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Abstract

We establish the bid-equivalence between an independent private-value
(IPV) �rst-price auction model with resale and a model of �rst-price
common-value auction, when the resale market satis�es a minimal ef-
�ciency property and the common value is de�ned by the transaction
price. This implies that the speculator-buyer model of auction with resale
is observationally equivalent to the Wilson drainage tract common-value
model. With an application of the Coase Theorem, we show two polar
cases in which auctions with resale have opposite properties. We examine
the e¤ects of bargaining power on the revenue and e¢ ciency of �rst-price
auctions with resale. This is done for three types of bargaining models:
(a) bargaining with commitment, (b) bargaining with delay costs, and (c)
k-double auctions resale market. We also provide conditions under which
the �rst-price auction generates higher revenue than the second-price auc-
tion when resale is allowed.

�Please contact Harrison Cheng at hacheng@usc.edu and Guofu Tan at guofutan@usc.edu
for comments and further suggestions.
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1 Introduction

In this paper we study the way resale opportunities after the auction may a¤ect
bidders�s behavior in the auction. When resale is allowed after the auction, we
refer to it as an auction with resale, and represent it by a two-stage game. It
is intuitively understood in the profession that resale is an important source of
common- value among the bidders. In the survey for their book, Kagel and Levin
(2002, page 2) said that "There is a common-value element to most auctions.
Bidders for an oil painting may purchase for their own pleasure, a private-value
element, but they may also bid for investment and eventual resale, re�ecting
the common-value element". Haile (2001)1 studied the empirical evidence of
the e¤ects of resale in the U.S. forest timber auctions. In spectrum auctions
held by many governments, there are often restrictions on resale. For example,
in the British 3-G spectrum auctions2 of 2000, resale restrictions were imposed
despite economists� recommendation to the contrary. It is not clear why the
restrictions were imposed. It is possible that the government may look bad
when the bidders can turn around and resell for quick pro�ts after the auction3 .
Bidders, however, �nd ways to circumvent such restrictions in the form of a
change of ownership control. For example, a month after the British 3-G auction,
Orange, the winner of the license E, was acquired by France Telecom, yielding a
pro�t of 2 billion pounds to Vodafone4 . The winner of the most valuable licence
A is TIW (Telesystem International Wireless). In July 2000, Hutchison then
sold 35% of its share in TIW to KPN and NTT DoCoMo with an estimated
pro�t of 1.6 billion pounds5 .

Although resale is sometimes conducted so that parties who did not or could
not participate in the auction has a chance to acquire the object sold during the

1His model of resale is di¤erent from our speci�cations here. In his model, there is no
asymmetry among bidders before auctions, and trade occurs after the auction because of
information di¤erences after the auction. In our model, bidders are asymmetric before auc-
tions.Haile, Hong, and Shum (2003) studied the U.S. forest lumber auctions and found the
bidding data to conform to private-value auctions in some and common-value auctions in
others. An explanation may be due to the presence or lack of resale.

2The third-generation technology allows high speed data access to the internet. It was
held on Mar 6, 2000, and concluded on April 27, 2000, raising 22.5 billion pounds (2.5% of
the GNP of UK). This revenue is seven times the original estimate. Five licenses A,B,C,D,E
were o¤ered. Licence A was available for bidding by non-incumbent operators only. A more
detailed account is given in Klemperer (2004).

3Beyond the political and legal reasons, resale may facilitate collusions in the English
auction as is shown in Garrat, Troger and Zheng (2007).

4Orange paid 4 billion pounds for the licence. In May of 2000, France telecom paid 6
billion pounds more than the price Mannesmann had paid for it in October 1999 before the
auction. Orange was the number three UK mobile group at the time. The reason for the resale
is due to a divestment agreement by Vodafone with the British government after acquiring
Mannesmann.

5TIW was a Canadian company based in Montreal and largely owned by Hutchison Wham-
poa. The Hong Kong conglomerate) gained the upper hand when NTL Mobile, a joint venture
of the UK cable operator and France Telecom, withdrew from the bidding. The price of the
licence is 4.4 billion pounds. The pro�t is based on the implicit valuation of the license at 6
billion in the transaction.
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auction. We will focus on resale among bidders of the original auction. There
are situations in which resale opportunities to a third party only a¤ect a bidder�s
valuation of the object, and thus can be indirectly represented by a change in
valuations. In this case, our model may allow third party participation. However
third party participation may give rise to issues that are not explored here. The
main idea of the paper is that it is the resale price, not the private valuation,
which determines the bidder behavior, and we expect this idea to apply to a
more general model with broader participation.
By focusing on the resale among bidders, we study an interesting interaction

between resale in the second stage and bidding behavior in the �rst stage. Hor-
tascu and Kastl (2008) showed that bidding data for 3-month treasury bills are
more like private-value auctions, but not so for 12-month treasure bills. The dif-
ference may be due to the relevance of resale in long term treasury bills. When
an asset is held in a longer period, there may be a need for resale, and this may
a¤ect bidding behavior. We will in fact show that in private-value auctions with
resale, the bidding data will behave as if it is a common-value auction. This has
been observed In Gupta and Lebrun (1999), and Lebrun (2007) in cases when
the resale market is a simple monopoly or monopsony market. We will provide
a theoretical examination for this intuition in more general resale environments.

We describe the phenomenon by the term "bid-equivalence". It means that
the bidding behavior of the an independent private-value auction with resale
is the same as a pure common-value auction in which the common-value is de-
�ned by the transaction price. The two auctions have the same equilibrium bid
distributions. The auctioneer has no way of knowing the di¤erence between
the two from the bidding behavior in the auctions, nor can an econometrician
from the bidding data. The concept of bid-equivalence is similar to the ob-
servational equivalence used in Green and La¤ont (1987). We prefer to use a
di¤erent term because the observational equivalence concept is often associated
with the identi�cation problem in econometrics. Here we want to focus on the
theoretical implications. This concept is di¤erent from equilibrium equivalence
as the auction with resale is a two-stage game, while the common-value auction
is a one-stage game. Furthermore, the equilibrium payo¤s of the two auctions
for the bidders are in general di¤erent. La¤ont and Vuong (1996) showed that
for any �xed number of bidders in a �rst-price auction, any symmetric a¢ l-
iated values model is observationally equivalent to some symmetric a¢ liated
private-values model. In a symmetric model, there is no incentive for resale. In
our paper, we look at the asymmetric IPV auctions with resale. We show that
when bidders anticipate trading activities after the auction, the bidding data is
observationally equivalent to a common-value auction.

We assume that there are only two bidders in the auction. This is partly due
to the substantial complexity of auctions with resale when there are more than
two bidders, a model which is still poorly understood in the literature. This
assumption is however justi�ed here as we are looking at the issue of bargaining
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power e¤ects in auctions with resale, and the single seller and buyer framework
in the resale game gives us a clear setting to address this issue. We adopt an
axiomatic approach to the description of the resale stage game. This includes
the case of a general bilateral trading game with incomplete information in the
noncooperative approach, or equivalently a mechanism design formulation. It
does not preclude a mediated or cooperative bargaining model, as long as the
model yields an outcome satisfying the properties of the model. The framework
is �exible enough to include a resale process in which bidders make sequential
o¤ers, or simultaneous o¤ers in the bargaining. The main assumption is a
minimal e¢ ciency property which says that trade should occur with probability
one when the trade surplus is the highest possible. It is easily satis�ed in most
Bayesian bargaining equilibrium with sequential or simultaneous o¤ers. It rules
out the no-trade equilibrium in which there cannot be bid-equivalence. Our
formulation of the minimal e¢ ciency property is a variation of the sure-trade
property in Hafalir and Krishna (2008)6 .

The bid-equivalence result may be somewhat surprising. One would expect
that resale only contributes a common-value "component" to the bidding behav-
ior, and there is still a private-value component. Our result however says that
the bidding behavior is the same as if it is a pure common-value model. What
happens to private-value component? The answer is that bid-equivalence is true
only in equilibrium, hence the private-value is still relevant out-of-equilibrium.
Furthermore, the private-value is incorporated in the de�nition of the common-
value, and is therefore indirectly a¤ecting the equilibrium bidding behavior. In
the proof of the bid-equivalence result, we show that once the belief system is
given, the payo¤s of the bidders in the IPV auction with resale and the common-
value auction only di¤er by a constant (independent of the bid). This means
that there is a strong tautological element in the equivalence result. For this
reason, we think that the result should be true in a more general environment
than is adopted here.
Auction with resale in general can be a very complicated game. The resale

game may involve potentially complicated sequences of o¤ers, rejections, and
counter-o¤ers. In-between the auction stage and the resale stage, there may be
many possible bid revelation rules that a¤ect the beliefs of the bargainers in the
resale stage. We cannot deal with so many issues at the same time. For the
bid revelation rule, we adopt the simplest framework of minimal information,
i.e. that is there is no bid revelation in-between the two stages. Despite the
lack of bid information, the bidders update their beliefs after winning or losing
the auction. Since bidders with di¤erent valuations bid di¤erently in the �rst
stage, the updated beliefs depend on the bid in the �rst stage. For this reason,
there are heterogeneous beliefs in the resale stage. Furthermore, a bidder may
become a seller or a buyer in the resale stage depending on the bidding behavior

6Our assumption is a bit stronger. Hafalir and Krishna (2008) use it to show the symmetry
property in equilibrium. We need a version that is needed for the bid-equivalence result. In
more general models (such as a¢ liated signals), our condition may yield bid equivalence even
though the symmetry property typically fails.
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in the �rst stage. This distinguishes the bargaining in the resale stage from the
standard bargaining game in the literature in which there is a �xed seller or
buyer, and the beliefs are homogeneous. The outcome of the bargaining in
general is di¤erent. For instance, the updating may improve the e¢ ciency of
the bargaining compared to the standard homogenous model, as bargainers have
better information.

One important implication of the bid equivalence result is that the equilib-
rium analysis of the auction with resale is reduced to the simpler equilibrium
analysis of the one-stage common-value model. The revenue of the auction
with resale is completely determined by the common-value function, and the
e¢ ciency of the auction with resale is determined by the trading set as well
as the common-value function. We will apply the bid-equivalence result to ad-
dress some of these questions. More applications of this approach can be found
in Cheng and Tan (2007). Gupta and Lebrun (1999) showed that there is a
reversal of revenue ranking between the �rst-price and second-price auctions
with resale for the maximum and minimum (common-value) case. We show
that there is also a reversal of revenue ranking between the �rst-price auction
with and without resale for the two cases. Gupta and Lebrun (1999) assume
that there is complete information during the resale stage, and the maximum
case represents the monopoly market, while the minimum case represents the
monopsony market. We combine the bid-equivalence result and the Coase The-
orem to argue that in repeated bargaining, when there is commitment problems
in the o¤ers, and the buyer is su¢ ciently patient, then the seller loses all the
bargaining power, and in the limit, the common-value function converges to the
maximum function in the limit. Thus the maximum case provides the upper
bound of the revenue of all possible revenue of the auction with resale. Simi-
larly, the minimum case provides the lower bound of the revenue of all possible
revenue of the auction with resale. In this sense, the two cases provide polar
cases of the revenue of the auction with resale.

Three kinds of questions are of interest regarding auctions with resale. Is it
a good idea to allow resale7? Is it more e¢ cient to allow resale? For �rst-price
and second-price auctions with resale, which one gives a higher revenue? Some
of these questions have been investigated in Hafalir and Krishna (2007,2008).
Examples of the application of the bid-equivalence to these questions are given
in section 6. We look at the three types of resale markets: bargaining with
commitment, sequential bargaining with delay costs, and k-double auctions in
sections 6.1,6.2,6.3 respectively. These relatively simple applications also raise
new interesting questions regarding bargaining with heterogeneous beliefs. For
instance, we would expect the seller and the buyer to choose an e¢ cient mecha-
nism in the resale stage. In this case, we would like to know how to characterize

7According to Myerson (1981), the optimal auction can be achieved by selecting the optimal
reserve price, one for each bidder. No resale is needed for the highest revenue. However, this
is not easy to do in practice. Here we assume no reservation price or a single reservation price
low enough to make little di¤erence.
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e¢ cient bargaining mechanisms with heterogeneous beliefs such as extensions
of Williams (1987) result to this case.

In section 6.1, we examine how the valuation distributions may a¤ect bar-
gaining power and the ranking results in auctions with resale. It is in the
commitment case of Hafalir and Krishna (2008) in which the o¤er-maker makes
a take-it-or-leave-it o¤er to the o¤er-receiver. We show a general ranking result
of the �rst-price and second-price auctions with resale using a simple property
of the common-value function. This property is satis�ed when the resale market
is either a monopoly or a monopsony market, and the o¤er-receiver has a con-
vex valuation distribution. It can also be applied to the k-double auction resale
markets of section 6.3. Part of the purpose of this section is to provide a partial
explanation of the unambiguous ranking result of Hafalir and Krishna (2008)
and polar ranking results of section 5. A more complete answer is provided
in Cheng and Tan (2007). In section 6.2, we look at the issue of delay costs
and bargaining power in a two-period sequential bargaining model of Sobel and
Takahashi (1983). The weak bidder has very high delay costs, while the strong
bidder has little delay costs. As a result, the revenue of the �rst-price auction
with resale is substantially depressed so that it is lower than the auction without
resale. In this example, it is also true that the �rst-price auction with resale
has lower revenue than the second-price auction. In section 6.3, we examine
the bargaining power in the linear k-double auction resale market of Chatterjee
and Samuelson (1983). We show that the auctioneer�s revenue is an increasing
function of the weak bidder�s bargaining power. Furthermore, we show that
there is a trade-o¤ between e¢ ciency and revenue. As the revenue gets higher,
the e¢ ciency of the auction with resale is lower. We also touch on the question
of how bid revelation a¤ects the outcome. It is interesting to note that in the
k-double auction model of section 6.3, if the auctioneer announces the winning
bid as often is the case in the real world auctions, the revenue of the auctioneer
is higher, and the revelation is pro�table for the monopolist. The revenue is
lower if the losing bid is announced. Thus the auctioneer has the incentive to
reveal the winning bid, but not the losing bid. The bargaining position of the
monopolist is enhanced by information disclosure of the monopolist�s valuation.
There are interesting implications of the idea o¤ered in this paper on some

policy issues regarding auction design. Higher prices in resale will raise the bid
in the auction and improve the revenue of the auctioneer. The fact that resale
prices were high after the British 3-G auction meant that it would have been
better for the government to allow resale. Since then the British government
has become more receptive to the idea of allowing resale (Klemperer (2004)).

