not aware of either the pseudo-market mechanism or the prob-

abilistic serial mechanism ever being used in practice). Two useful generalizations are

straightforward to handle. First, in many allocation problems it is acceptable for some

agents or objects to remain unassigned; for instance, in the (public) school-choice prob-

lem, some students may exit the system, opting for a private school. Second, some agents

might consume multiple units; for instance, in the course-allocation problem, students seek

a schedule consisting of multiple courses. The first generalization can be accomodated

easily by introducing a “null” object; the second is only a bit more complicated.

Other constraints are more challenging to deal with. One difficult problem occurs when

different groups of agents must be treated differently in the assignment. For instance,

schools may wish to seek balance between the genders, or may require that the number of

students of a certain racial, ethnic, geographic or income group may not exceed and/or fall

short of some target quota. Another difficult problem occurs when the supply of objects is

not exogenously fixed but rather produced endogenously according to some technological

constraint. This feature arises when a public school authority wishes to install multiple

school programs in one building and the relative sizes of these programs can be changed,

but the total number of students in these programs is constrained by the building size. In

multi-unit assignment problems such as course allocation, agents might have constraints

on the kinds of sets of objects they are able to consume. For instance, a student might

have a preference to take no more than a certain number of courses in a particular subject

matter, or be required to take at least a certain number.

These are just a few well-known examples of constraints that are not readily accommo-

dated by the Birkhoff-von Neumann Theorem. There are many other similar examples.

It is thus important to understand to what extent the theorem generalizes beyond the

classical single-unit assignment setting.

We generalize the Birkhoff-von Neumann theorem in two directions. First, we allow for

the number of agents to differ from the number of objects, and for the supply of objects and

agents’ demands for them to take any integer amount, positive or negative. (A negative

integer is interpreted as supply by that agent of the object in question. Accordingly, the

notion of a random assignment is generalized to allow for any real (positive or negative)

values for the entries of the associated matrix.

The second and non-trivial direction is in terms of the kinds of constraints we accommo-

date. In principle, it is possible to define constraints on any subset of entries in the matrix.

The Birkhoff-von Neumann theorem allows for just two kinds of constraints: constraints

on whole rows of the matrix (the number of objects an agent consumes), and constraints
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on whole columns of the matrix (the number of times an object is allocated). We allow

for constraints to be placed on arbitrary subsets of the matrix, and we allow for both

floor and ceiling constraints, not necessarily equal to each other as in the Birkhoff-von

Neumann theorem. What we require is that the set of constraint sets can be partitioned

into two hierarchies; that is, for any pair of sets in the same hierarchy, either they are

disjoint or one set is a subset of the other. Under this bihierarchy structure, we show

that any generalized random assignment matrix can be expressed as a convex combination

of integer-valued matrices satisfying all the constraints on the sets in the two hierarchies.

This means that as long as the subsets of entries that are subject to quota constraints

form a bihierarchical structure and the quota ceilings/floors are integer-valued, any ran-

dom assignment satisfying these constraints can be implemented by conducting a lottery

over non-random assignments each of which satisfies all the constraints.

The above extension is the most general statement to our knowledge, and accommo-

dates all the kinds of real-world constraints we discussed above. Moreover, we provide

a constructive algorithm for implementing random assignments under bihierarchical con-

straints, and we show a maximal domain result which indicates that, subject to some

technical conditions, ours is the most general statement possible. That is, if the desired

constraints do not form a bihierarchy, then there exists a random assignment that satisfies

all the constraints, but for which it is impossible to implement that random assignment by

a lottery over outcomes each of which satisfies the constraints. In that sense, the bihierar-

chical structure implicit in the Birkhoff-von Neumann theorem was not only sufficient but

necessary for the development of the random assignment mechanisms described above.

We hope that our generalization of the Birkhoff-von Neummann theorem will find a wide

variety of applications in NTU mechanism design (and that the maximal domain result

will facilitate the understanding of what kinds of random mechanisms are not possible).

In this paper we illustrate two distinct ways to use the hierarchical structure to yield new

design possibilities.

First, we use our method to extend a specific random-assignment mechanism, that of

Bogomolnaia and Moulin (2001), to more realistic settings. Many indivisible resources

such as school slots, housing, offices, etc., are commonly allocated by a procedure called

the random serial dictatorship (RSD). Serial dictatorship is a deterministic mechanism in

which agents choose objects one at a time according to an exogenously specified priority

order (i.e., by serial number). Random serial dictatorship is the same, except the priority

order is chosen randomly; that is, RSD is essentially a deterministic mechanism except

that which agent occupies which role in the society is randomized. In an influential recent
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paper, Bogomolnaia and Moulin (2001) propose a mechanism called probabilistic serial

(PS) that directly produces a random assignment in response to agents’ reports of their

preferences. PS satisfies a stronger notion of efficiency than does RSD, and otherwise

the two mechanisms’ properties are similar.2 Yet, we do not observe the use of PS in

practice. One possibility for why is that PS is not able to handle complex features of

real-life scenarios like the ones mentioned above. RSD is more flexible; for instance, RSD

easily accommodates quota constraints on groups of agents.

We extend the probabilistic serial mechanism in three steps. First, we show how to

adapt the Bogomolnaia and Moulin (2001) “eating” algorithm to handle bihierarchical

constraints. Second, we use our main theorem to show that the resulting random assign-

ment can be implemented. And, finally, we show that the resulting random allocating

continues to have the desirable efficiency properties of the original.

In our second application, we show how our method can be used to implement any

random assignment in a way that guarantees that agents’ utilities are always “close” –

specifically, within at most the value of a single object – to the (expected) utility associated

with the random assignment. This result is of course vacuous in the context of single-unit

assignment. But it can be quite powerful in the context of multi-unit resource allocation

problems such as course allocation, task assignment, and the fair division of estates.

One attractive method for solving such problems is to treat objects as “divisible” and

solve for an optimal fractional (random) assignment. The difficulty is that there are

many ways to resolve a given random assignment, some of which could entail an outcome

quite different from the original random assignment. For instance, suppose in the context

of course allocation that under an attractive divisible-goods allocation procedure some

student receives a fractional assignment in which he has a one-half probability of obtaining

each of twenty courses, ten of which are “good” and ten of which are “bad”. The only

constraint is that he receive ten courses overall. One way to resolve this lottery would be to

give the agent a one-half chance of obtaining all ten good courses and a one-half chance of

obtaining all ten bad courses. This resolution exposes the agent to substantial risk. What

we would do is supplement the actual constraints of the problem with a hierarchical set of

artificial quota constraints in a way that bounds the extent to which each agent’s utility

can vary over different resolutions of the (artificially constrained) random assignment.

In the context of this simple example, we provide this “utility guarantee” by adding

2One difference is that RSD is strictly strategyproof in any size market, whereas PS is strategyproof

only in an ordinal sense; namely, no agent under that mechanism can do strictly better by lying in the

sense of first-order stochastic dominance (Bogomolnaia and Moulin 2001). In large finite markets PS

becomes strictly strategyproof.(Kojima and Manea 2008).
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constraints on the number of good courses the agent receives (here, floor = ceiling =

5) and the number of bad courses the agent receives. We add different constraints for

different agents in a way that depends on their preferences, and use the generalized BvN

theorem to ensure that the resulting artificially constrained random assignment can be

implemented.

Our framework lends itself to extension to the two-sided matching setting in which

both sides of the market are agents. This can be done by interpreting the object side as

another set of agents. The utility guarantee can then be readily applied to a two-sided

matching problem: starting with any random matching, we can find an exact matching

that always gives the agents on both sides realized utilities that are similar to those they

expect from the random matching. This method can be used to design a fair schedule of

inter-league matchups in sports scheduling, or a fair speed-dating mechanism.

2. Setup

Let Z be the set of integers. We consider tuples 〈N,O,H〉 where:

• N is the set of agents where |N | ≥ 2,

• O is the set of objects where |O| ≥ 2,

• H ⊂ 2N×O is a set of subsets from N ×O that forms two hierarchies, that is, there

exist HN and HO such that

– H = HN ∪HO and HN ∩HO = ∅, that is, HN and HO partition H,

– for each S ∈ H, S ⊆ N ×O,

– if S, S ′ ∈ HN , then S ⊂ S ′ or S ′ ⊂ S or S ∩ S ′ = ∅.
– if S, S ′ ∈ HO, then S ⊂ S ′ or S ′ ⊂ S or S ∩ S ′ = ∅.

We say H is bihierarchical if H satisfies these conditions, and the partitions HN

and HO are hierarchical. In many applications HN and HO include, respectively,

sets of the form {i} × O and N × {a} where i ∈ N , a ∈ O. These sets represent

constraints imposed on each agent and object, thus the mnemonic notation HN

and HO. However, at this point we do not impose such a restriction, and we will

state the restriction whenever applicable.

We also consider input of the form 〈N,O,H, (q
S
, qS)S∈H〉 where (q

S
, qS)S∈H is the set

of quota constraints for each set in the hierarchies. We call q
S

the floor constraint and

qS the ceiling constraint for S. For each S ∈ H, we assume q
S

and qS are integers

except that we allow q
S

= −∞ and qS = +∞. We simply write q = (q
S
, qS)S∈H when

there is no confusion. The tuple E = 〈N,O,H, q〉 is called an environment.
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A (generalized) random assignment is a |N | × |O| matrix, P = [Pia] where Pia ∈
(−∞,∞) for all i ∈ N, a ∈ O. A deterministic assignment is a random assignment P

whose entries are integers. Note that we allow for assigning more than one unit of a good

and even for assigning a negative amount of a good. Receiving a negative amount of a

good corresponds to supplying that good in that amount.

Given environment E = 〈N,O,H, q〉, P is said to be feasible if

q
S
≤ PS ≤ qS, for all S ∈ H,(1)

where we define

PS :=
∑

(i,a)∈S

Pia,

for any random assignment P and S ∈ H. We denote by PE the set of random assignments

that are feasible in E .

2.1. Examples.

2.1.1. The Simple Environment. Consider the environment 〈N,O,H, q〉 where

HN = {{(i, a)}|(i, a) ∈ N ×O} ∪ {{i} ×O|i ∈ N},

HO = {N × {a}|a ∈ O},

q{(i,a)} = 0, q{(i,a)} = 1, for all (i, a) ∈ N ×O,

q
S

= qS = 1, for all S ∈ H \ {{(i, a)}|(i, a) ∈ N ×O}.

This is an environment in which each agent receives exactly one object and each object is

allocated to exactly one agent (note that |N | = |O| is implied), and no other constraints

are imposed. We denote this environment by EBvN , where the subscript stands for Birkhoff

and von Neumann, who studied this environment extensively and showed Corollary 1

presented below.

A random assignment feasible in EBvN is called a bistochastic matrix (alt., doubly

stochastic matrix). Formally, P is a bistochastic matrix if

(1) Pia ≥ 0 for all i ∈ N and a ∈ O,

(2) P{i}×O = 1 for all i ∈ N , and

(3) PN×{a} = 1 for all a ∈ O.
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2.1.2. Flexible Capacity. The current framework can accommodate situations where ob-

jects can be produced in a flexible manner subject to certain constraints. An organization

may wish to divide its workforce or resources among a few projects based on the skill set

and preferences of its employees. In the context of school choice, different types of objects

may represent different programs, say within a school specializing in different disciplines

and activities, only a subset of which may be chosen depending on the preferences of

incoming students. The multi-program design problem in school choice mentioned in the

introduction also fits in this framework; a public school authority chooses the relative sizes

of several education programs subject to the constraint that the total number of enroll-

ments in those programs does not exceed a certain exogenous quota. Such a situation can

be represented by a hierarchy HO containing sets of the form S = N × O′ with |O′| ≥ 2.

