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Abstract

The idea that reciprocal cooperation can be obtained in a one-shot

game if the players observe each other’s strategies before taking action

has attracted many authors. From a strictly logical perspective, however,

there cannot be such games. Nevertheless, there are games in which each

player can observe which class, out of a collection of classes smaller than

the number of strategies, the opponent’s strategy belongs to. For any un-

derlying 2-player, finite, normal-form game there is a game extended with

such coarsely observable strategies that has equilibria with payoffs arbi-

trarily close to any feasible, individually rational payoff profile.

1 Introduction

Suppose that before playing, say, the Prisoners’ Dilemma, a player could ob-

serve his opponent’s strategy, and the opponent his. A common intuition sug-

gests that there is a Nash equilibrium in this situation such that each player

chooses to cooperate if the opponent is observed also to be a conditional coop-

erator, and defects otherwise. That is, the claim is that there is an equilibrium
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in which each player cooperates if the opponent is observed to be playing the

same strategy, and defects otherwise.

A Nash equilibrium is a set of strategies, one from each player, such that

each player’s strategy is a best reply to those of the others. One reason the ar-

gument given above seems compelling is because it appears to allow us not

even to have to think very carefully about which alternative strategies might be

available—the proposed equilibrium strategy defects against all of them, inex-

orably leaving the opponent worse off than if he had also played the condition-

ally cooperative strategy.

But the argument is misleading. Since an equilibrium is a strategy profile

such that each player’s strategy is an optimal choice from the set of strategies

he has available, we must at a minimum specify what the strategy set of a player

is. As we shall see, there are no games where strategies are perfectly observable,

for perfect observability implies that such a “game” has no strategy sets. Any-

time we thought we had such a set, we would be able to find a new way of

conditioning behavior on the strategies in the set, one that was not already in

the set. While this problem has, to one extent or another, been noted before,1

we then go on to show how games with coarsely observable strategies may be

constructed, and how such games may have exactly the properties desired.

The idea of strategic observability or transparency allowing for reciprocal

cooperation has a long pedigree and turns up in many different contexts. In-

spired by von Neumann and Morgenstern’s [26] discussion of “majorant” and

“minorant” games, Howard [16] considered “meta-games” in which a player

is allowed to make his action choice contingent on the strategy of his oppo-

nent, and suggested that this approach solved some problems with the game-

theoretical notion of rationality. Danielson [6]does computer simulations based

on this idea, studying a population of programs that have different levels of

meta-knowledge about their opponents, an approach also related to the theory

of level-k reasoning of Stahl [24] and Crawford [5]. In his influential work on

moral philosophy, Gauthier [12] suggests that “true” rationality in a Prisoners’

1See, e.g., Binmore [3] and Rubinstein [23].
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Dilemma must involve the desire to be a conditional cooperator and to make

this disposition publicly observable.

In economics, Frank [10, 11] argues at length that a form of transparency

of human agents should be expected to be a factor in social interaction, since

evolutionary forces would have favored the development of physical character-

istics that reliably signal a person’s disposition or strategy. Actual evidence of

this being the case includes the fact, reported by Ekman [8], that it is difficult to

lie without giving it away through facial expressions that are beyond conscious

control. Ockenfels and Selten [21], Fehr and Fischbacher [9], and Manzini et

al [19] are examples of studies of the transparency notion in a behavioral eco-

nomics context.

McAfee [20], Binmore [2], Anderlini [1], and Canning [4] introduced the idea

of studying games played by Turing machines that input each other’s descrip-

tions before play. Building on this idea, Howard [15], Vulkan [27], and Tennen-

holtz [25] argue that it is possible to write programs that recognize copies of

themselves and suggest that this allows such programs to be conditional coop-

erators. (See also Rubinstein [23].) Under this interpretation, the approach has

important applications to automated trade and other transactions performed

by computers. Kalai et al [17] study very general commitment or delegation

devices and prove a “Folk Theorem”-like result. Levine and Pesendorfer [18]

consider games where the players observe a signal about each other’s strate-

gies before play. The approach in the present paper is considerably simpler

than these contributions, but produces similar results.

