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Intergenerational Long Term Effects of
Preschool - Estimates from a Structural

Dynamic Programming Model

1 Introduction

We formulate an altruistic model of parental preschool investment within a structural sto-

chastic dynamic programming framework. The structural parameters of a structural dy-

namic programming model are not, in general, all statistically identified. If some para-

meters are not identified, the estimation of these parameters using the maximum likelihood

procedure or any other optimizing procedures may cause serious computational problems.

Moreover, the policy analysis based on unidentified parameter estimates is of very little con-

tent. In this paper we provide conditions for parametric and non-parametric identification

of our structural dynamic programming model, and then use these estimated parameters to

examine the effect of preschool on the production of cognitive and non-cognitive skills of

children, their effects on school and labor market achievements, and the intergenerational

long-term effects on social mobility, schooling mobility and earnings inequality.

In the past two decades in the US the income gap between the rich and the poor and the

wage gap between the college educated and the non-college educated workers have been

widening. The rate of returns from college graduation is substantially high. The children

of poor socioeconomic status (SES) constitute a large proportion of the children who do

not complete college. There are Federal education loan programs which provide subsidized

loans to the children of poor SES to attend college. The interest rates of these loan pro-

grams are substantially lower than the rate of returns from college education. Yet there is

not enough demand for these loans and a large percentage of the US children of poor SES

do not graduate from college. The liquidity constraint is not a major reason why these kids

do not attend college. For instance, Carneiro and Heckman [2002] show that only 4% of

the US households are liquidity constrained in the provision of post secondary education.

Equalizing education has remained a main policy in the US to reduce poverty and income

disparities. Many are, however, highly skeptical about a positive answer to the basic ques-

tion: ”Can we conquer poverty through school?”

There are many reasons for this skepticism. In the US, education up to high school level

is virtually free. Yet many children of poor SES do not complete high school and many

of them perform poorly in schools. This naturally beckons to the possibility that the poor
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quality of the public schools that the children of poor SES attend is the reason for such

failings. Improving school quality will improve school performance of these children only

marginally. Many empirical studies find that better school quality in terms of lower class

size, higher public expenditures per pupil, improved curriculum, and higher desegregation

have onlymarginal effects on school performance of the children of poor SES. SeeHanushek

[1986] for a survey of the studies along this line.

A growing consensus reached among educators, among media writers (see for instance,

Taub [2002], among researchers in economics (see for instance, Heckman [1999] and Currie

[2001]) and among researchers in sociology, psychology and education (see for in stance,

Barnett [1995], Entwisle [1995], McCormick [1989], Schweinhart et al. [1993]) that chil-

dren of poor SES are not prepared for college because they were not prepared for school to

begin with. The most effective intervention for the children of poor SES should be directed

at the preschool stage so that these children are prepared for school and college. The ques-

tion is then does preschool has long-term positive effects on school performance and labor

market success? This is the main issue we address in this paper.

There are two types of quantitative studies on this issue: One set of studies use data

on high cost high quality pilot preschool programs such as the High Scope/Perry Preschool

Program and the North Carolina Abecedarian Study. These studies find a substantial lasting

effect of these programs on school performance and labor market outcomes. The partici-

pants in these programs are, however, a very small in number and are not representative of

the US population.

The other set of studies use data on Head Start preschool program which is funded by

the Federal government. It is available to the children whose parents earn incomes below

poverty line. Not all eligible children are covered by the program, however. The quality

of the program is very poor compared to the above mentioned pilot programs or most pri-

vate preschool programs. Some studies find that the Head Start Preschool Program has no

long-term effect on children's cognitive achievements and school performance especially

for black children. Currie and Thomas [1995] carry out a careful econometric investigation

and conclude that the benefits disappear for black children because most of the Head Start

black children attend low quality public schools. But after controlling for the school quality,

they find significant positive effects of Head Start Preschool Program. See Barnett [1995]

for a survey of other studies on the long-term school effect of early childhood programs.

The above studies are not based on nationally representative samples of children, and

most studies examine only the effect on school performance such as grade retention and
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high school and college graduation rates, and do not model parental choice of investing in

their children's preschool. In this paper we formulate a model of parental investment in

preschool that is guided by economic incentives. We show that preschool benefits children

to acquire socialization and motivation skills, especially for the children of poor SES who

live in poor HOME environments. We also show that the self-reported measures of motiva-

tion skills significantly improve school performance, and the socialization and motivation

skills improve the life-time earnings of children, after controlling for their education level,

innate ability, and family background. Heckman and Rubinstein [2001] use data on GED

testing program in the US, after careful econometric analysis they show that noncognitive

skills are important determinant of earnings and educational attainment. We formulate the

parental preschool investment decision problemwithin an intergenerational altruistic frame-

work. We use a mixed reduced form estimation method using the NLSY data and calibration

method for some of the parameters, and then use these estimates to examine the long-term

intergenerational economic effects of publicly providing preschool to children of poor SES.

The rest of the paper is organized as follows: Section 2 provides the basic decision

making framework. Section 3 defines a few notations that are used oftenly in the paper.

Section 4 develops our structural model and discusses its estimation strategy. Section 5

provides the identification conditions. Section 6 describes the precise estimation algorithm

that we use. Section 7 provides the empirical specifications of the production processes

of cognitive and non-cognitive skills and also reports the parameter estimates. Section 8

carries out policy analysis.

2 The Basic Framework

In this section we formulate an econometrically implementable model of preschool invest-

ment decision of an altruistic parent in a dynamic programming framework. The preschool

investment decision of a parent depends on several other decisions at later stages of a child's

life. While we describe each of these decision stages for a better understanding of our frame-

work and for future work, in this paper, however, we restrict only to preschool investment

decisions, taking all other decisions as exogenously given. We treat each parent-child pair

independently within a family with more than one children. We assume parthenogenetic

mode of biological reproduction in our model and with due respect to both genders, we

address all individuals in male gender.
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2.1 Individual Decision Problem

We assume that an individual's life comprises of several discrete periods during which im-

portant life-cycle events relevant to leaning and earning occur. While it may be more real-

istic to have finer divisions of these periods, for analytical tractability and given data limita-

tions, we aggregate the whole life-cycle into four periods as follows: [0-4], [5-16], [17-25],

[26--]. In each of these periods some educational and labor market decisions are made and

outcomes are observed. During age [0-5], a parent invests in his child's preschool activities

which develop the child's school readiness, and cognitive, social, and motivational skills.

Let a denote the parental preschool investment decision. At the end of the preschool period,

the child acquires a level of innate ability or cognitive skill τ, social skill σ motivational

skill µ, self-esteem skill, η, and internal self-control skill φ. The levels of these skills that

a child develop depend on various other childhood interventions, for instance, on the child-

rearing practices at home, the nature of neighborhood in which the child grows up, and the

level of schooling, cognitive, socialization and motivational skills of the parent. We do not,

however, explicitly include these additional determinants of skill formation in this paper to

keep computations manageable .

During ages [5-16], the child goes to school. The school performance at this stage de-

pends on his level of τ, σand µ that the child has acquired during the previous stage, on

the quality of the school that he attends, and the type of neighborhood kids whom the child

mingles with. It also depends on the parental home inputs such as how many hours the par-

ent spend time with the child to do his homework, how many hours the child watches TV,

and how stable and stimulating the relationships among the family members. Many of these

are choice variables for the parent. We again do not include these factors to simplify our

computations.

During ages [17-25] the child decides whether to complete college education or not,

which depends on his parent's income, his learned and innate abilities. We take this decision

exogenously given, and denote by a variable s.During ages [26-] he works, forms hid family

with a child and decides how much to invest in his preschool.