The ceiling qS then describes total capacities that can be allocated within O′. Further,

the hierarchical structure means that flexible production can be nested; e.g., a subset of

programs may be chosen and, within each chosen program, a subset of subprograms may

be chosen, and so on.

2.1.3. Group-specific Quotas. The mechanism designer may need to treat different groups

of agents differently in assignment. For example, affirmative action or a desire by a school

for diversity may entail the use of quotas for applicants of different ethnic, racial or

economic profiles. Such a practice is called “controlled choice” and is used in many

school districts in the United States. Some other forms of constraints are mathematically

similar. For example, a subset of schools in New York City (the so-called Educational

Option programs) require balanced distributions of test score: Namely, 16 percent of the

seats should be allocated to students who were rated top performers in a standardized

English Language Arts exam, 68 percent to middle performers, and 16 percent to lower

performers (Abdulkadiroğlu, Pathak, and Roth 2005).3 Quotas may be based on the

residence of applicants as well: The school choice program set to begin in 2010 in Seoul,

Korea, limits the percentage of seats allocated to the applicants from outside the district

to 20 percent,4 and a number of school choice programs in Japan have similar quotas

based on residential areas as well.

All such constraints can be easily incorporated by HO containing sets of the form

N ′ × {a} for a ∈ O and N ′ $ N . The quota qN ′×{a} then determines the maximum

3An exact implementation can be slightly different from the quotas analyzed by most of the literature

cited above. See Kojima (2008a) for further discussion on this point.
4See “Students’ High School Choice in Seoul Outlined,” Digital Chosun Ilbo, October 16, 2008

(http://english.chosun.com/w21data/html/news/200810/200810160016.html).
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number of agents school a can admit from group N ′. We can accommodate multiple

groups for each a as long as they do not overlap with each other. Note that we can also

accommodate hierarchies of constraints: for instance, a school system can require that a

school admit at most 50 students from district one, at most 50 students from district two,

and at most 80 students from either district one or two.

2.1.4. Course Allocation with Complex Constraints. Consider the course allocation prob-

lem. The school administrator wants to allocate seats in courses to students. Each course

has its own quota. Each student can enroll in more than one course but she does not

wish to receive more than one seat in any course for obvious reasons. Moreover, she may

have constraints imposed by the system, or based on her own preferences, such that she

cannot (or does not want to) take more than a certain number of courses from a subset

of the courses. For example, a student might not be allowed to take two courses that

meet during the same time slot. Or, a student might prefer to take at most two courses

on finance, at most three courses on marketing, and at most four courses on finance or

marketing in total.

Such restrictions can be modeled in our framework. Assume that HN contains sets of

the form {(i, a)} with i ∈ N, a ∈ O and {i} × O, i ∈ N . By setting q{(i,a)} = 1 and

q{i}×O > 1, we can assure that student i can obtain up to q{i}×O > 1 courses but for

each course a, he will get at most one seat. Letting F and M be finance courses and

marketing courses, if HN contains {i}×F , {i}×M and {i}×F ∪M , then we can express

the constraints “student i can take at most q{i}×F courses in finance, q{i}×M courses in

marketing, and q{i}×(F∪M) in finance and marketing combined.” Scheduling constraints

are handled similarly.5

2.1.5. Incompatibility of Goods and Agents. Suppose that the social planner cannot (or

does not want to) assign object a to agent i. Such a restriction appears in school choice, for

example. Some students may not be eligible to apply to some schools since the student

has not fulfilled academic requirements or because the school is not allowed to admit

students from the district in which that student lives, for example. Such restrictions also

arise in the context of organ transplantation.6 In that context, N represents patients and

O represents organs, and some organs cannot be transplanted into some agents because

5While very flexible, there are some limitations to the kinds of constraints that can be accommodated

without violating bihierarchy. The course-allocation procedure proposed in Budish (2008) accommodates

arbitrary constraints. See Section 5 for further discussion.
6For economic analysis related to organ donation, see Roth, Sönmez, and Ünver (2004) and references

therein.
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of incompatibility of blood type and other biological traits. In a different context, if N

represents machines and O represents jobs to be processed, then certain jobs may not

be compatible to certain machines due to operating system differences or other technical

reasons. Such a constraint can be incorporated by letting H contain {(i, a)} and q{(i,a)} =

q{(i,a)} = 0.

2.1.6. Interleague Play Design. Some professional sports, most notably Major League

Baseball (MLB) and the National Football League (NFL), have two separate leagues. In

MLB, teams in the American League (AL) and National League (NL) had traditionally

played against teams only within their own league during the regular season, but play

across the AL and NL, called interleague play, was introduced in 1997.7 Unlike the

intraleague games, the number of interleague games is relatively small, and this can make

the indivisibility problem particularly difficult to deal with in designing the matchups.

For example, suppose there are two leagues, N and O, each with 9 teams. Suppose each

team must play 15 games against teams in the other league. There are some matchup

constraints: Each team in N has a geographic rival in O, and they must play twice. For

fairness reasons, teams in each league must face opponents in the other league of similar

difficulty. Specifically, one could order the teams of each league in (the descending order

of) winning percentage, say N = {i1, ..., i9} and O = {a1, ..., a9}, and then require each

team to play at least 4 games with top 3 teams, 4 games with middle 3 teams and 4

games with bottom 3 teams of the other league. It is not difficult to see that the resulting

constraint sets form a bihierarchy.

3. The Rounding Theorem

Theorem 1 (Rounding Theorem). Given any 〈N,O,H〉 and P , if H is a bihierarchy,

then there exist P 1, P 2, . . . , PK and λ1, λ2, . . . , λK such that

(1) P =
K∑
k=1

λkP k,

(2) λk ∈ (0, 1] for all k and
∑K

k=1 λ
k = 1,

(3) P k
S ∈ {bPSc , dPSe} for all k ∈ {1, . . . , K} and S ∈ H.8

The Theorem shows that any random assignment P can be decomposed into matrices

where the sum of the entries within each element of the bihierarchy is rounded up or

down to the nearest integer. In practice we want resolution of uncertainty so that every

7See “Interleague play”, Wikipedia (http://en.wikipedia.org/wiki/Interleagueplay).
8For any x ∈ R, bxc and dxe are the largest integer no larger than x and the smallest integer no smaller

than x, respectively.
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assignment of every single pair is integer valued, and this can be achieved for free by adding

singleton sets to one of the hierarchies. The proof of Theorem 1 is in the appendix. We

also provide in the appendix a constructive algorithm for implementing the theorem.

Corollary 1 (Rounding Theorem for Stochastic Assignments). Consider an environment

〈N,O,H, (q
S
, qS)S∈H〉. Assume H is a bihierarchy and P is a feasible random assignment,

so q
S
≤ PS ≤ qS for all S ∈ H. Then there exist P 1, P 2, . . . , PK and λ1, λ2, . . . , λK such

that

(1) q
S
≤ P k

S ≤ qS for all k, S ∈ H,

(2) P =
K∑
k=1

λkP k,

(3) λk ∈ (0, 1] for all k and
∑K

k=1 λ
k = 1.

Corollary 1 is a generalization of the well-known Birkhoff-von Neumann Theorem. Re-

call that a feasible random assignment matrix in EBvN is called a bistochastic matrix and

that a permutation matrix is a bistochastic matrix in which every entry is zero or one.

Corollary 2 (Birkhoff (1946); von Neumann (1953)). Suppose that P is a bistochastic

matrix. Then P can be written as a convex combination of permutation matrices.

Proof. Consider the pair of bihierarchy H = HN ∪HO and constraints (q
S
, qS)S∈H defined

as

HN = {{(i, a)}|(i, a) ∈ N ×O} ∪ {{i} ×O|i ∈ N},

HO = {N × {a}|a ∈ O},

q{(i,a)} = 0, q{(i,a)} = 1, for all (i, a) ∈ N ×O,

q
S

= qS = 1, for all S ∈ H \ {{(i, a)}|(i, a) ∈ N ×O}.

Applying Corollary 1 to this environment, we obtain the conclusion of Corollary 2. �

Moreover, it is easy to see that existing generalizations of the Birkhoff-von Neumann

Theorem (Corollary 2) known in the mathematics literature, such as Watkins and Merris

(1974), Lewandowski, Liu, and Liu (1986) and de Werra (1984), are special cases of

Corollary 1.

It turns out that Theorem 1 is essentially the most general proposition possible. More

precisely, we present the following “necessity” or “maximal domain” result.

Theorem 2 (Maximal Domain). Fix N,O,H and suppose that H contains all the sets of

the form {i} × O and N × {a}. If H is not bihierarchical, then there exists P such that

there exists no set of scalars and matrices which satisfy conditions (1)–(3) of Theorem 1.
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Corollary 3. Fix N,O,H and suppose that H contains all the sets of the form {i} × O
and N × {a}. If H is not bihierarchical, then there exist P and (q

S
, qS)S∈H such that P

satisfies q
S
≤ PS ≤ qS for all S ∈ H but there exists no decomposition of P into a convex

combination of matrices satisfying conditions (1)–(3) of Corollary 1.

Note that the restriction that H contains all the sets of the form {i} ×O and N × {a}
is natural in any bilateral matching setting.

4. Application: Probabilistic Serial Mechanism with Complex

Constraints

In this section, we consider an environment E = 〈N,O,H, {q
S
, qS}S∈H〉, where the

bihierarchy H = HN ∪HO has the following structure:

HN = {{(i, a)}|(i, a) ∈ N ×O} ∪ {{i} ×O|i ∈ N}

and

N × {a} ∈ HO, ∀a ∈ O,

with constraints such that q{i}×O = q{i}×O = 1 for all i ∈ N and q
S

= 0 for all S ∈
H \ {{i} × O|i ∈ N}. This describes a problem of assigning objects to agents, who each

demand exactly one unit. This problem arises in a wide variety of situations, ranging

from placement of students to schools, doctors to hospitals, advertisements to publishers,

computer processors to jobs, etc. The maximum quota for each object a, qN×{a}, can be

arbitrary, unlike in EBvN . It is understood also that O contains a null object ø with

unlimited supply, that is, qS = +∞ for any S ∈ HO with (N × {ø}) ∩ S 6= ∅.

4.1. Applications. As motivated earlier, the bihierarchy structure in this section accom-

modates a range of realistic situations and constraints that a mechanism designer faces.

First, the objects may be produced endogenously based on the (reported) preferences of

the agents. For instance, the objects may be a set of possible goods that can be pro-

duced, and the mechanism may select which array of goods will be produced based on

the demand of the buyers. In the context of school choice, different types of objects may

represent different programs, say within a school specializing in different disciplines and

activities, only a subset of which may be chosen depending on the preferences of incom-

ing students. Or school districts may run multiple school programs in the same building

(this is often the case in public schools in NYC, for example) and relative sizes of these

programs can be changed but the sum of students in these programs is constrained by

the building size. Such situations are captured by a hierarchy HO containing sets of the

form S = N × O′ with |O′| ≥ 2. The ceiling qS then describes total capacities that can
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be allocated within O′. Further, the hierarchical structure means that flexible production

can be nested; e.g., a subset of programs may be chosen and, within each chosen program,

a subset of subprograms may be chosen, and so on.

