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Abstract
Inductive game theory has been developed to explore the origin of beliefs of a

person from his accumulated experiences of a game situation. So far, the theory has
been restricted to a person’s view of the structure not including another person’s
thoughts. In this paper, we explore the experiential origin of one’s view of the other’s
beliefs about the game situation. We restrict our exploration to a 2-role (strategic)
game, which has been recurrently played by two people who occassionally switch
roles. By switching roles, each person accumulates experiences of both roles and
these experiences become the source of his transpersonal view about the other.
Reciprocity in the sense of role-switching is crucial for deriving his own and the
other’s beliefs. We consider how a person can use these for his behavior revision, and
we define an equilibrium called an intrapersonal coordination equilibrium. Based
on this concept, we show that cooperation will emerge as the degree of reciprocity
increases.

1. Introduction

We will consider the problem of how a person obtains beliefs1 about other persons’
thoughts. We look for experiential bases for such beliefs. A crucial distinction is made
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between persons (actors) and social roles (players), which allows a person to switch
roles from time to time. This enables a person, based on his experiences, to guess the
other person’s thinking, and even to obtain a social perspective, which goes beyond
an individual perspective. Within this framework, we can go further to discuss the
emergence of cooperation.

In this introduction, we will refer to the standard game theory and relevant liter-
atures so as to better understand our approach. Then we discuss new concepts to be
needed and phenomena to be captured in the scope of our approach.

1.1. General Motivations

It is customary in game theory and economics to assume well-formed beliefs of a game
for each player, which is often implicit and sometimes explicit. The present authors
[15], [16] and [17] have developed inductive game theory in order to explore the basic
question of where a personal understanding of a game comes from2. In those papers, an
individual view and its derivation from a player’s experiences are discussed from various
points of view. Nevertheless, they did not reach the stage of research on his thoughts
about other persons’ thoughts. This paper aims to take one step further to explore the
origin (and emergence) of a person’s thoughts about other persons’ thoughts.

To take this step, a person needs to think about others’ beliefs on the social structure.
We introduce the concept of social roles, and use also the term, person, to distinguish
it from the standard term “player”; the latter is close to our notion of a social role.
A person takes a social role (exogenously given), and may switch his role from time
to time. Taking different roles will be a key to understanding others’ perspectives.
By projecting his experiences of the various roles in his mind, he develops his social
perspective including others’ thoughts. In the following, we confine ourselves to the
2-person case to focus on the main problems emerging from those new concepts.

When the persons switch social roles reciprocally, a new feature is emerging: Recip-
rocal relationships provide each person with a rich source for inferring/guessing the
beliefs of the other person3. When the persons switch roles enough, each has been in
the same position and has seen the other person in the corresponding position. This level
of reciprocity may give each person “reason to believe” that the other’s view is the same
as his. This idea is reminiscent of a requirement imposed for “common knowledge” in
Lewis [20], which is more similar to the fixed-point characterization of “common knowl-

2A seminal form of inductive game theory was given in Kaneko-Matsui [18]. An alternative formu-
lation was given in Matsui [21].

3We use the term “reciprocal” in the sense of “performed, experienced, or felt by both sides” as
(3) of the American Heritage dictionary (1980). It is used in the evolutionary and behavioral game
theory literature to mean a type of “tit for tat” behavior (see Camerer [3] and Gardenfors [8] for such
alternative uses).
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Figure 1.1: Social Web

edge” than the infinite hierarchy of knowledge (cf., Fagin-Halpern-Moses-Vardi [7] and
Kaneko [13]). This will be the key for the development of our theory.

Broadly speaking, we may regard our exploration as undertaken along the line of
symbolic interactionism due to Mead [22] (cf., Collins [5], Chap.7). Each isolated ex-
perience is not more than a sequence or a set of symbols. However, by playing roles
reciprocally and interactively, the accumulated set of experiences could constitute some
meaning. This is analogous also to symbolic logic (cf., Mendelson [23] and Kaneko [13])
in that it starts with primitive symbols without meanings. Formulae consisting of those
symbols and their further combinations may eventually generate some meanings. An
individual perspective is obtained by combining experiences as sequences of meaning-
less symbols. A social perspective is obtained by combining experiences of reciprocal
interactions into an even greater view. In the sociology literature, these problems were
discussed without giving a mathematical formulation. Our approach is regarded as a
mathematical formulation of symbolic interactionism, and expands its perspective while
enabling us to examine it critically.

An example, due to Mead [22], for the distinction between a person and a social
role consists of the positions of pitcher, catcher, first base, etc..., in a baseball team.
Since we use only a 2-role strategic game for our exploration, it may be better to refer
to a 2-role example of a family affair between a wife and a husband: They may divide
their housekeeping into the breakfast maker and dinner maker. There are numerous
alternative varieties, e.g., raising children versus working at the office, cleaning the house
versus gardening, or allocating finances versus generating finances. In such situations,
role-switching facilitates one’s understanding of the other’s perspective.

A target game situation is in a social web like Fig.1.1: Two persons 1 and 2 play
the strategic game Go(1, 2) in the north-west in Fig.1.1, where Go is assumed to be
a standard strategic game with two “players”, which are roles a and b. In Go(1, 2),
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persons 1 and 2 take roles a and b, respectively. If they switch roles a and b, the game
situation becomes as Go(2, 1) in the south-east. Although we will focus on a particular
situation such as Go, it is a small part of the entire social web for the persons. Each
person participates in various other social games such as university administration,
a community baseball team, etc. This remark should not be forgotten, and will be
discussed in various places in the paper.

It is a salient point of our approach that thinking about the other’s thoughts in one’s
mind might lead to cooperation. This type of idea was discussed and emphasized by
Mead [22] and his predecessor, Cooley [6] to argue the pervasiveness of cooperation in
human society. This level of optimism was criticized as too naive by later sociologists
(see Collins [5], Chap.7). In our theory, cooperation is one possibility, but not necessarily
guaranteed. We can discuss when cooperation likely happens and when not.

It is another salient point that the inductive game theory approach, especially the
development in this paper, gives some answers to many of the “Top Ten Research
Questions” given in Camerer [3], e.g., “How do people value the payoffs of others?”, and
“What game do people think they are playing?” We will address these questions.

1.2. Basic Postulates for an Understanding of the Other’s Mind

Kaneko-Kline [15], [16] and [17] chose a general environment corresponding to an exten-
sive game and already met a lot of basic problems in the consideration of experiences
and their generations. Also, various basic notions in the extant game theory such as “in-
formation”, “memory”, and moreover, “extensive game” itself needed to be redefined.
In the consideration of induction, they met also partiality, indeterminacy, falsity, etc.
in an inductively derived view on the social structure.

As stated above, we confine ourselves here to a 2-role strategic game to avoid the
difficulties mentioned above. Nevertheless, we now include the other’s thoughts: We
need various subtle definitions. Thus, it would be better to mention the basic (pre-
mathematical) postulates for one’s thinking about the other’s and for the emergence of
cooperation4.

First, we make the basic postulate that a person cannot directly look into the other’s
mind. Instead, we postulate that person i infers/guesses from his own experiences what
person j may know about the situation. Transpersonal projection of one’s experiences
onto the other is considered based on experiences of different roles. Thus, our theory is
experiential and follows the tradition from Mead [22].

If person 1 has experienced two roles a and b from time to time, person 1 could
infers/guesses person 2’s experiences and thoughts. This requires reciprocity of roles
played by those two persons. We will explore how such reciprocity is needed for person

4 In our premathematical arguments, we use the term “postulate”. This term means simply a starting
assumption to facilitate our discourse.
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1 to fully imagine the other’s thoughts. Another extreme case, which should not be
ignored, is one where they do not switch roles at all, and as a consequence, person 1
cannot imagine 2’s thoughts. Our theory presents some capacity to separate these cases
and generates different results based on this separation. One such difference is that
cooperation would not be reached without a sufficient level of reciprocity.

One more postulate we should mention here is on use of the beliefs about the other’s
thoughts. With role-switching, a person can begin to think about a change in his
behavior and of how the other thinks of this change. Incorporating his transpersonal
projection of one’s experiences onto the other’s thoughts, we define the equilibrium
concept called an intrapersonal coordination equilibrium. Our analysis of the emergence
of cooperation is based on this concept.

1.3. Brief Discussions on Cooperative Behavior in the Literature

In the game theory literature, cooperative behavior has been extensively discussed, but
no relationships between cooperative behavior and cognitive assumptions are discussed.
Since this will be important to distinguish our new theory from the other extant theories,
we will give brief discussions on the treatments of cooperative behavior in the game
theory literature. Here, we will look only at cooperative game theory, the Nash program,
and the repeated game approach.

Cooperative game theory was already extensively discussed in von Neumann- Mor-
genstern [27] and a lot of branches have been developed. In them, cooperation itself
is a very basic postulate, and possible outcomes resulting from cooperative behavior
are targets to be studied. This theory does not address the question of the origin of
cooperation and is incapable in discussing this question.

The Nash program, which was originally suggested by Nash [24], p.295, may appear
to resolve the incapability by reducing cooperation into individual activities for cooper-
ation: The possibilities for some players to propose to cooperate with some other players
are described as moves in (rules of) an extensive game. In this theory, we may discuss
a process for cooperative behavior, an example of which was given in Nash [25]. The
Nash program reduces the postulate of cooperation into the rules of a game, but this
theory does not address the question of emergence of cooperation.

The repeated game approach (cf., Hart [10]) has two similar aspects to our approach
in that both treat recurrent situations and discuss cooperation as a possible outcome.
Nevertheless, the two approaches have a radical difference in their basic cognitive pos-
tulates. Also, in the repeated game approach, a cooperative outcome is based on threats
but not on behavior to cooperate with the other. In our theory, cooperative behavior
becomes possible with the cognition of the other’s beliefs when the degree of reciprocity
increases.

Rigorously speaking, the repeated game approach formulates the entire situation as
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a huge one-shot game, i.e., an infinite extensive game. Then the Nash equilibrium (or
its refinement) is adopted for this entire game. The Nash equilibrium is interpreted as
describing ex ante decision making in the sense that each player makes a decision as
well as his prediction about the others’ decision before the actual play of the repeated
game. This requires each player to be fully cognizant of the entire game structure5. For
this reason, the repeated game approach cannot address the basic cognitive question of
where beliefs about the game structure and others’ beliefs comes from for a player. In
this respect, the Nash program is in the same position.

Thus, the extant theories do not address the question of origin of beliefs for players,
and furthermore, their postulates are not suitable to a study of an emergence of coop-
eration. This should not be taken to mean that cooperation does not prevail in society.
Contrary to this, it is believed among many social scientists, as stated in Section 1.1,
that cooperation and cooperative behavior are widely observed phenomena in society.
Inductive game theory can discuss both the emergence of beliefs and cooperation.

We will connect our cooperation result to some behavioral game theory literature.
Behavioral/experimental game theory has reported many experiments to support the
pervasiveness of cooperative behavior. One observation in the repeated situation of
the prisoner’s dilemma is that cooperative outcomes emerge after some repetition of
the game (cf., Cooper-DeJong-Forsyth-Ross [4]) Another is the experimental study of
the ultimatum game and dictator game, which shows that people do cooperate, even
though the standard game theoretical argument (subgame perfection) does not predict
cooperation at all (cf., Güth-Schmittberger-Schwarze [9], Kahneman-Knetsch-Thaler
[12], and also Camerer [3] for a more recent survey). In Section 7, we will examine
implications of our theory of cooperation to the literature of those behavioral studies,
specifically, looking at the prisoner’s dilemma, ultimatum game and dictator game.

The remainder of the paper is as follows. Section 2 gives the basic definitions of a
2-role game, the domain of experiences, etc. Section 3 defines person’s direct under-
standing of the basic situation and transpersonal understanding of the other’s under-
standing from his experiences, which is an intermediate step to the main definition of
an inductively derived view (i.d.view) given in Section 4. The i.d.view combines those
understandings together with the regular behavior and frequency weights of roles. In
Section 5, the definition of an intrapersonal coordination equilibrium is defined, and is
studied, first, in non-reciprocal cases. In Section 6, we study it in reciprocal cases. The
results obtained Sections 5 and 6 are applied to the prisoner’s dilemma, ultimatum game
and dictator game in Section 7. In Section 8, we will discuss external and reciprocal
relations between the persons. In Section 9, we will discuss implications of our approach
together with the results obtained in this paper.

5This is not the intended interpretation of a Nash equilibrium in the repeated game for some authors
(e.g., Axelrod [2]) - - in which case, the cognitive assumption must be different from the full cognizance
but has not been explicated.
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2. Two-Person Strategic Game with Social Roles

2.1. 2-Role Strategic Game and Role Assignments

We start with a 2-role (strategic) game G = (a, b, Sa, Sb, ha, hb), where a and b are
(social) roles, Sr = {sr1, ..., sr r} is a finite set of actions, and hr : Sa × Sb → R is
a payoff function for each role r = a, b. We will refer to this game as the base game.
Each role is taken by person i = 1, 2. We have a role assignment π, which is a one-one
mapping π : {a, b}→ {1, 2}. The expression π(r) = i means that i is the person assigned
to role r.We may also write π = (ia, ib) to mean that persons ia and ib take roles a and
b, respectively.