As we have argued, and shall show formally next, it is not possible to let

decision rules be completely observable and simultaneously allow all logically

possible decision rules. Approaches such as those of the Turing-machine school

or Howard, Vulkan, and Tennenholtz get around this problem by considering

only strategies that can be written down as computer programs, and that of

Kalai et al by otherwise restricting the way in which a player may condition his

action choice on what he observes about other players. In this paper we instead

consider restricting the information available to a player about his opponent’s
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Player 2

c d

Player 1 c 2, 2 0, 3

d 3, 0 1, 1

Table 1: The Prisoners’ Dilemma.

strategy, while allowing players to condition their choices in any way they like

on the information they do have. If a player can observe which class, out of a

collection of classes that coarsely partitions the set of strategies, the opponent’s

strategy belongs to, then for any underlying 2-player, finite, normal-form game

there is a game extended with such coarsely observable strategies that has equi-

libria with payoffs arbitrarily close to any feasible, individually rational payoff

profile.

2 The Impossibility of Perfect Observability

Consider the familiar Prisoners’ Dilemma (PD) game of Table 1. This game has

the property that playing action d is a strictly dominant strategy for each player,

in that it alone yields a player his highest payoff no matter what the other player

does, while both players would be better off if they both played c . The game is

quite trivial from a game-theoretic point of view, of course, being a rare exam-

ple of a game that has a unique solution in dominant strategies. Nevertheless it

has troubled many moral philosophers and political scientists, who see in it a

stylized version of the quintessential problem of social interaction—a conflict

between individual rationality and the common good.

Gauthier [12] suggests that the prospects for voluntary cooperation in one-

shot interactions may not be as bleak as all that. For, he argues, it would be in

the interest of the truly rational individual to develop a disposition to cooper-

ate, conditional on the opponent having the same disposition, and otherwise

play d , and furthermore to make this disposition public. Such an individual
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Player 2

CM SM

Player 1 CM 2, 2 1, 1

SM 1, 1 1, 1

Table 2: Gauthier’s disposition game.

Gauthier calls a constrained maximizer (CM).

Gauthier feels we should really consider the new game, given in Table 2,

constructed from the example PD by having it played by individuals who can

choose between the CM disposition, which makes its behavior contingent on

the disposition of the opponent, and the old, straightforward maximizer (SM)

disposition that always plays d .

This game has a Nash equilibrium where both players adopt the CM dispo-

sition, inducing cooperation. For if one player were to deviate, the constrained

maximizer would see this, dispositions being assumed public, and retaliate.

This account of conditional cooperation begs numerous questions. We shall

focus on the following one: Where are all the other possible dispositions in Gau-

thier’s game?

For clearly there must be more ways of conditioning behavior on the op-

ponent’s disposition than just CM and SM. We can immediately think of two

more, one which plays c regardless of whether the opponent is CM or SM, and

one which plays d if the opponent is CM and c if the opponent is SM. This

makes four possible dispositions so far. But then CM and SM are incompletely

specified dispositions, since they do not specify what to do if the opponent has

one of the two new dispositions. And so on.

Gauthier’s dispositions are not strategies of the transparency game in the

orthodox sense of complete contingent plans of action that specify what to do

in every situation that could arise in the game. But before we can tell what the

consequences of this omission of possible behaviors from the game are for the

possibility of conditional cooperation, we must ask what the complete strategy
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set might look like.

Consider a normal form game G with player set N := {1, 2, . . . , n} and finite

action sets A i . Is it possible to extend this game into one where prior to taking

actions in G , the players observe each other’s strategies? That is, is the sentence

“Prior to taking actions in G , the players observe each other’s

strategies.”

meaningful?