Another common situation confronting a mechanism designer is a need to treat different

groups of agents differently in assignment. For example, affirmative action or a desire by a

school for diversity may entail quotas for applicants of different ethnic, racial or economic

profiles. Such a practice is called “controlled choice” and is employed in many school

districts in the United States. Abdulkadiroğlu and Sönmez (2003) and Abdulkadiroğlu

(2005) analyze assignment mechanisms under such constraints. Although the controlled

choice plans face some opposition,9 there are other forms of constraints that have similar

structures. For example, a subset of schools in New York City (the so-called Educational

Option programs) require balanced distributions of test scores: 16 percent of the seats

should be allocated to students who were rated top performers in a standardized exam,

68 percent to middle performers, and 16 percent to lower performers (Abdulkadiroğlu,

Pathak, and Roth 2005).10 Quotas may be based on residence as well: In Seoul, Korea,

a concern over traffic congestions caused by commuting students — a form of externality

the students or their parents may not fully internalize — led the school system to limit

the number of seats for students from distant areas, in their upcoming school choice

program (to start in year 2010).11 Similar quotas based on residential areas are observed

in a number of school choice programs in Japan as well.12 All such constraints (they

can be affirmative action or test score distribution or neighborhood quotas) can be easily

incorporated by HO containing sets of the form N ′ × {a} for a ∈ O and N ′ $ N . The

quota qN ′×{a} then determines the maximum number of agents school a can admit from

group N ′. We can accommodate multiple groups for each a as long as they do not overlap

9In 2007, U.S. Supreme court ruled against Seattle’s and Louisville’s use of race as an admission

criterion in their school choice plans with a 5-4 vote (New York Times 06/29/2007).
10The exact implementation of affirmative action constraints and other constraints is often slightly

different from the quotas analyzed in this section, but the current definition serves as a useful benchmark.

Indeed, most of the literature such as those cited above adopt the same definition as ours. See Kojima

(2008a) for further discussion on this point.
11We are not aware of school districts in the U.S. that use residential-area based quotas as modeled

in this paper. In Boston, for instance, students living in a neighborhood of a school are given priority

to that school over students outside of the schools’ neighborhood (Abdulkadiroğlu, Pathak, Roth, and

Sönmez 2005). Boston’s constraint is based on a similar idea but formally different from our quota-based

approach. We suspect that there may be school districts in the U.S. that use quota-based approach

investigated here.
12Edogawa and Shinagawa districts in Tokyo, for example.
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with each other. We can even accommodate hierarchies of constraints: For example, a

constraint that a school admits at most 50 students from district one, at most 50 students

from district two, and at most 80 students from either district one or two.

4.2. The Probabilistic Serial Mechanism. To formally study the problem of assign-

ment, we need to introduce the preferences of agents. Each agent i ∈ N has a strict

preference �i over O. We write a �i b if either a �i b or a = b holds. When N

and O are fixed, we write � for (�i)i∈N , �N ′ for (�i)i∈N ′ where N ′ ⊂ N . A quadru-

ple Γ = (N,O,H, {q
S
, qS}S∈H, (�i)i∈N) then defines a random assignment prob-

lem. Recall that a feasible random assignment is a matrix P = [Pia]i∈N,a∈O satisfying

q
S
≤

∑
(i,a)∈S Pia ≤ q̄S for each S ∈ H. Recall that PE denotes the set of all random

assignments feasible in E = 〈N,O,H, q〉. A special case of random assignment is a de-

terministic assignment, represented by a matrix P ∈ PE with Pia ∈ {0, 1} for each

(i, a) ∈ N ×O.

A solution used in many applications is random priority (Bogomolnaia and Moulin

2001), also called random serial dictatorship (Abdulkadiroğlu and Sönmez 1999), orig-

inally studied under environment EBvN . In the current setup, we define random priority as

follows: (i) randomly order agents with equal probability, and (ii) the first agent obtains

her favorite object, the second agent obtains her favorite object among the remaining

objects, and so on, as long as allocating the good to agents so far is consistent with all

ceiling constraints. The mechanism is strategy-proof, that is, reporting true preferences

is a dominant strategy for every agent. However, the random priority may result in loss

of efficiency (Bogomolnaia and Moulin 2001). To see how the loss of efficiency may occur

in our context, consider the following example, adapted from Bogomolnaia and Moulin

(2001).

Example 1 (Random priority may result in a suboptimal production plan). Let N =

{1, 2, 3, 4}, O = {a, b, c, ø}, HO = [
⋃
a′∈O{N × {a′}}] ∪ {N × {a, b, c}}. Assume qN×{a} =

qN×{b} = qN×{c} = 1, qN×{a,b,c} = 2. This is a situation in which each good has individual

quota of one, and furthermore only two out of three goods can actually be produced.

Let

�1: a, b, ø,

�2: a, b, ø,

�3: c, b, ø,

�4: c, b, ø,
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where the notation means that agent one prefers a to b to ø, and so on. Under the random

priority mechanism, the assignment

RP =


5/12 1/12 0 1/2

5/12 1/12 0 1/2

0 1/12 5/12 1/2

0 1/12 5/12 1/2

 ,

will be obtained.13 The following random assignment is preferred by everyone.

P ′ =


1/2 0 0 1/2

1/2 0 0 1/2

0 0 1/2 1/2

0 0 1/2 1/2

 .

One notable feature of the random priority mechanism is that, under this mechanism,

good b is produced although everyone prefers some other good, a or c, to be produced.

Good b is produced either when agent 1 and 2 get highest priorities or when agent 3

and 4 get highest priorities. All agents will be made better off if the social planner can

first decide to produce a and c and then allocate the goods: It is easy to see that random

assignment P ′ results if the random priority is conducted after the production plan is fixed

to producing a and c. Of course, such a production plan is inefficient if agents prefer b to

other goods. Thus a good mechanism may be one that simultaneously decides production

of goods as well as the allocation of them, based on preference information reported by

agents.

We begin by introducing the efficiency concept in our setup, called ordinal efficiency. A

random assignment P ordinally dominates another random assignment P ′ ∈ PE at �
if for each agent i the lottery Pi first-order stochastically dominates the lottery P ′i , that

is, ∑
b�ia

Pib ≥
∑
b�ia

P ′ib ∀i ∈ N, ∀a ∈ O,

13Given N = {1, 2, 3, 4}, O = {a, b, c, ø} and random assignment P , we write

P =


P1a P1b P1c P1ø

P2a P2b P2c P2ø

P3a P3b P3c P3ø

P4a P4b P4c P4ø

 .

Similar notation will be used elsewhere in this paper as well.
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with strict inequality for some i, a (we say that Pi weakly stochastically dominates P ′i

when either Pi stochastically dominates P ′i or Pi = P ′i ). If P ordinally dominates P ′ at �,

then every agent i prefers Pi to P ′i according to any expected utility function with utility

index consistent with �i. The random assignment P ∈ PE is ordinally efficient at �
if it is not ordinally dominated at � by any other random assignment in PE . Note that

our model allows for a complex set of constraints, so the current notion has the flavor

of “constrained efficiency” in that the efficiency is defined within the set of assignments

satisfying the constraints.

As with Bogomolnaia and Moulin (2001), a different characterization of ordinal effi-

ciency proves useful. To this end, we first define the minimal constraint set containing

(i, a):

ν(i, a) :=
⋂

S∈H(i,a)

S,

if the setH(i, a) := {S ∈ HO : (i, a) ∈ S,
∑

(j,b)∈S Pjb = qS} is nonempty. IfH(i, a) = ∅ (or

equivalently
∑

(j,b)∈S Pjb < qS for all S ∈ HO containing (i, a)), then we let ν(i, a) = N×O.

We next define the following binary relations on N ×O given (Γ, P ) as follows:14

(j, b)B1 (i, a) ⇐⇒ i = j, b �i a, and Pia > 0,

(j, b)B2 (i, a) ⇐⇒ ν(j, b) ⊆ ν(i, a).

We then say

(j, b)B (i, a) ⇐⇒ (j, b)B1 (i, a) or (j, b)B2 (i, a).

We say a binary relation B is strongly cyclic if there exists a finite cycle (i0, a0) B

(i1, a1)B · · ·B(ik, ak)B(i0, a0) such that B = B1 for at least one relation. We next provide

a characterization of ordinal efficiency.

Proposition 1. Random assignment P ∈ PE is ordinally efficient if and only if B is not

strongly cyclic given (Γ, P ).15

A remark is in order. In the environment EBvN , Bogomolnaia and Moulin (2001) define

the binary relation B over the set of objects where b B a if there is an agent i such that

b �i b and Pia > 0. Bogomolnaia and Moulin show that, in EBvN , a random assignment is

14Given that HO has a hierarchical structure,

(j, b)B2 (i, a) ⇐⇒ (j, b) ∈ S for any S ∈ HO such that (i, a) ∈ S, PS = qS .

15In Kojima and Manea (2008), ordinal efficiency is characterized by two conditions, acyclicity and

non-wastefulness. We do not need non-wastefulness as a separate axiom in our current formulation since

a “wasteful” random assignment (in their sense) contains a strong cycle as defined here.
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ordinally efficient if and only if B is acyclic. Our contribution over their characterization

is that we expand the domain over which the binary relation is defined to the set of

agent-good pairs, in order to capture the complexity that results from a more general

environment than EBvN .

Now we introduce the probabilistic serial mechanism, which is an adaptation of the

mechanism proposed by Bogomolnaia and Moulin to our setting. The idea is to regard

each object as a divisible object of “probability shares.” Each agent “eats” the best

available object with speed one at every time t ∈ [0, 1]. The resulting profile of shares of

objects eaten by agents by time 1 obviously corresponds to a random assignment matrix,

which we call the probabilistic serial random assignment.

Before giving a formal definition, note that we will need to modify the definition of

the algorithm from the version of Bogomolnaia and Moulin (2001). First, we will specify

availability of goods with respect to both agents and objects in order to accommodate

complex constraints such as affirmative action. Second, we need to keep track of multiple

constraints for each pair of agent-good pair (i, a) during the algorithm, since there are

potentially multiple constraints that would make the consumption of the good a by the

agent i no longer feasible.

Formally, the probabilistic serial mechanism is defined through the following sym-

metric simultaneous eating algorithm, or the eating algorithm for short. For any

(i, a) ∈ S ⊆ N ×O, let

χ(i, a, S) =

1 if (i, a) ∈ S and a �i b for any b with (i, b) ∈ S,

0 otherwise,

be the indicator function that a is the most preferred object for i among objects b such

that (i, b) is listed in S.

Given a preference profile �, the eating algorithm is defined by the following sequence

of steps. Let S0 = N × O, t0 = 0, and P 0
ia = 0 for every i ∈ N and a ∈ O. Given

S0, t0, [P 0
ia]i∈N,a∈O, . . . , S

v−1, tv−1, [P v−1
ia ]i∈N,a∈O, for any (i, a) ∈ Sv−1 define

tv(i, a) = min
S∈HO:(i,a)∈S

sup

t ∈ [0, 1]|
∑

(j,b)∈S

[P v−1
jb + χ(j, b, Sv−1)(t− tv−1)] < qS

 ,(2)

tv = min
(i,a)∈Sv−1

tv(i, a),(3)

Sv = Sv−1 \ {(i, a) ∈ Sv−1|tv(i, a) = tv},(4)

P v
ia = P v−1

ia + χ(i, a, Sv−1)(tv − tv−1).(5)
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Since N ×O is a finite set, there exists v̄ such that tv̄ = 1. We define PS(�) := P v̄ to be

the probabilistic serial random assignment for the preference profile �.