A 2-person (strategic) game with social roles is given by adding a role assignment
π = (ia, ib) to a 2-role strategic game G:

G(π) = (ia, ib, Sa, Sb, ha, hb). (2.1)

That is, persons ia and ib taking roles a and b play the base game G. We consider the
following example, which will be used later.

Example 2.1: In the game G(1, 2) of Table 2.1, persons 1 and 2 are assigned to roles a
and b. The game G(2, 1) has the same structure, but the role-assignments are reversed.
A larger recurrent social context exists behind games G(1, 2) or G(2, 1), like Fig.1.1. In
Fig.1.1, G0(1, 2) and G0(2, 1) are two local situations with the same 2-role game G0.We
assume that the persons behave in a regular manner subject to some trial deviations
and that each person accumulates experiences of playing this game with different roles.

Table 2.1;G(1, 2)

1\2 sb1 sb2 sb3
sa1 (3, 3) (10, 2) (3, 1)
sa2 (2, 10) (4, 4) (5, 5)
sa3 (1, 3) (5, 5) (4, 4)

Since the situation we consider is recurrent, the information structure of observations
after each play of a game should be specified. We assume that after each play of G(π),
each person with role π(r) = i observes

Ob1: the action pair (sa, sb) played;
Ob2: his own payoff (value) from this pair.

These postulates are asymmetric in that person i can observe both actions taken by him
and the other, but can observe only his own payoff. This asymmetry will be important in
Section 3. With respect to the treatment of payoffs, we should emphasize the distinction
between having a payoff function and knowing it. Here, we assume that each person
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recognizes each payoff value hr(sa, sb) only when he experiences it but does not know
the function hr itself. Only after he has accumulated enough memories of experiences,
he may come to know some part of the payoff function.

2.2. Accumulated Memories

Now, we consider person i’s accumulation of experiences up to a particular point of
time. It is summarized as a memory kit κi = h(soa, sob), (Dia,Dib), (hia, hib); (ρia, ρib)i,
which consists of

κ1: the pair (soa, s
o
b) of regular actions;

κ2: the accumulated domain of experiences Di = (Dia,Dib) consisting of experiences of
action pairs from taking roles a and b, respectively;

κ3: person i’s observed payoff functions (hia, hib) over Di;

κ4: person i’s vector (ρia, ρib) of (subjective) frequency weights for roles a and b.

Person i has obtained these components by playing game G with possibly different roles
from time to time. Component κ1 means that the persons play regularly the actions soa
and sob when they are assigned to roles a and b. Component κ2 states that person i has
other experiences in addition to the regular actions. Occasionally, each person i deviates
from sor to some other actions sr, and some (or all) actions experienced are remaining
in his mind, which form the sets Dia and Dib. The third components, (hia, hib), in κ3
are the observed (perceived) payoff functions over (Dia,Dib), which are mathematically
defined presently. The last component (ρia, ρib) in κ4 means that person i evaluates
subjectively how frequently he has been assigned to roles a and b. Accurate weights are
not really our intention6, but here we assume that it is a single vector for each i.

In the following, we use the convention that if r = a or r = b, then s(−r) ≡ s−r = sb
or sa, respectively, but (sr; s−r) = (sa, sb) in either case.

Mathematically, the components of a memory kit κi = h(soa, sob), (Dia,Dib), (hia, hib);
(ρia, ρib)i are given and assumed to satisfy the following conditions: for all r = a, b and
sr ∈ Sr:

(soa, s
o
b) ∈ Dia ∪Dib ⊆ Sa × Sb; (2.2)

if (sa, sb) ∈ Dir, then (sa, sob) ∈ Dir and (soa, sb) ∈ Dir; (2.3)

hir : Dir → R and hir(sa, sb) = hr(sa, sb) for all (sa, sb) ∈ Dir; (2.4)

ρia + ρib = 1 and ρia, ρib ≥ 0; (2.5)

if ρir = 0, then Dir = ∅. (2.6)

6See Hu [11] for the concept of frequency and the frequentist interpretation of expected utility theory.
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Condition (2.2) states that the domains of accumulation include the regular actions
(soa, s

o
b). It is the intent that (s

o
a, s

o
b) has been played in G(1, 2) and G(2, 1) as the regular

actions, while person i has made some trial deviations from (soa, s
o
b) and accumulated

his experiences in Dia and Dib. We allow Dia or Dib to be empty, though the union
Dia ∪Dib is nonempty by (2.2). If Dia = ∅, then person i has never experienced role a
at least in his memory.

Condition (2.3) states that if ever some pair (sa, sb) is accumulated in Dir, then
the pairs (sa, sob) and (s

o
a, sb) coming from the unilateral trials of sa and sb from the

regular actions (soa, s
o
b) are also accumulated. It expresses the idea that the domain

of accumulation is generated by unilateral trials from the regular action. This will be
briefly discussed in Section 2.3.

Condition (2.4) states that person i knows a functional relationship between each
pair (sa, sb) ∈ Dir and the payoff value from it when he takes role r. To avoid confusions
with the objective payoff function hr, we define the function hir : Dir → R. Thus,
this is the experienced payoff function of person i when he takes role r. Mathematically,
hir is the restriction of hr to Dir. Condition (2.5) states that (ρia, ρib) is a vector of
subjective frequency weights. We do not require that these subjective frequency weights
are precisely the same as the objective frequencies. For example, ρir = 0 is interpreted
as person i has no recollection of being in role r, even if he was there objectively with
some negligible frequency. Similarly, ρir = 1/2 is interpreted as meaning in person
i’s mind, the switching is reciprocal, while objectively, the frequency may be slightly
different from 1/2.

In keeping with the subjective interpretation, (2.6) states that if person i has ρir = 0,
then he has no recollection of being in that role.

The following lemma is proved by using (2.3) twice. It states that if person i has
some experience at role r in his mind, then he accumulated at least the pair of regular
actions at that role.

Lemma 2.1. If Dir 6= ∅, then (soa, sob) ∈ Dir.

We use the following terms: When (sr; so−r) ∈ Dir, it is called an active experience
(deviation) for person i at role r; and when (sr; so−r) ∈ Di(−r), it is a passive experience
for person i at role −r. That is, if one person makes a deviation, and if it remains in his
domain, it is an active experience, and if it remains in the domain of the other person,
it is a passive experience for that person.

In this paper, reciprocity plays an important role, but we have various notions of and
degree of reciprocities. One important reciprocity is between the domains Dia and Dib

for a fixed person i. We will have a strong form of reciprocity over those domains when
there is a sufficient amount of reciprocity in role-switching. We say that the domains
(Dia,Dib) for person i is strongly internally reciprocal iff

Dia = Dib. (2.7)
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It involves a comparison only of person i’s domains Dia and Dib.
In fact, (2.7) is stronger than what we will target in this paper. For the weaker

version, first we define the set Proj(T ) := {(sa, sb) ∈ T : sa = soa or sb = sob}. Then,
(2.7) is weakened to

Proj(Dia) = Proj(Dib), (2.8)

in which case, we say that Dia and Dib are internally reciprocal. This requires the
equivalence of these sets up to only unilateral changes from the regular actions (soa, s

o
b).

We should bear in mind that since the experiences in Dia ∪Dib are generated both
by person i and another person j, some external reciprocal relationships between i and j
are the background for condition (2.8) or (2.7). However, we will focus first on person i’s
internal thoughts such as inferences/guesses from his own experiences, so we postpone
our discussions about the background external relationships until Section 8.

Let us consider several examples for the domains (D1a,D1b) and (D2a,D2b). In the
following examples, we assume for simplicity that each person makes trials with all
actions at the role he has assigned to.

(1)(Non-reciprocal Domains): In these domains, the persons do not switch the roles
at all. First, we consider the non-reciprocal active domains. Let DN

1 = (D
N
1a,D

N
1b) and

DN
2 = (D

N
2a,D

N
2b) be given as follows:

DN
1a = {(sa, sob) : sa ∈ Sa} and DN

1b = ∅ (2.9)

DN
2a = ∅ and DN

2b = {(soa, sb) : sb ∈ Sb}.

With these domains, neither (2.7) nor (2.8) holds. Each person makes deviations over
all his actions. However, each accumulates only active experiences, which means that he
is either insensitive to (or ignores) the deviations by the other person. In this example,
it is natural to assume that ρ1a = ρ2b = 1.

We mention that there are other non-reciprocal domains. For example, the non-
reciprocal active-passive domain DNAP

1a = DN
1a ∪ {(soa, sb) : sb ∈ Sb} and DNAP

1b = ∅
describes the non-reciprocal case where person 1 is sensitive to both active and passive
deviations. It is defined similarly for person 2. They are not yet internally reciprocal,
while each person is sensitive to the other’s trials.

We have numerous varieties of reciprocal domains where the roles are switched. We
focus on two reciprocal cases in particular.

(2):(Reciprocal Active Domain): The reciprocal active domain DA
1 = (DA

1a,D
A
1b)

for person 1 is given as:

DA
1a = {(sa, sob) : sa ∈ Sa} and DA

1b = {(soa, sb) : sb ∈ Sb}. (2.10)

This means that person 1 makes trials with all actions for each role r = a, b, but he is
insensitive to person 2’s trials. If person 2 behaves in the same manner, then DA

2a = DA
1a
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and DA
2b = DA

1b. Although both persons’ domains are the same, the internal reciprocity
condition (2.8) does not hold.

We give one domain that is internally reciprocal.

(3)(Reciprocal Active-Passive Domain): The reciprocal active-passive domain DAP
1

= (DAP
1a ,DAP

1b ) is given as:

DAP
1a = DAP

1b = {(sa, sob) : sa ∈ Sa} ∪ {(soa, sb) : sb ∈ Sb}. (2.11)

Person 1 makes trials with all actions across both roles, and he is sensitive to both
active and passive “unilateral” trials, but not joint-trials.7 If person 2 has the same
personality, then 2 has the same domains: DAP

2a = DAP
1a and DAP

2b = DAP
1b . This domain

satisfies (2.8) and even (2.7), and is still smaller than the full reciprocal domain defined
by DF

ir = Sa × Sb for i = 1, 2, and r = a, b.

2.3. An Informal Theory of Behavior and Accumulation of Memories

Our mathematical theory starts with a memory kit. Behind a memory kit, there is
some underlying process of behavior and accumulation of memories. We now describe
one such underlying process informally. Some parts of the following informal theory are
more precisely discussed for the one-person case in Akiyama-Ishikawa-Kaneko-Kline [1].

(1): Postulates for Behavior and Trials: In the recurrent situation, the role-
switching is given exogenously, and we do not consider endogenous efforts for role-
switching. We state this as a postulate.

Postulate BH0 (Switching the Roles): The role assignment changes from time to
time, which is exogenously given.

The next postulate is the rule-governed behavior of each person in the recurrent
situation ..., Go(1, 2), Go(2, 1), ..., Go(1, 2), ....

Postulate BH1 (Regular actions): Each person typically behaves following the
regular action sor when he is assigned to role r.

It may be the case that the regular actions are person-dependent, but in this paper,
we simply assume that both persons follow the same regular action for each role. Person
i may have adopted the regular actions soa and s

o
b for roles a and b for some time without

thinking, perhaps since he found it worked well in the past or he was taught to follow it.
Without assuming regular actions and/or patterns, a person may not be able to extract
any causality from his experiences. In essence, learning requires some regularity.

To learn some other part than the regular actions, the persons need to make some
trial deviations. We postulate that such deviations take place in the following manner.

7One reason could be that joint trials are too infrequent, and his sensitivity is not strong enough to
recall them.
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Postulate BH2 (Occasional Deviations): Once in a while (infrequently), each per-
son, taking role r, unilaterally and independently makes a trial deviation sr ∈ Sr from
his regular action sor, and then returns to his regular action sor or s

o
−r.

Early on, such deviations may be unconscious and/or not well thought out. Never-
theless, a person might find that a deviation leads to a better outcome, and he may start
making deviations consciously. Once he has become conscious of his behavior-deviation,
he might make more and/or different trials.

Postulate BH2 justifies condition (2.3) since it implies that only one person’s devi-
ation more likely occurs than both persons’.

(2): Cognitive Postulates: Each person may learn something through his regular
actions and deviations. What he learns in an instant is described by his local (short-
term) memory. It takes the form of hr, (sa, sb), hir(sa, sb) = hr(sa, sb)i. Once this triple
is transformed to a long-term memory, Dir is extended into

Dir ∪ {(sa, sb)},

and “hir(sa, sb) = hr(sa, sb)” is also recorded in the memory kit κi, which is given in
(2.4). For the transition from local memories to long-term memories, there are various
possibilities. Here we list some postulates based on bounded memory abilities.

The first states that if a short-term memory does not occur frequently enough, it
will disappear from the mind of a person. We give this as a postulate for a cognitive
bound on a person.

Postulate EP1 (Forgetfulness): If experiences are not frequent enough, then they
would not be transformed into a long-term memory and disappear from a person’s mind.

This is a rationale for not assuming that a person has a full record of local memories.
If it is not reinforced by other occurrences or the person is very conscious, they may
disappear from his mind.

In the face of such a cognitive bound, only some memories become lasting. The
first type of such memories are the regular ones since they occur quite frequently. The
process of making a memory last by repetition is known as habituation.

Postulate EP2 (Habituation): A local (short-term) memory becomes lasting as
a long-term memory in the mind of a person by habituation, i.e., if he experiences
something frequently enough, it remains in his memory as a long-term memory even
without conscious effort.