We now formulate the optimal preschool investment choice problem of the parent. We

assume that while an individual's permanent yearly earnings is an important determinant of

the level of preschool investment, there are life cycle events other than εs that may influ-

ence this decision. We represent all these events by a random variable εp. Furthermore,

individuals are assumed to differ in their taste which affect individual's choices. The taste

variation is represented as a random variable εt. We bundle all these unobserved sources
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of heterogeneity among individuals into a vector ε. The state variables of our system are

represented by the vector z = (τ, σ, µ, η, φ, s, ε). We denote the observable components of

the state variable by x = (τ, σ, µ, η, φ, s) and use the notation z = (x, ε) to represent the

above information. For any variable w, we adopt the convention of using w if it refers to a

parent and w′ if it refers to his child.

We assume that given his parental preschool investment decision a, and a realization of

his parent's state variables z = (x, ε), the components of a child's state variable, τ′, σ′, µ′, η′, ϕ′

and ε′ are generated stochastically by the following conditional probability density func-

tions:

qτ

(
dτ′|τ, s, a

)
(1)

qσ

(
dσ′|τ′, τ, σ, µ, s, a

)
qµ

(
dµ′|τ′, τ, σ, µ, s, a

)
qη

(
dη′|τ′, τ, σ, µ, s, a

)
qϕ

(
dϕ′|τ′, τ, σ, µ, s, a

)
qs
(
ds′|τ′, σ′, µ′, s, a

)
g
(
dε′|τ′, σ′, µ′, s′

)
In the above specifications of the conditional probabilities, the conditioning variables

conform to what we know about the production processes of these state variables. We will

discuss details of each production process in section 7.2. Given the density functions in the

system of Equations (1), the transition probability measure p (dx′, dε′|x, ε, a) over the states

of our system is determined.

Given a parent's z = (x, ε) ,we assume that his life-time average annualized earnings is

w (x, ε). Let A be the set of all possible choices that any individual may make. We assume

it to be an ordered set. Assume that the annualized average cost to parent for making a

preschool investment choice a is θ (a) , a ∈ A. The annualized consumption given a choice

a is then c (w, a) ≡ w − θ (a) .The choices of a parent with observable characteristics x

are restricted to the set A (x, ε) ≡ {a ∈ A|c (w (x, ε) , a) > 0} . The choice a yields direct
utility from life-time annualized consumption and indirect utility through its effect on child

outcome and welfare, as represented in the following Bellamn equation corresponding to

the parent's preschool investment decision problem

V (x, ε) = max
a∈A(x,ε)

u (x, ε, a) + β
∫

V
(
x′, ε′

)
p
(
dx′, dε′|x, ε, a

)
(2)
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where V(.) is the intergenerational welfare function known in the dynamic programming

literature as the value function, u(.) is the felicity index of yearly permanent consumption

over the whole lifetime of the parent, and the parameter β measures the degree of parental

altruism towards the child.

Under general regularity conditions on u(.), p (dx′, dε′|x, ε, a) , and β the value func-

tion V (x, ε), and a measurable optimal decision rule h∗ (x, ε) exist (see, for instance, Bhat-

tacharya and Majumdar(1989, Theorem 3.2).

Given u(.), p (dx′, dε′|x, ε, a) , and β satisfying the regularity conditions, we carry out

a Lucas-Critique free policy evaluation by examining a policy's effect on the individual

optimal decision, a, on the intergenerational welfare level V and also examine the intergen-

erational long-run aggregate effect on the economy by aggregating individual choices with

respect to the long-run , also known as, invariant, population distribution of the equilibrium

transition probability distribution p (dx′, dε′|x, ε, a∗ (x, ε)).

To be able to do this, we need to estimate the structural parameters. Our data consists

of a sample of parent-child pairs with information on parent's observable state x, child's

observable state x′, parent's permanent income w, and parent's preschool investment deci-

sion a. Suppose a vector of parameters ξ p specifies the probability distributions in Eq. (1),

i.e., given ξ p, the transition probability distribution p (dx′, dε′|x, ε, a) is determined. Our

problem is then to statistically estimate the structural parameters ζ =
{
u(.), ξ p, β

}
given

observable information on a random sample of parent-child pairs y = {(xi, x′i), ai}
n
i=1

such

that the predicted behaviors of the sample from the model are close to observed behavior.

We denote the log-likelihood function of the sample by Ly(ζ). Estimation of the model

involves two steps: For a given ζ, calculate the probability distribution of the endogenous

variables ai|xi and x′i |xi, ai using the model to form the log-likelihood of the sample Ly(ζ)

and then use an appropriate estimation procedure to choose a ζ.

Two questions need be addressed to that end: First, is the computation of the likelihood

Ly(ζ),which involves solving the dynamic programming problem in Eq. (2) repeatedly for

each (x, ε), feasible with the currently available computing technology, especially when ε

is a continuous multivariate random variable? Second, are the structural parameters of the

model identified (the precise definition of identification stated later)?

The answer to both questions is in general no. Following the literature, we make sim-

plifying assumptions to transform the above structural dynamic programming problem into

a random utility model of discrete choices. We will show that these assumptions greatly

simplify the computation, and the identification conditions. Given those assumptions, we
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will see that (1) the structural parameters ξ p determine the transition distribution p (x′|x, a)
of the observable state variables, which is the mixture distribution of the original transition

distribution, more specifically p (x′|x, a) =
∫
p (x′, ε′|x, ε, a) dε|x dε′|x′, and that (2) the

optimal choice probabilities P (a|x) , a ∈ A (x) , x ∈ X that is used to define the observed

discrete choices depend on ξ p through p (x′|x, a) . Given that optimal choice a is treated as
an exogenous variable in the estimation of p (x′|x, a) , maximization of joint likelihood of
two components is more efficient. To make estimation task computationally manageable,

however, again following the trend in the literature, in place of ξ p, we take an estimate of

p (x′|x, a) as a fixed parameter in the vector of parameters ζ, and in place of β,we calibrate

β from other studies, and then form the likelihood of the sample of observed discrete choices

ai|xi for identification and estimation of the remaining parameters.

3 Notations

In the rest of the paper, our parameter vector is ζ = {u (x, a) , p (x′|x, a) , β}, a ∈ A (x) , x ∈
Xwhere p (x′|x, a) and β are fixed. Denote byΞ the set of all such parameter values. We de-

note by Ly(ζ) the log-likelihood of the sample of observed choices y = {ai|xi, i = 1...n}.
The log-likelihood function Ly(ζ) is defined given a set of conditional choice probabilities

{P (a|x) , a ∈ A (x) , x ∈ X} which depend on ζ.

Let Jx denote the number of elements in the feasible choice set A (x) . Denote by J =

∑x∈X Jx. Assume that X is a finite ordered set of M elements.

Denote by F (a) = [ f (x′|x, a)]x′,x∈X the Jx × Jx′ conditional transition probability

matrix given a choice a ∈ A (x) where the element f (x′|x, a) corresponding to the row x

and the column x′ is the probability of the child moving to state x′ given that his parent is

from the state x and he had made a choice a ∈ A (x) .We denote by F (x, a) the row vector

of F(a) corresponding to the parent's state x.

The vector of conditional choice probabilities denoted byP = {P (a|x) , a ∈ A (x) , x ∈ X}
is ordered by the primary index of ordering in X and the secondary index of the ordering in

A. For each x, the component vector of conditional choice probabilities {P (a|x) , a ∈ A (x)}belongs
to a Jx − 1 dimensional simplex. The vector P of all conditional choice probabilities is a

member of <MJ
++ but restricted to the interior of the M-fold cross product of the Jx − 1

dimensional simplices, which we denote by4.