Bogomolnaia and Moulin (2001) show that the probabilistic serial mechanism results

in an ordinally efficient random assignment in their simplified setting EBvN . Their proof

can be adapted to our setting using Proposition 1, although the proof is somewhat more

involved because of the constraints that are not present in their setting.

Proposition 2. For any preference profile �, the probabilistic serial random assignment

PS(�) is ordinally efficient at �.

Bogomolnaia and Moulin (2001) also show that the probabilistic serial mechanism is

fair in a specific sense in their simple setting. Formally, a random assignment P is said to

be envy-free at � if Pi weakly first-order stochastically dominates Pj with respect to �i
for every j ∈ N . It turns out that the probabilistic serial random assignment may not be

envy-free in our environment. To see this point, consider a random assignment problem in

which N = {1, 2, 3}, O = {a, ø}, HO = {{1, 2}×{a}, N ×{a}}, q{1,2}×{a} = 1, qN×{a} = 2,

and a �i ø for every i ∈ N . In this problem it is easy to see that

PS(�) =

0.5 0.5

0.5 0.5

1 0

 .

The probabilistic serial random assignment PS(�) is not envy-free since PS3(�) is not

weakly stochastically dominated by PS1(�) with respect to �1 (indeed, PS3(�) stochas-

tically dominates PS1(�) in this example). However, existence of envy may not imme-

diately imply that the allocation is unfair. To see this point, note that it is infeasible to

assign a to agent 1 with higher probability simply by moving probability share of a from

agent 3 to agent 1, because there is a constraint on {1, 2} × {a}. In that sense the envy

is based on a desire of agent 1 that cannot be feasibly accommodated. Motivated by this

observation, we introduce the following concept. Random assignment P ∈ PE is feasible

envy-free at � if there is no i and j such that Pj 6= Pi, Pj is not first-order stochastically

dominated by Pi at �i and an assignment Q defined by

Qka =


Pja if k = i,

0 if k = j,

Pka otherwise,

(6)



A GENERALIZATION OF THE BIRKHOFF-VON NEUMANN THEOREM 19

is in PE .16 In the above example, PS(�) is feasible envy-free. This property turns out to

hold generally, as shown below.

Proposition 3. For any preference profile �, the probabilistic serial random assignment

PS(�) is feasible envy-free at �.

Ordinal efficiency and feasible envy-freeness are not satisfied by random priority. In-

deed, random priority violates both properties even in the simplest setting EBvN (Bogo-

molnaia and Moulin 2001).

Unfortunately the mechanism is not strategy-proof, that is, an agent is sometimes made

better off misstating her preferences. However, Bogomolnaia and Moulin (2001) show that

the probabilistic serial mechanism is weakly strategy-proof, that is, an agent cannot

misstate his preferences and obtain a random assignment that stochastically dominates

the one obtained under truth-telling. Formally, we claim that the probabilistic serial

mechanism is weakly strategy-proof, that is, there exist no �, i ∈ N and �′i such that

PSi(�′i,�−i) stochastically dominates PSi(�) at � in our more general environment.17

Proposition 4. The probabilistic serial mechanism is weakly strategy-proof.

Proof. The proof is an adaptation of Proposition 1 of Bogomolnaia and Moulin (2001)

and we omit the proof. �

5. Application: Multi-Unit Assignment

This section considers multi-unit resource allocation problems in which monetary trans-

fers are prohibited. Examples include the assignment of schedules of courses to students,

the assignment of tasks within an organization, the division of sentimental objects amongst

a set of heirs, and the allocation of access to jointly-owned scientific resources.

This is well known to be a difficult problem. Papai (2001) shows that sequential dicta-

torships (considered unrealistic for many applications) are the only deterministic mecha-

nisms that are nonbossy, strategy-proof and Pareto optimal. Ehlers and Klaus (2003) and

16Alternatively, one could define P to allow for feasible envy if exchanging Pi and Pj between i and

j is feasible and Pj is not weakly stochastically dominated by Pi at i. This alternative definition is

weaker than our current definition. Thus, by Proposition 3, the probabilistic serial mechanism is feasible

envy-free with this alternative definition.
17Kojima and Manea (2008) show that truthtelling becomes a dominant strategy for a sufficiently large

market under the probabilistic serial mechanism in a simpler environment than the current one. Showing

such a claim in a more general environment is beyond the scope of this paper, but we conjecture that the

argument readily extends.
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Hatfield (2008) show similarly pessimistic results even if agents have more specific pref-

erences. Kojima (2008b) shows that the difficulty is present even if random assignment

mechanisms are allowed: There exists no mechanism that is ordinally efficient, envy-free

and weakly strategy-proof. Sönmez and Ünver (2008) discuss theoretical difficulties with

one mechanism used commonly in practice for allocating course seats at business schools

in the United States. Budish and Cantillon (2008) document empirically that a different

mechanism used in practice (at Harvard Business School) is heavily manipulated by stu-

dents in a manner consistent with theory, harming welfare, and yet nevertheless is “less

bad” than the random serial dictatorship on measures of both welfare and fairness.

Some recent progress has been made by Budish (2008). He proposes a mechanism in

which students are randomly assigned approximately equal budgets of an artificial cur-

rency, which they use to purchase sure bundles of courses at an approximate competitive

equilibrium price vector. That is, the randomness in the Budish (2008) mechanism is anal-

ogous to the randomness in the random serial dictatorship mechanism, in that, after an

initial random allocation of resources (budgets or priority), the mechanism is essentially

deterministic. (In fact the two mechanisms coincide for the case of single-unit demand).

Here, we provide a method that may facilitate development of multi-unit assignment

mechanisms that directly allocate a random assignment. (That is, mechanisms whose ran-

domness is analogous to that in PS, not RSD). Specifically, for a given random assignment

prescribed by the social planner,18 we show how to implement the random assignment in

a manner that limits the variation in realized payoffs.

To motivate, suppose that two agents are to divide four objects a, b, c, d, listed in

descending order of their (common) preferences. A fair fractional assignment would be for

each agent to receive half of each object. One way to implement this fractional assignment

is to give any two randomly chosen objects to one agent and give the remaining two to

the other. This could entail a highly unfair outcome, however, in which one agent gets

the two best objects, a and b, and the other gets the two worst c and d.

Our method avoids such outcomes. The idea is to supplement the actual constraints

of the problem with a set of “artificial” hierarchical constraints, in a manner that limits

18We do not specify how the social planner prescribes the random assignment here, since our analysis

holds for any given random assignment. One possibility is a multi-unit generalization of pseudo-market

mechanism by Hylland and Zeckhauser (1979). Another approach may be a generalization of the prob-

abilistic mechanism (Bogomolnaia and Moulin 2001), but it may not be a sensible mechanism in the

current setting since the mechanism will have good incentive properties (as analyzed by Bogomolnaia

and Moulin (2001), Kojima and Manea (2008) and Che and Kojima (2008)) only when agents have unit

demand.



A GENERALIZATION OF THE BIRKHOFF-VON NEUMANN THEOREM 21

variation in utilities. Specifically, if there are k objects, for each agent we create k addi-

tional constraints, one each for his j most preferred objects for j = 1 . . . k. The floor and

ceiling constraints are based on the total probabilities for each set prescribed by the social

planner. In this simple example, we would add constraints, for each agent, that they get

between 0 and 1 units of a, exactly 1 unit of {a, b}, between 1 and 2 units of {a, b, c}, and

exactly 2 units of {a, b, c, d}.

5.1. The Utility Guarantee.

Theorem 3 (Utility Guarantee). Consider an input 〈N,O, P,H〉 as in Theorem 1 for

which, additionally,

HN = {{(i, a)}|(i, a) ∈ N ×O} ∪ {{i} ×O|i ∈ N}.

Suppose that there is a set of values (via)(i,a)∈N×O such that, for all i, agent i’s expected

utility from a stochastic assignment P is
∑
a∈O

Piavia. (Negative v’s are interpreted as costs).

Then, for any P , there exists a decomposition of P that satisfies all of the conditions of

Theorem 1, and also:

∑
a

P ′iavia −
∑
a

P ′′iavia ∈ [−vi, vi],(7)

∑
a

P ′iavia ∈

[∑
a

Piavia − vi,
∑
a

Piavia + vi

]
,(8)

for each i and each P ′ and P ′′ in the convex combination, where vi = max{via|a ∈ O,Pia >
0}.

The Theorem enables the social planner to implement the lottery while guaranteeing

that the variations in realized utilities are bounded by the valuation of a single object. The

conclusion is most useful when each agent obtains a large number of objects, since in such

a case the valuation of one object will often be relatively small compared to the utility of

the bundle of goods as a whole. Then Theorem 3 implies that the utility variation among

realized deterministic assignments may be relatively small.

We include the proof in the body of the text because it illustrates the versatility of

hierarchical constraints.

Proof. Assume Pia > 0 for all i, a (extension to cases when Pia = 0 for some i, a is

straightforward). For each i ∈ N , let (a1
i , a

2
i , . . . , a

|O|
i ) be a sequence of objects ordered in
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the decreasing order of i’s preferences so that via1
i
≥ via2

i
≥ . . . , v

ia
|O|
i

. Define the class of

sets H′ = H′N ∪H′O by

H′N = HN ∪
⋃
i∈N,

k∈{1,...,|O|}

{i} × {a1
i , . . . , a

k
i },

H′O = HO.

By inspection, H′ is a bihierarchy. Therefore, by Theorem 1, there exists a convex de-

composition such that

∑
(i,a)∈S

P ′ia,
∑

(i,a)∈S

P ′′ia ∈


 ∑

(i,a)∈S

Pia

 ,


∑
(i,a)∈S

Pia


 for all S ∈ H′,(9)

for any integer-valued matrices P ′ and P ′′ that are part of the decomposition. In partic-

ular, property (9) holds for each {(i, a)} ∈ H′N and {i} × {a1
i , . . . , a

k
i } ∈ H′N . This means

that

• For any i and k, P ′
iak

i
− P ′′

iak
i
∈ {−1, 0, 1}, and

• If
∑k

l=1 P
′
ial

i
−

∑k
l=1 P

′′
ial

i
= 1, then P ′

iak+1
i

− P ′′
iak+1

i

∈ {−1, 0}.

Therefore the sequence (P ′
iak

i
−P ′′

iak
i
)k∈{1,...,|O|} takes values {−1, 0, 1} and alternates the

sign whenever it takes a nonzero value. This fact and the assumption that via1
i
≥ via2

i
≥

. . . , v
ia
|O|
i

imply

∑
a∈O

P ′iavia −
∑
a∈O

P ′′iavia =

|O|∑
k=1

(P ′iak
i
− P ′′iak

i
)viak

i
,(10)

is between −vi and vi. Thus we obtain property (7). Property (8) follows immediately

from property (7). �

5.2. The Pseudo-Market Approach to Fair Division. To be added.

5.3. The Maximin Approach to Fair Division. Consider the following problem. The

social planner has a number of indivisible objects O to be allocated to agents N . Utility

of agents is additive in objects up to a fixed quota (the quota can be infinite), so utility of

agent i from random assignment P is
∑

a∈O viaPia. The social planner wants to maximize

the utility of the worst-off agent. This is sometimes called the Santa Claus problem: Santa

Claus wants to give presents to children in such a way that the least fortunate child is as

happy as possible given the fixed set of presents he has.