By EP2, when the persons follow their regular actions, the local memories given by
them will become long-term memories by habituation.

A pair obtained by only one person’s deviation remains next likely, which supports
(2.3). We postulate that a person may consciously spend some effort to memorize the
outcomes of his own trials.
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Postulate EP3 (Conscious Memorization Effort): A person makes a conscious
effort to memorize the result of his own trials. These efforts are successful if they occur
frequently enough relative to his trials.

In this paper, we will sometimes make use of a postulate for a different degree of
sensitivity for active and passive experiences.

Postulate EP4 (Sensitive with Active relative to Passive): A person is more (or
not less) sensitive to his own active deviation than he is to his passive experiences.

We adopt this postulate as a starting point. It may need empirical tests to determine
which forms are more prominent in society. In this paper, however, we will simply take
the relativistic attitude that a person’s domain is not uniquely determined but takes
various possible forms.

3. Direct and Transpersonal Understandings from Experiences

When a person considers the situation described by the 2-role strategic game G based
on his accumulated experiences, he meets two problems: (1) his own understanding
about G; and (2) his understanding of the other’s thoughts about G. The former is
straightforward in that it simply combines his experiences, while the latter needs some
additional interpersonal thinking. In this section, we describe how a person might
deal with these two problems. We do not yet include the regular actions (soa, s

o
b) and

frequency weights (ρia, ρib), which will be taken into account in the definition of an
inductively derived view to be given in Section 4.

3.1. Transpersonal Postulates for the Other’s Thoughts

First, we state our basic ideas on how a person deals with the above mentioned problems
as postulates. We adopt experientialism for these postulates. The first postulate is about
a person’s direct understanding of a situation, which refers to the problem (1).

Postulate DU1 (Direct Understanding of the Object Situation): A person
combines his accumulated experiences to construct his view on the situation in question.

This will be presently formulated as a direct understanding gii.
Now, consider how a person thinks about the other’s understanding. We adopt two

new postulates for it, which we call transpersonal postulates. A metaphor may help the
reader understand those postulates:

∗1 The agony of a broken heart can only be understood
by a person whose heart was once broken;

∗2 yet, he doubts her agony because he cannot explain her broken heart.

The part ∗1 corresponds to the following postulate:
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Postulate TP1 (Projection of Self to the Other): A person projects his own
experienced payoff onto the other person if he believes that the other knows his payoff
at that experience.

By postulate Ob2, he observes only his own payoff. To think about the other’s payoff,
he uses also his own experienced payoff. By postulate TP1, we propose that a person
projects his own experiences onto the other. We could use an alterative postulate, e.g.,
I find by experience that you are different from me; this however, happens rarely. A
person keeps TP1 as his principle until he finds enough counter evidence. We regard
projection of oneself as a very basic postulate.

Notice that postulate TP1 is a conditional statement. We require some evidence
for a person to believe that the other knows the payoff, which is expressed as the next
postulate. It corresponds to ∗2 of the above metaphor.
Postulate TP2 (Experiential Reason to Believe): A person believes that the other
knows a payoff only when the person has a sufficient experiential reason for the other
to have the payoff.

In the above metaphor, having a broken heart is an experience of losing a love,
and it causes agony. Postulate TP1 requires that the agony caused by losing a love
is understood by projecting one’s past experience, which is ∗1. Then, postulate TP2
requires some experiential evidence (reason) to believe that she has broken heart. This
is expressed as its contrapositive in ∗2: Since he has no experiential reason to believe
her broken heart, he doubts her agony. This “reason to believe” is reminiscent of a
requirement for the concept of “common knowledge” in Lewis [20]. In the next section,
we will give an explicit formulation of the other’s understanding based on postulates
TP1 and TP2.

3.2. Direct and Transpersonal Understandings

Suppose that person i has accumulated his experiences in a memory kit κi = h(soa, sob),
(Dia,Dib), (hia, hib); (ρia, ρib)i. He, now, constructs his direct understanding of the game
situation including own payoff functions for roles a and b, and also infers/guesses his
transpersonal understanding of the other’s understanding.

Person i’s direct understanding is purely based on his experiences. However, for
his transpersonal understanding about j’s understanding, we need a different kind of
treatment reflecting postulates TP1 and TP2. Using those, we look for an experiential
base for the other person’s belief. These ideas are formulated in the following definition.

Definition 3.1 (Direct and Transpersonal Understandings). Let a memory kit
κi = h(soa, sob), (Dia,Dib), (hia, hib); (ρia, ρib)i be given:
(1): The direct understanding (d-understanding) of the situation from κi by person i
is given as gii(κi) = (a, b, Si

a, S
i
b, h

ii
a , h

ii
b ) :

14



ID1i: Si
r = {sr : (sr; s−r) ∈ Dia ∪Dib for some s−r} for r = a, b;

ID2ii: for r = a, b, hiir is defined over S
i
a × Si

b as follows:

hiir (sa, sb) =

⎧⎨⎩
hir(sa, sb) if (sa, sb) ∈ Dir

θr otherwise,
(3.1)

where θr is an exogenously given payoff value attached to every non-experienced (sa, sb).

(2): The transpersonal understanding (tp-understanding) from κi by person i for person
j is given as gij(κi) = (a, b, Si

a, S
i
b, h

ij
a , h

ij
b ), where only h

ij
a and h

ij
b are new and given as

follows:

ID2ij : for r = a, b, hijr is defined over Si
a × Si

b by

hijr (sa, sb) =

⎧⎨⎩
hir(sa, sb) if (sa, sb) ∈ Dir and (sa, sb) ∈ Di(−r)

θr otherwise.
(3.2)

These understandings are deterministic: All the components of gii(κi) and gij(κi),
except θr for the unexperienced part of Si

a×Si
b, are determined from the components of

κi. This differs from in Kaneko-Kline [15], [16], and [17]. This determinism comes from
our restriction on the 2-role game with assumptions Ob1 and Ob2.

The definition of gii(κi) is straightforward. He constructs his d-understanding as
a 2-role game, based on his experiences. The symbol θr expresses an unknown (un-
experienced) payoff, which is also assumed to be a real number and uniform over the
experienced part. In ID1i, the experienced actions are only taken into account. In ID2ii,
he constructs his observed payoff function. An example will be given presently. He no-
tices more available actions in Sr − Si

r, but he has no experiential information about
the resulting outcomes from those actions. We assume that they are ignored in gii and
also in gij .

The definition of gij(κi) is less straightforward by its nature. Person i tries to analyze
the experiences summarized in κi so as to obtain some information about the other’s
payoffs. By TP1, he projects his own experienced payoffs onto the other’s thoughts.
By TP2, however, he should only make this projection if he has reason to believe that
the other has observed his payoff. In the top of (3.2), this projection is done for an
experience (sa, sb) if and only if he experienced (sa, sb) from both roles.

Let us see (3.2) from the negative point of view: If at least one of (sa, sb) ∈ Dir and
(sa, sb) ∈ Di(−r) does not hold, he cannot put the payoff value hir(sa, sb) as h

ij
r (sa, sb).

Firstly, if i does not have the experience of (sa, sb) at role r , then the payoff information
hir(sa, sb) is not available to i, and a fortiori, he cannot project it onto j. Second, if
(sa, sb) /∈ Di(−r), then person i does not have reason to believe that j ever experienced
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payoff hr(sa, sb), and he does not project his payoff experience, even if he has it, onto
person j. Conversely, if both (sa, sb) ∈ Dir and (sa, sb) ∈ Di(−r) hold, he can project
his experienced payoff onto the other person’s thoughts.

The above requirement of having reason to believe is close to Lewis’s [20] idea of
person i having reason to believe that person j has also reason to believe the same. If
we formulate the above argument as an epistemic logic system (cf., Kaneko [13]), we
would examine this similarity more, which will be discussed in a separate paper. The
argument here is entirely experiential, and in this sense, it is regarded as following the
tradition from Mead [22].

Let us exemplify the above definitions with the examples from Section 2.2 assuming
the regular actions (soa, s

o
b) = (sa1, sb1):

(1)(Non-reciprocal Active Domain): Let (DN
1a,D

N
1b) be given as the non-reciprocal

Table 3.1; g11 Table 3.2; g12

sb1
sa1 (3, θb)
sa2 (2, θb)
sa3 (1, θb)

sb1
sa1 (θa, θb)
sa2 (θa, θb)
sa3 (θa, θb)

domain of (2.9), where we are considering only G(1, 2). In this example, person 1’s
d-understanding g11 = g11(κ1) is given as: S1a = {sa1, sa2, sa3} and S1b = {sb1} by
ID11. Since person 1 has experiences for role a, the payoffs (h11a (sa, sb), h

11
b (sa, sb)) be-

come those described in Table 3.1. Since person 1 has no experiences with role b, his
understanding of those payoffs h11b (sa, sb) is simply θb.

Now, consider g12(κ1). Person 1 has experienced the three pairs in DN
1a, and from

each pair, he guesses/infers that person 2 observes also these three pairs. Hence, person
1 can assume the same S1a and S1b for person 2, which corresponds to ID1

1. But, now,
person 1 has a real difficulty in guessing/inferring what person 2 could receive as payoffs
from roles a and b. The easier part is h12b (sa, sb) = θb for role b since person 1 has no
experiences with role b. The other equation h12a (sa, sb) = θa comes from (sa, sb) /∈ DN

1b :
He infers from (sa, sb) /∈ DN

1b that person 2 always plays role b and has no experiences
with role a. Thus, person 1 should not project his experienced payoff onto 2’s. In sum,
g12(κ1) is given as Table 3.2: Person 1 has no idea about person 2’s understanding of
payoffs.

(2)(Reciprocal Active Domain): Let (DA
1a,D

A
1b) be given by the active domain of

(2.10). By ID11, we have S1a = {sa1, sa2, sa3} and S1b = {sb1, sb2, sb3}. Then, it follows
from ID211 that (h11a , h11b ) is given as Table 3.3. When person 1 is at b, he cannot
guess/infer his own payoffs from trials of person 2 at a. Thus, he puts θb to the payoffs
from trials in the first column of Table 3.3. For the same reason, he puts θa in Table
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3.3 along the top row. The remaining four strategy combinations (sa, sb) belong neither
DA
1a nor D

A
1b, so he puts (θa, θb) in each case.

Table 3.3; g11 Table 3.4; g12

a\b sb1 sb2 sb3
sa1 (3, 3) (θa, 2) (θa, 1)
sa2 (2, θb) (θa, θb) (θa, θb)
sa3 (1, θb) (θa, θb) (θa, θb)

a\b sb1 sb2 sb3
sa1 (3, 3) (θa, θb) (θa, θb)
sa2 (θa, θb) (θa, θb) (θa, θb)
sa3 (θa, θb) (θa, θb) (θa, θb)

Person 1’s tp-understanding g12 is even more restrictive as shown in Table 3.4. Let
us see only how it comes that “h12a (sa2, sb1) = θa”. According to (DA

1a,D
A
1b), person 1

has experienced the payoff ha(sa2, sb1) = 2 and thus at least it would be possible for
him to project this payoff onto person 2’s. But since (sa2, sb1) /∈ DA

1b, he infers/guesses
that 2 does not experience (sa2, sb1) at role a. So he puts h12a (sa2, sb1) = θa.

The above observations hold more generally. Let gii(κi) = (a, b, Si
a, S

i
b, h

ii
a , h

ii
b ) and

gij(κi) = (a, b, S
i
a, S

i
b, h

ij
a , h

ij
b ) be the d- and tp-understandings.

Lemma 3.1: Let ρir = 1. Then, hii−r(sa, sb) = hij−r(sa, sb) = θ−r and hijr (sa, sb) = θr
for all (sa, sb) ∈ Sia × Sib.

Proof. Since ρir = 1, we have Di(−r) = ∅ by (2.6). By (3.1) and (3.2), we have the
stated equations.

When the situation is reciprocal and when person 1 is equally sensitive to the expe-
riences caused by person 2, he has the active-passive domain.

(3):(Reciprocal Active-Passive Domain): Let DAP
1 = (DAP

1a ,DAP
1b ) be the domains

described by (2.11). By ID1, we have S1a = {sa1, sa2, sa3} and S1b = {sb1, sb2, sb3}. But

Table 3.5; g11 and g12

a\b sb1 sb2 sb3
sa1 (3, 3) (10, 2) (3, 1)
sa2 (2, 10) (θa, θb) (θa, θb)
sa3 (1, 3) (θa, θb) (θa, θb)

the payoff functions (h11a , h11b ) given in Table 3.5 are different from those in Table 3.3.
Indeed, h11b (sa2, sb1) = 10 by ID211, since (sa2, sb1) ∈ DAP

1b . Person 1 is also sensitive
with passive experiences from person 2’s active deviations. This means that D1a = D1b.
In this example, the payoff functions (h12a , h12b ) are the same as Table 3.5. Person 1 has
had each experience along the top row and down the first column from the perspective
of each role. Thus, he can and does project his experiences onto the other person. Only
the joint trials are excluded as they are outside his domains of accumulation.
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This internal reciprocity and coincidence will be important in our later analysis. We
will give one theorem on this, which states that internal reciprocity (2.8) is necessary and
sufficient for coincidence of a person’s direct and transpersonal understandings up to the
active and passive experiences. Let gii(κi) and gij(κi) be the d- and tp-understandings
from a memory kit κi.