For any function v (x, a) , its vector representation is a J× 1 vector v (i.e., with the same

symbol v) in which function values v (x, a)'s are ordered in the same way as P . For any
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scalar or a vector function w (x) ,we denote by w (again using the same symbol w to denote

it) the values of w′s stacked in rows in the same order as in the ordered set X.

For any random vector or a random variable w (x, a) , we denote its expectation with

respect to a by w̄ (x) , i.e., w̄ (x) ≡ ∑a∈A(x) w (x, a) P (a|x) , (with the convention that
when w is a random vector, the product in this summation is element-by-element). Define

the M× J matrix Π derived from a vector of conditional choice probabilities P by

Π
M×J

=

 P (a = 1|x1) ... P (a = J|x1) ... 0 ... 0
0 ... 0 ... 0 ... 0
0 ... 0 ... P (a = 1|xM) ... P (a = J|xM)


and the transition matrices in matrix notation as a J × M matrix F as,

F

J×M
=



f (x′1|x1, a = 1) ... f (x′M|x1, a = 1)
...

f (x′1|x1, a = Jx1) ... f (x′M|x1, a = Jx1)
...

f (x′1|xM, a = 1) ... f (x′M|xM, a = 1)
...

f (x′1|xM, a = JxM) ... f (x′M|xM, a = JxM)


4 Structural Estimation

FollowingRust[1994]wemake the following simplifying assumptions to transform the orig-

inal model in Eq. (1) to a random utility model, and then explore various computational

simplifications that recently appeared in the literature.

We assume thatw (x, ε) and hence A (x, ε) does not depend on ε, i.e., w () does not con-

tain any unobservable idiosyncratic shocks, i.e., εp and εs are absent in our model. However,

we assume that ε represents a taste shifter for individual preferences and constitutes our only

source of unobserved heterogeneity, the specific nature of which is stated formally in the

following assumption.

Assumption 1 u (x, ε, a) = u (x, a) + ε (a) , and support of ε (a) is the real line for
all a ∈ A (x) .

We also make the following additional assumptions.

Assumption 2 The transition probability p (x′, ε′|x, ε, a) = g (ε′|x′) f (x′|x, a) , for
some density function g with finite first moment, and twice continuously differentiable.
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Assumption 3 The set of observable individual characteristics X =
{
x1, ..xM

}
is a

finite ordered set.

Under assumptions 1 - 3 , we have

V (x, ε) = max
a∈A(x)

u (x, a) + ε (a) + β ∑
x′∈X

∫
V
(
x′, ε′

)
g
(
dε′|x′

)
f
(
x′|x, a

)
(3)

Denote the value function after integrating out the unobservable component of the state

variable by v(x) ≡
∫
V (x, ε) g (dε|x). Integrating both sides of Equation (3) with respect

to the conditional density g(dε|x), and utilizing this notation for v (x), we have

v (x) =
∫

max
a∈A

[ �v (x, a) + ε (a)] g(dε|x) (4)

where

�v (x, a) ≡ u (x, a) + β ∑
x′∈X

v
(
x′
)
f
(
x′|x, a

)
(5)

= u(x, a) + βF (x, a) .v

Eq. (4) above is a random utility model in which the function �v (x, a)measures the common

utility that an individual of observable characteristics x derive from a choice a ∈ A (x) .

Denote by

Ω (x, a) =
{

ε| �v (x, a) + ε (a) ≥ �v
(
x, a′

)
+ ε

(
a′
)
, for all a′ ∈ A (x)

}
(6)

the set of individuals with observed characteristics x who made a as their optimal choice.

The conditional choice probabilities are then given by

P (a|x) =
∫

Ω(x,a)
g (dε|x) . (7)

By partitioning the domain of integral (4) into disjoint regions, Ω (x, a) , a ∈ A (x) , x ∈ X,

and then integrating we have the following,

v (x) = ∑
a∈A(x)

P (a|x)
[
u (x, a) +

∫
Ω(x,a) ε (a) g (dε|x)

P (a|x) + β ∑
x′∈X

v
(
x′
)
f
(
x′|x, a

)]
= ∑

a∈A(x)
P (a|x) [u (x, a) + e (x, a) + βF (x, a) · v] ...(*) (8)

= ū (x) + ē (x) + βF̄ (x) · v
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where

e (x, a) ≡
∫

Ω(x,a)
ε (a) g (dε|x) /P (a|x) (9)

in line (*) is the conditional expectation of the component ε (a) of the random vector ε given

x and a.Writing the above in matrix notation, we have

v = ū + ē + βF̄ · v ≡ Φ (v, ζ) (10)

Let v (ζ) be a fixed point v = Φ (v, ζ) of the map Φ (v, ζ) for given ζ ∈ Ξ, and denote

by P (v) the conditional choice probabilities in Eq. (7) for given a value function v. Then

the computation of the likelihood of the sample is simplified to the computation of the fixed

point of the above map Φ (v, ζ) . Following the line of argument in Rust [1994] it can

be shown that for each ζ, there exists a unique fixed point v (ζ) and it is the limit of the

following iterative process:

For a given ζ ∈ Ξ,

Step 1: start with an initial v0 ∈ <M.

Step 2: Compute P ∈ 4 using Eq. (7), and then compute v1 = Φ (v0, ζ) from Eq. (10).

If v1 = v0 stop, denote this common value as v (ζ) . Retain P (v (ζ)) to calculate

the log-likelihood of the sample Ly (P (v (ζ))). If v1 6= v0 go to Step 1 setting the

initial v0 ≡ v1.

We denote the above iterative process symbolically as Solve
v=Φ(v,ζ)

Ly (P(v(ζ))). Given

the solution v and the corresponding vector of conditional choice probabilities P(v(ζ) of

this iteration process, the log-likelihood is of the sample is now defined and the maximum

likelihood estimation procedure could be carried using the log-likelihood function. For con-

venience of exposition, we represent the above two stages of finding a maximum likelihood

estimate of the structural parameters symbolically as

Max
ζ∈Ξ

◦ Solve
v=Φ(v,ζ)

Ly (P(v(ζ))) (11)

In the above algorithm, the computation of P (a|x) , and e (x, a) involvemulti-dimensional

numerical integration, which may make computations extremely slow. Both computational

tasks are, however, substantially simplified under the following assumption:

Assumption 4 The components of ε are independently and identically distributed as
extreme value distribution with location parameter 0 and scale parameter 1.
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McFadden (1981) has shown that underAssumption 4., e (x, a) = (λ − ln P (a|x)) ,where
λ is the Euler-Mascheroni constant, with a numerical value of λ = 0.57721566, and the

conditional choice probability P (a|x) has the following Logit representation,

P (a|x) =
e �v(x,a)

∑a∈D e �v(x,a
′) (12)

The above strategy of computational simplification was pioneered by Rust [1987].

The computational burdens could be, however, further simplified as follows: From Eq.

(10) it follows that v = [IM − βF̄]−1 [ū + ē] . Substituting this in Eq. (5), we have

�v (x, a) = u (x, a) + βF (x, a) [IM − βF̄]−1 [ū + ē] (13)

It is easy to see that given P0∈4, the right hand side of the above and hence a new vector

of conditional choice probabilities say P1∈4 in Eq. (12) can now easily be computed. We

represent this relationship for each structural parameter ζ ∈ Ξ by P1 = Ψ (P0, ζ) . Follow-

ing the line of argument in Aguirregabiria and Mira (2002) it is easy to show that for each

ζ ∈ Ξ, there exists a unique fixed point P(ζ) to the mapping Ψ (P0, ζ) , and starting from

any initial P0∈4 the iterative process Pn+1 = Ψ (Pn, ζ) , n ≥ 0 converges to the fixed

point P(ζ)∈4. We symbolically denote this iteration solution process as solveP=Ψ(P ,ζ) .