A GENERALIZATION OF THE BIRKHOFF-VON NEUMANN THEOREM 23

Formally, consider the social planner’s problem:

maximize ω subject to(11)

Pia ∈ N for all i ∈ N, a ∈ O,

PS ≤ qS, for all S ∈ HO,∑
a∈O

Pia ≤ q{i}×O, for all i ∈ N,

ω ≤
∑
a∈O

Piavia for all i ∈ N.

This problem is known to be computationally difficult. Thus in practice, the social

planner may need to use a mechanism that is easier to implement. On the other hand,

she wants to attain the objective at least approximately. To attain these conflicting goals,

consider the following two-stage algorithm. In the first stage, solve the following linear

programming problem:

maximize ω subject to(12)

Pia ∈ [0,∞) for all i ∈ N, a ∈ O,

PS ≤ qS, for all S ∈ HO,∑
a∈O

Pia ≤ q{i}×O, for all i ∈ N,

ω ≤
∑
a∈O

Piavia for all i ∈ N.

Since the problem relaxes the integrality of the first constraint, the solution may be

infeasible. On the other hand the optimal solution of this problem is easy to compute

since it is a simple linear programming problem. In the second stage, given the optimal

solution of the linear programming problem (12), round the solution into an integer-

valued solution, making the assignment a feasible solution in problem (11). The cost of

doing so is, of course, that the social welfare typically decreases when the social planner

modifies the optimal fractional solution into an integral one. However, the following claim

guarantees that the loss of efficiency can be bounded.

Corollary 4. Let P ∗ be an optimal solution of the above linear programming problem (12)

with optimal value ω∗. Then there exists an integer solution P ′ of the integer programming

problem (11), with value ω′ ≥ ω∗ − maxi∈N vi, where vi = max{via|a ∈ O,Pia > 0}. In
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particular, ω′ ≥ ω∗∗ − maxi∈N vi where w∗∗ is the optimal value of the original integer

programming problem (11).

Proof. Let P ∗ be the solution of the linear programming problem (12), with optimal value

ω∗. By Theorem 3, there exists P ′ that is integer-valued and satisfies∑
a

P ′iavia ≥
∑
a

P ∗iavia − vi,(13)

for each i. Since
∑
a

P ∗iavia ≥ ω∗ for each i by construction, inequality (13) implies that∑
a

P ′iavia ≥ ω∗ − vi, implying ω′ ≥ ω∗ − maxi∈N vi. Finally, w∗ ≥ w∗∗ since w∗ is

the optimal value of a less constrained problem (12) than problem (11). Thus we have

ω′ ≥ ω∗∗ −maxi∈N vi, completing the proof. �

Corollary 4 generalizes Bezáková and Dani (2005), who proposed a similar two-stage

algorithm when the environment is the simple EBvN . While Corollary 4 can handle more

complex situations, we acknowledge that Corollary 4 is only a mild extension. On the

other hand we emphasize the methodological innovation. Corollary 4 is shown by The-

orem 3, which in turn is a direct consequence of our rounding result Theorem 1. Our

contribution here is that apparently dissimilar results such as utility guarantee and fair

division mechanisms can be derived from one fundamental result.

5.4. Scheduling Jobs on Parallel Machines: Minimize Makespan Problem. Our

approach has can be applied to the so-called “minimize makespan problem” studied widely

in computer science.

Consider the following setting, slightly generalizing Lenstra, Shmoys, and Tardos (1990).

There is a set N of parallel machines and a set A of independent jobs. Each job needs to

be assigned to one of the machines. The job is indivisible, that is, each job needs to be

assigned to one machine in its entirety (or equivalently, it is prohibitively costly to process

part of a job in one machine and process remaining parts in others). The processing of

job a on machine i takes time cia. The machines are parallel and jobs are independent,

that is, more than one machines can process jobs simultaneously and any job can be

processed irrespective of whether other jobs are already completed. The makespan of

the assignment of jobs to machines is the time needed to finish all jobs. The objective is

to find a schedule that minimizes the makespan.

Let Ji(t) denote the set of jobs that require at most time t when processed by machine

i, and let Ma(t) denote the set of machines that can process job a in no more than time

t. Consider the relaxed problem in which random assignments are allowed, and let P

be a fractional assignment of jobs to machines where each machine i finishes processing
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jobs by deadline di (a fractional solution is often easy to find because linear programming

techniques are applicable). We will show the following slight generalization of the rounding

theorem of Lenstra, Shmoys, and Tardos (1990).

Corollary 5 (Theorem 1 of Lenstra, Shmoys, and Tardos (1990)). Let c = (cia)(i,a)∈N×O ∈
R|N |×|O|+ , d = (da)a∈O ∈ R|O|+ and t ∈ R+ be given. If there is a feasible solution P to the

(in)equalities, ∑
i∈Ma(t)

Pia = 1, for a ∈ O,

∑
a∈Ji(t)

Piacia ≤ di, for a ∈ O,

Pia ≥ 0, for a ∈ Ji(t), i ∈ N,

then there is an integer solution P ′ to the following set of conditions,∑
i∈Ma(t)

P ′ia = 1, for a ∈ O,(14)

∑
a∈Ji(t)

P ′iacia ≤ di + t, for a ∈ O,

P ′ia ∈ {0, 1}, for a ∈ Ji(t), i ∈ N.

Proof. By Theorem 3, there exists P ′ that is integer-valued and satisfies (14) and∑
a

P ′iacia ≤
∑
a

Piacia + ci.

By definition of Ma(t) and the assumption, Pia > 0 implies cia ≤ t. This completes the

proof. �

The result implies that there exists a feasible integer solution whose makespan is within

time t of the optimal (infeasible) fractional solution, where t is the time of the single

slowest job processed in the fractional solution. Since the optimal fractional solution is

weakly better than the optimal feasible integer solution, we have a method that finds an

integer solution that is “close” to the true optimum. Some generalizations of the minimize

makespan problem, such as Theorem 2.1 of Shmoys and Tardos (1993), are also corollaries

of Theorem 3, via a logic similar to the proof of Corollary 5.

5.5. Two-Sided Matching. Our approach can be applied to the two-sided matching

environment. In this section, both N and O are sets of agents. We allow for many-to-

many matching, that is, some agents in N can be matched with more than one agent in

O each and vice versa.
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Theorem 4. Consider a problem as in Theorem 1 for which, additionally,

HN = {{(i, a)}|(i, a) ∈ N ×O} ∪ {{i} ×O|i ∈ N},

HO = {N × {a}|a ∈ O}.

Suppose that there are sets of values (via)(i,a)∈N×O and (wia)(i,a)∈N×O such that, for each

agent i ∈ N (respectively agent a ∈ O), her expected utility from a random assignment P

is
∑
a∈O

Piavia (respectively
∑
i∈N

Piawia). Then, for any P , there exists a decomposition of P

that satisfies all of the conditions of Theorem 1, and also:

∑
a

P ′iavia −
∑
a

P ′′iavia ∈ [−vi, vi](15)

∑
a

P ′iavia ∈

[∑
a

Piavia − vi,
∑
a

Piavia + vi

]
,(16) ∑

i

P ′iawia −
∑
i

P ′′iawia ∈ [−wa, wa](17)

∑
i

P ′iawia ∈

[∑
i

Piawia − wa,
∑
i

Piawia + wa

]
,(18)

for each i, a and each P ′ and P ′′ being part of the convex decomposition, where vi =

max{via|a ∈ O,Pia > 0} and wa = max{wia|i ∈ N,Pia > 0}.

Proof. The proof is a straightforward adaptation of the proof of Theorem 3 and hence is

omitted. �

Let us suggest one possible application. There are two leagues of sports teams N and O,

say the American League and National League in professional baseball, and the planner

wants to schedule interleague play. The planner wants to ensure that the strength of

opponents that teams in a league play against is as equalized as possible among teams in

the same league. For that goal, the planner could first give a uniform probability for each

match: That will give one specific random assignment in which any pair of teams in the

same league is treated equally. Then, using Theorem 4, the planner finds a feasible match,

that is, a deterministic assignment matrix, in which differences in strength of opponents

is bounded by one game with the strongest opponent in the other league, no matter how

many games are scheduled for each team.

We note that transforming this feasible match into a specific schedule - i.e., not only

how often does Team A play Team B, but when - is considerably more complicated.

For example, the problem involves scheduling both intraleague and interleague matches
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simultaneously, dealing with geographical constraints and so forth. We do not claim that

our method can be directly used to such complicated situations. Rather, our point here is

to suggest a possibility that our analysis may be a useful first step to solve some problems

that have not been considered to be related to questions such as school choice or fair

allocation. See Nemhauser and Trick (1998) for further discussion of sport scheduling.

6. Optimal Assignment with Monetary Transfers

The next application considers the optimal assignment problem with monetary trans-

fers, and its generalizations. In a recent paper, Milgrom (2008) considers the “assignment

auction,” a multi-object auction for close substitutes, building on the optimal assignment

literature by Koopmans and Beckman (1957) and Shapley and Shubik (1972). Buyers

are assumed to have a valuation function that is additive in objects except that there are

(possibly) hierarchical ceiling constraints on subsets of objects. He further describes the

assignment exchange model, in which there are multiple buyers and sellers.

Assume there is a set of n buyers and m sellers where each buyer is indexed by n and

each seller by m. Each buyer and seller is assumed to be able to submit multiple “bids”

indexed by i and j respectively, where buyer n has in bids and seller m has jm bids.

For each pair (n, i), there is a ceiling constraint. Moreover, there is a set of additional

constraints. Constraints have a hierarchical form G. Formally, the problem is written as

maximize
k∑
k=1

n∑
n=1

in∑
i=1

vnikxnik −
k∑
k=1

m∑
m=1

jm∑
j=1

cmjkymjk subject to(19)

∑
n,i

xnik −
∑
m,j

ymjk ≤ 0 for all product versions k,

∑
(n,i,k)∈S

xnik ≤ zS for all S ∈ G,

∑
k

ymjk ≤ qmj for all offers m, j,

xnik, ymjk ≥ 0 for all m,n, i, j, k.

In this environment, we derive Theorem 7 of Milgrom (2008) using our framework.

Corollary 6 (Theorem 7 of Milgrom (2008)). If zS and qmj are positive integers for all

m, j, S, then there is an integer optimal solution to problem (19).

Proof. Let P ∗ be an optimal solution of Problem (19), which is in general a random

assignment (the existence of such a solution is clear). Let N be all the possible agent-bid
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pairs, and Nb and Ns be set of possible buyer-bid pairs and seller-bid pairs respectively.

Then, consider the following bihierarchies:

HN = G ∪ {{(n, i, k)}|(n, i) ∈ N, k ∈ O} ∪ {{(m, j)} ×O|(m, j) ∈ Ns},

HO = {N × {a}|a ∈ O}.