Theorem 3.2 (1): If (Dia,Dib) is internally reciprocal, i.e., Proj(Dia) = Proj(Dib),
then hiir (sa, sb) = hijr (sa, sb) = hr(sa, sb) for all (sa, sb) ∈Proj(Si

a × Si
b).

(2)(Internal Coincidence): gii(κi) coincides with gij(κi) up to the active/passive
experiences, i.e., hiir (sa, sb) = hijr (sa, sb) for all (sa, sb) ∈ Proj(Si

a × Si
b) and all θa, θb if

and only if (Dia,Dib) is internally reciprocal.

Proof. (1): Suppose Proj(Dia) = Proj(Dib). Then, Proj(Si
a × Si

b) = Proj(Dia) =
Proj(Dib) by (2.3). Hence, the stated equations follow (3.1) and (3.2).

(2): The if part is already proved in (1). Consider the only-if part. It suffices to
show that (sa, sb) ∈ Proj(Dir) implies (sa, sb) ∈ Di(−r). Let (sa, sb) ∈ Proj(Dir). Then,

(sa, sb) ∈ Proj(Si
a × Si

b), which means h
ij
r (sa, sb) = hiir (sa, sb). Then, since (sa, sb) ∈

Proj(Dir), we have hiir (sa, sb) = hr(sa, sb) by (3.1). If (sa, sb) /∈ Di(−r), then h
ij
r (sa, sb) =

θr by (3.2), and for some choice of θr, we have hiir (sa, sb) 6= hijr (sa, sb), a contradiction.
Thus, (sa, sb) ∈ Di(−r).

4. Inductively Derived Views and Their Use for Behavioral Revision

4.1. Inductively Derived View

The understandings gii(κi) and gij(κi) do not take the regular actions (soa, s
o
b) and the

frequency weights (ρia, ρib) into account. The inductively derived view is defined by
adding these two components.

Since each person acts roles a or b at different times and with different frequencies,
we need weighted payoff functions. Since the weighted payoff functions in person i’s
mind depend on the actions by each person at each role, we introduce the expression
[sa, sb]r to mean that person i takes role r in playing (sa, sb). The importance of this
new expression will become clear when we consider deviations in Sections 4.2 and 5.

Definition 4.1. The inductively derived view (i.d.view) from the memory kit κi =
h(soa, sob), (Dia,Dib), (hia, hib); (ρia, ρib)i is given as Γi = h(soa, sob), (Si

a, S
i
b), (ρia, ρib),H

ii,Hiji,
where the additional Hii and Hij are the weighted payoff functions given as follows: for
all ([sa, sb], [ta, tb]) ∈ (Si

a × Si
b)
2,

Hii([sa, sb]a, [ta, tb]b) = ρiah
ii
a (sa, sb) + ρibh

ii
b (ta, tb); (4.1)

Hij([sa, sb]a, [ta, tb]b) = ρiah
ij
b (sa, sb) + ρibh

ij
a (ta, tb). (4.2)
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The payoff functions Hii and Hij are considered for persons i and j in the mind of
person i. The payoffs are taken as weighted averages of the payoffs of gii and gij with
the frequency weights (ρia, ρib). We should notice a break in symmetry in (4.1) and
(4.2): In (4.2), when person i plays role a, person j plays role b; hence, the first term
of the right-hand side of (4.2) means that person j takes role b with frequency ρia. The
second term has the parallel meaning.

The definition of the i.d.view Γi has various differences from those given in Kaneko-
Kline [15], [16] and [17]. One apparent difference is that the definition is given to
a strategic game but not an extensive game (or an information protocol). This also
makes the view here deterministic as gii(κi) and gij(κi). But it is the most important
point to include the weighted payoffs coming from role-switching.

The sums with frequency weights are based on the frequentist interpretation of
expected utility theory, which is close to the original interpretation by von Neumann-
Morgenstern [27]. See Hu [11] for a direct approach to expected utility theory from the
frequentist perspective.

As noted in Section 2, the frequency weights should be interpreted as rough descrip-
tions of past occurrences of roles in the mind of person i. By postulates BH1, BH2, EP1
and EP2 in Section 2.3, when the objective frequency of taking role b is small close to 0,
person i effectively takes it to be 0, i.e., ρib = 0. By (2.6), his domain Dib of accumulated
experiences is empty, and the situation is effectively non-reciprocal.

Following this interpretation, ρia does not vary continuously, but take rather discrete
values, as the memory kit κi (in particular, the domains of accumulated experiences Dia

and Dib) is finitistic and discrete. At present, we do not a study of relationships between
the objective frequency of role-switching and the subjective evaluation of ρia (and Dia

and Dib). To study such relationships, computer situations such as the one in Akiyama
et al. [1] will play a crucial role, since they must be of truly finite nature.

In our interpretation, the frequency weight ρia may take only finite and discrete
values; candidates are

αia0 = 0 < αia1 < ... < αiam = 1 (4.3)

In the following, we assume that this list includes 1/2. When ρia = αiam = 1, per-
son i takes role a exclusively, at least in his mind. In this case, Dib = ∅ by (2.6),
Hii([sa, sb]a, [ta, tb]b) is reduced into hiia (sa, sb), and Hij([sa, sb]a, [ta, tb]b) becomes the
constant function taking the value θb. In this sense, we may regard the i.d.view Γi for
ρia = 1 as not including the other’s thoughts.

4.2. Partial vs. Full Use of the I.D.View

Now, consider how person i uses the i.d.view Γi = h(soa, sob), (Si
a, S

i
b), (ρia, ρib),H

ii,Hiji.
It includes the tp-understanding of the other person’s payoffs in addition to his own
d-understanding. When person i uses Γi for his decision making, he would face the
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problem of whether or not he should use the tp-understanding. We have the following
two cases:

C0(Partial Use): Person i uses only the payoff function Hii (assuming some reactions
of person j).

C1(Full Use): Person i uses not only the payoff function Hii but also Hij to in order
predict how person j will act (or react).

Either C0 or C1 may be taken as a decision criterion for person i. The choice of C0
or C1 is logically independent of the degree of reciprocity, though it likely to be some
correlation between them. For example, when ρir = 0 or 1, person i cannot choose C1
effectively. As the degree of reciprocity increases, the criterion C1 may emerge in a
player’s mind. Here, we consider first C0 and then we go to the full use of Γi.

In C0, person i can maximize his weighted payoff Hii by choosing his action from the
assigned role in one play of the game. Since he uses only Hii, he needs some assumption
about the other person’s action or reaction to his change. An assumption for C0 is:

(∗): person j sticks to the regular action.

In this case, person i may choose a maximum point in Si
r against the regular action s

o
−r.

If the present regular actions are free from such behavior revisions, then the regular
action pair (soa, s

o
b) must be a Nash equilibrium in the d-understanding gii. We do not

pursue what happens in this case; the main aim of the present paper is to study the
reciprocal case and the full use of Γi.

Consider the case where person i uses Hij . We formulate one concept of an equi-
librium expressing the idea that person i thinks about the present regular behavior as
a satisfactory result even taking into account the other’s thinking in his mind. It is a
salient point different from the above assumption (∗) that coordination may be con-
sidered in the mind of person i. Since this involves a new and subtle argument about
comparisons between the regular action sor and another action sr in Si

r, we start with a
clear-cut case. It should be kept in mind that the entire argument is made inside the
mind of person i. In the following, we let r = a.

Now, we consider a possible deviation by person i using Hii and Hij : Person i
evaluates his action in terms of Hii relative to his regular action, and predicts what
person j would think, by his Hij . Now, suppose that

Hii([soa, s
o
b ]a, [s

o
a, s

o
b ]b) < Hii([sa, s

o
b ]a, [sa, s

o
b ]b). (4.4)

This means that i would get a higher weighted payoff by deviating from soa to sa and
assuming that person j also deviates from soa to sa. This assumption part is expressed
by [sa, sob ]b meaning that person j taking role a chooses action sa. This is the main
difference from (∗). An apparent question is why person i can make this assumption
that person j will choose action sa.
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The answer is as follows: We require the parallel inequality:

Hij([soa, s
o
b ]a, [s

o
a, s

o
b ]b) < Hij([sa, s

o
b]a, [sa, s

o
b]b). (4.5)

If this holds, person i thinks that person j thinks in the same manner as (4.4) and
evaluates sa as better than soa. Person i now can believe that the deviation sa from the
regular action soa gives a higher payoff for both persons, and that person j thinks in the
same manner.

In (4.4) and (4.5), we considered only a unilateral derivation sa from soa, and we can
also consider another parallel unilateral derivation sb from sob . Mathematically, we may
consider even a joint deviation (sa, sb) from (soa, s

o
b) satisfying (4.4) and (4.5). However,

this requires some direct coordination or communication between the persons. In our
context, we have a lot of possible ways of coordination or communication. It would be
better to separate studies of these possibilities from the present research, which should
be discussed in a separate paper.

Let us return to the unilateral deviation in (4.4) and (4.5). This deviation needs
only one person to deviate first. That is, the deviation process can be expressed as

→
µ
1,

soa,

2

sob

¶
→
µ
1,

sa,

2

sob

¶
→
µ
2,

sa,

1

sob

¶
→
µ
2,

sa,

1

sob

¶
→

Fig.4.1

That is, suppose (soa, s
o
b) is the current regular pair. Next, suppose that 1 deviates from

soa to a mutually beneficial sa, which is the second left state in Fig.4.1. Then person
2 will observe this deviation, and when 2 is assigned role a, he follows 1’s mutually
beneficial deviation to sa, which is describe as the third state in Fig.4.1.

We now follow the standard idea of an equilibrium to be free from such a deviation.
We formulate it as follows:

Definition 4.2 (Weak I.C.Equilibrium). We say that the regular pair (soa, s
o
b) is

a weak intrapersonal coordination equilibrium (weak i.c.equilibrium) in Γi iff there is
neither sa ∈ Si

a satisfying (4.4) and (4.5) nor sb ∈ Si
b satisfying (4.4) and (4.5) with the

replacements of sa by sb.

We present the following existence theorem. To avoid a messy presentation, we
strengthen (2.6): for r = a, b,

ρir = 0 if and only if Dir = ∅. (4.6)

That is, this requires the converse of (2.6).

Theorem 4.1 (Existence of a Weak I.C.Equilibrium). We assume that

θr ≤ min
(sa,sb)∈Sa×Sb

hr(sa, sb) for r = a, b. (4.7)
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For any frequency weights (ρia, ρib), there is a pair (s
∗
a, s

∗
b) in Sa × Sb such that for any

memory kit κi = h(soa, sob), (Dia,Dib), (hia, hib); (ρia, ρib)i satisfying (4.6) with (soa, sob) =
(s∗a, s

∗
b), (s

o
a, s

o
b) is a weak i.c.equilibrium in Γi(κi).

Proof. Let (s∗a, s
∗
b) be a maximizer of ρiaha(sa, sb) + ρibhb(sa, sb) over Sa × Sb. There

are three cases to be considered: (a) (s∗a, s
∗
b) ∈ Dia ∩Dib; (b) (s∗a, s

∗
b) ∈ Dia −Dib; and

(c) (s∗a, s
∗
b) ∈ Dib −Dia. Cases (b) and (c) are symmetric. We consider (a) and (b).

Consider (a). Then, hiir (s
∗
a, s

∗
b) = hr(s

∗
a, s

∗
b) for r = a, b,which impliesHii([s∗a, s

∗
b ]a, [s

∗
a, s

∗
b ]b)

= ρiaha(s
∗
a, s

∗
b) + ρibhb(s

∗
a, s

∗
b), which is a maximum of ρiaha(sa, sb) + ρibhb(sa, sb) over

Sa×Sb. Now, let sr ∈ Si
r. Then, by (4.7), we have H

ii([s∗a, s
∗
b ]a, [s

∗
a, s

∗
b ]b) ≥ Hii([sr; s

∗
−r]a,

[sr, s
∗
b ]b).
Consider case (b). In this case, (soa, s

o
b) = (s∗a, s

∗
b) /∈ Dib. By Lemma 2.1, Dib = ∅.

By (4.6), we have ρib = 0. Thus, (s
∗
a, s

∗
b) is a maximizer of ha(sa, sb) over Sa×Sb. Then,

based on (4.7), we have Hii([s∗a, s
∗
b ]a, [s

∗
a, s

∗
b ]b) ≥ Hii([sr; s

∗
−r]a, [sr, s

∗
b ]b) for any sr.

When each role has only a few actions, all actions could be experienced from each
role. Condition (4.7) may be irrelevant for the existence result.

This definition has some difficulties. One is that it is conceptually poor in the non-
reciprocal case, i.e., ρir = 0 or 1, which may be found by recalling Lemma 3.1 and will
be shown more explicitly in Section 5.2. A possible remedy will be discussed there.

Another difficulty is about the deviation story given in (4.4) and (4.5). It appears
to define an equilibrium from an external viewpoint, i.e., a deviation of (4.4) and (4.5)
is interpreted as a deviation from the viewpoint of an outsider. We would like to
concentrate on the internal thinking of person i.