Section 2 illustrates the ideas of the paper with a simple discrete model.
Section 3 presents the common value model, while section 4 formulates the
auction with resale model and gives the bid equivalence result. Section 5 applies
the bid-equivalence result and the Coase Theorem to provide two polar cases of
the auctions with resale model. Section 6 gives applications to three types of
bargaining problems.
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2 An Illustrative Example

In this section, we shall use a simple discrete model to illustrate the important
issue of bargaining power to the study of auctions with resale. We also illustrate
the ideas of ranking reversal and bid-equivalence.
Assume that there are two bidders in an independent private-value asym-

metric auction. Bidder one valuation is either 0 or 1 with probability 0:7 for 0:
Bidder two valuation is either 0 or 2 with probability 0:4 for 0: We call bidder
one the weak bidder, and bidder two the strong bidder.
Let Hi denote the equilibrium cumulative bid distribution of bidder i: Con-

sider the �rst-price auction without resale. Bidder one with valuation 1 chooses
b to maximize

H2(b)(1� b):
The �rst-order condition is

H 0
2(b)

H2(b)
=

1

1� b :

Similarly, the �rst-order condition for bidder two is

H 0
1(b)

H1(b)
=

1

2� b :

The boundary conditions are H1(0) = 0:7;H2(0) = 0:4: These probabilities
have been chosen so that the other boundary condition is satis�ed: H1(b�) =
H2(b

�) = 1 for some b�:

We have the following simple equilibrium without resale:

H1(b) =
1:4

2� b ;H2(b) =
0:4

1� b for b 2 [0:0:6]:

Now we consider the �rst-price auction with resale. The winner of the auc-
tion acts as a monopolist in the resale game, and chooses an optimal monopoly
price. Because of the two-point distribution assumption, the optimal monopoly
price is 2 when bidder one wins the auction: There is no resale if bidder two has
valuation 0; or if bidder two wins the object and has valuation 2. The payo¤ of
bidder one with valuation 1 bidding b > 0 is

(H2(b)� 0:4)(2� b) + 0:4(1� b) = H2(b)(2� b)� 0:4

The �rst-order condition for this maximization problem is

H 0
2(b)(2� b)�H2(b) = 0
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or
H 0
2(b)

H2(b)
=

1

2� b : (1)

For a bidder one with valuation 0; the payo¤ from bidding b > 0 is

(H2(b)� 0:4)(2� b) + 0:4(0� b) = H2(b)(2� b)� 0:8;

and the �rst-order condition is also (1): We have the same �rst-order condition
for a bidder one with di¤erent valuations, because the resale opportunity has
changed his valuation to 2 rather than 0 or 1:
For bidder two with valuation 2; there is no pro�t in the resale whether or

not there is resale. The payo¤ from bidding b > 0 is

H1(b)(2� b)

and the �rst-order condition is also given by (1). From the boundary conditions,
H1(0) = 0:4 = H2(0); we get the auction with resale equilibrium8

Hr
1 (b) = H

r
2 (b) =

0:8

2� b for b 2 [0; 1:2]:

This is a symmetric equilibrium in bid distributions. The symmetry of the equi-
librium bid distribution was �rst discovered in Engelbrecht-Wiggans, Milgrom,
and Weber (1983) for the Wilson track model and proved more generally in
Parreiras (2006) and Quint (2006) with independent signal (see equations (6)).
This property also holds in �rst-price auctions with resale in Hafalir and Krishna
(2008). The identical �rst-order conditions strongly suggest that there is some
equivalence relationship between the auction with resale equilibrium and the
common-value auction properly de�ned. We will in fact show that the equilib-
rium bid distributions of the auction with resale is the same as a common-value
auction in which the common-value of the two bidders is the transaction price
2 when bidder two receives a high signal regardless of the signal of bidder one.
This idea has great generality and is formulated in the paper.
If we let the loser of the auction make o¤ers, so that the resale is a monopsony

game. The optimal monopsony price to o¤er is 1 when bidder two loses the
auction: There is resale if the bidder two has valuation 2 and loses the auction.
When bidder two with valuation 2 bids b > 0 and the payo¤ is

H1(b)(2� b) + (1�H1(b))(2� 1) = H1(b)(1� b) + 1

The �rst-order condition is
H 0
1(b)

H1(b)
=

1

1� b : (2)

In other words, bidder two bids as if his valuation is 1: When bidder one with
valuation 1 bids b > 0; the payo¤ is

0:4(1� b) + (H2(b)� 0:4)(1� b) = H2(b)(1� b)
8This equilibrium is unique for any tie-breaking rule adopted. For the auction without

resale model, the equilibrium is also unique for this example. In auctions with resale, bidder
one with valuation 0 may bid positive amount because of future resale.
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and we have the same �rst-order condition (2). The model is bid equivalent
to a common-value model in which both bidders value the object at either 0
or 1: The only equilibrium with full extraction of surplus, determined by the
boundary conditions H1(0) = 0:7 = H2(0); by the monopsonist is given by9

Hr
1 (b) = H

r
2 (b) =

0:7

1� b for b 2 [0; 0:3]: (3)

The equilibrium bid distributions are the same as that of a common-value auc-
tion in which the common-value is 1 when both bidders have high signals, and
0 otherwise.

Now, we want to compare the revenues with and without resale. In the
auction without resale, bidder one has a positive pro�t only if the valuation is

1; and in this case the pro�t is 0:4: Bidder two has a pro�t pro�t only if the
valuation is 2; and in this case the pro�t is 1:4: The revenue is just the realized
surplus minus the expected pro�t of the bidders.
For the equilibrium (2) in the aution with monopoly resale, bidder one has

a positive pro�t only if the valuation is 1; and in this case the pro�t is 0:4: Note
that this is the same for the auction without resale. The reason is that even
though resale promises more pro�t to bidder one, it also makes the bidder two
bid more aggressively, and the two e¤ects happen to cancel each other in this
example. Bidder two has a positive pro�t only if the valuation is 2; and in this
case, the pro�t is 0:8: This lower pro�t is due to the more aggressive bidding
behavior of bidder one, while bidder two gets no bene�t from resale. Note that
for each bidder the expected pro�t is the same or smaller in the auction with
resale, and the realized surplus is higher in the auctions with resale because it
is e¢ cient. Therefore it is clear intuitively that the resale opportunity increases
the revenue and is bene�cial to the auctioneer when the resale is a monopoly
market.
For the equilibrium (3) in the auction with monopsony resale, bidder one has

a positive pro�t only if the valuation is 1; and in this case the pro�t is 0:7: Bidder
two has a positive pro�t only if the valuation is 2; and in this case the pro�t is
1:7: Although the realized trade surplus is higher than that of the auction with
resale, the revenue is lower with resale. In fact, the equilibrium bid distribution
of the auction without resale �rst-order stochastically dominates that of the
auction with resale as

1:4

2� b
0:4

1� b �
0:49

(1� b)2 :

This example illustrates the idea that if the resale market is the seller�s market,
allowing resale bene�ts the auctioneer, but the opposite is true when the resale
market is the buyer�s market. Again this reversal is quite general, and will be
proved later.

9This is an equilibrium when ties are broken in favor of bidder two. Other equilibria exist.
This particular equilibrium has the lowest revenue among all possible equilibria and the only
equilibrium with full extraction of surplus by the monopsonist.
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It can also be easily computed that when the resale market is the seller�s
market, the �rst-price auction revenue is higher than the second-price auction
revenue, but the opposite is true when the resale market is the buyer�s market.
This again is a general property with full rent extraction, and will be shown
later.
More generally, di¤erent trading rules in the resale game change the trans-

action price of the object in resale, which is used to de�ne the common-value
function of the common-value auction. Auction with resale can then be shown
to be bid equivalent to the common-value auction with a speci�cally de�ned
common-value function.

3 The Common-Value Model

There are two risk neutral bidders in an auction for a single object. Our model
begins with an independent private-value (IPV) model. A pure common-value
model will be constructed from the IPV model and the resale process. To
make the notations more compatible with the common-value model, we shall
adopt a signal representation of the IPV model. This representation (called
a distributional approach) is �rst proposed in Milgrom and Weber (1985) and
discussed extensively in Milgrom (2004).
In this representation, a bidder is described by an increasing valuation func-

tion vi(ti) : [0; 1] ! [0; ai]; with the interpretation that vi(ti) is the private
valuation of bidder i when he or she receives the private signal ti: We can nor-
malize the signals so that both signals are uniformly distributed over [0; 1]. The
two signals are assumed to be independent: The word �private� refers to the
important property that bidder i�s valuation is not a¤ected by the signal tj of
the other bidder, while in the common-value model, this is not the case. The
function vi(ti) induces a distribution on [di; ai]; whose cumulative probability
distribution is given by Fi(xi) = v

�1
i (xi) when vi is one-to-one. Since we want

to include the case of discrete distributions, vi may have a �nite number of
values, hence need not be strictly increasing. In this case vi also induces a
discrete distribution over [0; ai]: The standard IPV model is often described by
F 0is rather than v

0
is: If v1(t) � v2(t) for all t; we say that bidder one is the weak

bidder, and bidder two is the strong bidder, and the pair is a weak-strong pair
of bidders10 . This is equivalent to saying that F1 is �rst-order stochastically
dominated by F2.

To de�ne a pure common-value auction model, we need to de�ne a common
value function V = w(t1; t2). This common value function represents the (ex-
pected) common value V of both bidders when both signals t1; t2 are known.

10Here we only require that F1 is dominated by F2 in the sense of the �rst order stochastic
dominance. Note that this concept is weaker than that of Maskin and Riley (2000a), in which
conditional stochastic dominance is imposed.
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The common value can be de�ned through v1(t1); v2(t2); and in this case we
write V = p(v1(t1); v2(t2)): For instance, in a double auction between the seller
and the buyer, V = p(v1(t1); v2(t2)) may be de�ned as the transaction price
when the seller o¤er is lower than the buyer o¤er. We will assume that the
function w is continuous and increasing in each ti:

One condition of p will be useful for our revenue ranking and can be stated
as follows:

Condition (C): for all x1; x2 in [0;min(a1; a2)]; we have

p(x1; x2) �
p(x1; x1) + p(x2; x2)

2
(4)

Since v1; v2 may have di¤erent ranges, p(x; x) is not be de�ned if x > min(a1; a2):
In this case, we assume that p(x; x) = 0: By this convention, the above inequality
is trivial when xi > min(a1; a2) for some i. Therefore, it is understood that the
above inequality holds for all xi 2 [0; ai]; i = 1; 2: Note that in (C), we do not
necessarily impose symmetry. When p is symmetric, the submodular property
p implies (C). However, when p is not symmetric, condition (C) does not follow
from submodularity. For example, p(x1; x2) = 2

3x1 +
1
3x2 is submodular but

does not satisfy condition (C).
In fact condition (4) will only be required for pairs (x1; x2) such that F1(x1) =

F (x2); (x1; x2) 2 [0;min(a1; a2)]: We shall refer to this as:
Condition (C�): for all pairs (x1; x2) such that F1(x1) = F2(x2); (x1; x2) 2

[0;min(a1; a2); (4) holds.

When p(x; x) = x holds, condition (4) can be written as

p(x1; x2) �
x1 + x2
2

: (5)

Condition (C) cannot hold for all (x1; x2) when p is of the form p(x1; x2) =
rx1+(1�r)x2: Condition (C) holds for all pairs when p is of the form p(x1; x2) =
maxfrx1 + (1� r)x2; (1� r)x1 + rx2g; and in this case, we have a kink on the
diagonal:

The distribution function Fi is called regular if the following virtual value
function is strictly increasing in x :

x� 1� Fi(x)
fi(x)

:

Let bi(ti) be the strictly increasing equilibrium bidding strategy of bidder i in
the �rst-price common-value auction, and �i(b) be its inverse. The following
�rst order condition is satis�ed by the equilibrium bidding strategy

d ln�i(b)

db
=

1

p(v1(�1(b); v2(�2(b)))� b
for i = 1; 2: (6)
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with the boundary conditions �i(0) = 0; �
�1
1 (1) = ��12 (1). The ordinary di¤er-

ential equation system with the boundary conditions determine the equilibrium
inverse functions. Hafalir and Krishna (2008) have shown the same �rst-order
condition for auctions with resale. We will also prove it in our formulation.