Let Pnik = xnik and Pmjk = −ymjk for all m, j, k, and vmjk = cmjk if (m, j) ∈ Ns. Then

the constraints in (19) can be rewritten as∑
(n,i,k)∈N×{k}

Pnik ≤ 0 for all product versions k,(20)

∑
(n,i,k)∈S

Pnik ≤ zS for all S ∈ G,

−qmj ≤
∑

(m,j,k)∈{(m,j)}×O

Pmjk for all offers (m, j) ∈ Ns,

Pnik ≥ 0 for all n, i, k,

Pmjk ≤ 0 for all m, j, k.

P ∗ satisfies the above constraints represented by (20). Since G is a hierarchy, it is easy to

see that H defined above is a bihierarchy. Constraints (20) satisfy the conditions for the

conclusion of Corollary 1 to apply: the sum of entries in sets in H is constrained by weak

inequalities where constraints are integers or ∞ or −∞. Therefore, by Corollary 1, there

is a decomposition of P ∗ for which the sum of entries of each set in H is an integer. Since

{(n, i, k)} ∈ H for each (n, i) ∈ N, k ∈ O by definition of H, this in particular means that

each matrix that is part of the decomposition has all its entries being integers. Since the

objective function is linear, we conclude that there is an integer solution to Problem (19),

completing the proof. �

More generally, Theorem 1 can be used to derive a conclusion as in Milgrom (2008) for

slightly more general environments, namely under any bihierarchical constraint structure.

7. Generalization

Throughout the paper we have focused on random assignment of objects (or agents)

to agents. Implicit in the description of the model was the assumption that there are

two kinds of entities and the social planner considers matchings between them. However,

some of our results can be extended to a more general environment as described below.

Let X be a finite set and H be a collection of subsets of X. We call a pair X = (X,H)

hypergraph. Let f : 2X → R be a weight function satisfying additivity: f(S) =
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x∈S f(x) for each S ⊂ X. Let F be the set of all such weight functions. We say the

hypergraph X is BvN decomposable if, for each f ∈ F , there exist f 1, ..., fk each in F
such that

f =
k∑
j=1

αjf
j,

where αj > 0, j = 1, ..., k, and
∑k

j=1 αj = 1, and for each j = 1, ..., k,

(i) f j(S) ∈ Z, ∀S ∈ H;

(ii) bf(S)c ≤ f j(S) ≤ df(S)e, ∀S ∈ H.

We say that a hypergraph X forms a bihierarchy if there are H1 and H2 such that

H1 ∪ H2 = H, H1 ∩ H2 = ∅ and Hi, i = 1, 2 is a hierarchy: if S, S ′ ∈ Hi, then either

S ∩ S ′ = ∅, or S ⊂ S ′ or S ′ ⊂ S.

It is useful to define a dual of a hypergraph. Given a hypergraph X = (X,H), its dual

is X T = (H, X). A bihierarchy can be defined for its dual. To this end, for each x ∈ X, let

S(x) := {S ∈ H|x ∈ S} be the collection of sets in H each containing x. We say the dual

of X forms a bihierarchy if there are X1 and X2 such that X1 ∪X2 = X, X1 ∩X2 = ∅
and Xi, i = 1, 2, is a dual hierarchy: if x, x′ ∈ Hi, then either S(x) ∩ S(x′) = ∅, or

S(x) ⊂ S(x′) or S(x′) ⊂ S(x).

We can define these concepts via matrices. Enumerating X = {x1, ...., xn} and H =

{S1, ..., Sm}, the hypergraph is represented by an n×m {0, 1} incidence matrix A = [aij]

such that aij = 1{xi∈Sj}. The incidence matrix of the dual is AT , the transpose of A.

Theorem 5. A hypergraph X = (X,H) is BvN decomposable if either it forms a bihiearchy

or its dual forms a bihierarchy.

Example 2. Consider X = {a, b, c, d, e, f}, and

H = {{a, d}, {a, e}, {a, f}, {b, d}, {b, e}, {b, f}, {c, d}, {c, e}, {c, f}}.

The hypergraph X = (X,H) is in fact a bipartite graph in this case. Even though it

does not form a bihierarchy, its dual forms a bihierarchy. In fact, its dual is assignment

between three agents and three objects, with only row and column constraints.

Example 3. Consider X = {a, b, c, d, e, f, α, β, δ, ε}, and

H = {{a, d, α, δ}, {a, e, α, ε}, {a, f}, {b, d, β, δ}, {b, e, β, ε}, {b, f}, {c, d}, {c, e}, {c, f}}.

The hypergraph X = (X,H) again does not form a bihierarchy, but its dual forms a

bihierarchy. In fact, its dual is the 3 by 3 matching, with row and column constraints,

and two subrow and two subcolumn constraints.
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8. Conclusion

We generalize the Birkhoff-von Neumann theorem so that the implementation of lot-

teries is possible whenever the set of constraints can be partitioned into two hierarchies.

Thus, given any random assignment satisfying constraints in two hierarchies, the assign-

ment can be realized by using a lottery over outcomes each of which satisfies all the

constraints. Moreover, we provide a maximal domain result, that indicates that the bi-

hierarchical structure is necessary (subject to a technical condition) to guarantee that a

random assignment can always be implemented by lotteries over feasible outcomes. We

presented several applications, including (i) random assignment mechanisms (especially

the probabilistic serial mechanism) under complex constraints, (ii) utility guarantee for

problems with multi-unit demand, (iii) fair division, (iv) the minimize-makespan problem,

(v) two-sided matching, and (vi) optimal assignment.

As the basic result is applicable to a wide range of situations as exemplified in this

paper, we envision that the result will prove useful in other economic and non-economic

applications. Finding more applications is an interesting topic left for the future.

Appendix A. Proofs of Theorems 1 and 5

Since Theorem 1 is a special case of Theorem 5, we prove the latter.

A matrix is totally unimodular if the determinant of every square submatrix is 0,

−1 or +1.

Lemma 1. (Hoffman and Kruskal) If the matrix is totally unimodular, then the vertices

of the polytope defined by linear integral constraints are integer valued.

We can easily use one of the conditions to say that if the incidence matrix of a hyper-

graph is totally unimodular, then the hypergraph is BvN decomposable.

Lemma 2. (Ghouila-Houri) A {0, 1} incidence matrix is totally unimodular if and only

if each collection of its columns can be partitioned into red and blue columns such that for

every row of that collection, the sum of nonzero entries in the red columns differs by at

most one from the sum of the nonzero entries in the blue columns.

Proof of Theorem 5. Suppose first X forms a bihiearchy, with H1 and H2 such that H1 ∪
H2 = H, H1 ∩ H2 = ∅ and Hi, i = 1, 2 is a hierarchy. Let A be the associated incidence

matrix. Take any collection of columns of A, corresponding to a subcollection E of H.

We shall partition E into two sets, B and R. First, for each i = 1, 2, we partition E ∩Hi

into nonempty sets Ei
1, E

i
2, ..., E

i
ki defined recursively as follows: Given Ei

0 ≡ ∅, for each
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j = 1, ..., we let

Ei
j := {S ∈ (E ∩Hi) \ (∪j−1

j′=1E
i
j′) |@S ′ ∈ (E ∩Hi) \ (∪j−1

j′=1E
i
j′ ∪ S) such that S ′ ⊃ S}.

(The non-emptiness requirment means that once all sets in E ∩Hi are accounted for, the

recursive definition stops, which it does at a finite j = ki.) Since Hi is a hierarchy, any

two sets in Ei
j must be disjoint, for each j = 1, ..., ki. Hence, any element of X can belong

to at most one set in each Ei
j. Observe next for j < l,

⋃
S∈Ei

l
S ⊂

⋃
S∈Ei

j
S. In other

words, if an element of X belongs to a set in Ei
l , it must also belong to a set in Ei

j for

each j < l.

We now define sets B and R that partition E:

B := {S ∈ E|S ∈ Ei
j, i+ j is an even number },

and

R := {S ∈ E|S ∈ Ei
j, i+ j is an odd number }.

We call the elements of B “blue” sets, and call the elements of R “red” sets.

Fix any x ∈ X. If x belongs to any set in E∩H1, then it must belong to exactly one set

S1
j ∈ E1

j , for each j = 1, ..., l for some l ≤ k1. These sets alternate in colors in j = 1, 2..,

starting with blue: S1
1 is blue, S1

2 is red, S1
3 is blue, and so forth. Hence, the number of

blue sets in E ∩ H1 containing x either equals or exceeds by one the number of red sets

in E ∩ H1 containing x. By the same reasoning, if x belongs to any set in E ∩ H2, then

it must belong to one set S2
j ∈ E2

j , for each j = 1, ...,m for some m ≤ k2. These sets

alternate in colors in j = 1, 2.., starting with red: S2
1 is red, S2

2 is blue, S2
3 is red, and so

forth. Hence, the number of blue sets in E ∩H1 containing x is less by one than or equal

to the number of red sets in E ∩ H1 containing x. In sum, the number of blue sets in

E containing x differs at most by one from the number of red sets in E containing x. It

thus follows that an arbitrary submatrix of A is equitably bicolorable. Hence, A is totally

unimodular. By Hoffman and Kruskal, for any f ∈ F , the vertices of the set

{f ′ ∈ F|bf(S)c ≤ f ′(S) ≤ df(S)e,∀S ∈ H}

are integer valued, so the hypergraph X is BvN decomposable.

We next consider the case where the dual of X forms a bihierarchy. To this end, consider

a hypergraph X ∗ = (X∗,H∗) such that X∗ = H and H∗ = X. That is, X∗ is a finite

ground set whose elements share the same labels as the hyperedges in H, and H∗ is a

collection of subsets of H∗ that have the same labels as X. Assume that S ∈ X∗ is an

element of x ∈ H∗ in X ∗ if and only if x is an element of S in X . The fact that the

dual of X forms a bihierarchy means that (the primal of) X ∗ forms a bihierarchy. The
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argument made above then implies that the incidence matrix A∗ associated with X ∗ is

totally unimodular. Since this matrix coincides with the incidence matrix of the dual of

X , A∗ = AT . Since a transpose of a totally unimodular matrix is totally unimodular in

general by definition, it follows that the incidence matrix A of X must be also totally

unimodular. Hence, X is BvN decomposable. �

A.1. Computable Algorithm for Bihierarchy. For the case of bihierarchy, we provide

the following algorithm to find a decomposition. Observe that the algorithm gives a

constructive proof of the Theorem for the bihierarchy case. We say a set S ⊂ X is

integral [resp. nonintegral] (under f) if f(S) ∈ Z and an element x ∈ X is integral

[resp. nonintegral] (under f) if f(x) ∈ Z [resp. f(x) 6∈ Z]. In case there is no confusion,

we suppress the qualifier inside the parenthesis.

We define the degree of integrality of f with respect to H:

deg[f(H)] := #{S ∈ H|f(S) ∈ Z}+ #{x ∈ X|{x} 6∈ H, f(x) ∈ Z}.

Lemma 3. (Decomposition) Suppose a hypergraph X = (X,H) forms bihierarchy. Then,

for any f ∈ F , there exist f 1 and f 2, both in F , and γ ∈ (0, 1) such that

(i) f = γf 1 + (1− γ)f 2:

(ii) f 1(S), f 2(S) ∈ [bf(S)c , df(S)e], ∀S ∈ H.

(iii) deg[f i(H)] > deg[f(H)] for i = 1, 2.