Yet, another difficulty, related to the previous one, is that a weak i.c.equilibrium
does not require utility maximization of each person. It may even happen that a regular
behavior (soa, s

o
b) is a weak i.c.equilibrium in i’s mind simply because he worries that

any profitable deviation to himself in the sense of (4.4) will harm person j. In the next
section we will consider a strengthening of the weak i.c.equilibrium by requiring utility
maximization in the mind of each person.

5. Intrapersonal Coordination Equilibrium

5.1. Intrapersonal Coordination Equilibria through the I.D.View Γi

Here, we give a strengthening of an weak i.c.equilibrium. Let Γi = h(soa, sob), (Si
a, S

i
b), (ρia, ρib),

Hii,Hiji be the i.d.view derived from the memory kit κi.

Definition 5.1 (I.C.Equilibrium). We say that the regular pair (soa, s
o
b) is a an

intrapersonal coordination equilibrium (i.c.equilibrium) in Γi iff for all sa ∈ Si
a,

Hii([soa, s
o
b ]a, [s

o
a, s

o
b]b) ≥ Hii([sa, s

o
b]a, [sa, s

o
b]b) (5.1)

Hij([soa, s
o
b ]a, [s

o
a, s

o
b]b) ≥ Hij([sa, s

o
b ]a, [sa, s

o
b ]b);
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and for all sb ∈ Si
b,

Hii([soa, s
o
b ]a, [s

o
a, s

o
b ]b) ≥ Hii([soa, sb]a, [s

o
a, sb]b) (5.2)

Hij([soa, s
o
b ]a, [s

o
a, s

o
b ]b) ≥ Hij([soa, sb]a, [s

o
a, sb]b).

That is, person i thinks, based on his i.d.view Γi, that soa gives higher payoff to both
persons 1 and 2 than any other action sa ∈ Si

a with their coordination, and sob has the
same property. As emphasized in Section 4.2, this coordination is considered in the
mind of person i.

Inequalities (5.1) and/or (5.2) may include the case where we have the strict in-
equality for Hii but the equality for Hij ; this may hold if person i’s tp-understanding
is trivial or poor, e.g., ρir = 0 or 1. Thus, although the definition of an i.c.equilibrium
is given by two inequality systems for each role, it includes cases where he has a poor
tp-understanding or even his d-understanding is poor, e.g., Si

a and Si
b consist only of

regular actions.
First, we show that an i.c.equilibrium is a strengthening of a weak i.c.equilibrium,

and that they coincide in the fully reciprocal case.

Lemma 5.1.(1): If (soa, s
o
b) is an i.c.equilibrium, then it is a weak i.c.equilibrium.

(2): Let (Dia,Dib) be internally reciprocal and (ρia, ρib) = (
1
2 ,
1
2). Then, if (s

o
a, s

o
b) is a

weak i.c.equilibrium, then it is an i.c.equilibrium.

Proof. Assertion (1) is straightforward from (5.1) and (5.2).
Consider (2). Let (soa, s

o
b) be a weak i.c.equilibrium. Then, since (Dia,Dib) is inter-

nally reciprocal, it follows from Theorem 3.1 and (2.3) that for all (sa, sb) ∈ Si
a × Si

b,

if sa = soa or sb = sob , then hiir (sa, sb) = hijr (sa, sb) = hr(sa, sb).

Since (soa, s
o
b) is a weak i.c.equilibrium, we have, for each sa, at least (4.4) and (4.5) does

not hold. In either case, we have

1

2
ha(s

o
a, s

o
b) +

1

2
hb(s

o
a, s

o
b) ≥

1

2
ha(sa, s

o
b) +

1

2
hb(sa, s

o
b).

This is (5.1) for internally reciprocal (Dia,Dib) and (ρia, ρib) = (
1
2 ,
1
2). Similarly, we have

(5.2).

As shown in Theorem 4.1, a weak i.c.equilibrium exists but it behaves poorly in the
non-reciprocal case. Perhaps, we should keep both equilibrium concepts in our mind,
but we will focus on an i.c.equilibrium in the sense of Definition 5.1 in the remainder
of the paper. One reason is that it maintains the utility maximization, as mentioned at
the end of Section 4.2.

Before going to the next section, we will give one more definition. Suppose that
person i = 1, 2 has an i.d.view Γi = h(soa, sob), (Si

a, S
i
b), (ρia, ρib),H

ii,Hiji derived from a
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memory kit κi = h(soa, sob), (Dia,Dib), (hia, hib); (ρia, ρib)i.
Definition 5.2 (Mutual I.C.Equilibrium). We say that the pair (soa, s

o
b) of regular

actions is a mutual i.c.equilibrium iff it is an i.c.equilibrium for both Γ1 and Γ2.

Our goal is to study the 2-person game situation and the interactions of the persons
there, rather than just to consider an i.c.equilibrium from the viewpoint of one person.
Therefore, our final objective is to study a mutual i.c.equilibrium. Nevertheless, since
it is required to be an i.c.equilibrium for each person, a research method becomes to
study first an i.c.equilibrium. Then, we will synthesize it to a mutual i.c.equilibrium.

5.2. Non-reciprocal Domains and Reciprocal Active Domain

There is a spectrum of reciprocal degrees of switching roles between the two persons.
The non-reciprocal domains (2.9) and active domains (2.10) are located at the lowest side
of this spectrum, while the fully reciprocal domains are located at the other extreme.
It is our intention to show that cooperation is emerging as the reciprocal degree is
increasing. To show this, we first show that at the lowest end, no cooperation occurs,
more concretely, for the non-reciprocal domains and active domains, the i.c.equilibrium
yields non-cooperative outcomes. In Section 6, we will consider the other extreme case
of the spectrum of reciprocal degrees.

The following theorem is a simple observation of an i.c.equilibrium and a weak
i.c.equilibrium in the non-reciprocal case.

Theorem 5.2 (Non-reciprocal Case): (1): Let ρir = 1. Then, the pair (soa, s
o
b) of

regular actions is an i.c.equilibrium in an i.d.view Γi if and only if it is a Nash equilibrium
in person i’s d-understanding gii.

(2): For any i.d.view Γi = h(soa, sob), (Si
a, S

i
b), (ρia, ρib),H

ii,Hiji with ρir = 1, (s
o
a, s

o
b) is

a with ρir = 1, (s
o
a, s

o
b) is a weak i.c.equilibrium.

Proof. (1): Let sr be an arbitrary element in Si
r. Let (s

o
a, s

o
b) be an i.c.equilibrium in

Γi. Then, using

ρirh
ii
r (s

o
r; s

o
−r) + (1− ρir)h

ii
−r(s

o
r; s

o
−r) = Hii([soa, s

o
b ]a, [s

o
a, s

o
b ]b) ≥ (5.3)

Hii([sr; s
o
−r]a, [sr; s

o
−r]b) = ρirh

ii
r (sr; s

o
−r) + (1− ρir)h

ii
−r(sr; s

o
−r).

Now, since Di(−r) = ∅, we have (sr; so−r) ∈ Dir for all sr ∈ Si
r. Hence h

ii
r (sr; s

o
−r) =

hr(sr; s
o
−r) for all sr ∈ Si

r. In particular, (s
o
r; s

o
−r) ∈ Dir by Lemma 2.1. By these

and (5.3), we have hr(sor; s
o
−r) ≥ hr(sr; s

o
−r) using ρir = 1. By (1), (soa, s

o
b) is a Nash

equilibrium in gii. Tracing the argument back, we have the only-if part, i.e., if (soa, s
o
b)

is a Nash equilibrium in gii, then (soa, s
o
b) be an i.c.equilibrium in Γi.

(2): Lemma 3.1 states that hijr is constant over Si
a×Si

b. Hence, (4.5) does not hold, and
we have the assertion.
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In the above theorem, a Nash equilibrium in person i’s d-understanding gii is simply
a payoff maximization point in the base game G with the fixed so−r. Hence, we have the
following corollary.

Corollary 5.3 (Mutual I.C.Equilibrium in the Non-reciprocal Domains): Let
ρir = ρj(−r) = 1, Si

r = Sr, S
j
−r = S−r, and (soa, s

o
b) the pair of regular actions Then,

(soa, s
o
b) is a mutual i.c.equilibrium if and only if it is a Nash equilibrium in the base

game G.

Assertion (2) of Theorem 5.2 states that a weak i.c.equilibrium becomes poor when
ρir is 0 or 1. On the other hand, an i.c.equilibrium may disappear for some other range
of ρir, which will be explained in Section 6. To a great extent, these are complementary
equilibrium concepts. It is the salient point, stated by Lemma 5.1, that they coincide
when (ρia, ρib) = (1/2, 1/2) and the domains (Dia,Dib) are internally reciprocal. In fact,
we will show that in that case, the cooperation outcome results.

In fact, assertion (2) could be removed by choosing the slightly stronger form of a
weak i.c.equilibrium. Since this fact may help the reader understand some other possible
definition of our equilibrium concept, we give it as a remark.

Remark 5.1. A possible amendment of a weak i.c.equilibrium is: We replace (4.5)
by a weak inequality, i.e., it is free from a deviation of (4.4) and the weaker form of
(4.5). This change would eliminate the poorness in (2) of Theorem 5.2 and make (1) to
hold; and simultaneously we can keep the existence theorem (Theorem 5.1). Why we
adopt the present i.c.equilibrium as well as mention the weak i.c.equilibrium is that the
amendment rely upon a subtle story of deviations for both persons.

Before going to Section 6, we just mention, without a proof, the behavior of an
i.c.equilibrium in the reciprocal active domains.

Theorem 5.4 (Reciprocal Active Domain): Let (DA
ia,D

A
ib) be the reciprocal active

domain for person i = 1, 2 defined in (2.10) with the regular actions (soa, s
o
b). Suppose

that θa ≤ ha(s
o
a, s

o
b) and θb ≤ hb(s

o
a, s

o
b). Then the following two statements hold:

(1): If (soa, s
o
b) is a Nash equilibrium in the 2-role strategic game G = (a, b, Sa, Sb, ha, hb),

then it is an i.c.equilibrium.

(2): Suppose that hr(soa, s
o
b) = θr for r = a, b. Then the converse of (1) holds.

6. Intrapersonal Coordination Equilibrium for Reciprocal Domains

The theorems in Section 5.2 stated that in the non-reciprocal case, the i.c.equilibrium
results as a noncooperative outcome, while the weak i.c.equilibrium does not exclude
any outcome as a candidate. In this section, we will show that both equilibrium concepts
suggest the cooperative outcome when domains (Dia,Dib) are internally reciprocal and
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(ρia, ρib) = (1/2, 1/2). We interpret this as the emergence of cooperation from a suffi-
cient degree of reciprocity. As already mentioned, the frequency weights should be in-
terpreted as a rough description. First, we will give a result when (ρia, ρib) = (1/2, 1/2),
and then mention how this assumption is weakened with a rough interpretation of
(ρia, ρib) = (1/2, 1/2).

Let Γi = h(soa, sob), (Si
a, S

i
b), (ρia, ρib),H

ii,Hiji be an i.d.view.
Theorem 6.1.(Utilitarian Condition): Suppose that domains (Dia,Dib) are inter-
nally reciprocal and (ρia, ρib) = (1/2, 1/2). Then, the pair (s

o
a, s

o
b) of regular actions is

an i.c.equilibrium for Γi if and only if

ha(s
o
a, s

o
b) + hb(s

o
a, s

o
b) ≥ ha(sa, s

o
b) + hb(sa, s

o
b) for all sa ∈ Si

a; (6.1)

ha(s
o
a, s

o
b) + hb(s

o
a, s

o
b) ≥ ha(s

o
a, sb) + hb(s

o
a, sb) for all sa ∈ Si

b. (6.2)

Proof. First, it follows from (2.3) that for any sa ∈ Si
a and sb ∈ Si

b, (sa, s
o
b) and

(soa, sb) belong to Proj(Dia) = Proj(Dib) = Proj(Si
a × Si

b). Theorem 3.2.(1) states that
hiir (sa, sb) = hijr (sa, sb) = hr(sa, sb) for all (sa, sb) ∈ Proj(Si

a × Si
b). Since (ρia, ρib) =

(1/2, 1/2), this implies that the definition of an i.c.equilibrium becomes equivalent to
(6.1) and (6.2).

By Lemma 5.1, this theorem holds also for a weak i.c.equilibrium (in fact, the equilib-
rium concept mentioned in Remark 5.1 coincides with them, too). Hence, both concepts
suggest that cooperation results in the fully reciprocal case, while they behave quite dif-
ferently in the non-reciprocal case. The title “Utilitarian Condition” of the theorem will
be explained in Section 7.

The above theorem holds even for some interval of ρia centered at 1/2 (and also for
the weak i.c.equilibrium) under some additional condition. Again, Γi = h(soa, sob), (Si

a, S
i
b),

(ρia, ρib),H
ii,Hiji is assumed to be an i.d.view.

Theorem 6.2.(Rough Weights): Suppose that domains (Dia,Dib) are internally
reciprocal and that

ha(s
o
a, s

o
b) + hb(s

o
a, s

o
b) > ha(sa, s

o
b) + hb(sa, s

o
b) for all sa ∈ Si

a\{soa}; (6.3)

ha(s
o
a, s

o
b) + hb(s

o
a, s

o
b) > ha(s

o
a, sb) + hb(s

o
a, sb) for all sb ∈ Si

b\{sob}. (6.4)

Then there is a α ∈ (0, 12) such that for any ρ̂ia ∈ (12 − α, 12 + α), (soa, s
o
b) is an

i.c.equilibrium for Γ̂i obtained from Γi by the replacement of (ρia, ρib) with (ρ̂ia, ρ̂ib) =
(ρ̂ia, 1− ρ̂ia).