Then the maximum likelihood estimation procedure can be again symbolically represented

as

Max
ζ∈Ξ

◦ Solve
P=Ψ(P ,ζ)

Ly (P (ζ)) (14)

A form of the the above procedure is used by Hotz and Miller (1993). Notice that the

iteration step in Eq. (14) is in the conditional choice probability space which is of dimension

J − M. This iteration process combines computations of P and v of the previous iteration

step into one step and may not, however, lead to any reduction in the number of numeric

operations and thus may not be any more efficient than the previous procedure.

Aguirregabiria and Mira (2002), however, introduced a further computational simplifi-

cation by interchanging the order of those two computations in Eq. (14) as follows:

Solve
P=Ψ(P ,ζ∗(P))

◦ Max
ζ∈Ξ

Ly (P (ζ)) (15)

where ζ∗ (P) is the argmax of the inner maximization problem for a givenP ∈4. Aguirre-

gabiria andMira provide evidence on computational efficiency of their maximum likelihood

estimation procedure and also study the asymptotic distribution theory of their maximum

likelihood estimator. We follow this estimation procedure in section 6 after addressing the

identification issues.
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5 Identification of Structural Parameters

In the previous section we saw that given ζ ∈ Ξ, there exists a unique likelihood function

Ly (P(ζ)) . To be able to estimate ζ ∈ Ξ, the model should be identified in the sense that

Ly (ζ) = Ly

(
ζ ′
)
a.e. if and only if ζ = ζ ′, (16)

the a.e. is with respect the dominant probability measure defining the likelihood of the

sample. Following Prakasa Rao (1992), we say that our model is globally identified if the
relationship in Eq. (16) holds for any two ζ, ζ ′ ∈ Ξ, and is locally identified around a partic-
ular parameter ζ ∈ Ξ, if the relationship in Eq. (16) holds for all ζ ′ ∈ Ξ in a neighborhood

of ζ.

It is well-known that in general the structural parameters are not identified in struc-

tural dynamic programming problems (see Rust [1994]). To find reasonable conditions

for identification, note from Eq. (6) that the optimal choices are invariant if we add a lo-

cation m and divide both sides by a scale factor σ > 0, for each x ∈ X. Thus it follows

that we can recover the utility function only up to a scale which and location. Given this

fact, we restrict the one period utility function {u (x, a) , a ∈ A (x)} to lie in a Jx − 1 di-

mensional open submanifold of <Jx for each x ∈ X. We take each possible utility vector

{u (x, a) , a ∈ A (x) , x ∈ X} to lie in the cross product (or equivalently in the direct sum,
if we view <Jx to be embedded in <J) of these Jx − 1 dimensional submanifolds over all

x ∈ X. There are many such manifolds, and up to diffeomorphisms they are all equivalent.

We define one such manifold U using a map ϕ : 4 3 P 7→ u ∈ <J (which reads as, ϕ

takes a member P in4 to a member u in <J) defined by

u =
[
IJ + βF (IM − βF̄)−1 Π

]−1

[ �v− �e] ≡ ϕ (P) (17)

where �v (x, a) = ln P (a|x) and �e = βF (IM − βF̄)−1 Πe. Take U = ϕ−1 (4) . It can be

shown that the set U is an J − M dimensional smooth manifold. Given parameters β, and

F fixed, we restrict our parameter space Ξ to be such that the u-component of a parameter

vector ζ ∈ Ξ is restricted to lie in U . The most general non-parametric family that we

can restrict our parameters u to lie in is U . Our nonparametric identification issue boils
down to the question, under what conditions can we identify our structural model in this

non-parametric family of U? Theorem 1 addresses this, using the following assumption

Assumption 5 , Given transition probabilities F, the degree of altruism parameter β

is such that (1) 0 ≤ β < 1 and (2) IJ + βF (IM − βF̄)−1 Π is of full rank.
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Note that there always exist such β′s at least near β = 0 and that β = 1 will violate

condition (2) since in that case IM − βF̄ is not invertible as each row will add-up to zero.

Theorem 1 (Non-parametric Identification) Suppose the components β, and F

of the parameter vector are fixed. LetP ∈ 4 be a vector of conditional choice probabilities
that satisfy Assumption 5. Then there exists a unique utility function {u (x, a) , a ∈ A (x) , x ∈ X} ∈
U that generates P as the optimal solution to the choice problem in Eq. (2). Further-
more, the model in Eq. (2) is globally or locally non-parametrically identified depending
on whether Assumption 5 holds globally or locally.

Proof. LetP ∈ 4 be a vector of conditional choice probabilities that satisfy Assumption 5.

Note that writing Eq. (13) in matrix notation, we have �v =
[
IJ + βF (IM − βF̄)−1 Π

]
u+

βF (IM − βF̄)−1 Πe,where F̄ is the expectation of F (a)with respect toP . Taking �v (x, a) ≡
ln P (a|x) , and denoting by �e = βF (IM − βF̄)−1 Πe, we have

u =
[
IJ + βF (IM − βF̄)−1 Π

]−1

[ �v− �e] (18)

Thus by Assumption 5, for each P there exists a unique u ∈ U .
We now prove the second part regarding the nonparametric identification. Note that

the data on distribution of choices given a fixed number of individuals n (x) (a positive

integer) for each observed value of individual characteristics x ∈ X can be summarized as

an ordered vector y defined similar toP by y= (n (a|x) , a ∈ A (x) , x ∈ X)where n (a|x)
is the number of individuals who chose a ∈ A (x) given their characteristics x ∈ X. The

likelihood of the sample can be written as follows

Ly (P) = ∏
x∈X

n (x)!
∏a∈A(x) na (x)!

exp

(
∑
x∈X

n (x) ln

(
1−

Jx−1

∑
a=1

P (a|x)
))

×

exp

(
∑
x∈X

Jx−1

∑
a=1

n (a|x) ln
(

P (a|x)
1− ∑Jx−1

a=1
P (a|x)

))
= h (y) g (η) exp

(
y′η
)
, where η = (η (a|x) , a ∈ A (x) , x ∈ X) ,with

η (a|x) = ln

(
P (a|x)

1− ∑Jx−1

a=1
P (a|x)

)
, and g (η) = −∑ n (x) ln

(
1 +

Jx−1

∑
a=1

exp η (a|x)
)

,

and h (y) is the multiplicative component in the first expression. It follows from the above

that Ly (P) is an exponential distribution. The determinant det(I (P)) of the Fisher in-

formation matrix I (P) of Ly (P) at any parameter vector P ∈ 4 can be shown to be

det(I (P)) =
[
∏x∈X ∏Jx−1

a=1
P (a|x)

]−1

, which is always > 0 since each P (a|x) > 0.

14



Since det(I (P)) is a continuous function of P , there exists a neighborhood of P in4 such

that the Fisher information matrix is of full rank for all P in that neighborhood. Moreover,

note that the function g (η) is continuously differentiable in η.Hence by Prakash Rao[1992,

Theorem 6.3.2], we have that for anyP ′ in a neighborhood ofP , we have Ly (P) = Ly (P ′)

a.e. ⇔ P = P ′. But u = ϕ (P) in Eq. (17) is a 1-1 function from4 to U around P ∈ 4
that satisfies Assumption 5. Hence for any ζ ∈ Ξ such that the corresponding P (ζ)

satisfies Assumption 5, there exists a neighborhood of ζ in Ξ such that for any ζ ′ in that

neighborhood, Ly (P (ζ)) = Ly
(
P
(
ζ ′
))

a.e. ⇔ ζ = ζ ′. Hence the model in Eq. (2) is lo-

cally nonparametrically identified around a ζ whose associated P (ζ) satisfies Assumption

5. It is also clear that if Assumption 5 is true for all P ∈ 4, the model in Eq. (2) is also

globally identified.