The answer to this question is no. This is easiest to see in a symmetric

2-player game with common action set A. Assume, by way of contradiction,

that such an extended game exists, and let I be a player’s set of information

sets, or information partition, of that game. A pure strategy for a player is a

mapping from his information partition into A, so his set of pure strategies is

S := {s |s : I → A}. Assuming a player observes the strategy choice of his oppo-

nent, we must have I = S. Hence S is the set of all mappings from S itself into

A. The pure strategy set of the hypothetical extended game is therefore self-

referentially defined by the equation

S = {s |s :S→ A}. (1)

Does such a fixpoint set S exist? In the trivial case where A has a single element

a , it does. Then the unique solution to equation (1) is the set S = {s } where

s (s ) = a . In general, however, there is no solution, as can easily be proved using

a Cantorian diagonalization argument.

Observation 1 Suppose we have |A | ≥ 2. Then there is no set S satisfying the

equation S = {s |s :S→ A}.

Proof. Suppose there was a fixpoint set S. Consider a new mapping s ′:S →
A such that s ′(s ) 6= s (s ) for all s ∈ S. Since A has at least two elements, this

construction is always possible. The mapping s ′ does not belong to S, since

it differs from every s ∈ S at at least one point. So we have a contradiction.

Therefore S cannot be a solution to (1). �
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Player 2

P1 P2

{c d } {c c d c d d }
Player 1 P1 {c d } 2, 2 3, 0 1, 1 1, 1

{c c 0, 3 2, 2 2, 2 0, 3

P2 d c 1, 1 2, 2 2, 2 0, 3

d d } 1, 1 3, 0 3, 0 1, 1

Table 3: The Prisoners’ Dilemma with coarsely observable strategies.

3 Coarse Observability: Examples

Suppose instead that a player can only observe which class, out of some collec-

tion of classes, his opponent’s strategy belongs to. Consider again the Prisoners’

Dilemma of Table 1.

Suppose a player’s strategy can belong to one of two classes, P1 and P2. A

pure strategy is now a mapping s :{P1, P2} → {c , d }. Hence each player has four

pure strategies. Writing a pure strategy as a string x y , with x , y ∈ {c , d }, we

may take the first element of the string to be the action planned when the op-

ponent’s strategy belongs to the P1 class, and the second element the action

planned when the opponent’s strategy belongs to the P2 class. Suppose further

that we have P1 = {c d } and P2 = {c c , d c , d d }. We then get the new game of

Table 3.

In this particular game extended with coarsely observable strategies, (c d , c d )

is an equilibrium. The strategy c d is here, in effect, a conditional cooperator

that cooperates against itself and defects against all others.

In this example, the conditionally cooperating strategy c d is, of course, per-

fectly identified when it is played, as it is unique in its class. This is not neces-

sary, however, in order to generate cooperation in equilibrium. The only essen-

tial feature is that the conditional cooperator should belong to a class where all

other strategies in the class respond with c against other members of the same

class. Consider, for instance, the two-class game where we have P1 = {c c , c d }
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Player 2

P1 P2

{c c c d } {d c d d }
Player 1 P1 {c c 2, 2 2, 2 0, 3 0, 3

c d } 2, 2 2, 2 1, 1 1, 1

P2 {d c 3, 0 1, 1 2, 2 0, 3

d d } 3, 0 1, 1 3, 0 1, 1

Table 4: The PD with different coarsely observable strategies.

Player 2

a 1 a 2

Player 1 a 1 0, 0 1, 2

a 2 2, 1 0, 0

Table 5: The Battle of the Sexes.

and P2 = {d c , d d }, as depicted in Table 4. Here (c d , c d ) is again an equilibrium.

Hence it is not necessary that a strategy be able to identify identical copies of

itself—which is the focus of, e.g., Howard [15], Tennenholtz [25], and Levine

and Pesendorfer [18]—in order for conditional cooperation to be sustainable.

What is needed is information about what the opponent plans to do against a

cooperator.

Coarse observability also makes correlated equilibrium payoffs attainable.

Consider the Battle of the Sexes game of Table 5. This game has two asymmet-

ric pure-strategy equilibria, which the players rank differently, and a symmetric

mixed-strategy equilibrium in which each player plays his a 1 action with prob-

ability 1/3. In the mixed-strategy equilibrium, each player has an expected pay-

off of 2/3.