4 Auctions with Resale

The �rst-price auction with resale is a two-stage game. The bidders participate
in a standard sealed-bid �rst-price auction in the �rst stage. In the second stage,
there is a resale game. At the end of the auction and before the resale stage,
some information about the submitted bids may be available. The disclosed bid
information in general changes the beliefs of the valuation of the other bidder.
This may further change the outcome of the resale market. We shall adopt
the simplest formulation in which no bid information is disclosed11 . We call
this the minimal information case. It should be noted that there is valuation
updating even if there is no disclosure of bid information, as information about
the identity of the winner alone leads to updating of the beliefs.
We shall adopt a rather general formulation of the resale process. We assume

that trade takes place either with probability 0 or 1 almost surely12 . Let Q be
the set of (t1; t2) when trade occurs with probability 1: Let w(t1; t2) be the
transaction price when trade occurs. Each bidder may be a winner in the �rst
stage, and become the seller in the second stage. Therefore whether a bidder
becomes a seller or a buyer is endogenously determined. Let bi(t); �i = b

�1
i ; i =

1; 2; be the increasing bidding strategies and their inverse functions in the �rst
stage. Let [0; b�i ] be the range of bi: Without loss of generality, assume that
b�1 � b�2: Let h(t1) be de�ned by b1(t1) = b2(h(t1)): We make the following
assumptions:
(A1) We have (t1; t2) =2 Q; if either v1(t1) < v2(t2); h(t1) < t2; or v1(t1) >

v2(t2); h(t1) > t2:
(A2) If (t1; t2) 2 Q; v1(t1) < v2(t2); then (t; t2) 2 Q for all t � t1; h(t) �

t2;and (t1; t) 2 Q for all t � t2; h(t) � t2:
(A3) If (t1; t2) 2 Q; v1(t1) > v2(t2); then (t1; t) 2 Q for all t � t2; h(t1) � t;

and (t; t2) 2 Q for all t � t1; h(t1) � t2:
(A4) The pricing function w(t1; t2) is continuous in Q and monotonic in

ti; i = 1; 2:
(A5) For all (t1; t2) 2 Q; we havemin(v1(t1); v2(t2)) � w(t1; t2) � max(v1(t1); v2(t2)):

11Although the equivalence result may be established in a broader context with disclosure
of di¤erent bid information, it is su¢ cient to restrict ourselves to the resale market with no
disclosure of bid information in this paper. We shall deal with a more genereal formulation of
the observational equivalence result in a later paper.
12When bids are the same, each bidder has equal chance of winning, hence we can only

have the almost sure property. In Hafalir and Krishna (2007)�s formulation, a more general
description is adopted in which trade may take place with a probability lower than one.
However, trade occurs with probability one when the trade surplus is the maximum possible
amount.
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Property (A1) is a natural requirement. It says that if a bidder has lower
valuation, but loses the auction, then there is no resale trade. Note that in (A2),
bidder one must be the seller (the winner of the auction). By the monotonicity of
vi; i = 1; 2; the condition means that trade occurs with probability 1 if the seller
valuation (cost) becomes lower, or the buyer valuation becomes higher. Note
that we do not specify how Q is determined or by what process the transaction
price w(t1; t2) is determined. We leave this unspeci�ed.
Note that the determination of the resale outcome depends on the bidding

strategies in the �rst stage as the bidding strategies determine the belief system
in the second stage and the belief system a¤ects the outcome of the resale game.
For a seller i; let Fijx be the conditional distribution of Fi over the support [x; ai];
and for a buyer j; let Fj jy is the conditional distribution of Fj over the support
[0; y]: When bidder one with signal t1 wins the auction, he becomes a seller,
and the updated belief about the buyer is described by F2jv2(h(t1)): Therefore
di¤erent types of bidder one have di¤erent updated beliefs. Similarly, when
bidder two loses the auction, she becomes the buyer, and her updated belief
about the seller (bidder one) is described by F1jv1(h�1(t2)); where it is understood
that if b2(t2) > b�1; we mean h

�1(t2) = a1: Because of the di¤erence in updated
beliefs among di¤erent types of bidders, the resale game after the auction here
di¤ers from the standard bilateral bargaining model. In the standard bilateral
bargaining, the beliefs of di¤erent types of players are the same. This will make
the equilibrium behavior in the second stage resale game di¤erent from the
standard bargaining models.
We shall assume that the resale game satis�es the following property:
(ME): For all t; we have (t; h(t)) 2 Q: If v1(t) 6= v2(h(t)); then (t; h(t)) is an

interior point of Q:

This is a minimal e¢ ciency property of the resale mechanism, as it says that
trade occurs with probability one at the price w(t1; t2) when the trade surplus
is close to the maximum possible amount:For the bid-equivalence result, it is
su¢ cient that Q and the price system w(t1; t2) is common knowledge. By our
assumptions, for a bidder one with signal t1; winning the auction and v1(t1) <
v2(h(t1)); there is an in�mum k(t1) < h(t1) such that trade always occurs
whenever bidder two receives the signal t2 2 (k(t1); h(t1)]: By our de�nition,
there is no trade when t2 < k(t1):
Given the strictly increasing bidding strategies bi(ti); i = 1; 2 in the �rst

stage, and the trading set Q; and the resale price function w(t1; t2) on Q (which
depend on the bidding strategies bi(ti); i = 1; 2) in the second stage; we want to
consider the optimal bidding behavior. A bidder one with signal t1; v2(h(t1)) �
v1(t1) may consider a bid b � b1(t1): If he loses the auction, the winning bidder
two has valuation above v2(h(t1)); hence there is no need for resale and no
payo¤ in this case. Thus payo¤ is possible only when he wins the auction. By
our notation, trade occurs when t2 > k(t1) and the payo¤ is given by

U(t1; b) =
1

k(t1)

"Z �2(b)

k(t1)

(w(t1; t2)� b)dt2 + k(t1)(v1(t1)� b)
#
: (7)
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The payo¤ formula (7) is valid for any bid b with �2(b) � k(t1) as well. When
�2(b) < k(t1); the payo¤ is given by U(t1; b) =

�2(b)
k(t1)

(v1(t1) � b): We say that
b1(t1) is an optimal bid if b1(t1) maximizes U(t1; b):
Now consider the other case when bidder one receives a signal t1 with

v2(h(t1)) � v1(t1): If he bids b � b1(t1) and wins the auction, there is no
need for resale and the payo¤ is �2(b)

k(t1)
(v1(t1)� b): If he loses the auction, there

is resale (and he becomes a buyer) if t2 < k(t1): The payo¤ is therefore given
by

U(t1; b) =
1

k(t1)

"
�2(b)(v1(t1)� b) +

Z k(t1)

�2(b)

(v1(t1)� w(t1; t2))dt2

#
(8)

The payo¤ formula (8) is valid for b with �2(b) � k(t1): For b with �2(b) > k(t1);
there is no resale after losing the auction. The payo¤ is given by U(t1; b) =
�2(b)
k(t1)

(v1(t1) � b) in this case. Again we say that b1(t1) is an optimal bid if
b1(t1) maximizes U(t1; b): If this is true for all t1; we say that the strategy b1
is optimal with respect to b2: The optimality of b2 with respect to b1 is de�ned
similarly. When bi is optimal with respect to bj ; j 6= i; we say that the pair of
bidding strategies fb1; b2g is an equilibrium in the auction with resale. A simple
standard argument shows that in equilibrium we must have b�1 = b

�
2: We let b

�

denote this common maximum bid.
In this de�nition, a particular trading equilibrium in the resale game has been

implicitly assumed (given the belief system induced by the bidding strategies
in the �rst stage), and the equilibrium of the �rst-stage auction is de�ned with
respect to this resale game outcome. Since it is often possible that there are
di¤erent equilibria in the resale game, we can have di¤erent equilibrium bidding
behavior in the �rst stage game. Therefore in general there are many such
equilibria in the auction with resale.

The following result is similar to the symmetry property proved in Hafalir
and Krishna (2008). We need to prove it for our formulation.

Theorem 1 If the inverse equilibrium bidding functions �i; i = 1; 2 are di¤er-
entiable in (0; b�]; then the following �rst-order conditions are satis�ed

�0i(b)

�i(b)
=

1

w(�1(b); �2(b))� b
; i = 1; 2; b 2 (0; b�]: (9)

and we have �1(b) = �2(b) for all b 2 [0; b�]:

Proof. Let t1 2 (0; 1] be the signal of bidder one; and assume that v2(h(t1)) >
v1(t1): By (ME) and properties (A.2),(A3), the payo¤ from bidding b close to
b1(t1) is given by (7). Taking derivative of the payo¤ function with respect to
b; we must have the following equilibrium property

(w(t1; �2(b))� b)�02(b)� �2(b) = 0:
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Since t1 = �1(b); we have

(w(�1(b); �2(b))� b)�02(b) = �2(b);

which is the same as (9). If v2(h(t1)) < v1(t1) instead, then the payo¤ is given
by (8), and the derivative of the payo¤ with respect to b yields

(v1(t1)� b)�02(b)� �2(b)� (v1(t1)� w(t1; �2(b)))�02(b) = 0;

or
(w(t1; �2(b))� b)�02(b)� �2(b) = 0:

By substituting t1 = �1(b); we get the same property (9). If v2(h(t1)) = v1(t1);
then the payo¤ is given by (7);(8) for b > b1(t1); b < b1(t1) respectively. Since
the derivatives of the two functions are the same as shown above, the payo¤
function is di¤erentiable at b1(t1) and must be equal to 0 by the equilibrium
property. This gives us (9) is all cases. The proof for bidder two is entirely
the same. The symmetry property �1(b) = �2(b) follows from (?? in standard
arguments.

Theorem 2 The pair of bidding strategies

bi(ti) =
1

ti

Z ti

0

w(s; s)ds; ti > 0; bi(0) = 0

Proof. Since w(s; s) is a continuous function, bi is continuously di¤erentiable

in (0; 1]: By the L�Hopital rule, bi(ti)! 0 as ti ! 0: Hence bi is continuous on
[0; 1]: Let �i = b

�1
i be the inverse bidding function. Then �i is also continuously

di¤erentiable in (0; 1]: We have

tibi(ti) =

Z ti

0

w(s; s)ds (10)

Taking derivative of (9), we have

tib
0
i(ti) + bi(ti) = w(ti; ti):

Since �0i(b(ti)) =
1

b0i(ti)
; we have

ti
�i(bi(ti))

= w(ti; ti)� bi(ti)

or
�i(b)

�0i(b)
= w(�1(b); �2(b))� b for all b > 0;

and we know that the �rst-order conditions (9) are satis�ed by �i; i = 1; 2: We
want to apply the Su¢ ciency Theorem (Theorem 4.2 of Milgrom (2004))

15



From Theorem 1, we have h(t1) = t1 in an equilibrium of auction with
resale: The description of the resale process includes most of the well-known
equilibrium models of bilateral bargaining between the seller and the buyer. For
example, the monopoly resale of Hafalir and Krishna (2008) is a special case
in which the winner of the auction is the monopolist seller in the resale game.
The monopolist makes a take-it-or-leave-it o¤er, and the transaction price is the
optimal monopoly price. Assume that bidder one is the weak bidder. Bidder
one with signal t1 has the valuation v1(t1) and the belief that bidder two�s
valuation is F2jh(t): Bidder one is the seller when h(t1) � t2: Assume that there
is a uniquely determined optimal o¤er (equilibrium) price P (t1) of the seller. In
this case, Q = f(t1; t2) : v2(t2) � P (t1); h(t1) � t2g; and the pricing function
w(t1; t2) = P (t1) is de�ned for (t1; t2) 2 Q. Hence trade occurs if and only if
(t1; t2) 2 Q; and the trading price is the optimal o¤er price. The (ME) property
must be satis�ed in this case, as we know P (t1) � v2(h(t1)) when h(t1) � t2: It
is also clear that Q satis�es the assumptions we make.
Similarly, in a monopsony resale mechanism with a take-it-or-leave-it o¤er

by the buyer, the buyer chooses an optimal monopsony price higher than the
lowest possible valuation of the seller. The o¤er is accepted when the seller has
the lowest valuation, hence the (ME) property also holds, and the transaction
price is the optimal monopsony price.
Another possibility is to designate one of the bidder, say bidder one, as

the o¤er-maker. When it is not a weak-strong pair, bidder one may become
a seller or a buyer depending on the realized signals. Thus it is a mixture of
the monopoly and the monopsony market. The choice of the o¤er-maker or the
market type a¤ects the bargaining power of the bidders and the outcome of the
resale. In the case of the monopoly market mechanism, the choice of the o¤er-
maker is not �xed in the beginning, and is contingent on the outcome of the
auction. More generally, there can be simultaneous o¤ers by both, or repeated
o¤ers with delay costs in a sequential bargaining model of resale.
For any general bilateral trade mechanism R between the seller and the

buyer satisfying the property that trade takes place with probability 1 or 0,
and a Bayesian equilibrium e of the mechanism, we can apply the revelation
principle to de�ne a direct trade mechanism M such that truthful-reporting is
incentive compatible and individually rational and yields the same payo¤s as
the equilibrium payo¤s in e for each seller or buyer with valuations vi(ti); vj(tj)
respectively. In the direct trade mechanism M , given the reported valuations
vi(ti); vj(tj); there is a payment p(vi(ti); vj(tj)) from the buyer to the seller
when trade occurs: The set Q is the set of pairs (t1; t2) of signals in which trade
occurs with probability 1, and w(t1; t2) = p(v1(t1); v2(t2)) is the transaction
price for (t1; t2).
Now we show how the multiple-o¤er bargaining with a discount factor �

can be represented by w(t1; t2) on Q satisfying our assumptions. Consider a
bargaining model with two rounds of o¤ers by the seller. Assume that signals
are independent, and we have a weak-strong pair. The seller with the signal
t1 and the valuation v1(t1) has the belief F2jh(t1) and makes an o¤er P1 in
the �rst period. This o¤er is either accepted or rejected, with the threshold
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of acceptance represented by Z; i:e: a buyer accepts the �rst o¤er if and only
if his or her valuation is above Z: If the �rst o¤er is accepted, the game ends.
If it is not accepted, the seller makes a second o¤er P2 which is a take-it-or-
leave-it o¤er. An equilibrium analysis of this model is provided in section
6.2. Let P1(t1); P2(t1); Z(t1) denote the equilibrium �rst-period, second-period
prices and threshold level in this bargaining problem. The equilibrium prices
in the bargaining model can be used to de�ne the pricing function w(t1; t2).
Given the reported (v1(t1); v2(t2)); bidder one is the seller if h(t1) > t2: There
is no trade if v2(t2) < P2(t1): Trade occurs (with probability one) with the
transaction price p(v1(t1); v2(t2)) = P1(t1) if v2(t2) � Z(t1); and the transaction
price p(v1(t1); v2(t2)) = �P2(t2) if P2(t1) � v2(t2) < Z(t1): The set Q is