The conditional choice probabilities P = {P (a|x) , a ∈ A, x ∈ X} are nothing but the
aggregate demand functions of discrete choices a ∈ A as a function of individual charac-

teristics x ∈ X., The characteristics x ∈ X is acting like a price of the Marshallian demand

function. Nonparametric identification problem in our set-up can be viewed as the well-

known aggregation problem of the consumer theory: Given a system of demand functions

P ∈ 4, when does there exists a utility function u (x, a) that generates P as the optimal

solution of problem in Eq. (2). The above theorem provides conditions for an analogous

aggregation problem in the present context of structural dynamic programming problem.

Suppose instead of most general non-parametric utility specifications for the parameter

vector ζ, we parametrize u (and possibly also β,but F is fixed) to have a parametric form

ζ : Θ → Ξ, where Θ ⊂ <k, k < J − M + 1 is an open set. When can we identify such

parametric models? To state our sufficient condition for this, we recall a definition from the

Differential Geometry. A map f : Θ →4 is an immersion at θ ∈ Θ, an open subset of <k,

if the differential map d fθ : <k → Tf (θ) (4) is injective, i.e., one-to-one, where Tf (θ) (4)

is the tangent space of the manifold4 at f (θ).

Theorem 2 (Parametric Identification) Let Θ ⊂ <k be an open set. Let ζ :

Θ → Ξ denotes a family of parametric models. A parametric model is locally identified at
θ ∈ Θ if and only if the map P (ζ (θ)) : Θ → 4 is an immersion at θ. The parametric
model is globally identified if and only if the map P (ζ (θ)) is an injective map.

Proof. SinceP (ζ (θ)) is an immersion at θ, there exists a neighborhood around θ in Θ

such that P (ζ (θ)) is one-one in this neighborhood. For any θ′ in this neighborhood of θ,

Ly (P (ζ (θ))) = Ly

(
P
(
ζ
(
θ′
)))

a.e. implies P (ζ (θ)) = P
(
ζ
(
θ′
))

since Ly (P) is
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globally identified in the parameter space4 by theorem 1). Hence θ = θ′ since P (ζ (θ))

is 1-1 in this neighborhood. The second part follows immediately.

6 Econometric implementation

In this paper we follow the structural estimation procedure of Aguirregabiria, V. and P.

Mira (2002) by parameterizing uθ (x, a) = θ0w (x) − θ1a, where θ0 is the marginal utility

of annualized lifetime earnings, and θ1/θ0 is the preschool investment cost in the unit of

earnings w. Note that while uθ (x, a) is not identified, because for each x ∈ X, the ordered

vector {uθ (x, a) , a ∈ A (x)} should belong to an one dimensional subspace of <2, in this

specification u lies in a two-dimensional manifold instead. It is interesting to note, however,

that the preschool investment cost θ1/θ0 is identified.

Our estimation procedure is as follows: First compute F the transition probability matrix

from data of the type (xi, x′i) of the observable states for individuals. Assume a parametric

form of the utility function uθ (x, a) , where θ ∈ <k.

1. Start with an initial J × 1 vector of probabilities P0 ∈ 4.

2. Maximize the likelihood L (θ;P0) =
n

∏
i=1

P0 (ai|xi, θ) , where

P (ai|xi, θ) =
e �v(x,a;θ)

∑a∈D e �v(x,a
′;θ)

�v (x, a) = uθ (x, a) + βF (x, a) [IM − βF̄]−1 [ūθ + ē]

3. Given θ∗ in step 2, compute P1 = {P (a|x, θ∗) , x ∈ X, a ∈ A} ∈ 4 from the above

formula.

4. If ||P1 −P0|| < ε stop, else setP0 = P1 go to step 2.

We have used the public domain Sun Java programming language to implement the

above estimation procedure and for all other computational tasks.

7 Empirical Findings

7.1 The Dataset and Variables

For our analysis we use the NLSY79 dataset and the NLSY79 Children and Young Adults.

The NLSY79 dataset contains a nationally representative sample of 12,686 young men and
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women who were 14-22 years old when they were first surveyed in 1979, i.e., these sampled

individuals represent a population born in the 1950s and 1960s, and living in the United

States in 1979. These individuals are interviewed annually. The dataset has records of

school and labor market experiences of these individuals and also the information on their

cognitive and non-cognitive traits. We, however, also need information on most of these

variables for the parents of the respondents. This dataset does not have much information on

respondents' parents. So we link this dataset with the NLSY79 Children and Young Adults

dataset. The child survey dataset includes longitudinal assessments of each child's cognitive,

attitudinal and social, motivational, academic and labor market experiences.

Two other important datasets in this area of research are based on pilot preschool pro-

grams are High/Scope Perry Preschool Study and the Carolina Abecedarian Project. These

are small scale pilot programs with small number of participants. Data from these pro-

grams contain school performance information but the labor market outcome data is weak.

While these datasets are good for studying the effect of preschool program on school per-

formance and labor market success, these datasets are not appropriate to estimate parents'

preschool investment decision since the participants were selectively chosen. For details on

the High/Scope Perry Preschool Study see Schweinhart et al. [1993] and on the Abecedarian

Project, see Campbell et al. [1998].

More recently PSID Child Supplement began to collect data on a nationally representa-

tive sample of children. This dataset will enable one to link a child's school success and the

labor market outcomes to a child's preschool experiences regarding the child rearing meth-

ods, home environment, teaching methods followed in schools. While the dataset contains

the school performance of these children but the sampled cohort will have data on labor

market outcomes only many years later in the future.

7.2 Production of social and motivational skills

We show in the next two subsections that motivation and socialization skills are important

determinants of earning and learning. In this section we consider the production process of

these two skills.

The literature in sociology, psychology, early childhood development and physiology

suggest that early childhood investment is the most crucial input for development of cog-

nitive, social and motivational skills. The studies in these literatures link school success to

home environment, child rearing practices, neighborhood type in which the kid is raised.

For instance, the Coleman report [1966] and subsequent studies find that family capital,
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which captures family tradition and values towards economic success and education, and

social capital, which captures the benefits of social bonds, social norms, social networks, the

social bonds between adults and children and among children in a neighborhood are of im-

mense value during a child's growing up. These factors affect parental choices of preschool

investment and child rearing methods which in turn determine a child's cognitive abilities

and social abilities such as motivation and sociability that affect their learning and earning.

Physiology literature produces ample evidence that the human brain develops extremely

rapidly during age [2-4], and the type of stimulations regarding health and learning that the

child experience during this period is a critical determinant of a child's cognitive, social and

motor developments. Child psychology literature also points out that a structured preschool

stimulation also boosts a child's self-confidence, school preparedness, parents' and teachers'

assessment of the child's ability. These in turn create a conducive learning environment for

the child over many more years of schooling beginning with the elementary school. See

Entwisle [1995], and Barnett [1995] for more on these issues.

We construct the variables of our study as follows:

Early childhood inputs and home environment: We take father's and mother's ed-

ucation levels to measure family background. The NLSY dataset has poor measures of

respondent's early childhood inputs. It has only a binary variable containing information on

whether the respondent had preschool (does not include Head Start) experience or not. We

treated individuals with Head Start experience as no preschool. Notice that this will lead to

underestimation of the effect of preschool investment. We use the revised AFQT score to

measure innate ability.

Socialization skill (σ): Each respondent were asked how social towards others he/she

felt at age 6, expressed in the scale of 1 to 4, the highest number represents most social. We

create a binary sociability variable by assigning the value 1 if a respondent reported a value

of 3 or 4 and assigning 0 otherwise.