Suppose now that this game is extended with coarsely observable strategies

that have three classes for each player. Let P1
1 = {a 1a 2a 2}, P1

2 = {a 2a 1a 2}, and

let P1
3 contain all other strategies of Player 1. Let P2

1 = {a 2a 1a 2}, P2
2 = {a 1a 2a 2},
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Player 2

P2
1 P2

2 P2
3

a 2a 1a 2 a 1a 2a 2 · · ·
Player 1 P1

1 a 1a 2a 2 1, 2 2, 1 · · ·
P1

2 a 2a 1a 2 2, 1 1, 2 · · ·

P1
3

...
...

...
...

Table 6: Part of the extended Battle of the Sexes.

and let P2
3 contain all other strategies of Player 2. Table 6 shows part of the

payoff matrix of this extended game.

Now let Player 1 play his strategies in P1
1 and P1

2 with probability 1/2 each,

and let Player 2 play his strategies in P2
1 and P2

2 with probability 1/2 each. This is

an equilibrium since each player is indifferent between the strategies he assigns

positive probability, which each yield an expected payoff of 1.5, and any other

strategy yields an expected payoff of at most 1, since the opponent plays a 2

against all other strategies.

In the following section we show how this type of construction allows for

the arbitrarily close approximation of any payoff profile in the convex hull of

payoff profiles of the underlying game.

4 Coarse Observability: The General Case

Let G be a finite, 2-player, normal form game with action sets A i for i ∈ {1, 2}
and payoff functions u i : A1 × A2 → R. Let A i be the set of mixed actions of

player i , and in standard fashion extend u i also to mixed actions.

G ? is the game formed by extending G with coarsely observable strategies.

G ? associates with each player a finite set Pi := {P i
1 , P i

2 , . . . , P i
m i
}, the set of classes

of player i ’s strategies. Before taking action in G , each player observes which

class the strategy of the opponent belongs to. A pure strategy of player i who

faces opponent j 6= i is therefore a mapping s i : Pj → A i . Since Pj and A i are
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both finite, the set Si of all pure strategies of player i is well defined and has

|A i ||Pj | elements. Pi partitions Si into m i classes. As there are necessarily al-

ways more strategies than classes—as long as each player has more than one

action available—there is always at least one class that contains more than one

strategy, justifying the use of the expression “coarsely observable strategies.”

Define

û i := min
αj ∈Aj

max
αi∈Ai

u i (αi ,αj ),

player i ’s minmax payoff. Let V be the convex hull of payoff profiles of G , and

let V̄ := {v ∈ V |vi > û i for all i } be the set of feasible, individually rational pay-

off profiles of G .

We first show that any feasible, individually rational payoff profile of the

underlying game can be approximated arbitrarily closely in an equilibrium of

some extended game.

Lemma 1 Let ū ∈ V̄ be a feasible, individually rational payoff profile of G , and

let B ε(ū )⊂ R2 be a ball of radius ε at ū . Then for any ε > 0 there is an extended

game G ? with an equilibrium with payoffs u such that u ∈ B ε(ū ).

Proof. Let µ, µd
1 , and µd

2 be such that

1. µ is a probability distribution with full support on A := A1×A2 such that

for each a ∈ A, we haveµ(a ) = k (a )/m , with k (a ) and m positive integers,

2. µd
i is a probability distribution on A i such that for each a i ∈ A i , we have

µi (a i ) = k d
i (a i )/m , with the k d

i (a i ) non-negative integers, and

3. for each i ∈ {1, 2}, j 6= i , it holds that

∑

a∈A

µ(a )u i (a )≥max
a i∈A i

∑

a j ∈A j

µd
j (a j )u i (a i , a j ).

Let there be m +1 classes of each player’s strategies. Consider now a subset

of strategies S̄ ⊂ S such that (s̄ 1
1 (P

2
i ), s̄ 2

i (P1
1 )) for i = 1 . . . m is a vector of action
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profiles such that for all a ∈ A, a occurs exactly k (a ) times and in direct succes-

sion. Then recursively let

(s̄ 1
j (P

2
i ), s̄ 2

i (P
1
j )) =

¨

(s̄ 1
j−1(P2

m ), s̄ 2
m (P

1
j−1)) for i = 1

(s̄ 1
j−1(P

2
i−1), s̄ 2

i−1(P
1
j−1)) for i = 2 . . . m .