Proof. By (6.3), there is an α0 ∈ (0, 12) such that for any ρ̂ia ∈ (
1
2 − α0, 12 + α0),

ρ̂iaha(s
o
a, s

o
b) + ρ̂ibhb(s

o
a, s

o
b) ≥ ρ̂iaha(sa, s

o
b) + ρ̂ibhb(sa, s

o
b) for all sa ∈ Si

a;
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ρ̂iahb(s
o
a, s

o
b) + ρ̂iaha(s

o
a, s

o
b) ≥ ρ̂iahb(sa, s

o
b) + ρ̂ibha(s

o
a, sb) for all sa ∈ Si

a,

which correspond to (5.1). By (6.4), we can find some α00 ∈ (0, 12) so that the inequal-
ities corresponding to (5.2) hold. Let α = min(α0, α00). Since (Dia,Dib) are internally
reciprocal, we have hiir (sa, sb) = hijr (sa, sb) = hr(sa, sb) for all (sa, sb) ∈ Proj(Si

a × Si
b)

by Theorem 3.2.(1). Hence, these inequalities imply (5.1) and (5.2).

Now, we have seen that we do not need to take (ρia, ρib) = (
1
2 ,
1
2) as a very accurate

requirement. In the following, we forget rough weights, and state the existence theorem
of an i.c.equilibrium for internally reciprocal domains and (ρia, ρib) = (

1
2 ,
1
2).

Theorem 6.3 (Existence of an I.C.Equilibrium): Let (ρia, ρib) = (12 ,
1
2). Then,

there is a pair (soa, s
o
b) ∈ Sa×Sb such that for any internally reciprocal domains (Dia,Dib)

with (soa, s
o
b) ∈ Dia, the pair (soa, s

o
b) is an i.c.equilibrium for Γi.

Proof. Let us choose a pair (soa, s
o
b) ∈ Sa × Sb so that

ha(s
o
a, s

o
b) + hb(s

o
a, s

o
b) ≥ ha(sa, sb) + hb(sa, sb) for all (sa, sb) ∈ Sa × Sb. (6.5)

Since Sa × Sb is a finite set, we can find a pair (soa, s
o
b) ∈ Sa × Sb satisfying (6.5).

Since (Dia,Dib) are internally reciprocal, we have, Theorem 3.1.(1), hiir (sa, sb) =
hijr (sa, sb) = hr(sa, sb) for all (sa, sb) ∈ Proj(Si

a × Si
b). Hence, using (6.5), we have, for

all sa ∈ Si
a and sb ∈ Si

b,

1

2
hiia (s

o
a, s

o
b) +

1

2
hiib (s

o
a, s

o
b) ≥

1

2
hiia (sa, s

o
b) +

1

2
hiib (sa, s

o
b)

1

2
hija (s

o
a, s

o
b) +

1

2
hijb (s

o
a, s

o
b) ≥

1

2
hija (sa, s

o
b) +

1

2
hijb (sa, s

o
b).

The parallel inequalities for the replacement sob by sb ∈ Si
b hold. Hence, (s

o
a, s

o
b) is an

i.c.equilibrium in Γi.

In the above proof, the pair (soa, s
o
b) chosen by (6.5) reaching the maximum payoff

sum is independent of person i. Hence, the above proof implies that (soa, s
o
b) is a mutual

i.c.equilibrium. We state this fact as a corollary.

Corollary 6.4 (Existence of a Mutual I.C.Equilibrium): Let (ρia, ρib) = (12 ,
1
2)

for i = 1, 2. Then, there is a pair (soa, s
o
b) ∈ Sa × Sb such that for any internally recip-

rocal domain (Dia,Dib) with (soa, s
o
b) ∈ Dia for i = 1, 2, the pair (soa, s

o
b) is a mutual

i.c.equilibrium.

In the proof of Theorems 6.3, the pair (soa, s
o
b) is chosen as a global maximization

point over the entire matrix. But we should choose one pair (soa, s
o
b) maximizing the

simple sum of payoffs over Proj(Sa × Sb) centered at this pair. Once this is recognized,
a simple algorithm to find such a point is constructed as follows: Take any pair in the
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matrix. Then, if there is one pair with a higher sum of payoffs obtained by one person’s
deviation, we move to this pair. If this pair has the same property, then we move again.
Then, we will reach one pair without a further improvement. This convergence holds
since the matrix is finite and each step has an improvement in the sum of payoffs. The
resulting pair may not be a global maximization point.

Next, we will see that an i.c.equilibrium may not exist in the cases where (ρia, ρib)
is twisted enough. To see the nonexistence, we give one lemma.

Lemma 6.5: Let (soa, s
o
b) be an i.c.equilibrium for Γi with (soa, s

o
b) ∈ Dia ∩Dib.

(1): If (sa, sob) ∈ Dia ∩Dib, then ha(s
o
a, s

o
b) + hb(s

o
a, s

o
b) ≥ ha(sa, s

o
b) + hb(sa, s

o
b).

(2): If (soa, sb) ∈ Dia ∩Dib, then ha(s
o
a, s

o
b) + hb(s

o
a, s

o
b) ≥ ha(s

o
a, sb) + hb(s

o
a, sb).

Proof. We show only (1). Let (sa, sob) ∈ Dia ∩Dib. Since (soa, s
o
b) is an i.c.equilibrium,

by (5.1), we have

ρiah
ii
a (s

o
a, s

o
b) + (1− ρia)h

ii
b (s

o
a, s

o
b) ≥ ρiah

ii
a (sa, s

o
b) + (1− ρia)h

ii
b (sa, s

o
b); (6.6)

ρiah
ij
b (s

o
a, s

o
b) + (1− ρia)h

ij
a (s

o
a, s

o
b) ≥ ρiah

ij
b (sa, s

o
b) + (1− ρia)h

ij
a (sa, s

o
b).

Since (soa, s
o
b) and (sa, s

o
b) are in Dia ∩Dib, it holds by (3.1) and (3.2) that for r = a, b,

hiir (s
o
a, s

o
b) = hijr (soa, s

o
b) = hr(s

o
a, s

o
b) and hiir (sa, s

o
b) = hijr (sa, s

o
b) = hr(sa, s

o
b). Hence,

summing up the first and second inequalities of (6.6), we have ha(soa, s
o
b) + hb(s

o
a, s

o
b) ≥

ha(sa, s
o
b) + hb(sa, s

o
b).

Lemma 6.5 gives necessary conditions for the resulting outcome of an i.c.equilibrium.
Using this lemma, we can find the non-existence of an i.c.equilibrium for internally
reciprocal domains D1a and D1b.

Example 6.1 (Non-Existence): Consider the game of Table 2.1. Suppose that DAP
1a

and DAP
1b are the active-passive domain given by (2.11) with (soa, s

o
b) = (sa2, sb1). When

(ρia, ρib) = (1/2, 1/2), (sa2, sb1) is an i.c.equilibrium and also a weak i.c.equilibrium.
Let ρia = 9/10 and ρib = 1/10. In this case, since (D1a,D1b) are internally reciprocal,

it follows from Lemma 6.5 that (sa2, sb1) is a candidate for an i.c.equilibrium. However,
we have

9

10
hiia (sa1, sb1) +

1

10
hiib (sa1, sb1) = 3 > 2.8

=
9

10
hiia (sa2, sb1) +

1

10
hiib (sa2, sb1).

Hence, (sa2, sb1) is not an i.c.equilibrium. The only other candidate with active-passive
domains is (sa1, sb2), but it is not an i.c.equilibrium either.

The pair (soa, s
o
b) = (sa2, sb1) with the above D

AP
1a and DAP

1b is a weak i.c.equilibrium.
On the other hand, many other weak i.c.equilibria appear: Each of (soa, s

o
b) = (sa2, sb1),
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(sa1, sb2), (sa1, sb1), (sa3, sb2), (sa2, sb3) is possibly a weak i.c.equilibrium with the appro-
priate active-passive domains.

When ρia = 1/3 and ρib = 2/3, (sa2, sb1) becomes again an i.c.equilibrium (and also
a weak one, too), though the necessary conditions given by Lemma 6.5 remains valid.
This is the fact stated by Theorem 6.2 that with sufficient reciprocity, the payoff-sum
maximizer is an i.c.equilibrium.

7. Applications to the Prisoner’s Dilemma, Ultimatum Game and Dic-
tator Game

Here, we apply the results of Section 6 to the prisoner’s dilemma game, ultimatum
game and dictator game. For those games, experimental results differ consistently from
the predictions based on the standard equilibrium theory. Cooperative outcomes (equal
division) are observed more often in experiments than the predicted non-cooperative
outcomes (cf. Cooper et al. [4], Güth et al. [9], Kahneman et al. [12] and also Camerer
[3]). Here, we consider some variants of those games, and apply our theory to them.

Prisoner’s Dilemma: This is typically expressed as a bimatrix game such as in Table
7.1. Consider the reciprocal active-passive domains (DAP

ia ,DAP
ib ) with the regular actions

(soa, s
o
b) and ρia = 1/2. It follows from Theorem 6.1 that (s

o
a, s

o
b) = (sa1, sb1) is the unique

i.c.equilibrium. On the other hand, if we multiply the payoffs for role b by 6 to obtain
the game of Table 7.2, then (soa, s

o
b) = (sa1, sb2) becomes the unique i.c.equilibrium.

Here we see that the affine transformation of payoffs affects behavioral predictions in
our theory. If we go further and change the payoffs to Table 7.3, which maintain the
dominant strategies of the game, then the new game has now two i.c.equilibria which
are (sa1, sb2) and (sa2, sb1).

Table 7.1 Table 7.2 Table 7.3
sb1 sb2

sa1 (5, 5)IC (2, 6)
sa2 (6, 2) (3, 3)NE

sb1 sb2
sa1 (5, 5) (2, 36)IC

sa2 (6, 12) (3, 18)NE

sb1 sb2
sa1 (5, 5) (2, 10)IC

sa2 (10, 2)IC (3, 3)NE

Contrary to these results, an i.c.equilibrium becomes very different in the case of
the non-reciprocal active domains. In each of the above table, it follows from Theorem
5.2.(2) that (soa, s

o
b) = (sa2, sb2) remains the unique i.c.equilibrium, which is also (a

dominant strategy) Nash equilibrium. We need several comments on our predictions.
First, the above three bimatrix games are all regarded as the prisoner’s dilemma

from the standard game theoretical point of view. However, the i.c.equilibrium concept
behaves differently in those games. In the full reciprocal case, the i.c.equilibrium moves
to the payoff-sum maximization points in those games. This is one possible prediction
of our theory, which can be tested in experiments.
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Figure 7.1: Ultimatum Game

Second, in the non-reciprocal case, the i.c.equilibrium coincides with the Nash equi-
librium as was stated in Theorem 5.2.(2). The reader may wonder whether this is con-
sistent with the existing experimental results, which state that the cooperative outcome
more likely results. However, one important difference we should notice is that in our
theory, the payoff functions are assumed to be a priori not known. If this “not known”
is taken properly into account in experiments, we expect that (soa, s

o
b) = (sa2, sb2) could

more likely result.
Finally, the reader may also wonder why the cooperative outcome has been observed

in experiments when the payoffs are assumed to be known to the subjects. As far as the
game is symmetric such as in Table 7.1, this “known” assumption works as a substitute
for role-switching in providing information about the payoff of the other role, and the
cooperative outcome may observed without role switching. However, in non-symmetric
cases such as in Table 7.2, we do not expect the same results. These cases need further
experimental study as well as for an extension of our theory itself to incorporate a
postulate different from Ob2 (observation only of his own payoff pair).

Ultimatum Game: Suppose that the 2-role game is given as follows: A person assigned
to role a proposes a division of $100 to persons 1 and 2, and a person assigned to role b
receives the proposal (xa, xb) and chooses an answer Y or N to the proposal. We assume
that only three alternative choices are available at a, i.e., Sa = {(99, 1), (50, 50), (1, 99)}.
The person at role b chooses Y or N contingent upon the offer made by a, i.e., Sb =
{(α1, α2, α3) : α1, α2, α3 ∈ {Y,N}}. If the person at role a chooses (99, 1) and the person
at b chooses (α1, α2, α3), then the outcome depends only upon α1; if α1 = Y, then they
receive (99, 1) and if α1 = N, then they receive (0, 0). For the other cases, we define
payoffs in a parallel manner. The game is depicted in Fig.7.1.

This game has a unique backward induction solution: ((99, 1), (Y, Y, Y )).This is quite
incompatible with experimental results, which have indicated that (50, 50) is more likely
chosen by the mover at a, as mentioned above.
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Figure 7.2: Dictator Game

We assume one additional component for the persons. They have a strictly concave
and monotone utility function u(m) over [0, 100]. This introduction does not change the
above equilibrium outcome. But it changes the i.c.equilibrium drastically.