Motivation skill (µ): The educational goal (µ) is the grade that the respondent in 1979
expected to achieve.

Rosenberg measure of Self-esteem skill (η): It measures the positiveness with which
individuals regard themselves, i.e., a positive sense of self. Six questions were taken from

the classic Rosenberg (1965) scale in the NLSY surveys. There is, however, no well ac-

cepted definition of adequate self-esteem. Based on the distribution, we divided the 25-point

scale by treating a score of 20 or greater indicated a high self-esteem and assign a value 1

to η and a value 0 to η otherwise.
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Perlin measure of internal self-control (φ): This measures to what extent individuals

believe that their life chances are under their control (Perlin et al. 1981). This is similar

to Rotter scale of self-control. The respondents were asked seven questions yielding scores

ranging from 0 to 28. We assign a value 1 representing a high sense of self-control to

respondents with a score between 23 and 28 inclusive, otherwise we assign a a value 0.

We estimated Logit models for the cognitive and non-cognitive skills for the child

sample. These parameter estimates are then used to fix an estimate of the transition prob-

ability p (x′|x, a) . We report table 1 the parameter estimates for specifications in which

only the significant regressors (x and a). In our structural maximum likelihood estimations,

however, we have reported sensitivity of parameter estimates for this specification and spe-

ciations in which we have used both significant and insignificant parameter estimates for

p (x′|x, a).

Table 1: Logit model of cognitive and non-cognitive skills.

Talent Socialization Motivation Internal Self- Self-Esteem College*
τ σ (Education goal) µ Control(Perlin): φ (Rosenberg):η s

Intercept -3.587 1.164 0.428 -1.106 0.672 -4.694
(3.46) (11.60) (0.92) (13.56) (8.96) (18.22)

Own Talent 0.835 1.036 0.402 0.596 1.877
(5.55) (7.60) (4.62) (5.28) (12.08)

Parent's Talent 1.707
(15.91)

σ :Socialisation 0.243 0.477
(3.09) (3.28)

µ : Motivation 2.726
(Education Goal) (17.28)
φ : Internal Self- 0.503 0.443
Control (Perlin) (2.78) (2.26)
η : Self-Esteem 0.372 0.325 0.380 0.551 1.245
(Rosenberg) (3.45) (3.35) (4.26) (6.08) (4.94)
Parents' Grade 1.814 1.339

(1.75) (5.17)
Preschool 0.424 0.310 0.190 0.668

(4.47) (3.03) (2.09) (3.72)

Notes: * Attributes in the first column are those of the individuals, and estimated using the
1979 youth sample.

From table 1 it is clear that after controlling for parents' grade, preschool experience has
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significantly positive effect on socialization and all measures of motivation skills except

the Rotter's scale of self control. The estimates in the table also show that innate ability has

strong positive effect on all measures of motivation skills but has no significant effect on so-

cialization skills. Socialization skills are created in the family, preschool and neighborhood

inputs.

It will be interesting to see if preschool has stronger positive effect on socialization

and motivation skills of children of poorer SES. If so, then the preschool could be a used

to compensate for the better HOME environment that the well to do counterpart of these

children have, and through preschool we can achieve a higher equality of opportunities by

equalizing the differences in starting social, motivation, cognitive and motor skills of the

children.

7.3 AnAugmented Earnings Function - Role of socialization andmotivation
skills

In this section we examine the effect of social and motivation skills together with the effect

of innate ability and grades on earnings. The previous studies included only innate ability,

schooling level and school quality as the main determinants of earnings. While preschool

investment is an important determinant of these skills, we also included preschool binary

variable as one of the regressors in the earnings function to see if it has an independent

effect. In our specification, we included two dummy variables, High School (taking value

1 if a respondent had the high school degree) and College (if a respondent graduated from

college). These dummy variables together with grade variable are to capture the earnings

premiums for graduating from high school and college. Since we included AFQT score

which is a reasonably good measure of one's innate ability, we do not have the ability biases

in our estimates. We use the yearly earnings data to estimate the model.

Table 1 shows the parameter estimates of this augmented earnings function. The first

column is for all three races together and the next three columns give the estimates for the

Hispanics, Blacks and theWhites ethnic groups separately. It is clear from the estimates that

after controlling for innate ability, family background and the schooling level, the measures

of socialization and motivation skills have significant positive effect on earnings for all eth-

nic groups. Preschool has independent positive effect only for blacks. It is also interesting

to note that a college graduate earns 8.35% higher returns in the overall population, and

for Blacks and Hispanics this premium is even higher, slightly above 10%. The sociability

skills are significant only for White but not for Black and Hispanic workers.
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Table 2: Determinants of earnings -- role of cognitive and non-cognitive skills (from the
parent sample)

Variables All Races Hispanic Black White
Intercept 2.369 2.355 0.813 2.613

(31.28) (13.64) (4.44) (27.27)
Own Talent 0.005 0.004 0.006 0.003

(32.28) (8.79) (12.07) (15.67)
Grade 0.054 0.037 0.088 0.057

(22.82) (7.83) (14.08) (18.43)
Dummy for High School 0.065 0.048 0.028 0.095

(8.22) (2.82) (1.52) (9.07)
Dummy for College 0.088 0.097 0.109 0.084

(7.61) (2.83) (3.59) (6.30)
Age 0.319 0.306 0.354 0.314

(70.49) (29.04) (32.92) (56.03)
Square of Age -0.004 -0.004 -0.004 -0.004

(51.59) (20.84) (24.53) (40.96)
Mother's grade 0.000 0.011 0.016 -0.003

(0.30) (4.29) (4.35) (1.12)
Father's grade 0.007 0.004 -0.006 0.012

(5.74) (1.77) (2.29) (6.93)
Dummy for preschool 0.001 -0.048 0.060 0.007

(0.15) (2.32) (3.10) (0.63)
Socialization 0.013 -0.026 0.025 0.014

(1.90) (1.58) (1.46) (1.65)
Motivation (education goal) 0.002 0.016 0.007 0.007

(1.16) (3.52) (1.37) (2.72)
Self-esteem(Rosenberg) 0.018 0.026 0.018 0.018

(16.32) (9.51) (6.49) (13.50)
Internal self-control(Perlin) 0.024 0.032 0.026 0.019

(21.07) (11.49) (9.36) (13.46)
Gender -0.512 -0.491 -0.365 -0.578

(74.98) (30.43) (21.98) (68.77)
R2 0.381 0.396 0.375 0.383
n 81,005 13,769 15,972 51,264

Notes: Absolute t-values are in parentheses.
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7.4 Estimation of Schooling Level

We consider two specifications of the schooling policy s∗
(

τ′, σ′, µ′, ε
′
s, h
)
in this paper. In

the first specification, we assume that the schooling level is a continuous variable. We spec-

ify the optimal reaction function s∗
(

τ′, σ′, µ′, ε
′
s, h
)
as a linear function. We assume that

the random variable ε
′
s constitutes the error term and satisfies all the assumptions of the OLS

model1 The parameter estimates from this model are shown in table 3 for all ethnic groups

together, and also separately for the Hispanic, Black and White populations. We included

the socialization and motivation skills together with innate ability, family background as

measured by parent's education level.

It is clear from the estimates that the main determinant of grade is the innate ability mea-

sured by AFQT score. After controlling for family background, we also find that motivation

measures have significant positive effect on schooling level. Out of the three measures of

motivation, the measure µ
2
based on the expected the grades that the respondent desired to

attain while very young turns out to be the most important one. The sociability skill has,

however, no effect on the schooling level.