Let s̄ i
j (P`m+1), for ` 6= i and j = 1 . . . m be such that for each a i ∈ A i , play of a i

is specified exactly k d
i (a i ) times. Let the Pi be such that for each i ∈ {1, 2}, we

have P i
j = {s̄ i

j } for j = 1 . . . m , and P i
m+1 contains all player i ’s strategies not in

S̄i . Finally, let each player play a mixed strategy that puts positive and equal

probability on strategies in S̄i and zero probability on strategies not in S̄i .

Given that the opponent plays the specified strategy, each player is indiffer-

ent between his strategies in S̄i , which each yield an expected payoff of

∑

a∈A

µ(a )u i (a ).

If he plays a strategy not in S̄i , his expected payoff is at most

max
a i∈A i

∑

a j ∈A j

µd
j (a j )u i (a i , a j ),

which by construction is less than or equal to
∑

a∈A µ(a )u i (a ). Hence we have

an equilibrium. Clearly, by picking a large enough m , equilibrium expected

payoffs can be made to approximate any profile in V̄ arbitrarily closely, and the

deviation payoffs be made to approximate each player’s minmax payoff arbi-

trarily closely. �
We next show that any underlying game can be extended into a game with

coarsely observable strategies where every feasible, individually rational payoff

profile belonging to a finite subset is approximated arbitrarily closely in some

equilibrium.

Proposition 1 Let Ū ⊂ V̄ be a finite set of feasible, individually rational payoff

profiles of G . Then for any ε > 0 there is an extended game G ? such that for each

ū ∈ Ū , there is an equilibrium of G ? with payoffs u ∈ B ε(ū ).
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Sketch of proof. For each ū ∈ Ū , proceed to construct an equilibrium subset

of strategies as in the proof of Lemma 1, by adding the appropriate number

of classes. For all classes not containing strategies associated with the current

equilibrium, let the equilibrium strategies respond with the approximation of

the minmax distribution. Again, for each player there will be a class containing

all strategies that are not used in supporting some equilibrium payoff profile.�
For simplicity the proofs utilize a construction where the strategies played

with positive probability in equilibrium are all unique in their respective classes,

which may not seem very much in the spirit of coarseness of observation. It

should be clear, however, that the same result may be replicated also with more

coarseness, by adding more out-of-equilibrium classes.

It might also be thought disappointing that this construction cannot yield

exactly any feasible, individually rational payoffs as the payoffs in some equi-

librium. But it should be recalled that, in any case, there are no real-world

randomization devices that can implement probability distributions where the

probabilities are not rational numbers. Hence for practical purposes the dis-

tinction is irrelevant.

5 The Literal Interpretation of Observability

We have seen how the naïve notion of transparency and reciprocal cooperation

can be rescued, at least from a logical viewpoint, by substituting coarse observ-

ability for perfect observability. It is easy to see that the construction can be

interpreted as a model of delegation contracts, or games where the players can

make observable commitments about how to act. But does the literal interpre-

tation make sense for direct human interaction?

There are reasons to believe that it is unlikely that evolution would favor

observable traits that reliably reveal something about their human carrier’s de-

cision procedures, even coarsely. The construction of the present paper relies

crucially on direct, even if coarse, observability of strategies themselves. If,

for instance, players instead reported their strategies themselves, there would
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be incentives to lie that would cause the construction not to work. Similarly,

evolution would not favor traits that independently and truthfully signalled in-

tentions in Prisoner’s Dilemma-type interactions, since if it were ever the case

that every conditional cooperator came with a “green beard,” green-bearded

unconditional defectors would have a selective advantage. (See, e.g., Hamil-

ton [14] and Dawkins [7].) The literature on “cheap talk” and evolution in games

(e.g., Robson [22], Wärneryd [28], and Kim and Sobel [13]) further supports this

conclusion.
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