Q = f(t1; t2) : h(t1) � t2; v2(t2) � Z(t1) or P2(t1) � v2(t2) < Z(t1)g

The (ME) property is satis�ed because we must have Z(t1) < v2(t2); and we
have p(v1(t1); v2(t2)) = P1(t1): The (ME) property holds in a monopoly re-
sale mechanism with many rounds of o¤ers from the seller, if the equilibrium
�rst o¤er is lower than the highest valuation of the buyer. This is true if the
monopolist has a strictly positive payo¤ in the equilibrium.
The resale market may allow simultaneous o¤ers made by both the buyer

and the seller similar to a double auction game. We now give a resale game with
simultaneous o¤ers to illustrate the formulation of the model. Assume that the
signals are independent and v1(t) = t; v2(t) = 2t so that F1(x) = x; F2(x) = x

2 :
The �rst stage is a �rst-price auction. In the resale game, let ps; pb be the o¤er
price by the seller and buyer respectively. The transaction takes place if and
only if ps � pb; and the transaction price is given by

p =
ps + pb
2

:

Let the inverse bidding strategy in the �rst-price auction with resale be
�1; �2 and in equilibrium we have �2(b) = 2�1(b) by the symmetry property: To
�nd an equilibrium with linear strategies in the resale game, let ps(v1) = c1v1+
d1; pb(v2) = c2v2 + d2 be the equilibrium strategies as functions of valuations:
Bidder one with valuation v1 chooses p � 2c2v1 + d2 to maximizeZ 2v1

p�d2
c2

�
p+ c2v2 + d2

2
� v1

�
dv2:

The derivative of the payo¤ with respect to p is given by

�p� v1
c2

+
1

2

Z 2v1

p�d2
c2

dv2

=
1

c2
(�3
2
p+ (1 + c2)v1 +

1

2
d2)

which is decreasing in p: Therefore the payo¤ function is concave. The �rst-order
condition of optimality gives us

ps(v1) =
2

3
(1 + c2)v1 +

1

3
d2: (11)
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For the bidder two with valuation v2; the price o¤er p � v2
2 c1+d1 maximizesZ p�d1

c1

v2
2

�
v2 �

c1v1 + d1 + p

2

�
dv1:

The �rst-order condition for the optimal o¤er is

v2 � p
c1

� 1
2

Z p�d1
c1

v2
2

dv1 = 0

or

v2 � p�
c1
2
(
p� d1
c1

� v2
2
) = 0;

and we have the optimal o¤er of the buyer

pb(v2) =
4 + c1
6

v2 +
1

3
d1:

To be an equilibrium, we must have

d1 =
1

3
d2; d2 =

1

3
d1

c1 =
2

3
(1 + c2); c2 =

4 + c1
6

Solving the equations, we have

d1 = d2 = 0; c1 =
5

4
; c2 =

7

8
:

The (piecewise) linear equilibrium in the resale game is then given by

ps(v1) =
5

4
v1; v1 2 [0; 1];

pb(v2) =
7

8
v2 for v2 �

10

7
;

=
5

4
for v2 >

10

7
:

The transaction price in the direct mechanism corresponding to this resale game
equilibrium is given by

p(v1(t1); v2(t2)) =
1

2
(
5

4
v1(t1) +

7

8
v2(t2)) =

5

8
t1 +

7

8
t2 if v2(t2) �

10

7
;

=
5

8
t1 +

5

8
if v2(t2) >

10

7
:

Here Q = f(t1; t2) : t1 � t2;min(
7
8v2(t2);

5
4 ) �

5
4v1(t1)g = f(t1; t2) : t1 �

t2; ;min(t2;
5
7 ) �

5
7 t1g; or Q = f(t1; t2) : t1 � t2 � 5

7 t1g: Trade occurs with
probability one if and only if (t1; t2) 2 Q; and there is no trade outside Q: Trade

occurs if and only if 2v1 � v2 � 10
7 v1:
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Remark 3 With homogeneous beliefs of the traders, the optimal o¤er functions
are ps(v1) = 2

3v1 +
1
2 ; v1 2 [0; 1] for and seller, and pb(v2) =

2
3v2 +

1
6 ; v2 2

[ 12 ;
3
2 ]; =

1
2when v2 �

1
2 ; =

7
6 when v2 �

3
2 for the buyer: Trade o¤ers if and only

if v2 � v1+ 1
2 : Since v2 � v1+

1
2 implies v2 �

10
7 v1; trade is less e¢ cient in the

homogeneous case. This is because the updating of beliefs improves e¢ ciency of
trade in our model.

We now use the resale game example with simultaneous o¤ers above to
illustrate the intuition of the bid-equivalence result. Given the equilibrium of
the IPV auction with resale, let �1; �2 be the inverse bidding functions of the
equilibrium bidding strategies. We have the equilibrium bidding strategies:

b1(t1) =
1

t1

Z t1

0

w(t; t)dt =
1

t1

Z t1

0

(
5

8
t+

7

8
t)dt =

3

4
t1; for t1 �

5

7

=
1

t1

Z 5
7

0

3

2
tdt+

1

t1

Z t1

5
7

(
5

8
t+

5

8
)dt =

5

8
(1 +

1

2
t1 �

5

14t1
); for t1 �

5

7

and the same formula applies to b2(t2): Hence

�1(b) = �2(b) =
4

3
b for b � 15

28
:

When bidder one with signal t1 chooses the bid b; and wins the auction,
there is trade in the resale game if and only if t2 � 5

7 t1: Hence the payo¤ isZ �2(b)

5
7 t1

w(t1; t2)dt2 +
5

7
t1v1(t1)� �2(b)b (12)

if b � b2(
5
7 t1): If b < b2(

5
7 t1); there is no resale, and the payo¤ is (v1(t1) �

b)�2(b): The optimal bid is b1(t1):We can now de�ne the common-value function
corresponding to the resale game as follows. For (t1; t2) 2 Q; let

w(t1; t2) = p(v1(t1); v2(t2)):

In order to extend the de�nition of p to all pairs (v1(t1); v2(t2)); let v2 < 10
7 v1:

and de�ne p(v1; v2) = p(v1;
10
7 v1): For v2 > 2v1; let p(v1; v2) = p(v1; 2v1): We

have the property

p(x; x) = p(x;
10

7
x) =

5

4
x > x:

We now de�ne w outside Q also as

w(t1; t2) = p(v1(t1); v2(t2)):

In the common-value model, when bidder one with signal t1 bids b � b2(
5
7 t1);

the payo¤ is Z �2(b)

5
7 t1

w(t1; t2)dt2 +

Z 5
7 t1

0

w(t1; t2)dt2 � �2(b)b
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=

Z �2(b)

5
7 t1

w(t1; t2)dt2 +

Z 5
7 t1

0

w(t1; t2)dt2 � �2(b)b;

which di¤ers from (12) by a constant term not involving the variable b: Hence

the bid b1(t1) is optimal when b � b2(
5
7 t1): If b < b2(

5
7 t1) =

15
28 t1; we have

�2(b) =
4
3b; and the payo¤ isZ �2(b)

0

w(t1; t2)dt2 � �2(b)b = (
5

4
t1 � b)�2(b) =

4

3
(
5

4
t1 � b)b:

This is an increasing function of b when b � 5
8 t1: Since b <

15
28 t1 <

5
8 t1; the

payo¤ for b � b2(
5
7 t1) attains the highest value at b = b2(

5
7 t1): We conclude

that b1(t1) is the optimal bid for the common-value auction as well.
We now look at bidder two in the auction with resale. When bidder two

with signal t2 chooses the bid b; and loses the auction, there is resale if and only
if t1 � t� = minf1; 75 t2g: Hence the payo¤ is

(v2(t2)� b)�1(b) +
Z t�

�1(b)

(v2(t2)� w(t1; t2))dt1

= t�v2(t2)�
Z t�

�1(b)

w(t1; t2)dt1 � b�1(b) (13)

if b � b1(t�): If b > b1(t�); there is no resale and the payo¤ is (v2(t2)� b)�1(b):
In the common-value auction, when bidder two with signal t2 bid b; the payo¤
is Z �1(b)

0

(w(t1; t2)� b)dt1 =
Z �1(b)

0

w(t1; t2)dt1 � b�1(b)

=

Z t�

0

w(t1; t2)dt1 �
Z t�

�1(b)

w(t1; t2)dt1 � b�1(b); (14)

if b � b1(t�): If b > b1(t�); there is no resale, and the payo¤ isZ �1(b)

0

(w(t1; t2)� b)dt1 =
Z t�

0

p(t1; t2)dt1 +

Z �1(b)

t�
w(t1; t2)dt1 � b�1(b): (15)

The optimal bid in the auction with resale is b2(t2): The di¤erence between the
payo¤s in (13) and (14) is a constant term which does not involve the variable
b: Therefore, b2(t2) is optimal for the common-value auction for b � b1(t

�): If
t� = 1; this means that b2(t2) is the optimal bid in the common-value auction.
If t� < 1; then t� = 7

5 t2: For t1 � t
�; we have w(t1; t2) = 5

4 t1; henceZ �1(b)

t�
w(t1; t2)dt1 � b�1(b) =

5

4

Z �1(b)

t�
t1dt1 � b�1(b)

=
5

8
�1(b)

2 � b�1(b)�
5

8
t�2 = (

5

8
�1(b)� b)�1(b)�

5

8
t�2: (16)
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We want to show that this payo¤ function is decreasing in b: When b � 15
28 ; we

have
(�1(b)�

8

5
b)�1(b) = (

4

3
b� 8

5
b)
4

3
b = �16

45
b2;

which is a decreasing function of b :
When t1 � 5

7 ; we have

(t1 �
5

8
b1(t1))t1 = t

2
1 � (1 +

1

2
t1 �

5

14t1
)t1 =

1

2
t21 � t1 +

5

14

The derivative of this function is t1 � 1 < 0: This implies that for b > 15
28 ; the

function
(�1(b)�

5

8
b)�1(b)

is a decreasing function of b: Therefore for b � b1(t�); the payo¤ (16) is highest
at b = b1(t�): Hence b2(t2) is the optimal bid in the common-value auction as
well. We have shown that bi(ti); i = 1; 2 is an equilibrium in the common-value
auction.

There are alternative de�nitions of the common value outside Q yielding the
same bid-equivalence result. For v2 < 10

7 v1;and de�ne p(v1; v2) = p( 710v2; v2):
Then outside Q we let

w(t1; t2) = p(
7

10
v2(t2); v2(t2)) =

7

4
t2 for t2 �

5

7
:

To check the optimal property of bi(ti); consider bidder one bidding b < b2( 57 t1) �
b2(

5
7 ); we have �2(b) =

4
3b; and the payo¤ isZ �2(b)

0

w(t1; t2)dt2 � �2(b)b =
7

4

Z 4
3 b

0

t2dt2 �
4

3
b2 =

2

9
b2:

This is an increasing function of b: Since the payo¤ for b � b2( 57 t1) attains the
highest value at b = b2( 57 t1): We conclude that b1(t1) is the optimal bid for the
common-value auction as well. For bidder two, if b > b1(t�); t� < 1; then t2 < 5

7 ;
t� = 7

5 t2: For t1 � t
�; we have w(t1; t2) = 7

4 t2; henceZ �1(b)

t�
w(t1; t2)dt1�b�1(b) =

7

4
t2(�1(b)�

7

5
t2)�b�1(b) = (

7

4
t2�b)�1(b)�

49

20
t22:

We want to show that this payo¤ function is decreasing in b: When b � 15
28 ; we

have
(
7

4
t2 � b)�1(b) =

4

3
(
7

4
t2 � b)b:

This is a decreasing function if b � 7
8 t2 which is true as b > b1(t

�) = 3
4
7
5 t2 =

21
20 t2 >

7
8 t2: For t1 �

5
7 ; we have

(
7

4
t2 � b1(t1))t1 = (

7

4
t2 �

5

8
)t1 �

5

16
t21 +

25

112
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The derivative with respect to t1 is

7

4
t2 �

5

8
� 5
8
t1 �

7

4
t2 �

5

8
� 7
8
t2 =

7

8
t2 �

5

8
<
7

8

5

7
� 5
8
= 0:

Therefore, the payo¤ is decreasing for b > b1(t
�); and b2(t2) is the optimal

bid for bidder two. We have shown that bi(ti); i = 1; 2 is an equilibrium in
the common-value auction with an alternative de�nition of the common value
outside Q. For this choice of p; we have p(x; x) = 7

8x < x:

To state the equivalence result, we need to de�ne a common-value model with
a common-value function w(t1; t2) de�ned by the resale game after the auction.
The common-value function we de�ne is also determined by the equilibrium
bidding strategy of the auctions with resale model. Let the strictly monotone
equilibrium bidding functions of the bidders be bi(ti); i = 1; 2:
Given the equilibrium bidding strategies bi(ti); i = 1; 2 in the auction with

resale and the pricing function w(t1; t2) de�ned over Q, we de�ne a common-
value model with the common-value function

w(t1; t2) = w(t1; t2) for (t1; t2) 2 Q:

For (t1; t2) outside Q; let k(t1) be the maximum t2 such that (t1; t2) 2 Q: we
de�ne w(t1; t2) = w(t1; k(t1)) for (t1; t2) =2 Q.