In our second specification we consider only two levels of schooling: college and more

( s = 1), and no college ( s = 0). Again we assume that s∗
(

τ′, σ′, µ′, ε
′
s, h
)
is linear, and

that ε
′
s constitutes the error term and is normally distributed. This gives us a Probit model

of college enrollment. We use a subset of the above regressors in this specification and

use these estimates to calibrate our basic model in equation (2). The parameter estimates

are reported in table 4. Here again the innate ability, motivation, preschool and the college

status of parents (which takes 1 if at least one parents had some college, and 0 otherwise)

turn out to have significant positive effects on the probability of college enrollment.

7.5 Optimal Parental Preschool Investment Decision

We assume that the state variables s, τ, σ, µ are binary, the random variable ε is continuous

which is observed by the decision maker but not by the econometrician, and the preschool

investment decision a is a binary variable, taking value 1 when parents decide to invest in

preschool and 0 otherwise. For most children, we have two parents but in our model we have

assumed one parent. We could take mother as the parent. We have instead used both parent's

information as follows: We construct parent's binary schooling variable s by assigning s =

1 if the average grades of two parents is more than 12, otherwise s = 0. We assume that τ is

1More generally we could assume that E
(

ε
′
s
|τ′, σ′, µ′, h

)
= 0 and use GLS method to correct for het-

eroskedasticity.
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Table 3: Determinants of grade -- role of cognitive and non-cognitive skills (from the parent
sample)

Variables All Races Hispanic Black White
Intercept 2.753 3.324 3.245 2.335

(13.24) (5.95) (7.66) (8.53)
Own Talent 0.028 0.035 0.030 0.028

(29.55) (11.38) (12.85) (22.19)
Mother's grade 0.059 0.027 0.113 0.076

(6.48) (1.41) (6.03) (5.43)
Father's grade 0.028 -0.002 0.004 0.067

(3.77) (0.12) (0.28) (6.44)
Dummy for Preschool 0.266 -0.086 0.227 0.301

(4.85) (0.57) (2.25) (4.25)
σ : Socialization 0.037 -0.128 0.119 0.051

(0.83) (1.04) (1.34) (0.94)
µ : Motivation 0.458 0.425 0.348 0.468
(Education Goal) (40.75) (13.93) (14.98) (31.43)
η : Self-Esteem 0.035 0.042 0.069 0.020
(Rosenberg) (5.10) (2.10) (4.83) (2.32)
η : Internal 0.034 0.055 0.010 0.034
self-control(Perlin) (4.78) (2.75) (0.73) (3.87)
Gender 0.182 0.126 0.464 0.117

(4.27) (1.06) (5.47) (2.24)
R2 0.560 0.488 0.541 0.585
n 5,782 1,012 1,218 3,552

23



biologically inherited and it is not influenced by preschool investment. We create the binary

variable τ assigning value 1, i.e., an individual is highly talented if the AFQT score of the

individual is 70 or higher, and assigning value 0 otherwise.

The estimate of the preschool investment cost depends on the calibrated value of the

altruism parameter β as can be seen from table 5. Schweinhart et al. took average yearly

preschool cost to be $6178 per year. Consistent with their study, we take calibrate the al-

truism parameter to β = 0.35 for our analysis to be consistent with their cost estimate.

The optimal preschool investment decision and the value function are shown respectively

in column 3 and 4 of table 6.

We consider a public policy of providing preschool to children of poor socio economic

status (SES) in all periods. We define a parent to fall in the poor SES if his earnings is less

than 70 percent of the average earnings in economy. This will incur a per capita cost, but

such policy may also improve social mobility, earnings inequality and to a higher level of

per capita long-run earnings. We examine if the gain from per capita earnings can outpace

the cost of providing such a social insurance program. We also look at its within generation

effect on earnings, and on intergenerational social and college mobility.

Table 4: Maximum likelihood parameter estimates given two different estimates of
p (x′|x, a) and altruism parameter β = 0.35.

Parameter Estimates given p (x′|x, a) using
only significant x′s all x′s

Marginal utility (�θ0) 6.729 8.452
from average earnings (5.136) (5.646)
Utility cost (�θ1) of 4.636 4.761
Preschool investment (9.391) (10.077)
Annualized cost 689.032 563.229
in dollars 1000× (�θ1/�θ0)
Percent of poor 28.39 36.30
SES population
Per capita cost 0.196 0.204
to society ('000 dollars)
Per capita change 0.310 0.432
in earnings ('000 dollars)
Log-likelihood -1039.626 -1037.236

Note: Absolute value of t-statistics are in parentheses.
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Table 5: Sensitivity of maximum likelihood estimates with variations of the altruistic para-
meter β.

β �θ0 t-stat �θ1 t-stat annualized per capita costs and benefits in $ '000
of �θ0 of �θ1 costs: parent costs: tax payer benefits: 4w̄

0.030 82.313 4.484 4.430 8.572 0.054 0.015 0.313
0.070 35.151 4.566 4.458 8.673 0.127 0.036 0.313
0.110 22.274 4.647 4.485 8.775 0.201 0.057 0.313
0.150 16.255 4.729 4.512 8.877 0.278 0.079 0.312
0.190 12.761 4.810 4.538 8.979 0.356 0.101 0.312
0.230 10.476 4.892 4.563 9.082 0.436 0.124 0.311
0.270 8.863 4.973 4.588 9.185 0.518 0.147 0.311
0.310 7.661 5.055 4.613 9.288 0.602 0.171 0.310
0.350 6.729 5.136 4.637 9.391 0.689 0.196 0.310
0.390 5.985 5.218 4.660 9.495 0.779 0.221 0.309
0.430 5.376 5.299 4.682 9.599 0.871 0.247 0.308
0.470 4.867 5.380 4.704 9.704 0.967 0.274 0.308
0.510 4.435 5.462 4.726 9.809 1.065 0.302 0.307
0.550 4.064 5.543 4.746 9.914 1.168 0.332 0.306
0.590 3.741 5.624 4.766 10.020 1.274 0.362 0.306
0.630 3.456 5.705 4.786 10.126 1.385 0.393 0.305
0.670 3.204 5.787 4.804 10.233 1.500 0.426 0.304
0.710 2.978 5.868 4.822 10.340 1.619 0.460 0.303
0.750 2.774 5.949 4.839 10.448 1.744 0.495 0.302
0.790 2.590 6.030 4.856 10.556 1.875 0.532 0.301
0.830 2.421 6.111 4.872 10.664 2.012 0.571 0.300
0.870 2.267 6.192 4.887 10.774 2.156 0.612 0.299
0.910 2.125 6.273 4.901 10.883 2.306 0.655 0.298
0.950 1.994 6.354 4.915 10.994 2.465 0.700 0.297
0.990 1.872 6.435 4.928 11.105 2.633 0.747 0.296
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Table 6: Equilibrium Solution