Our algorithm consists of two parts: Fission algorithm and Decomposition algorithm.

� Fission Algorithm

1. Within-Hierarchy Unnesting Phase

(1) Let Ci0, i = 1, 2, be the collection of all integral sets of Hi under f .

(2) Step t = 1, ....: Find sets S, S ′ in Cit−1 such that S ⊂ S ′.

(a) If no such sets exist, move to the Dividing Phase.

(b) If such sets exist, remove S ′ from Cit−1 and replace it by S ′ \ S, and call the

resulting collection Cit, and iterate to Step t+ 1.

(3) The unnesting phase stops in finite interations for each Hi, i = 1, 2. Call the

resulting collections D1
0 and D2

0, respectively, and move to Dividing Phase.

2. Dividing Phase

(1) Step t = 1, .... Find S ∈ D1
t−1 and S ′ ∈ D2

t−1 such that S \ S ′, S ′ \ S and S ∩ S ′

are all nonempty and integral.

(a) If no such sets exist, stop and move to the Cross-Hierarchy Unnesting Phase.
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(b) If such sets exist, then remove them from D1
t−1 ∪ D2

t−1 and add S \ S ′ and

S∩S ′ to D1
t−1, and add S ′ \S to D2

t−1, and call them D1
t and D2

t , respectively,

and move to Step t+ 1.

(2) This process ends in finite steps. Call the resulting collections, G1
0 and G2

0 , respec-

tively, and move the Cross-Hierarchy Unnesting Phase.

3. Cross-Hierarchy Unnesting Phase

(1) Step t = 1, .... Find S ∈ Git−1 and S ′ ∈ Gjt−1, i = 1, 2, j = 3− i, such that S ⊂ S ′.

(a) If no such sets exist, stop and move to the Decomposition Algorithm.

(b) If such sets exist, then remove S from Git−1 and S ′ from Gjt−1, and add S and

S ′ \ S to Gjt−1, and call the resulting collections Git and Gjt , respectively, and

iterate to Step t+ 1.

(2) This process ends in finite steps. Call the resulting collections, H1
and H2

, re-

spectively, and move to the Decomposition Algorithm.

We make several observations on H1
and H2

:

� Observations

(1) The sets in H1 ∪ H2
are integral under f . Conversely, if all sets in H1 ∪ H2

are integral under any f ′ ∈ F , then any set in H that is integral under f is also

integral under f ′. This latter observation follows from the fact that, by the Fission

Algorithm, any set in H that is integral under f can be expressed as a union of

disjoint sets in H1 ∪H2
.

(2) The sets within each Hi
, i = 1, 2, are disjoint: Any nesting within each hierarchy

is eliminated by the end of the within-unnesting phases, and the dividing phase

and cross-unnesting phases do not create any new nesting within each hierarchy.

(3) There are no two sets S, S ′ ∈ H1 ∪ H2
such that S ⊂ S ′: This follows from

Observation (2) and the cross-unnesting phase.

(4) Each element of X could be in at most one set of each Hi
: This follows from

Observation (2).

(5) If there are S, S ′ ∈ H1 ∪H2
such that S \ S ′, S ′ \ S and S ∩ S ′ are all nonempty,

then all these sets must be non-integral: This follows from the original bihierarchy

structure and the dividing phase.

Let N = {x ∈ X|@S ∈ H1 ∪ H2
s.t. x ∈ S} be the elements of X not in any integral

sets in C.

� Decomposition Algorithm

(1) Step 0:
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(a) If N is non-empty, then circle any non-integral element of N and proceed to

Termination - Dead End.

(b) If there does not exist any non-integral element in N , then move to Step 1.

(2) Step 1:

(a) If no set in H1 ∪H2
contains any non-integral element, then stop the Decom-

position Algorithm. [Every element in X is then integral.]

(b) If there exists a non-integral element x1 in some S1 ∈ H
1 ∪H2

, then circle it

and proceed to Step 2.

(3) Step t = 2, ....:

(a) In case xt−1 ∈ St−1 is circled, where St−1 ∈ H
i
, i = 1, 2:

(i) Find a non-integral element in St−1 \ St−2 different from xt−1. (Let

S0 ≡ ∅.) Such an element exists since St−1 is integral by Observation

(1), and since, by Observation (5), St−1 \ St−2 is non-integral whenever

St−1∩St−2 is non-empty. If there is any such element that is an element

of Si for some i ∈ {1, . . . , t − 2}, then erase the markings (e.g., circle

and square) of all xj, for j = 1, ..., i− 1, and proceed to Termination

- Cycle (note that Si ∈ H
3−i

by observation (4)). Otherwise, choose

one element xt 6= xt−1, xt ∈ St−1 \ St−2 arbitrarily and square it.

(ii) If no set other than St−1 contains xt, then stop and proceed to Termi-

nation - Chain.

(iii) Suppose another set, St, contains xt. Then, St ∈ H
3−i

since, by Obser-

vation (2), all sets in Hi
are disjoint. Also, by the construction in Step

3(a)i above, St 6= Si for any i = {1, . . . , t− 1}. Proceed to Step t+ 1.

(b) In case xt−1 ∈ St−1 is squared, where St−1 ∈ H
i
, i = 1, 2:

(i) Find a non-integral element in St−1 \ St−2 different from xt−1. (Let

S0 ≡ ∅.) Such an element exists since St−1 is integral by Observation

(1), and since, by Observation (5), St−1 \ St−2 is non-integral whenever

St−1∩St−2 is non-empty. If there is any such element that is an element

of Si for some i ∈ {1, . . . , t − 2}, then erase the markings (e.g., circle

and square) of all xj, for j = 1, ..., i− 1, and proceed to Termination

- Cycle (note that Si ∈ H
3−i

by observation (4)). Otherwise, choose

one element xt 6= xt−1, xt ∈ St−1 \ St−2 arbitrarily and circle it.

(ii) If no set other than St−1 contains xt, then stop and proceed to Termi-

nation - Chain.
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(iii) Suppose another set, St, contains xt. Then, St ∈ H
3−i

since, by Obser-

vation (2), all sets in Hi
are disjoint. Also, by the construction in Step

3(b)i above, St 6= Si for any i = {1, . . . , t− 1}. Proceed to Step t+ 1.

Since X is finite, we eventually reach the Termination Step.

(4) Termination - Dead End

(a) Construct a mapping f 1 which is the same as f , except at the circled element

x. f 1(x) is obtained by raising f(x) as high as possible without “crossing”

any constraint in H. This amount α is positive.

(b) Construct a mapping f 2 which is the same as f , except at the circled element

x. f 2(x) is obtained by reducing f(x) as low as possible without “crossing”

any constraint in H. The amount of reduction β is positive.

(c) Set γ by γα + (1− γ)(−β) = 0, i.e., γ = β
α+β

.

(d) The decomposition of f into f = γf 1 + (1 − γ)f 2 satisfies the requirements

of the Lemma by construction.

(5) Termination - Chain

(a) Observe that the sets in H1 ∪ H2
containing either circled or squared term

does not form a cycle. By construction, each of these sets contains precisely

one circled element and one squared element.

(b) Construct a mapping f 1 in F which is the same as f , except at the circled

elements, XC , and at squared elements, XS. For each x ∈ XC , set f 1(x) =

f(x)+α, and for each x ∈ XS, set f 1(x) = f(x)−α, where α > 0 is the largest

number that still satisfies all constraints in H. By construction, f 1(S) = f(S)

for all S ∈ H1∪H2
. Observation (1) then ensures that f 1(S) = f(S) for each

integral set S ∈ H.

(c) Construct a mapping f 2 which is the same as f , except at the circled elements,

XC , and at squared elements, XS. For each x ∈ XC , set f 2(x) = f(x) − β,

and for each x ∈ XS, set f 2(x) = f(x)+β, where β > 0 is the largest number

that still satisfies all constraints in H. By construction, f 2(S) = f(S) for

all S ∈ H1 ∪ H2
. Observation (1) then ensures that f 2(S) = f(S) for each

integral set S ∈ H.

(d) Set γ by γα + (1− γ)(−β) = 0, i.e., γ = β
α+β

.

(e) The decomposition of f into f = γf 1 + (1 − γ)f 2 satisfies the requirements

of the Lemma by construction.

(6) Termination - Cycle
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(a) Observe that the sets St, ..., St+k form a cycle (recall that t = 1, unless the con-

struction involves the erasing of markings). Since these sets altenate between

Hi
and H3−i

, the order of the cycle must be even. Further, by construc-

tion, each of these sets contains precisely one circled element and one squared

element.

(b) Construct a mapping f 1 which is the same as f , except at the circled elements,

XC , and at squared elements, XS. For each x ∈ XC , set f 1(x) = f(x) + α,

and for each x ∈ XS, set f 1(x) = f(x)−α, where α > 0 is the largest number

that still satisfies all constraints in H. By construction, f 1(S) = f(S) for all

S ∈ H1∪H2
. Observation (1) then ensures that f 1(S) = f(S) for all integral

set S ∈ H.

(c) Construct a mapping f 2 which is the same as f , except at the circled elements,

XC , and at squared elements, XS. For each x ∈ XC , set f 2(x) = f(x) − β,

and for each x ∈ XS, set f 2(x) = f(x)+β, where β > 0 is the largest number

that still satisfies all constraints in H. By construction, f 2(S) = f(S) for all

S ∈ H1∪H2
. Observation (1) then ensures that f 2(S) = f(S) for all integral

set S ∈ H.

(d) Set γ by γα + (1− γ)(−β) = 0, i.e., γ = β
α+β

.

(e) The decomposition of f into f = γf 1 + (1 − γ)f 2 satisfies the requirements

of the Lemma by construction.

Appendix B. Proof of Theorem 2

In order to prove the Theorem, we study several cases.

• Assume there is S ∈ H such that S = N ′ × O′ where 2 ≤ |N ′| < |N | and

2 ≤ |O′| < |O|. Let {i, j} × {a, b} ⊆ S, k /∈ N ′ and c /∈ O′ (observe that such

i, j, k ∈ N and a, b, c ∈ O exist by the assumption of this case). Consider the

matrix P where

Pia = Pic = Pjb = Pkb = Pkc = 0.5,

and all other entries are 0. This matrix P satisfies all the above constraints. We

can show the following claim.

Claim 1. There exists no convex decomposition of P into matrices each of which

that satisfies conditions in Theorem 1.
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Proof. Suppose the contrary. Then there exists an integral matrix X that is part

of decomposition of P , with

Xia = 1.(21)

Then, since the entries in row i should sum up to at most one by the assumption,

we have Xic = 0. Since Pic + Pkc = 1, this implies Xkc = 1. Since the entries in

row k should sum up to at most one by the assumption, we have Xkb = 0. Since

Pjb + Pkb = 1, this implies

Xjb = 1.(22)

This is a contradiction, since (21) and (22) imply that XS ≥ Xia +Xjb = 2 > 1 =

dPSe. �

• Assume there is S ∈ H such that, for some i, j ∈ N and a, b ∈ O, we have

(i, a), (j, b) ∈ S with i 6= j and a 6= b, and (i, b) /∈ S. Consider the matrix P where

Pia = Pib = Pjb = 0.5,

and all other entries are 0. An argument analogous to the proof of Claim 1 shows

that this matrix has no convex decomposition satisfying conditions in Theorem 1.

By the above arguments, it suffices to consider a case in which all constraint sets in H
have one of the following forms.