Under the assumption that person i has the reciprocal active-passive domainsDAP
ia =

DAP
ib and ρia = 1/2, a pair ((99, 1), (Y, Y, Y )) is not an i.c.equilibrium since

1

2
hiia ((99, 1), (Y, Y, Y )) +

1

2
hiib ((99, 1), (Y, Y, Y ))

=
1

2
u(99) +

1

2
u(1) < u(50) =

1

2
u(50) +

1

2
u(50)

=
1

2
hiia ((50, 50), (Y, Y, Y )) +

1

2
hiib ((50, 50), (Y, Y, Y )).

The inequality follows the strict concavity of u. In this game, an i.c.equilibrium is given
as ((50, 50), (α1, Y, α3)), where α1, α3 are not determined. We find that the concept
of i.c.equilibrium is consistent with the experimental results. In fact, we have other
i.c.equilibria, e.g., ((99, 1), (Y,N,N)) and even ((1, 99), (N,N, Y )), which are also Nash
equilibria of this game.

There are several issues here. One is that we have treated this game as a strategic
game to fit into the theory given in this paper. In order to study it as an extensive
game, we need to extend our theory to extensive games or information protocols such
as in [15] and [16]. Another issue is that the i.c.equilibrium does not consider joint
deviations, so equilibria like ((99, 1), (Y,N,N)) can persist. As mentioned in Section
4.2, we could have extended our theory to include joint deviations, but chose not to do
so, since it would include other conceptual problems. With such an extension, we could
discuss how the other equilibria such as ((99, 1), (Y,N,N)) may or may not remain in
our theory.

Here, instead of extending the present theory, we simplify the ultimatum game so as
to treat it as a strategic game to show how the results become clear cut. We will treat

31



a simpler version of the dictator game given by Kahneman et al. [12] (see also Camerer
[3] for a survey of experimental studies of dictator games).

Dictator Game: Let us eliminate action N from each move of role b. The game is
depicted as Fig.7.2. This has no action choice for role b, and thus, it is regarded a 1-role
game from the standard game theoretic point of view. However, payoffs to role b matter
in our theory. First, we consider:

Case 1: Reciprocal Active-Passive Domains: Here, we first specify the domain
and frequencies of role-switching with (soa, s

o
b) = ((50, 50), Y ) :

Dia = {((99, 1), Y ), ((50, 50), Y ), ((1, 99), Y )},Dib = {((50, 50), Y )} (7.1)

ρia = 1/2.

Then Si
a = {(99, 1), (50, 50), (1, 99)} and Si

b = {Y }.Here, we have the unique i.c.equilibrium
((50, 50), Y ). Indeed, when they switch the roles, one person obtains $99 and $1 with
frequencies 1/2 and 1/2, respectively. This alternating payoffs are less preferred to
taking $50 constantly, since the utility function u is strictly concave.

To discuss whether this result can be regarded as capturing the experimental results
reported so far, we consider another extreme case.

Case 2: Non-reciprocal Domains:

D1a = {((99, 1), Y ), ((50, 50), Y ), ((1, 99), Y )} and D1b = ∅ (7.2)

ρ1a = 1.

That is, person 1 always chooses a division of $100, and person 2 follows it. In this case,
we have also a unique i.c.equilibrium ((99, 1), Y ) : Person 1 exclusively enjoys role a. In
this case, the domains for person 2 are: D2a = ∅ and D2b = {((99, 1), Y )}.

The results for the above two cases are extremely opposite. We should discuss
whether the prediction of our theory may reconcile the discrepancy between the game
theory and reported experimental results.

Discussions of the Above Results: Social Contexts:
A lot of experimental studies are reported based on the prisoner’s dilemma, ultima-

tum game, and dictator game. As already stated, the experimental results consistently
differ from the non-cooperative game-theoretical predictions. The results are rather
closer to our cooperative results. However, experimental theorists have tried to inter-
pret their results in terms of “fairness”, “altruism”, and/or “social preferences”, which
are expressed as constraint maximization of additional objective functions (cf., Camerer
[3]). In contrast, we have extended and/or specified the basic social context, and de-
rived the emergence of cooperation. Thus, our treatment is very different from what
have been discussed in the literature of behavioral economics and game theory. Perhaps,
ours will serve a new theoretical viewpoint to experimental economics.
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We have already discussed about possible experimental studies for the prisoner’s
dilemma. Here, we discuss only the dictator game and our result. One possible hypoth-
esis is that the fully reciprocal Case 1 with equal sharing corresponds to the standard
experimental design where the roles and the opponents are chosen randomly in each
round keeping their anonymity. This experimental design already captures our internal
reciprocity well and the experimental results of sharing fit well.

Exactly speaking, we find a gap between the above experimental design and our
internal reciprocity, since the random choice of a subject from the pool differs from the
role-switching of the two fixed subjects. Nevertheless, our entire view explains this gap:
A basic assumption of inductive game theory is that a person takes patterned behavior
in a complex social web, meaning that he behaves in the same or similar situation
following the same pattern of behavior. The situation our theory targets is repeated
but it may be scattered in the social web, like Fig.1.1. A subject taken from society
brings his behavior pattern and behaves following it in an experiment. The cooperative
behavior described by an i.c.equilibrium may be taken by a person to an experiment
where he again behaves cooperatively.

Some alternative experimental design may be developed to capture the non-reciprocal
Case 2. In this design, the roles could be fixed over some rounds, say 20 rounds, with
an anonymous opponent. Here, we might expect the non-sharing i.c.equilibrium of case
2 to result.

The idea of patterned behavior should be applied even to optimization behavior.
Though we have described the optimal behavior of a person as an i.c.equilibrium, this
does not imply that a subject is an instantaneous optimizer. Rather, each typically
follows his patterned behavior and only sometimes maximizes his payoffs. Optimization
results only in the long-run. This idea is an answer from the entire approach of inductive
game theory to the question: “How do socio-cognitive dimensions influence behavior in
games?” in Camerer [3], p.476.

Now we turn to morality or fairness. It is our contention that as far as a situation
is recurrent and reciprocal enough, the persons possibly cooperate in the form of the
simple payoff sum maximization. Since this is, perhaps, quite pervasive for human re-
lations among small numbers of people, they could have such patterned behavior, and
consequently, such behavior is then observed in experiments. This gives an “anthropo-
logical”, i.e., “experiential” grounding for morality, which may be expressed in the form
of “utilitarianism” of Theorem 6.1. It has a similarity with Adam Smith’s [26] “moral
sentiments”, which a person derives taking the viewpoint of the (impartial) “spectator”
by imagining a social situation. This argument assumes that the spectator has the
ability of sympathy and understanding of the target social situation. Our argument
explains how the person gets his understanding of the situation and the other’s through
role-switching.
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8. Externally Reciprocal Relations

Our primary concern was what happens with experiences in the mind of one person.
Actually, since people are in a game setting, experiences and understandings from them
are also externally interactive and affect each other. In this section, we will consider
various external reciprocal relations. Our basic idea is that the persons’ reciprocal
relationships are gradually emerging as time is going on. In this process, an active
experience and a passive experience may behave quite differently. In this section, we
will focus on unilateral trials and the generation of a resulting memory kit based on
such trials.

The starting point is as follows. Suppose that persons 1 and 2 have their accumulated
domains D1 = (D1a,D1b) and D2 = (D2a,D2b), respectively, with the regular actions
(soa, s

o
b). These accumulated domains should be correlated since the passive experiences

of one person are generated by active experiences of the other. Using this idea, we could
impose the following condition on domains of accumulation:

Active generates Passive: for all sr ∈ Sr, r = a, b and i, j = 1, 2 (i 6= j),

(sr; s
o
−r) ∈ Dj(−r) implies (sr; s

o
−r) ∈ Dir. (8.1)

That is, if person j has a passive experience, then person i must have this as an active
experience causing j’s passive experience. This is of the same nature as the Postulates
EP3 and EP4 of Section 2. Based on these postulates, (8.1) formulates the idea that
a person is more sensitive to being active with respect to memories. This gives an
element of reciprocity but is only a necessary form of reciprocity. For example, the
non-reciprocal active domains DN

1 and DN
2 given by (2.9) still satisfy (8.1).

As time is going on, each person may have learned also passive experiences. Even-
tually, the converse of (8.1) could hold:

Equal Sensitivity of Active/Passive Experiences: for all sr ∈ Sr, r = a, b and
i, j = 1, 2 (i 6= j),

(sr; s
o
−r) ∈ Dj(−r) if and only if (sr; s

o
−r) ∈ Dir. (8.2)

The non-reciprocal active domains DN
1 and DN

2 no longer satisfy this condition. If we
keep the assumption that they do not switch roles but if (8.2) is assumed, then we
should amend the non-reciprocal active-passive domains DNAP

1 and DNAP
2 described

in (1) of Section 2.2. We can see that the amendments do not change the behavioral
consequence from Theorem 4.1, though the tp-understanding g12 changes slightly, i.e.,
person 1 may now recognize a larger action set Si

b.

Role-Switching with Similar Frequencies: The above example suggests that (8.2)
is not enough to establish external reciprocal relationships between 1 and 2. We need
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also the assumption that they switch the roles from time to time with relatively equal
frequencies.

Nevertheless, the equal sensitivity (8.2) and the frequency-wise reciprocity are still
not enough for the fully reciprocal relationships.

Example. 8.1 (Different Trials): Consider the game in Table 2.1 and the following
D1,D2 with the regular actions (soa, s

o
b) = (sa1, sb1);

D1a = {(sa1, sb1), (sa2, sb1), (sa1, sb3)}, and D1b = {(sa1, sb1), (sa1, sb2), (sa3, sb1)};
D2a = {(sa1, sb1), (sa3, sb1), (sa1, sb2)}, and D2b = {(sa1, sb1), (sa1, sb3), (sa2, sb1)}.

That is, person 1 makes trials of only the second actions sa2 at role a and sb2 at role
b, while person 2 makes trials of only the third actions sa3 at a and sb3 at b. Even
though (8.2) holds, and their roles are switched, their differences in trial behaviors
generates different domains of experiences, i.e., Dia 6= Dib for i = 1, 2 and D1r 6= D2r

for r = a, b, though D1a = D2b and D2a = D1b. These nonequivalences prevent them
from constructing meaningful tp-understandings.

Thus, we need to take one more step to obtain full reciprocity

The Same Trials: The two persons switch the roles and make similar trials as well.
The extreme case is formulated as: for all sr ∈ Sr, r = a, b and i, j = 1, 2 (i 6= j),

(sr; s
o
−r) ∈ Dir if and only if (sr; so−r) ∈ Djr. (8.3)

That is, they make the same trials at each role.
We can change (8.2) and (8.3) to equivalent but mathematically clearer conditions.

Lemma 8.1 (Internal-External Reciprocity). Conditions (8.2) and (8.3) hold for
(D1a,D1b) and (D2a,D2b) if and only if

(1)(Internal Reciprocity): Proj(Dia) = Proj(Dib) for i = 1, 2;

(2)(External Reciprocity): Proj(D1r) = Proj(D2r) for r = a, b.

Proof. When (1) and (2) hold, the four sets, Proj(Dir), i = 1, 2 and r = a, b coincide.
Hence, the if-part is straightforward. We prove the only-if part. Suppose (8.2) and (8.3)
for (D1a,D1b) and (D2a,D2b).

Consider (1). Let (sa, sb) ∈ Proj(D1a). This means that (sa, sb) = (sa, s
o
b) or

(soa, sb). Fist, let (sa, sb) = (sa, s
o
b). Then, (sa, s

o
b) ∈ Proj(D2a) by (8.3), which is

written as (sa; so−a) ∈ Proj(D2a). By (8.2), we have (sa; so−a) ∈ Proj(D1(−a)), i.e.,
(sa, s

o
b) ∈ Proj(D1b). Next, let (sa, sb) = (soa, sb). Thus, (sb; s

o
−b) ∈ Proj(D1(−b)). We

have (sb; so−b) ∈ Proj(D2b) by (8.2). Hence, by (8.3), we have (sb; so−b) ∈ Proj(D1b).
We have shown Proj(Dia) ⊆ Proj(Dib). The converse can be obtained by a symmetric
argument. Thus, we have (1).
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Consider (2). Let (sa, sb) ∈ Proj(D1a). This means that (sa, sb) = (sa, sob) or (s
o
a, sb).

Let (sa, sb) = (sa, sob). By (8.3), we have (sa, s
o
b) ∈ Proj(D2a). i.e., (sa; so−a) ∈ Proj(D2a).

Now, let (sa, sb) = (soa, sb). By (1), (s
o
a, sb) ∈ Proj(D1b). This is written as (sb; so−b) ∈

Proj(D1b). By (8.2), we have (sb; so−b) ∈ Proj(D2a). We have shown that Proj(D1a) ⊆
Proj(D2a). The converse can be obtained by a symmetric argument. Thus we have
(2).

Hence, when (8.2) and (8.3) hold, these Proj(Dir) coincide for i = 1, 2 and r =
a, b. Hence, as far as the frequency weights are reciprocal, i.e., ρ1a = ρ2a = 1/2, an
i.c.equilibrium and a mutual i.c.equilibrium support an cooperative outcome up to the
experienced actions.

In Theorem 3.2, we have already seen that internal reciprocity (1) is necessary and
sufficient for gii and gij to coincide within the mind of person i. The next step is to
consider when the two persons reach the same views. In this case, under the assumption
of ρ1a = ρ2a = 1/2, a mutual i.c.equilibrium makes sense.