We now state the bid-equivalence result.

Theorem 4 Assume that there is no disclosure of bid information in between
the auction stage and the resale stage, and the resale process satis�es (A1)~(A4).
Assume that there is a strictly monotone equilibrium bidding strategy pro�le
bi(t); i = 1; 2 in the auction with resale satisfying the minimal e¢ ciency prop-
erty (ME). Then there is common-value �rst-price auction with a common-value
function de�ned by the pricing function of the resale game R whenever trade oc-
curs, such that bi(t); i = 1; 2 is also an equilibrium of the common-value auction,
and we have bid-equivalence between the auction with resale and the common-
value auction.

Proof of Theorem 4:
Consider the determination of the equilibrium bidding strategy in the �rst

stage of the auction with resale. Let �i = b�1i ; i = 1; 2 be the inverse bidding
functions. Let bidder one signal be t1; and t2 = h(t1): Assume that v1(t1) <
v2(t2): Since trade occurs when the valuation of bidder two is v2(t2); bidder
one must be the seller when bidder two receives the signal t2. By assumption
(t1; t2) 2 Q; hence there exists a minimum t02 � t2 such that (t1; t) 2 Q for all
t 2 (t02; t2]: We also have (t1; t) =2 Q for all t < t02: Let b02 = b2(t02):
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When bidder one with signal t1 chooses the bid b � b02; there is resale after
the auction at the price p(t1; t) if t 2 (t02; �2(b)), and the payo¤ isZ �2(b)

t02

w(t1; t)dt+ v1(t1)t
0
2 � �2(b)b: (17)

If b < b02; then there is no resale and the payo¤ is (v1(t1) � b)�2(b): The same
bidder bidding b � b02 in the common-value auction has payo¤Z �2(b)

t02

w(t1; t)dt+

Z t02

0

w(t1; t)dt� �2(b)b

=

Z �2(b)

t02

w(t1; t)dt+ w(t1; t
0
2)t

0
2 � �2(b)b (18)

Since (17) and (18) di¤er only by a constant term (with respect to b); and b1(t1)
is optimal for (17) ; we know that b1(t1) is also optimal for the payo¤ (18) within
the range b � b02. For b < b02; we have the payo¤

(p(t1; t
0
2)� b)�2(b):

The derivative with respect to b (with the possible exception of a �nite number
of points) is

(w(t1; t
0
2)� b)�02(b)� �2(b) = �02(b)(w(t1; t02)� b� (p(�1(b); �2(b))� b))

= �02(b)[w(t1; t
0
2)� w(�1(b); �2(b))]:

We have �2(b) < t
0
2; and b < b

0
2 � b1(t1); hence �1(b) < t1; and the derivative is

� 0: Therefore the payo¤ is increasing within the range b < b02; and this implies
that b1(t1) is optimal for the payo¤ (18) in the common-value auction.
In the auction with resale model, we have (h�1(t2); t2) 2 Q; hence there

exists a maximum t01 � h�1(t2) such that (t; t2) 2 Q for all t 2 [t1; t01): We also
have (t; t2) =2 Q for all t > t01: Let b

0
1 = b1(t

0
1): When bidder two with signal t2

o¤ers the bid b � b01; the payo¤ is

(v2(t2)� b)�1(b) +
Z t01

�1(b)

(v2(t2)� w(t; t2))dt

=

Z t01

0

v2(t2)dt�
Z t01

�1(b)

w(t; t2)dt� b�1(b)

In the common-value model, when bidder two with signal t2 bid b � b01; the
payo¤ isZ �1(b)

0

(w(t; t2)� b)dt =
Z t01

0

w(t; t2)dt�
Z t01

�1(b)

w(t; t2)dt� b�1(b):
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The di¤erence between the payo¤ functions in the two di¤erent auctions is a
constant term not involving b: Therefore, b2(t2) is optimal in the range b � b01:
For b > b01; the payo¤ isZ �1(b)

0

(w(t; t2)� b)dt =
Z t01

0

w(t; t2)dt+

Z �1(b)

t01

w(t; t2)dt� b�1(b)

We want to show that this payo¤ function is decreasing in b > b01: The derivative
with respect to b is

(w(�1(b); t2)� b)�01(b)� �1(b) = �01(b)[w(�1(b); t2)� b� (w(�1(b); �2(b))� b)]

= �01(b)[w(�1(b); t2)� w(�1(b); �2(b))]:

Since b > b01 � b2(t2); we also have �2(b) � t2: Hence the derivative is � 0:
Therefore, b2(t2) is the optimal bid in the common-value auction as well. The
other case v1(t1) > v2(t2) is similar. Finally, if v1(t1) = v2(t2); either one of
the bidder may be a winner and hence a seller. The other one is a buyer. The
arguments then proceed in a similarly way as well.

In a bilateral trade equilibrium, trade need not occur with probability one
even when the trade surplus is the highest possible amount. In this case, the
minimal e¢ ciency property fails, and the bid equivalence result need not hold.
To show necessity of the minimal e¢ ciency condition for the bid equivalence
result, let us consider the monopoly resale example in section 2. Assume that in
the resale stage, trade is arti�cially restricted so that it only occurs with prob-
ability 0:5 when the buyer is willing to accept the o¤er by the seller. There is
no trade when the buyer does not accept the o¤er. With this trade mechanism,
the optimal o¤er by the seller is the same as the monopoly price without restric-
tion. Hence the optimal o¤er price is 2 whenever there is a positive probability
that the buyer has valuation 2. The weak bidder with valuation 1 chooses b to
maximize the following payo¤

0:5(H2(b)�0:4)(2�b)+0:5(H2(b)�0:4)(1�b)+0:4(1�b) = H2(b)(1:5�b)�0:2:

The �rst-order condition is

H 0
2(b)

H2(b)
=

1

1:5� b : (19)

Bidder one with valuation 0 chooses b to maximize

0:5(H2(b)�0:4)(2� b)+0:5(H2(b)�0:4)(0� b)+0:4(0� b) = H2(b)(1� b)�0:4

and the �rst-order condition is

H 0
2(b)

H2(b)
=

1

1� b : (20)
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Bidder two with valuation 2 chooses b to maximize the payo¤

H1(b)(2� b)

with the �rst-order condition

H 0
1(b)

H1(b)
=

1

2� b : (21)

Let b� be the common maximum bid of both bidders. We have the following
boundary conditions

H2(0) = 0:4;H2(b
�) = H1(b

�) = 1:

Note that the �rst-order conditions of the two bidders are not symmetric, and we
don�t expect the equilibrium bid distributions of the two bidders to satisfy the
symmetry property. If the symmetry property fails, then the equilibrium of the
auction with this restricted monopoly resale market cannot be bid equivalent
to any equilibrium of a common-value auction. To �nd the equilibrium, let
H1(c) = 0:7: We have

H1(b) =
A

2� b for b 2 [0; b
�];

where A = 2� b�; 0:7(2� c) = 2� b�: For bidder two; we have

H2(b) =
B

1:5� b for b 2 [c; b
�];

hence B = 1:5� b�: For b 2 [0; c]; we must have H2(0) = 0:4; hence

H2(b) =
0:4

1� b for b 2 [0; c]:

We must have

H2(c) =
0:4

1� c =
B

1:5� c
or

0:4(1:5� c)
1� c = B = 1:5� b� = 1:5� (2� 0:7(2� c)) = 0:9� 0:7c

We have the following quadratic equation in c :

(0:9� 0:7c)(1� c)� 0:4(1:5� c) = 0:7c2 � 1: 2c+ 0:3 = 0

and the solution is c = 0:303 86: From this number, we have b� = 0:687 30; A =
1:31270; B = 0:81270: Hence we have the following equilibrium cumulative bid
distributions when ties are broken in favor of bidder one:

H1(b) =
1:3127

2� b ; b 2 [0; 0:6873];
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H2(b) =
0:4

1� b ; b 2 [0; 0:30386]

=
0:8127

1:5� b ; b 2 [0:30386; 0:6873]:

Clearly, this equilibrium does not satisfy the symmetry property, and the bid
equivalence result fails.
Later on in section 6.1, we will compare revenues of the �rst-price and second-

price auctions with resale. In the second-price auction with resale, the game
di¤ers only in the �rst stage, in which the �rst-price auction is replaced by the
second-price auction. In a second-price auction with resale, the winner of the
auction knows the losing bid if the payment is made, as the losing bid is the
price he pays in the auction. To conceal this information, the payment can be
deferred after the resale game. There is in fact a continuum of equilibria (see
Blume and Heidhues (2004)) in the second-price auction with resale. It is an
equilibrium for both bidders to bid their valuation (see Proposition 2 in Hafalir
and Krishna (2008)), and this is an e¢ cient equilibrium. The e¢ ciency means
that there is no need for resale after the auction, so that the revenue is the same
with or without resale. When there is no resale, the "bid-your-value" strategies
constitute a weakly dominant equilibrium strategy. With resale, it is no longer
weakly dominant. However it is robust in the sense of Borgers and McQuade
(2007), and is the only robust equilibrium (see the supplement to Hafalir and
Krishna (2008)). This is the equilibrium used in the revenue ranking of the
auctions with resale. Since there is no resale transaction in the bilateral trade
mechanisms, the second-price auction revenue does not depend on the di¤erent
trade mechanisms in the second stage.

4.1 Speculator-Buyer Model of Auction with Resale

A special interesting case is worth mentioning here. If bidder one is a speculator
having no value for the object, but participates in the auction for resale, and
bidder two is a regular buyer, we call this the speculator-buyer model of auction
with resale. From our bid equivalence result, the equilibrium bidding behavior
of this model is the same as the Wilson Drainage Tract Common Value Model.

Assume that bidder two has a cumulative valuation distribution F (x) on
[0; a]: and satis�es the condition that the virtual value

x� 1� F (x)
f(x)

(22)

is increasing. Assume that the speculator is a monopolist in the resale stage.
Let v = F�1; and p(t) be the optimal monopoly price when the speculator faces
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a buyer with the valuation distribution F conditional on the support [0; v(t)]:
The �rst order condition for p(t) is the equation in p :

p� F (v(t))� F (p)
f(p)

= 0:

The equation has a unique solution when (1) is increasing.
According to the bid equivalence result, the equilibrium bid distributions of

this auction with resale model are the same as theWilson drainage tract common
value model in which the common value function is w(t1; t2) = p(t1) where
t1; t2 are the signals received by the drainage tract owner and the non-neighbor
respectively. The set Q can be described as Q = f(t1; t2) : t1 � t2; v2(t2) �
p(t1)g: Interestingly, the speculator in the auction with resale model corrsponds
to the drainage tract owner who receives the private informative signal, but in
the auction with resale model, the regular buyer is the one having the private
information. It is an intersting question to ask whether bidders behave the
same way in both models in practice or in experiments, given the evidence that
winner�s curse is observed in practice, but we don�t expect similar irrationality
in the auction with resale.

5 Two Polar Cases

The existence and uniqueness of the equilibrium in the �rst-price common-value
auctions have been studied in the literature13 . There is an explicit formula for
the equilibrium in Parreiras (2006). In the pure common-value model with inde-
pendent signals, it is well-known that in equilibrium, the winning probabilities
of the two bidders are the same when they bid the same amount14 . The sym-
metric property of the winning probabilities is the property that both bidders
have identical bidding strategies (as functions of t): In other words, we have
b1(t) = b2(t). Note that there is asymmetry in the signals as v1; v2 are di¤erent,
and bidding strategies as functions of vi are not symmetric. However, bidding
strategies in terms of t are symmetric.
The symmetry property of the equilibrium bidding strategy gives us very

simple formulas for the bidding strategy and the revenue. The following propo-
sition summarizes the formulas in Gupta and Lebrun (1999) in the context of
auction with resale and in Parreiras (2006) in the context of common-value
auctions. We adopt a di¤erent notation, as we use the signal representation

13The existence of a non-decreasing equilibrium in the common value model is established in
Athey (2001). The existence of a strictly increasing equilibrium has been shown in Rodriguez
(2000). The uniqueness of equilibrium of the �rst price auction of the common value model
can be found in Lizzeri and Persico (1998) and Rodriguez (2000).
14This can be found in Engelbrecht-Wiggans, Milgrom, and Weber (1983) for the Wilson

track model and more generally in Parreiras (2006) and Quint (2006). This property also
holds in �rst-price auctions with resale in Hafalir and Krishna (2007).
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(or distributional) approach15 . In this representation, the formulas take a very
simple form.