(1) {i} ×O′ where i ∈ N and O′ ⊆ O,

(2) N ′ ×O where N ′ ⊆ N ,

(3) N ′ × {a} where a ∈ O and N ′ ⊆ N ,

(4) N ×O′ where O′ ⊆ O.

Therefore it suffices to consider the following cases.

(1) Assume that there are S ′, S ′′ ∈ H such that S ′ = {i} ×O′ and S ′′ = {i} ×O′′ for

some i ∈ N and some O′, O′′ ⊂ O, S ′ ∩ S ′′ 6= ∅ and S ′ is neither a subset nor a

superset of S ′′. Then we can find a, b, c ∈ O such that a ∈ O′ \ O′′, b ∈ O′ ∩ O′′

and c ∈ O′′ \O′. Fix j 6= i. Consider the matrix P where

Pia = Pib = Pic = Pja = Pjc = 0.5,

and all other entries are 0. An argument analogous to the proof of Claim 1 shows

that this matrix has no convex decomposition satisfying conditions in Theorem 1.

(2) Assume that there are S ′, S ′′ ∈ H such that S ′ = N ′ × O and S ′′ = N ′′ × O for

some N ′, N ′′ ⊂ N , S ′ ∩ S ′′ 6= ∅ and S ′ is neither a subset nor a superset of S ′′.
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In such a case, we can find i, j, k ∈ N such that i ∈ N ′ \ N ′′, j ∈ N ′ ∩ N ′′ and

k ∈ N ′′ \N ′. Fix a, b ∈ O and consider the matrix P where

Pib = Pja = Pkb = 0.5,

and all other entries are 0. An argument analogous to the proof of Claim 1 shows

that this matrix has no convex decomposition satisfying conditions in Theorem 1.

(3) Assume that there are S ′, S ′′ ∈ H such that S ′ = N ′ × {a} and S ′′ = N ′′ × {a}
for some a ∈ O and some N ′, N ′′ ⊂ N , S ′ ∩ S ′′ 6= ∅ and S ′ is neither a subset

nor a superset of S ′′. This is a symmetric situation with Case 1, so an analogous

argument as before goes through.

(4) Assume that there are S ′, S ′′ ∈ H such that S ′ = N × O′ and S ′′ = N × O′′ for

some O′, O′′ ⊂ O, S ′∩S ′′ 6= ∅ and S ′ is neither a subset nor a superset of S ′′. This

is a symmetric situation with Case 2, so an analogous argument as before goes

through.

Appendix C. Proof of Propositions 1, 2, and 3

Proof of Proposition 1. “Only if” part. First note that the following property holds.

Claim 2. B1 and B2 are transitive, that is,

(k, c)B1 (j, b), (j, b)B1 (i, a)⇒ (k, c)B1 (i, a),

(k, c)B2 (j, b), (j, b)B2 (i, a)⇒ (k, c)B2 (i, a).

Proof. Suppose (k, c) B1 (j, b) and (j, b) B1 (i, a). Then, by definition of B1, we have

i = j = k and (i) c �i b since (k, c) B1 (i, b) and (ii) b �i a since (j, b) B1 (i, a). Thus

c �i a. Since (j, b)B1 (i, a), we have Pia > 0. Therefore (k, c)B1 (i, a) by definition of B1.

Suppose (k, c) B2 (j, b) and (j, b) B2 (i, a). Then ν(k, c) ⊆ ν(j, b) and ν(j, b) ⊆ ν(i, a)

by property (2). Hence ν(k, c) ⊆ ν(i, a) which is equivalent to (k, c)B2 (i, a), completing

the proof by property (2). �

To show the “only if” part of the Proposition, suppose B is strongly cyclic. By Claim

2, there exists a cycle of the form

(i0, b0)B1 (i0, a0)B2 (i1, b1)B1 (i1, a1)B2 (i2, b2)B1 (i2, a2)B2 · · ·B1 (ik, ak)B2 (i0, b0),

in which every pair (i, a) in the cycle appears exactly once except for (i0, b0) which appears

exactly twice, namely in the beginning and in the end of the cycle. Then there exists δ > 0
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such that a matrix Q defined by

Qia =


Pia + δ if (i, a) ∈ {(i0, b0), (i1, b1), . . . , (ik, bk)},

Pia − δ if (i, a) ∈ {(i0, a0), (i1, a1), . . . , (ik, ak)},

Pia otherwise,

is in PE . Since δ > 0 and bl �il al for every l ∈ {0, 1, . . . , k}, Q ordinally dominates P .

Therefore P is not ordinally efficient.

“If” part. Suppose P is ordinally inefficient. Then, there exists Q ∈ PE which ordinally

dominates P . We then prove that B, given (Γ, P ), must be strongly cyclic.

(1) Step 1: Initiate a cycle.

(a)

Claim 3. There exist (i0, a0), (i1, a1) ∈ N×O such that i0 = i1, Pi1a1 < Qi1a1

and (i1, a1)B1 (i0, a0) given (Γ, P ).

Proof. Since Q ordinally dominates P , there exists (i1, a1) ∈ N ×O such that

Qi1a1 > Pi1a1 and Qi1a = Pi1a for all a �i1 a1. So there exists a0 ≺i1 a1 with

Pi1a0 > Qi1a0 ≥ 0 since P{i1}×N = Q{i1}×N by assumption. Hence, we have

(i1, a1)B1 (i1, a0) = (i0, a0) given (Γ, P ). �

(b) If (i0, a0) ∈ ν(i1, a1), then (i0, a0) B2 (i1, a1) B1 (i0, a0), so we have a strong

cycle and we are done.

(c) Else, circle (i1, a1) and go to Step 2.

(2) Step t+ 1 (t ∈ {1, 2 . . . }): Consider the following cases.

(a) Suppose (it, at) is circled.

(i)

Claim 4. There exists (it+1, at+1) ∈ ν(it, at) such that Pit+1at+1 >

Qit+1at+1. Hence, (it+1, at+1)B2 ν(it, at).

Proof. Note that ν(it, at) $ N ×O since if ν(it, at) = N ×O, then there

exists (it′ , at′) with t′ < t and (it′ , at′) ∈ ν(it, at), so we have terminated

the algorithm. Thus we have
∑

(i,a)∈ν(it,at)
Pia = qν(it,at). Since Pitat <

Qitat , there exists (it+1, at+1) ∈ ν(it, at) such that Pit+1at+1 > Qit+1at+1 .

�

(ii) If (it′ , at′) ∈ ν(it+1, at+1) for t′ < t, then we have a strong cycle, (it′ , at′)B

(it+1, at+1)B ...B (it′ , at′), and at least one B is B1, so we are done.
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(iii) Else, square (it+1, at+1) and move to the next step.

(b) Case 2: Suppose (it, at) is squared.

(i)

Claim 5. There exists (it+1, at+1) ∈ ν(it, at) such that it+1 = it, Pit+1at+1 <

Qit+1at+1, and (it+1, at+1)B1 ν(it, at).

Proof. Since (it, at) is squared, by Claim 4, Pitat > Qitat . Since Q

ordinally dominates P , there must be (it+1, at+1) ∈ ν(it, at) with it+1 =

it such that Pit+1at+1 < Qit+1at+1 , and at+1 �it at. Since Pitat > Qitat ≥
0, we thus have (it+1, at+1)B1 ν(it, at). �

(ii) If (it′ , at′) ∈ ν(it+1, at+1) for t′ ≤ t, then we have a strong cycle, (it′ , at′)B

(it+1, at+1)B ...B (it′ , at′), and at least one B is B1, so we are done.

(iii) Else, circle (it+1, at+1) and move to the next step.

The process must end in finite steps and, at the end we must have a strong cycle. �

Proof of Proposition 2. Although the proof is a relatively simple modification of Theorem

1 of Bogomolnaia and Moulin (2001), we present the proof for completeness. We prove

the claim by contradiction. Suppose that PS(�) is ordinally inefficient for some �. Then,

by Proposition 1 and Claim 2 there exists a strong cycle

(i0, b0)B1 (i0, a0)B2 (i1, b1)B1 (i1, a1)B2 (i2, b2)B1 (i2, a2)B2 · · ·B1 (ik, ak)B2 (i0, b0),

in which every pair (i, a) appears exactly once except for (i0, b0) which appears exactly

twice, namely in the beginning and the end of the cycle. Let vl and wl be the steps of the

symmetric simultaneous eating algorithm at which (il, al) and (il, bl) become unavailable,

respectively (that is, (il, al) ∈ Svl−1 \Svl and (il, al) ∈ Swl−1 \Swl .) Since (il, bl)B1 (il, al),

by the definition of the algorithm we have wl < vl for each l ∈ {0, 1, . . . , k}. Also,

by (il, al) B2 (il+1, bl+1), we have vl ≤ wl+1 for any l = {0, 1, . . . , k} (with notational

convention (ik+1, ak+1) = (i0, a0).) Combining these inequalities we obtain w0 < v0 ≤
w1 < v1 ≤ · · · ≤ wk < vk ≤ wk+1 = w0, a contradiction. �

Proof of Proposition 3. Let P = PS(�). Fix i ∈ N and let O be ordered in the decreasing

order of �i, that is, a1 �i a2 �i · · · �i a|N |. Let v1 be the step in which i stops receiving

probability share of a1. In that step we have Pia1 = P v1
ia1

= tv1 and there is S1 ∈ HO

such that (i, a1) ∈ S1 and P v1
S1

= qS1
. Suppose Pja1 > Pia1 for some j ∈ N. Then we

have (j, a1) /∈ S1 since Pja1 ≤ tv1 = Pia1 if (j, a1) ∈ S1 by definition of the algorithm.

Also S1 = N1 × {a1} for some N1 ⊆ N with i ∈ N1 and j /∈ N1 since (i, a1) ∈ S1 and

(j, a1) /∈ S1. Let Q be defined as in (6). Then, since i ∈ N1 and j /∈ N1,
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QS1 ≥
∑
k∈N1

Pka1 − Pia1 + Pja1

>
∑
k∈N1

Pka1

≥
∑
k∈N1

P v1
ka1

= P v1
S1

= qS1
,

which implies that Q /∈ PE .
Let l ≥ 2 and vl be the step in which i stops receiving probability share of al. In that

step we have
∑l

m=1 Piam =
∑l

m=1 P
vl
iam

= tvl and there is Sl ∈ HO such that (i, al) ∈ Sl
and P vl

Sl
= qSl

. Suppose
∑m′

m=1 Pjam ≤
∑m′

m=1 Piam for all m′ ≤ l − 1 and
∑l

m=1 Pjam >∑l
m=1 Piam for some j ∈ N. Then we have (j, al) /∈ Sl since

∑l
m=1 Pjam ≤ tvl =

∑l
m=1 Piam

if (j, al) ∈ Sl by definition of the algorithm. Also Sl = Nl × {al} for some Nl ⊆ N with

i ∈ Nl and j /∈ Nl since (i, al) ∈ Sl and (j, al) /∈ Sl. Let Q be defined as in (6). Then,

since i ∈ Nl and j /∈ Nl,

QSl
≥

∑
k∈Nl

Pkal
− Pial

+ Pjal

>
∑
k∈Nl

Pkal

≥
∑
k∈Nl

P vl
kal

= P vl
Sl

= qSl
,

which implies that Q /∈ PE . By induction, we complete the proof. �
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