Actually, (8.2) and (8.3) are necessary and sufficient for all gii and gij (i, j = 1, 2, i 6=
j) to coincide across persons. We state this result as a theorem.

Theorem 8.2.(Internally and Externally Reciprocal Relations): (8.2) and (8.3)
hold for (D1a,D1b) and (D2a,D2b) if and only if for any r = a, b and i, j = 1, 2 (i 6= j),

(1): Si
r = Sj

r ;

(2): for any (sa, sb) ∈ Proj(S1a × S1b ) and θa, θb, h
ii
r (sa, sb) = hijr (sa, sb) = hr(sa, sb).

Proof. (Only-If): Suppose that (8.2) and (8.3) hold for (D1a,D1b) and (D2a,D2b).
Then, Lemma 8.1 states that Proj(Dir)’s all coincide. Hence, (1) is satisfied by the d-
understanding gii = (a, b, Si

a, S
i
b, h

ii
a , h

ii
b ) and tp-understanding g

ij = (a, b, Si
a, S

i
b, h

ij
a , h

ij
b )

for i, j = 1, 2 (i 6= j). Assertion (2) also follows by (3.1) and (3.2).

(If): By (1) and (2.3), we have, for i = 1, 2, Proj(Dia ∪ Dib) = Proj(S1a × S1b ). Let
(sa, sb) ∈ Proj(Dia ∪Dib). Then, since hiir (sa, sb) = hijr (sa, sb) = hr(sa, sb) for any θa, θb
by (2), we have (sa, sb) ∈ Dir∩Di(−r). This holds for i = 1, 2. Hence, (sa, sb) ∈ Proj(Dia)
and (sa, sb) ∈ Proj(Dib). Hence, we have shown (1) and (2) of Lemma 8.1. Thus, (8.2)
and (8.3) hold for (D1a,D1b) and (D2a,D2b).

An implication of Theorem 8.2 is that under (8.2), (8.3) and the frequency assump-
tion that (ρia, ρib) = (

1
2 ,
1
2) for i = 1, 2, person i can predict correctly the other person’s

weighted payoff function over the relevant domains, that is, Hij([sr; s
o
−r]a, [sr; s

o
−r]b) =

Hjj([sr; s
o
−r]a, [sr; s

o
−r]b) for any sr ∈ Sj

r = Si
r. Hence, those persons think about the

game in the perfectly synchronized manner, a fortiori, if (soa, s
o
b) is a mutual i.c.equilibrium,

then they reach the understanding that it is an i.c.equilibrium for both persons.
Although we have explore the possibility of these two types of reciprocities to be

reached after the situation has been played with full role-switching, we do not claim
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that this happens necessarily. Here, we give only one example where each has internally
reciprocal domains but they are not externally reciprocal

Example 8.2 (Internally Reciprocal for each but not External Reciprocal).
Two persons 1 and 2 have played the game with full role-switching, and have made
the same trial deviations from the regular actions. Now, suppose that person 1 has a
stronger memory ability than person 2. In this case, person 1 keeps more experiences
than 2, while internal reciprocity holds for each person, i.e., Proj(D1a) = Proj(D1b) )
Proj(D2a) = Proj(D2b). In this case, each person has the same d- and tp-understandings,
but they are different over the persons.

In this case, the dynamics suggested in Fig.4.1 may not work externally. For exam-
ple, person 1 thinks that a deviation sa gives a better weighted payoff, and he thinks
that person 2 thinks in the same manner. But, if the experience (sa, sob) is not accumu-
lated in person 2’s mind, person 2 does not deviate as 1 predicts. In this case, person
1 may find that person 2’s i.d.view is different.

This kind of a difference in their views may be a source for their communications.
This is beyond the scope of this paper and will be discussed in a separate paper.

9. Conclusions

We have introduced the concept of social roles into inductive game theory, and have
given an experiential foundation of the other’s beliefs. Based on this foundation, we
have shown the possibility for the emergence of cooperation and argued that persons
are more likely to cooperate when their role-switching is more reciprocal. In this section,
we first summarize our findings in this paper, and next we discuss extensions and future
work.

9.1. Summary of Findings

It was our basic postulate that a person’s understanding of the other’s thinking should
be experiential. We introduced role-switching so that person i could experience and
obtain an experiential understanding of the other’s thinking.

In our exploration of a person’s transpersonal understanding of the other, we have
taken several steps exemplified by various postulates. We postulated in TP1 (projection
of self) and TP2 (experiential reason to believe) that each person projects his own
experiences onto the other provided he has experiential reason to believe the other has
had the same experience. These postulates were summarized in the requirement that
both (sa, sb) ∈ Dir and (sa, sb) ∈ Dir in the definition of h

ij
r (sa, sb) in (3.2). This will

be discussed below more.
The transpersonal understanding of the other’s thinking requires reciprocity in role-

switching. With such reciprocity, it became natural to consider the frequency weighted
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payoff of a person across roles. Correspondingly, we developed the concept of an
i.c.equilibrium within such a framework.

Nevertheless, with different degrees of reciprocity, we have many cases for the do-
mains of accumulation generated, some of which were well suited for cooperation, and
others not. The reciprocal active-passive domain was shown to be well suited for co-
operation to emerge in an i.c.equilibrium (Theorem 6.1). On the other hand, the non-
reciprocal and reciprocal active domains generate only non-cooperative Nash equilibria
as i.c.equilibria (Theorem 5.2). In this paper, we pursued only a few cases to express
the main thrust of the arguments about the potential for the emergence of cooperation.

In Section 7, we discussed the coherency of our theory with experimental results
from the prisoner’s dilemma, ultimatum, and dictator games. We also proposed some
alternative experimental designs to test the relevance of role-switching for behavior in
experiments, which will serve a connection to experimental/behavioral economics/game
theory (cf., Camerer [3]).

Section 8 gave external conditions for the internal reciprocity which was at the heart
of the emergence of cooperation in our theory. This exploration showed that in addition
to reciprocal role-switching, the same trials by both persons, and equal and broad
sensitivities were sufficient (Theorem 8.2) to generate the equivalent understandings
that are fertile grounds for cooperation.

9.2. Extensions and Future Work

First, we discuss some implicit assumptions underlying of formulation of person i’s
derivation of the tp-understanding about the other’s understanding. It is experiential
in the sense that all components are derived from his own accumulated experiences.
Here, we need social roles, role-switching, and also the basic assumption that the 2-
role game is given independent of persons (actors). In this sense, we have followed the
tradition of symbolic interactionism from Mead [22]. In reality, our treatment is an
idealization. Not only this, we need other assumptions. These were specified from place
to place in this paper.

Specifically, the definition of person i’s tp-understanding gij from his memory kit κi
includes such an assumption. The salient part is the condition (sa, sb) ∈ Di(−r) in the

definition of hijr (sa, sb) in (3.2). This means that person i has the experience (sa, sb) in
his domain Di(−r) : He infers that person j must have also this experience, and project
his experienced payoff hr(sa, sb) onto j. That is, (sa, sb) must be a common experience
for persons i and j from the viewpoint of person i. This sounds like the requirement of
some evidence for the definition of common knowledge in Lewis [20]. This will possibly
serve a bridge to epistemic logic; in particular, to common knowledge logic of Fagin et
al. [7] (see also Kaneko [13]).

In our context, if a person experiences one pair (sa, sb) from both roles, he would
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infer/guess that the other person has the same experience from both roles, and also
that the other infers the symmetric statement. If we pursue, rigorously, this argument
as an infinite regress, then we would have common knowledge (beliefs) in the sense of
an infinite hierarchy of beliefs (see Kaneko [14], Chap.4 for this argument of an infinite
regress). In this case, we need other assumptions on an hierarchy of logical abilities of
the persons. As Lewis [20] did not intend to mean an infinite hierarchy of knowledge
(beliefs), it would be better to stop at some shallow interpersonal depths of nested
beliefs. We will discuss a rigorous treatment of this in the epistemic logic of shallow
depths (Kaneko-Suzuki [19]) in a separate paper.

Next, we turn to some extensions like the emergence of cooperation in n-role games.
Notice that emergence of cooperation is conditional upon the degree of reciprocity of
role-switching. We restricted ourselves to a 2-person situation and still cooperation
needs a specific reciprocity. Therefore, our result may be interpreted as showing a
difficulty in reaching cooperation. One immediate question is to ask what would happen
with the present study in a 3- or more persons case. This remains an open problem,
but we should give our thought about it.

In an n-person case, since one person can experience a few social roles only, it might
not be appropriate to extend directly the result of this paper into the n-person case.
Rather we should consider possibilities of cooperations of 2- or 3-person groups in the
entire n-person game. These groups of small sizes could represent the extent of a person’s
cooperation potential. In this limited sense, our research does not suggest us to return
to the standard n-person cooperative game theory from von Neumann-Morgenstern [27].

Rather, patterned behavior in different but similar situations may be a key to have
an extension of our theory. This is related to the basic presumption of inductive game
theory: A social situation formulated as a 2-role game (more generally, an n-role game)
is not isolated from other social situations in the entire social web. As a research
strategy in this paper, we focused on a specific 2-role game, but we should not forget
that this simple case belongs to the complex social web depicted as Fig.1.1. Overlaps
and connections between similar situations becomes unavoidable.

Also, we remind the readers that our behavioral postulate is of patterned (regu-
lar) behavior, rather than instantaneous payoff maximization. This patterned behavior
may have some uniformity (regularity), which could ease some difficulty in reaching
cooperation such as one difficulty of multiplicity we met in the ultimatum game in Sec-
tion 7. This thought may suggest more experiential studies of behavior in society and
experimental studies in labs.

References

[1] Akiyama, E., R. Ishikawa, M. Kaneko and J. J. Kline, (2008), A Simulation Study
of Learning a Structure: Mike’s Bike Commuting, Tsukuba University, SSM D.P.

39



No.1190.

[2] Axelrod (1984), The Evolution of Cooperation, Basic Books, New York.

[3] Camerer, C., (2003), Behavioral Game Theory, Princeton University Press, Prince-
ton.

[4] Cooper, R., D. V. DeJong, R. Forsyth, and T. W. Ross (1996), Cooperation without
Reputation: Experimental Evidence from Prisoners’ Dilemma Games, Games and
Economic Behavior 12, 187-218.

[5] Collins, R. (1988), Theoretical Sociology, Harcourt Brace Javanovic, New York.

[6] Cooley, C. H., (1902), Human Nature and the Social Order, Scribner, New York.

[7] Fagin, R., J.Y. Halpern, Y. Moses and M. Y. Vardi, (1995), Reasoning about Knowl-
edge, The MIT Press, Cambridge.

[8] Gardenfors, P., (2008) The Role of Intersubjectivity in Animal and Human Coop-
eration, Biological Theory 3, 51-62.

[9] Güth, W., Schmittberger, Schwarze, (1982), An Experimental Analysis of Ultima-
tum Bargaining, Journal of Economic Behavior and Organization 3, 367-388.

[10] Hart, S., (2006), Robert Aumann’s Game and Economic Theory, Scandinavian
Journal of Economics 108, 185-211.

[11] Hu, T.-W., (2008), Expected Utility Theory form the Frequentist Perspective, to
appear in Economic Theory.

[12] Kahneman, D., J. L. Knetsch and R. Thaler, (1986), Fairness as a Constraint on
Profit Seeking: Entitlements in the Market, American Economic Review 76, 728-
741.

[13] Kaneko, M., (2002), Epistemic logics and their game theoretical applications: In-
troduction. Economic Theory 19, 7-62.

[14] Kaneko, M., (2004), Game Theory and Mutual Misunderstanding, Springer, Berlin.

[15] Kaneko, M., and J. J. Kline, (2008a), Inductive Game Theory: a Basic Scenario,
Journal of Mathematical Economics 44, 1332-1363.

[16] Kaneko, M., and J. J. Kline, (2008b), Information Protocols and Extensive Games
in Inductive Game Theory, Game Theory and Applications 13, 57-83.

40



[17] Kaneko, M., and J. J. Kline, (2008c), Partial Memories, Inductively Derived Views,
and their Interactions with Behavior, to appear in Economic Theory.

[18] Kaneko, M., and A. Matsui, (1999), Inductive Game Theory: Discrimination and
Prejudices, Journal of Public Economic Theory 1, 101-137. Errata: the same jour-
nal 3 (2001), 347.

[19] Kaneko, M., and N.-Y. Suzuki, (2002), Bounded interpersonal inferences and deci-
sion making, Economic Theory 19, 63-103.

[20] Lewis, D. (1969), Convention: A Philosophical Study, Harvard University Press,
Cambridge.

[21] Matsui, A., (2008), A Theory of Man as a Creator of the World, Japanese Economic
Review 59, 19-32.

[22] Mead, G. H., (1934), Minds, Self and Society, Chicago University Press, Chicago.

[23] Mendelson, E., (1987), Introduction to mathematical logic. Monterey: Wadsworth.

[24] Nash, J. F., (1951), Noncooperative Games, Annals of Mathematics 54, 286-295.

[25] Nash, J. F., (1953), Two-person Cooperative Games, Econometrica 21, 128-140.

[26] Smith, A., (1759, 2007), The Theory of Moral Sentiments, Cosimo Classics, Lon-
don.

[27] von Neumann, J., and O. Morgenstern, (1944), Theory of Games and Economic
Behavior, Princeton University Press, Princeton.

41