Proposition 5 With two bidders, the equilibrium bidding strategy in the �rst-
price common-value auction is symmetric and is given by

b(t) =
1

t

Z t

0

p(v1(r); v2(r))dr

with the revenue given by

RF = 2

Z 1

0

(1� t)p(v1(t); v2(t))dt:

We shall �rst apply the formulas to the two polar cases: w(t1; t2) = maxfv1(t1); v2(t2)g;
or w(t1; t2) = minfv1(t1); v2(t2)g: These common-value functions correspond
to two types of resale markets. In Gupta and Lebrun (1999), they assume
that after the �rst-stage auction, the valuations of both bidders become com-
mon knowledge (with no particular explanation of how this is achieved). In
the monopoly resale market, the complete information leads to the transaction
price maxfv1(t1); v2(t2)g: In the monopsony resale market, the complete infor-
mation leads to the transaction price minfv1(t1); v2(t2)g:We have the following
equilibrium strategies and revenues

bmax(t) =
1

t

Z t

0

max(v1(r); v2(r))dr;R
F
max = 2

Z 1

0

(1� t)max(v1(t); v2(t))dt;

for the maximum case, and

bmin(t) =
1

t

Z t

0

min(v1(r); v2(r))dr;R
F
min = 2

Z 1

0

(1� t)min(v1(t); v2(t))dt;

for the minimum case. Note that the equilibrium bidding strategies are strictly
increasing. The two values give us the upper bound and the lower bound of the
revenue of the auction with resale.

Another simple example without perfect information in the resale stage in
which the two polar cases represent the seller�s and buyer�s market is the one
in section two. In that example, the common value functions are w(t1; t2) =
maxfv1(t1); v2(t2)g; or w(t1; t2) = minfv1(t1); v2(t2)g respectively, even though
there is still incomplete information about the valuations. Furthermore, even if

15We want to thank Jeremy Bulow for pointing out that the bidding formula can also be
obtained from the theorem in Milgrom and Weber (1982) by using symmetric signals but
asymmetric common value functions.
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all the bids are announced in that example, the equilibrium still holds. In the
maximum case, if bidder two lowers the bid to 0; the pro�t is lower or the same
(when ties are broken in favor of bidder two). Therefore there is no incentive
for bidder two to lower the bid to signal low valuation in this case. In the
minimum case, If bidder one with valuation 0 bids b > 0; and signals a high
valuation, the object is sold at the price 1 to bidder two. This yields the pro�t
�0:7b + (Hr

2 (b) � 0:7)(1 � b) = 0: Hence there is no pro�t from such signaling
strategy. Bidder one has no incentive to signal high valuation either. Thus the
announcement of all the bids by the auctioneer does not destroy the respective
equilibrium.
In general, however, when all the bids are announced, the signalling strategy

can destroy the increasing equilibrium. Take the following example v1(t) =
t; v2(t) = 2t:We have the symmetric bidding strategy for the maximum common
value without bid disclosure

bmax(t) =
1

t

Z t

0

2rdr = t:

If bids are announced, bidder two with valuation 2t can lower the bid to b < t;
and buys the object from bidder one at the lower price 2b when the auction is
lost. The pro�t becomes

�1(b)(2t� b) + (1� �1(b))(2t� 2b) = �1(b)b� 2b+ 2t = b2 � 2b+ 2t:

The derivative of the pro�t function is 2b � 2 < 0: This means that when the
bid b is lowered, the pro�t will increase, thus destroying the above equilibrium
strategy when bids are announced, and signalling is e¤ective. Similarly, the sym-
metric equilibrium for the minimum common value case with no bid disclosure
is

bmin(t) =
1

t

Z t

0

rdr =
t

2
:

When bids are announced, bidder one with valuation t can raise the bid b > t
2 ;

and sells the object to bidder two at the price 2b: The pro�t from this deviation
is

�2(b)(2b� b) = 2b2;

which is an increasing function of b: The signalling strategy destroys the no
disclosure equilibrium.

As we shall see in a minute, if we assume that only the winning bid is
disclosed (which is normally the case in the real world auctions), the Coase
Theorems (Gul, Sonnenschein, and Wilson (1986)) will allow us to obtain similar
equilibrium outcome in auctions with resale in the limit. For convenience, we
shall refer to the maximum case as the case of seller�s market. This means
that the resale market is a monopoly market in which the seller captures all the
surplus from trade. Similarly, the minimum case is referred to as the buyer�s
market in which the buyer captures all the trade surplus.
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Gupta and Lebrun (1999) have shown that there is a reversal of ranking
between the �rst-price auction with resale and the second-price auction with
resale in this case. We now show a similar result for the comparison of revenues
in auctions with and without resale. Let Rr denote the revenue of the �rst-price
auction with resale, and Ro denote the revenue of the �rst-price auction without
resale.

Theorem 6 Assume that v1(t) � v2(t); for all t and v1(t)) 6= v2(t) for a subset
of [0; 1] of non-zero measure. If w(t1; t2) = maxfv1(t1); v2(t2)g; then Rr > Ro:

If w(t1; t2) = minfv1(t1); v2(t2)g; then we have Ro > Rr:

Proof. Let
F (x) = minfF1(x); F2(x)g:

and v(t) = F�1(t): Then we have v(t) = maxfv1(t); v2(t)g: Then Rr is the
revenue of a symmetric auction with the valuation distribution F (x) for each
bidder. Let H be equilibrium bid distribution of each bidder in this symmetric
auction. Let H1;H2 be the equilibrium bid distribution of bidder one and two
respectively in the asymmetric auction without resale. According to Proposi-
tion of Maskin and Riley (2000), H �rst-order stochastically dominate H2 which
also �rst-order stochastically dominates H1: Hence we have H2 �rst-order sto-
chastically dominates H1H2; and we have Rr > Ro: The result for the case of
w(t1; t2) = minfv1(t1); v2(t2)g is completely similar.

Remark 7 There is a di¤erence between full extraction of surplus and monopoly
or monopsony. For the example in section 2, when ties are broken in favor of
bidder two, the following is an equilibrium in the auction with the monopsony
resale market,

H1(b) =
0:55

1� b = H2(b); b 2 [0; 0:45]:

This is not a full extraction equilibrium, as bidder two fails to extract all the
surplus of a bidder one with valuation 0: The revenue of this equilibrium isZ 0:45

0

(1� 0:552

(1� b)2 )db = 0:202 5:

The bid-your-valuation equilibrium in the second-price auction with resale yields
the revenue 0:18: Hence the equilibrium in the �rst-price auction with monop-
sony resale has higher revenue than the second-price auction with resale. The
full-extraction monopsony equilibrium for the same example has the revenueZ 0:3

0

(1� 0:72

(1� b)2 )db = 0:09;
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which is lower than the second-price auction with resale. The revenue of the
�rst-price auction without resale isZ 0:6

0

(1� 1:4 � 0:4
(1� b)(2� b) )db = 0:286 62:

Hence this is also an example in which the �rst-price auction without resale
may yield a higher revenue than the auction with a monopsony resale without
full extraction of surplus.

We now look at the implications of the Coase Theorem. Assume that the
object for sale is a durable good, and both the seller and the buyer are patient
(with a discount factor close to 1) or when the o¤ers are made in increasingly
short intervals: The Coase (1972) conjecture in fact says that the monopolist
may lose all bargaining power if the buyer anticipates lower prices in future
o¤ers. This has been formalized in Gul, Sonnenschein and Wilson (1986)16 . In
their model, the monopolist makes a sequence of o¤ers until the o¤er is accepted
by the buyer. Assume that the seller�s valuation is common knowledge (as in
the case when the winning bid is announced). Consider the set of equilibria
with the stationary property that the state of the market, after any price that
is lower than all preceding prices. is independent of the earlier price history in
the market. Such equilibria are said to be stationary, since the acceptance and
rejection decisions and future o¤ers depend only on the current price. They show
that for such equilibria, all prices including the �rst o¤er goes to the marginal
cost of the monopolist (Theorem 3).
Applying this result to our model, the winner of the auction is the seller,

and the winning bidder�s valuation is the marginal cost of the seller. When the
winning bid is announced, the seller�s valuation becomes common knowledge.
Since the �rst o¤er price is accepted by the buyer with the highest valuation,
this price is the common value. When the �rst o¤er converges to the marginal
cost, the common value function then converges to minfv1(t); v2(t)g17 : If only
the losing bid is announced, while the loser makes o¤ers, similar arguments lead
us to the common value function maxfv1(t); v2(t)g in the limit. Thus we can
see these two cases as extreme cases of auctions with resale.

In the literature on Coase conjecture, the seller�s cost is usually �xed, and
equal to 0. In our resale model, the seller�s cost can be any number within the
16Fudenberg, Levine, and Tirole (1985) have a Coase Theorem in the "gap" case in an

in�nite horizon model of bargaining when the discount rate is close to 1. Our model does not
allow the "gap" case.
17When alternating o¤ers are allowed, Ausubel and Deneckere (1992, Theorem 3.2) show

that a version of the Coase conjecture also holds. Assume that the equilibrium satis�es
stationarity, monotonicity, pure strategies, and no free screening. As the time interval between
successive periods is made su¢ ciently short, the initial serious o¤er by the seller or buyer in
an alternating-o¤er bargaining game must be close to the marginal cost of the monopolist
for an entire family of distribution functions. Thus the buyer�s market could also arise with
alternating o¤ers. In private communication, Ausubel has indicated that this result does
not imply the authors�s belief in the generality of the Coase conjecture for bargaining with
alternating o¤ers.
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range [0; a1]. To show how the Coase Theorem can be adapted for any cost
of the seller with heterogeneous beliefs due to updating, we illustrate with the
�nite horizon model of Sobel and Takahashi (1983). We show that for any given
discount factor �1 < 1 of the seller, the Coase conjecture holds as �2 ! 1; and
the number of periods goes to in�nity. We focus on the linear case of Sobel and
Takahashi (1983).
Assume that bidder one and two have uniform IPV distributions over the

intervals [0; a1]; [0; a2] respectively and a1 < a2. After the �rst-price auction in
stage one, the winning bid is announced. In stage two, the winner of the auction
makes no commitment o¤ers (except the last one which is a take-it-or-leave-it
o¤er) to the loser for n periods. In this case, only bidder one will make o¤ers
after winning the auction. First we derive the unique perfect Bayesian equilib-
rium of this �nite-o¤er game and show that the revenue ranking is reversed. Let
the seller has the valuation x and in equilibrium she believes that the buyer�s
valuation is uniformly distributed over [0; y]; y = a2

a1
x:We denote this bargaining

game by Ln(x; y): The proof of the following result is given in the appendix.

Proposition 8 The �rst period o¤er of the bargaining game Ln(x; y) in the
resale stage with n periods of o¤ers is given by

p = cny + (1� cn)x

where cn is de�ned recursively by

c1 =
1

2
; ck =

(1� �2 + �2ck�1)2
2(1� �2 + �2ck�1)� �1ck�1

:

Fix �1 < 1; and let �2 ! 1; we have

ck !
ck�1
2� �1

for all k:

Since c1 = 1
2 ; we have cn =

1
2(2��1)n�1 ! 0; as n ! 1: Therefore the �rst

period o¤er p converges to x = minfx; yg as n ! 1: By Theorem ??, the
revenue ranking is reversed if �1 < 1 is �xed, �2 is close to 1; and the number
of o¤er periods n is su¢ ciently large. In this example, Coase Theorem holds as
long as the buyer is su¢ ciently patient, and the number of bargaining period is
su¢ ciently large.

6 E¤ects of Bargaining Power

The main purpose of this section is to illustrate the applications of the bid-
equivalence result and explore the e¤ects of bargaining power on many im-
portant questions regarding auctions with resale. The bid equivalence result
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makes it possible to analyze the revenue and e¢ ciency questions in the auction
with resale when the resale market is more complicated than the monopoly or
monopsony market in Hafalir and Krishna (2008).
We examine the impact of the valuation distribution on bargaining power

and the ranking results of �rst-price and second-price auctions with resale. In
section 6.2, we look at the way delay costs a¤ect bargaining power and conse-
quently the ranking results as well as the revenue comparisons between auctions
with or without resale.
In subsection 6.3, we examine the resale market with simultaneous o¤ers

such as the k-double auction. Lebrun (2007) shows that the revenue for the
monopoly market is higher than that for the monopsony market. This accords
with our intuition with bargaining power e¤ect.

We shall �rst o¤er a simple way of formulating the idea that the revenue of
the auction with resale is an increasing function of the bargaining power of the
seller. Let bidder one and two be a pair of weak-strong bidders. Consider the
common value function

w(t1; t2) = (1� k)v1(t1) + kv2(t2) (23)

where k represents the bargaining power of bidder one. The higher k is, the
higher the transaction price in the resale stage. Gupta and Lebrun (1999) have
noted that as k changes from 0 to 1; there is a reversal between the ranking of
�rst-price auction and second price auction with resale. There is k0 2 (0; 1) such
that the two auctions yield the same revenue. This implies that RF > (<)RS

if and only if k > (<)k0:

There is a similar result for the revenue comparisons between the auction
with resale and auction without resale.

Theorem 9 For a weak-strong pair, the auctioneer�s revenue is an increasing
function of the bargaining power k of the weak bidder. There exists k1 2 (0; 1)
such that Rr > (<)Ro if and only if k > (<)k1:

What makes this statement not completely satisfactory is that we don�t
know how the common value function (23) arises from the bargaining process.
In the following subsections, we examine the resale markets in more details and
endogenize the determination of the bargaining power by many factors in the
bargaining process.
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6.1 Bargaining power and valuation distributions

We will present two results. One is a general ranking result based on a property
of the common value function. When the property is satis�ed, the �rst-price
auction with resale has higher revenue than the second-price auction. The sec-
ond result says that when the resale market is either a monopoly or a monopsony,
the property is always satis�ed if the o¤er-receiver has a convex valuation dis-
tribution. The two results combined explain an intuition in the unambiguous
ranking result of Hafalir and Krishna (2008) and reconcile it with the polar
ranking results of the last section.
It is quite intuitive that one�s valuation distribution a¤ects the bargaining

power in the resale stage. For instance, assume that we have a monopoly resale
market, and the buyer�s valuation tends to be on the high side. We would expect
the seller to o¤er a relatively high monopoly price to the buyer. The higher price
bene�ts the auctioneer, and raises the revenue in the �rst-stage auction. One
way to formalize this idea is to assume that the buyer�s valuation distribution
is convex. In the monopoly resale market, condition (C) becomes

p(x1; x2) �
x1 + x2
2

;

which says that the monopoly price is above the average of the seller�s and
buyer�s valuations. We show in Theorem 10 below that in this case, the revenue
of the �rst-price auction with resale dominates that of the second price auction.
Furthermore, Proposition 11 shows that condition (C) holds when the buyer�s
valuation distribution is convex and the resale market is a monopoly. We should
emphasize that Theorem 10 can be applied to more general resale markets. For
example, we will see in the subsection that it applies to the k-double auction
case when the distributions are uniform.
The above observation allows us to reconcile the polar results of the above

section with that of Hafalir and Krishna (2008). They show that when the
valuation distributions are regular, the �rst-price auction with resale is always
superior to the second-price auction. Convexity is a strong form of regularity,
and the implication of regularity is similar to convexity which insures that the
seller has su¢ cient bargaining power to raise the �rst-price auction revenue
above that of the second-price auction revenue. The implication of regularity is
beyond the scope of this paper, and is treated in Cheng and Tan (2008) in which
it is shown that regularity is necessary for the unambiguous ranking result.

The �rst result we o¤er is based on condition (C�) of the common-value
function: When condition (C) holds, the ranking holds without detailed knowl-
edge of the valuation distributions Fi; i = 1; 2. The common-value function
p(x1; x2) = maxfx1; x2g satis�es condition (C), and the ranking result applies
to this case.
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Theorem 10 Suppose p satis�es condition (C�), p(x; x) � x; p(0; 0) = 0, and
v1(t)) 6= v2(t) for a subset of [0; 1] of non-zero measure. Then RF > RS.

Proof of Theorem 10:
Let a = min(a1; a2): Note that p(x; x) = 0 for x > a by our convention. We

have

RS =

Z a

0

xd[1� (1�F1(x))(1�F2(x)] �
Z a

0

p(x; x)d[1� (1�F1(x))(1�F2(x)]

= �
Z a

0

p(x; x)d[(1� F1(x))(1� F2(x)] =
Z a

0

(1� F1(x))(1� F2(x)dp(x; x)

<
1

2

Z a

0

[(1�F1(x))2+(1�F2(x))2]dp(x; x) �
1

2

Z a1

0

(1�F1(x))2dp(x; x)+
1

2

Z a2

0

(1�F2(x))2dp(x; x)

Using integration by parts, we have

RS <

Z a1

0

(1� F1(x))p(x; x)dF1(x) +
Z a2

0

(1� F2(x))p(x; x)dF2(x)

=

Z 1

0

(1� t)p(v1(t); v1(t))dt+
Z 1

0

(1� t)p(v2(t); v2(t))dt

=

Z 1

0

(1� t) [p(v1(t); v1(t)) + p(v2(t); v2(t))] dt:

Condition (C�) now implies that

RS < 2

Z 1

0

(1� t)p(v1(t); v2(t))dt = RF ;

and the theorem is proved.

The following result, which is of independent interest on its own, says that
if an o¤er-maker (a monopolist or monopsonist) makes an o¤er to the o¤er
receiver (the buyer or the seller, respectively), and the o¤er receiver has a convex
valuation distribution, then the optimal o¤er price satis�es condition (C).

Proposition 11 Let the seller valuation be x; and the buyer has a convex val-
uation distribution Fj over [bj ; aj ]; aj � x: Let y 2 [bj ; aj ] be the maximum
valuation of the buyer. Then the optimal monopoly price function p(x; y) sat-
is�es condition (C). Similarly, let the buyer valuation be x; and the seller has
a convex valuation distribution Fj over [bj ; aj ] with bj � x: Let y 2 [bj ; aj ] be
the minimum valuation of the seller. The optimal monopsony price r(x; y) also
satis�es condition (C).
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Proof of Proposition 11:
Since p(x; x) = x; the optimal monopoly price p(x; y) satis�es condition (C)

if
p(x; y) � x+ y

2
:

As z = p(x; y) maximizes the following objective function in variable z

K(z) = [Fj(y)� Fj(z)](z � x);

it is su¢ cient to show that
K 0(

x+ y

2
) > 0;

or
Fj(y)� Fj(

x+ y

2
)� F 0j(

x+ y

2
)(
x+ y

2
� x) > 0:

Equivalently, we need to show that

Fj(y)� Fj(x+y2 )
y�x
2

> F 0j(
x+ y

2
): (24)

Note that the left-hand side (24) is the slope of the line through the two points
(x+y2 ; Fj(

x+y
2 )); (y; Fj(y)); while the right-hand side is the slope of Fj at

x+y
2 :

The convexity of Fj is su¢ cient for (24) to hold.
For the monopsony case, the arguments are very similar. Since z = r(x; y)

maximizes the following objective function in variable z

K(z) = (Fj(z)� Fj(x))(y � z);

it is su¢ cient to show that
K 0(

x+ y

2
) > 0;

or
F 0j(

x+ y

2
)(y � x+ y

2
)� Fj(

x+ y

2
) + Fj(x) > 0:

Equivalently, we need to show that

F 0j(
x+ y

2
) >

Fj(
x+y
2 )� Fj(x)
y�x
2

: (25)

Note that the right-hand side (25) is the slope of the line through the two points
(x; Fj(x)); (

x+y
2 ; Fj(

x+y
2 )); while the left-hand side is the slope of Fj at

x+y
2 : The

convexity of Fj is su¢ cient for (25) to hold. The proof is complete.
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6.2 Bargaining power and delay costs

When there is a single o¤er (which is equivalent to a commitment equilibrium in
the bargaining literature) in the resale mechanism, the convexity or regularity
assumption insures that the bidders derive su¢ cient bene�ts from resale so that
the general ranking is possible. If we allow repeated o¤ers with no commitment,
it is well-known (Sobel and Takahashi (1983), Fudenberg and Tirole (1983)) that
high delay costs weaken the bargaining power of the monopolist: The weakened
bargaining power may lead to low trade prices when the auction winner makes
o¤ers to the loser. We show by an example that the opposite ranking can occur
when the bargaining power is substantially reduced in bargaining with repeated
o¤ers.
The resale market is one in which the winner of the auction makes a �rst

o¤er to the buyer. If the o¤er is accepted, the game ends. If the �rst order
is rejected, a second �nal o¤er is made to the buyer. The bargaining problem
with repeated o¤ers from one-side to the other with delay costs is similar to
that of Sobel and Takahashi (1983). However, there is a main di¤erence: the
seller may have di¤erent non-zero costs (or valuations) and di¤erent valuations
imply di¤erent beliefs about the buyer�s valuations due to the outcome of the
�rst-stage auction. The delay costs are expressed by discount factors �1; �2 for
bidder one, two respectively: Our example assumes that bidder one has low �1
(close to 0); and bidder two has high �2 (close to 1): Note that when there are
delay costs in repeated o¤ers, the common-value is the �rst o¤er price and later
o¤ers are not involved in the equilibrium revenue.
Consider the weak-strong pair of bidders v1(t) = t; v2(t) = 1:5t over [0; 1]:

There are only two rounds of o¤ers. For the example, we adopt the notations
x; y for xi; xj respectively: We have F1(x) = x; F2(y) =

2
3y: In equilibrium,

bidder one with valuation x believes that bidder two valuation distribution is
F2j1:5x; after she wins the auction: We let y = 1:5x: Given the �rst price o¤er
p1; bidder two has a threshold of acceptance z: The o¤er will be accepted if
and only if bidder two�s valuation is higher than z:When bidder two rejects the
o¤er, the equilibrium period two o¤er is given by p2(x; z) = x+z

2 : The following
equation determines the equilibrium z

z � p1 = �2(z �
z + x

2
);

and we have

z =
p1 � 0:5�2x
1� 0:5�2

:

The optimal �rst o¤er p1 maximizes the pro�t function

2

3
(y � z)(p1 � x) +

2

3
�1(z � p2)(p2 � x) =

2

3
(y � z)(p1 � x) +

2

3

�1
4
(z � x)2

=
2

3
(y � p1 � 0:5�2x

1� 0:5�2
)(p1 � x) +

2

3

�1
4
(
p1 � x
1� 0:5�2

)2:
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The �rst order condition for p1 is

y � 2p1 � (1 + 0:5�2)x
1� 0:5�2

+
�1

2(1� 0:5�2)2
(p1 � x) = 0;

and we get the optimal �rst period o¤er

p1(x; y; �1; �2) =
(1� 0:5�2)2
2� �2 � 0:5�1

y +
1� 0:5�1 � 0:25�22
2� �2 � 0:5�1

x:

where y = 1:5x:
Since the �rst price auction revenue RF with resale is increasing in p1; and p1

is increasing in �1; and decreasing in �2; we know that RF is increasing in �1 and
decreasing in �2: Therefore we know that a higher delay cost (or lower bargaining
power) for bidder one hurts the revenue in the �rst price auction, while the
opposite is true for bidder two. When �1 = 0; �2 = 1; we have the lowest revenue
in the �rst price auction. In this case, we have p(x; y) = 1

4y +
3
4x = 1:125x;

hence

RF =

Z 1

0

2(1� t)1:125tdt = 0:375;

which is lower than the revenue from the second price auctionZ 1

0

(1� x)(1� 2
3
x)dx = 0:388 89:

We now compute the revenue without resale. By Plum (1992), the equilib-
rium bidding strategies of the two bidders are given by

bw(t) =
9

5

1�
q
1� 5

9 t
2

t
; bs(t) =

6

5

q
1 + 5

4 t
2 � 1

t
:

with the maximum bid 3
5 : The inverse bidding functions can be easily computed

as

'w(b) =
18b

9 + 5b2
; 's(b) =

12b

9� 5b2 ; b 2 [0;
3

5
]

From this, we can compute the revenue of the auction without resale:

R =

Z 3
5

0

bd(
18b

9 + 5b2
12b

9� 5b2 ) =
3

5
�
Z 3

5

0

(
18b

9 + 5b2
12b

9� 5b2 )db = 0:404 62

which is higher than the revenue in the auction with resale.
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6.3 Bargaining power in k-double auctions

The k-double auction with linear bidding strategies has been studied in Chat-
terjee and Samuelson (1983). In the bargaining after the auction, we have
noted a di¤erence from their model: the heterogeneous beliefs of the seller and
the buyer. Because of this di¤erence, the equilibrium strategy is di¤erent, but
is still linear. In the standard bargaining with homogeneous beliefs, Williams
(1987) has shown that such linear equilibrium satis�es e¢ cient properties, and
in experimental studies (Radner and Schotter (1989)), it seems to be the rele-
vant one in practice. Williams (1987) also shows that the parameter k can be
a proxy of the utility payo¤s of the bargainer. Thus in this case, k can be a
proxy of the bargaining power as well. As k takes the extreme values 0; 1; we
get the monopoly or monopsony market. Although other non-linear equilibria
exist, the linear equilibrium case deserves special attention. With heterogeneous
beliefs, it is desirable that the e¢ ciency properties of Williams (1987) continue
to hold, so that we can argue that the linear equilibrium is the one to study,
as the bargainers will tend to adopt an e¢ cient bargaining mechanism. We can
not explore this question here, but will take it with a grain of faith that such
equilibrium is important to study. It is also the only tractable one so far to
analyze.
As another application of the bid equivalence, we consider the k-double resale

market in which both the seller and the buyer make simultaneous o¤ers. Let
ps;pb be the seller and buyer o¤ers respectively. The transaction takes place if
and only of ps � pb at the price (1�k)ps+kpb:When k increases, the bargaining
power shifts from the seller to the buyer. This may appear to be counter-
intuitive as a higher k means a higher price for the seller, and the seller bene�ts
if there is no change in the o¤er strategies. Chatterjee and Samuelson ((1983),
example one and two) have shown that the seller pro�t is actually decreasing
in k as the o¤er strategies do change when k changes. This result is for the
case of homogeneous beliefs. We will show that with heterogeneous beliefs, the
conclusion is the same. Notice however that the beliefs of the players are not
homogeneous, and hence the solution we get is di¤erent from theirs. With the
uniform distribution of the valuations, there exist a unique (piecewise) linear
equilibrium in our model as in Chatterjee and Samuelson (1983).

In this framework, we show that the auctioneer�s revenue is an increasing
function of the bargaining power 1 � k of the weak bidder. When k = 0; 1
respectively, the equilibrium in the resale market is the same as the monopoly
and monopsony market respectively. However, there is a trade-o¤ between the
revenue and e¢ ciency. The e¢ ciency, measured by the realized trade surplus
of the auction with resale, is a decreasing function of the bargaining power 1�k
of the weak bidder.
We �rst note the result of Lebrun (2007) that the auctioneer�s revenue is

higher in an auction with a monopoly resale market than with a monopsony
resale market.
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Assume that the signals are independent and the valuations are given by18

v1(t) = t; v2(t) = 2t so that F1(x) = x; F2(x) =
x
2 : The �rst stage is a �rst-

price auction. We have the following result. Let RF (k) be the revenue of the
�rst-price auction with the k-double auction resale market. Let the E(k) be the
e¢ ciency of the auction measured by the realized surplus of the auction with
resale. We also have exploit solution of the equilibrium bidding strategy of the
auction with resale.

Proposition 12 The revenue RF (k) is a decreasing function of k; while the
e¢ ciency E(k) is increasing in k: The equilibrium bidding strategy is given by

b1(t) = b2(t) =
3

4
t for t � 3� k

4� k ; (26)

=
3� k
2

�
k +

1� k
2

t� k(3� k)
2(4� k)t

�
for t � 3� k

4� k :

Proof. In the resale game, let ps; pb be the o¤er price by the seller and buyer
respectively. The transaction takes place if and only if ps � pb; and the trans-
action price is given by

p = (1� k)ps + kpb:

Let the inverse bidding strategy in the �rst-price auction with resale be
�1; �2 and in equilibrium we have �2(b) = 2�1(b) by the symmetry property: To
�nd an equilibrium with linear strategies in the resale game, let ps(v1) = c1v1+
d1; pb(v2) = c2v2 + d2 be the equilibrium strategies as functions of valuations:
Bidder one with valuation v1 chooses p � 2c2v1 + d2 to maximizeZ 2v1

p�d2
c2

[(1� k)p+ k(c2v2 + d2)� v1] dv2:

The derivative of the payo¤ with respect to p is given by

�p� v1
c2

+ (1� k)
Z 2v1

p�d2
c2

dv2

=
1

c2
[�(2� k)p+ (1 + 2(1� k)c2)v1 + (1� k)d2] ;

which is decreasing in p: Therefore the payo¤ function is concave. The �rst-order
condition of optimality gives us

ps(v1) =
1 + 2(1� k)c2

2� k v1 +
1� k
2� kd2

18More general parameters can be allowed without a¤ecting the results as long as the dis-
tributions are uniform.
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For the bidder two with valuation v2; the price o¤er p � v2
2 c1+d1 maximizesZ p�d1

c1

v2
2

[v2 � (1� k)(c1v1 + d1)� kp] dv1:

The �rst-order condition for the optimal o¤er is

v2 � p
c1

� k
Z p�d1

c1

v2
2

dv1 = 0

or
1

c1
((1 +

kc1
2
)v2 � (1 + k)p+ kd1) = 0;

and we have the optimal o¤er of the buyer

pb(v2) =
1 + kc1

2

1 + k
v2 +

k

1 + k
d1:

To be an equilibrium, we must have

d1 =
1� k
2� kd2; d2 =

k

1 + k
d1;

c1 =
1 + 2(1� k)c2

2� k ; c2 =
1 + kc1

2

1 + k
:

Solving the equations, we have

d1 = d2 = 0; c1 =
3� k
2

; c2 =
4� k
4

:

The (piecewise) linear equilibrium in the resale game is then given by

ps(v1) =
3� k
2

v1; v1 2 [0; 1];

pb(v2) =
4� k
4

v2 for v2 �
6� 2k
4� k ;

=
3� k
2

for v2 >
6� 2k
4� k :

Note that when k = 0; the strong bidder bids the true valuation when v2 � 6�2k
4�k ,

and the transaction takes place if and only if 2v1 � v2 � ps(v1) = 3
2v1: This is

equivalent to the monopoly case in which the seller o¤ers the optimal monopoly
price and the buyer accepts if and only if the buyer valuation is above the
price. Similarly, when k = 1; the weak bidder bids the true valuation, and the
transaction takes place if and only if 12v2 � v1 � pb(v2) =

3
4v2 when v2 �

6�2k
4�k :

This is equivalent to the monopsony case in which the buyer o¤ers the optimal
monopsony price and the seller accepts if and only if the seller valuation is below
the price.
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The transaction price is given by

w(t1; t2) =
(1� k)(3� k)

2
v1(t1) +

k(4� k)
4

v2(t2) =
(1� k)(3� k)

2
t1 +

k(4� k)
2

t2 if v2(t2) �
6� 2k
4� k ;

=
3� k
2

((1� k)t1 + k) if v2(t2) >
6� 2k
4� k :

Here Q = f(t1; t2) : t1 � t2;min(4�k4 v2(t2);
3�k
2 ) �

3�k
2 v1(t1)g; or Q = f(t1; t2) :

t1 � t2 � 3�k
4�k t1g: Trade occurs with probability one if and only if (t1; t2) 2 Q;

and there is no trade outside Q: This means that the object is in the hand of
the strong bidder if and only if v2 � 6�2k

4�k v1: The slope
6�2k
4�k = 2(1 � 1

4�k ) is
decreasing in k: This implies that the e¢ ciency of the auction increases as k
becomes larger with the highest e¢ ciency for the monopsony market.
We have

w(t; t) = [(1� k)(3� k) + k(4� k)] t
2
=
3

2
t for t � 3� k

4� k

=
3� k
2

((1� k)t+ k) for t � 3� k
4� k :

We want to show that w(t; t) is decreasing in k when t � 3�k
4�k : The derivative

with respect to k is

3� k
2

(1� t)� (1� k)t+ k
2

=
3� 2k
2

� (2� k)t � 3� 2k
2

� (2� k)(3� k)
4� k

=
�k

2(4� k) < 0;

hence p(t; t) is decreasing on the range t � 3�k
4�k : Since the revenue of the �rst-

price auction with resale is

2

Z 1

0

(1� t)p(t; t)dt;

the revenue is a decreasing function of k:
We have the equilibrium bidding strategies:

b1(t1) =
1

t1

Z t1

0

w(t; t)dt =
1

t1

Z t1

0

3

2
tdt =

3

4
t1; for t1 �

3� k
4� k :

For t1 � 3�k
4�k ; we have

b1(t1) =
3(3� k)2
4(4� k)2t1

+
1

t1

Z t1

3�k
4�k

3� k
2

((1� k)t+ k)dt

=
3(3� k)2
4(4� k)2t1

+
3� k
2t1

�
1� k
2

t21 + kt1 �
1� k
2

(
3� k
4� k )

2 � k(3� k)
4� k

�
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=
3� k
2

�
k +

1� k
2

t1 �
k(3� k)
2(4� k)t1

�
:

Next we show that Theorem 10 can be applied to this k-double auction resale
market.
Theorem 10 can be applied to the k-double auction model. For instance, in

the 1
2 -double auction example, for F1(x1) = F2(x2); x2 � 1; we have

p(x1; x2) =
5

8
x1 +

5

16
x2 =

5

4
x1 =

p(x1; x1) + p(x2; x2)

2
;

and condition (C�) holds for this example. In fact, it holds for all k-double
auctions for this example.

In a k-double auction, if the winning bid is announced, the valuation of the
winner is known in the resale stage. As a result, the equilibrium in the resale
game is the same as the equilibrium in the monopoly market. This implies that
the auctioneer revenue is higher when the winning bid is announced. Similarly, if
the losing bid is announced, then the revenue is lower compared to the k-double
auction.
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Appendix:

Proof of Proposition 8:
Let the number of periods remaining be k; and denote the optimal o¤er by

pk: The updated belief of the highest valuation zk of the buyer is the thresh-
old of acceptance in the period before. By backward induction, pk depends
only on x; zk; and we use the notation pk(x; zk): Let �k(x; zk) be the expected
pro�t function when k periods are remaining. Again by backward induction,
zk depends only on x and zk+1: Given pk; pk�1; bidder two has a threshold
level of acceptance zk�1: Bidder two will accept the o¤er pk whenever his or her
valuation is above zk�1. Given pk; pk�1, we can determine zk�1 by the condition

zk�1 � pk = �2(zk�1 � pk�1)

Thus we have the equation

(1� �2)zk�1 + �2pk�1 = pk (27)
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If the o¤er pk is rejected, the bidder i updates his belief of the valuation of
bidder j, and the new highest (lowest) valuation of the buyer (seller) is now
zk�1: Let pk�1(xi; zk�1) be the optimal o¤er with k� 1 periods remaining with
the updated zk�1: We can rewrite (27) as

(1� �2)zk�1 + �2pk�1(x; zk�1) = pk (28)

If the optimal o¤er pk�1 with k � 1 periods remaining has been determined
by backward induction and is increasing in zk�1: The left-hand side of (28) is
increasing in zk�1; and there is a unique solution denoted by zk�1(xi; pk�1):
Thus we know how zk�1 is determined once pk is chosen.
The choice of pk is determined by the maximization of the pro�t function of

the seller given by

[F2(zk)� F2(zk�1(x; pk))] (pk � x) + �1�k�1(x; zk�1) (29)

The �rst order condition for pk is

F2(zk)� F2(zk�1)� f2(zk�1)(pk � x)
@zk�1
@pk

+ �1
@�k�1
@zk�1

@zk�1
@pk

= 0:

Take the implicit derivative of (27) with respect to pk; we have

(1� �2)
@zk�1
@pk

+ �2
@pk�1
@zk�1

@zk�1
@pk

= 1;

or
@zk�1
@pk

=
1

(1� �2) + �2 @pk�1@zk�1

: (30)

Substitute (30) into the �rst order condition, we have

F2(zk)� F2(zk�1)�
f2(zk�1)(pk � x)� �1 @�k�1@zk�1

(1� �2) + �2 @pk�1@zk�1

= 0:

For uniform distributions, we have f2 = 1: Hence we have the �rst order condi-
tion

zk � zk�1 �
pk � x� �1 @�k�1@zk�1

(1� �2) + �2 @pk�1@zk�1

= 0 (31)

When k = 1; we have

p1(x; y) =
x+ y

2
; �1(x; y) = (

y � x
4

)2

and p1(x; z1) = x+z1
2 ; �1(x; z1) = (

z1�x
2 )2: Hence

@p1
@z1

=
1

2
;
@�1
@z1

=
z1 � x
2

:
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The theorem holds for k = 1 with c1 = 1
2 : More generally, by mathematical

induction, assume that the theorem holds for k � 1; and we have

pk�1 = ck�1zk�1 + (1� ck�1)x; �k�1 = 0:5ck�1(zk�1 � x)2

@pk�1
@zk�1

= ck�1;
@�k�1
@zk�1

= ck�1(zk�1 � x):

The �rst order condition (31) for zk�1; pk is

y � zk�1 =
(1� �2)zk�1 + �2(ck�1zk�1 + (1� ck�1)x)� x� �1ck�1(zk�1 � x)

1� �2 + �2ck�1
or

y � zk�1 =
(1� �2 + �2ck�1 � �1ck�1)(zk�1 � x)

1� �2 + �2ck�1
or

2(1� �2 + �2ck�1)� �1ck�1
1� �2 + �2ck�1

zk�1 = y +
1� �2 + �2ck�1 � �1ck�1

1� �2 + �2ck�1
x

and we have

zk�1 =
1� �2 + �2ck�1

2(1� �2 + �2ck�1)� �1ck�1
y +

1� �2 + �2ck�1 � �1ck�1
2(1� �2 + �2ck�1)� �1ck�1

x:

Let

dk�1 =
1� �2 + �2ck�1

2(1� �2 + �2ck�1)� �1ck�1
;

then
zk�1 = dk�1y + (1� dk�1)x:

We have

pk = (1� �2)zk�1 + �2pk�1 = (1� �2)zk�1 + �2(ck�1zk�1 + (1� ck�1)x)

= (1� �2 + �2ck�1)zk�1 + �2(1� ck�1)x = cky + (1� ck)x
where

ck =
(1� �2 + �2ck�1)2

2(1� �2 + �2ck�1)� �1ck�1
= (1� �2 + �2ck�1)dk�1:

The expected pro�t can be written as

�k = (y � zk�1)(pk � x) + �1�k�1
= ck(1� dk�1)(y � x)2 + 0:5�1ck�1(zk�1 � x)2

= (y � x)2(ck � ckdk�1 + 0:5�1ck�1d2k�1)
= (y � x)2(ck � (1� �2 + �2ck�1)d2k�1 + 0:5�1ck�1d2k�1)
= (y � x)2(ck � 0:5d2k�1(2(1� �2 + �2ck�1)� �1ck�1))

= (y � x)2(ck � 0:5
(1� �2 + �2ck�1)2

2(1� �2 + �2ck�1)� �1ck�1
)

= (y � x)2(ck � 0:5ck) = 0:5ck(y � x)2:
By mathematical induction, the proof is complete.
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