[τ, σ, µ, η, φ, s] p0 Earnings Pb(a = 1|x) Pa(a = 1|x) optVb optVa p∗b p∗a
[0, 0, 0, 0, 0, 0] 0.1797 4.1520 0.0735 1.0000 60.1545 62.5914 0.0088 0.0075
[0, 1, 0, 0, 0, 0] 0.0013 4.3993 0.0740 1.0000 62.1775 64.6075 0.0351 0.0334
[0, 0, 1, 0, 0, 0] 0.0029 4.7769 0.0735 1.0000 64.3592 66.7961 0.0155 0.0136
[0, 1, 1, 0, 0, 0] 0.0000 5.0241 0.0740 1.0000 66.3822 68.8122 0.0571 0.0544
[0, 0, 0, 0, 1, 0] 0.0029 6.2648 0.0843 1.0000 76.4401 78.9237 0.0226 0.0195
[0, 1, 0, 0, 1, 0] 0.0000 6.5120 0.0848 1.0000 78.5247 80.9992 0.0920 0.0866
[1, 0, 0, 0, 0, 0] 0.0665 6.7053 0.1312 1.0000 79.0355 82.0031 0.0001 0.0001
[0, 0, 0, 1, 0, 0] 0.3029 6.8013 0.0822 1.0000 78.6578 81.1644 0.0043 0.0038
[0, 0, 1, 0, 1, 0] 0.0000 6.8896 0.0843 1.0000 80.6448 83.1284 0.0297 0.0246
[1, 1, 0, 0, 0, 0] 0.0006 6.9525 0.1320 1.0000 81.0655 84.0271 0.0009 0.0010
[0, 1, 0, 1, 0, 0] 0.0060 7.0485 0.0827 1.0000 80.6867 83.1864 0.0178 0.0170
[0, 1, 1, 0, 1, 0] 0.0000 7.1369 0.0848 0.0812 82.7293 83.0784 0.1014 0.0897
[1, 0, 1, 0, 0, 0] 0.0019 7.3301 0.1312 0.1235 83.2402 83.6627 0.0002 0.0002
[0, 0, 1, 1, 0, 0] 0.0342 7.4261 0.0822 0.0778 82.8625 83.2858 0.0071 0.0062
[1, 1, 1, 0, 0, 0] 0.0000 7.5774 0.1320 0.1246 85.2701 85.6776 0.0015 0.0015
[0, 1, 1, 1, 0, 0] 0.0013 7.6734 0.0827 0.0785 84.8914 85.2989 0.0261 0.0244
[1, 0, 0, 0, 1, 0] 0.0010 8.8180 0.1416 0.1348 95.3049 95.6369 0.0004 0.0004
[0, 0, 0, 1, 1, 0] 0.0215 8.9140 0.0910 0.0871 94.9085 95.2359 0.0115 0.0100
[1, 1, 0, 0, 1, 0] 0.0000 9.0653 0.1420 0.1357 97.3925 97.7091 0.0030 0.0033
[0, 1, 0, 1, 1, 0] 0.0003 9.1613 0.0913 0.0877 96.9992 97.3112 0.0470 0.0441
[1, 0, 0, 1, 0, 0] 0.1705 9.3545 0.1409 0.1330 97.5396 97.9225 0.0001 0.0001
[1, 0, 1, 0, 1, 0] 0.0010 9.4429 0.1416 0.1348 99.5096 99.8416 0.0004 0.0004
[0, 0, 0, 0, 0, 1] 0.0092 9.4477 0.1346 0.1259 100.6712 101.0250 0.0002 0.0002
[0, 0, 1, 1, 1, 0] 0.0048 9.5389 0.0910 0.0871 99.1132 99.4406 0.0128 0.0105
[1, 1, 0, 1, 0, 0] 0.0063 9.6018 0.1416 0.1340 99.5746 99.9434 0.0006 0.0007
[1, 1, 1, 0, 1, 0] 0.0000 9.6901 0.1420 0.1357 101.5972 101.9138 0.0027 0.0028
[0, 1, 0, 0, 0, 1] 0.0000 9.6949 0.1344 0.1260 102.7032 103.0454 0.0011 0.0013
[0, 1, 1, 1, 1, 0] 0.0000 9.7862 0.0913 0.0877 101.2039 101.5158 0.0428 0.0373
[1, 0, 1, 1, 0, 0] 0.0285 9.9794 0.1409 0.1330 101.7442 102.1272 0.0001 0.0001
[0, 0, 1, 0, 0, 1] 0.0006 10.0725 0.1346 0.1259 104.8759 105.2297 0.0042 0.0047
[1, 1, 1, 1, 0, 0] 0.0006 10.2266 0.1416 0.1340 103.7792 104.1481 0.0008 0.0009
[0, 1, 1, 0, 0, 1] 0.0000 10.3198 0.1344 0.1260 106.9078 107.2501 0.0250 0.0293
[1, 0, 0, 1, 1, 0] 0.0146 11.4673 0.1474 0.1409 113.7605 114.0576 0.0002 0.0003
[0, 0, 0, 0, 1, 1] 0.0013 11.5604 0.1193 0.1131 117.1245 117.4035 0.0015 0.0016
[1, 1, 0, 1, 1, 0] 0.0000 11.7145 0.1476 0.1415 115.8532 116.1366 0.0020 0.0021
[0, 1, 0, 0, 1, 1] 0.0000 11.8077 0.1185 0.1127 119.2084 119.4756 0.0101 0.0116
[1, 0, 0, 0, 0, 1] 0.0006 12.0009 0.1672 0.1580 122.9650 123.2108 0.0000 0.0000
[1, 0, 1, 1, 1, 0] 0.0054 12.0921 0.1474 0.1409 117.9652 118.2623 0.0002 0.0002
[0, 0, 0, 1, 0, 1] 0.0409 12.0969 0.1260 0.1183 119.4114 119.7248 0.0001 0.0001
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Table 7: Continuation of Table 6.

[τ, σ, µ, η, φ, s] p0 Earnings Pb(a = 1|x) Pa(a = 1|x) optVb optVa p∗b p∗a
[0, 0, 1, 0, 1, 1] 0.0000 12.1853 0.1193 0.1131 121.3292 121.6082 0.0257 0.0272
[1, 1, 0, 0, 0, 1] 0.0000 12.2482 0.1666 0.1578 125.0072 125.2455 0.0003 0.0004
[1, 1, 1, 1, 1, 0] 0.0000 12.3394 0.1476 0.1415 120.0579 120.3413 0.0015 0.0015
[0, 1, 0, 1, 0, 1] 0.0010 12.3442 0.1254 0.1181 121.4449 121.7480 0.0009 0.0010
[0, 1, 1, 0, 1, 1] 0.0000 12.4325 0.1185 0.1127 123.4131 123.6803 0.1394 0.1546
[1, 0, 1, 0, 0, 1] 0.0000 12.6258 0.1672 0.1580 127.1697 127.4155 0.0006 0.0007
[0, 0, 1, 1, 0, 1] 0.0076 12.7218 0.1260 0.1183 123.6161 123.9295 0.0030 0.0033
[1, 1, 1, 0, 0, 1] 0.0000 12.8730 0.1666 0.1578 129.2119 129.4501 0.0068 0.0077
[0, 1, 1, 1, 0, 1] 0.0006 12.9690 0.1254 0.1181 125.6496 125.9527 0.0175 0.0200
[1, 0, 0, 0, 1, 1] 0.0006 14.1137 0.1384 0.1324 139.1534 139.3505 0.0003 0.0003
[0, 0, 0, 1, 1, 1] 0.0257 14.2097 0.1081 0.1030 135.7709 136.0161 0.0012 0.0013
[1, 1, 0, 0, 1, 1] 0.0000 14.3609 0.1373 0.1316 141.2364 141.4260 0.0035 0.0039
[0, 1, 0, 1, 1, 1] 0.0010 14.4569 0.1071 0.1024 137.8560 138.0911 0.0080 0.0091
[1, 0, 0, 1, 0, 1] 0.0165 14.6502 0.1465 0.1391 141.5275 141.7475 0.0000 0.0000
[1, 0, 1, 0, 1, 1] 0.0003 14.7385 0.1384 0.1324 143.3581 143.5551 0.0039 0.0043
[0, 0, 1, 1, 1, 1] 0.0032 14.8345 0.1081 0.1030 139.9756 140.2208 0.0169 0.0176
[1, 1, 0, 1, 0, 1] 0.0013 14.8974 0.1458 0.1387 143.5690 143.7823 0.0003 0.0004
[1, 1, 1, 0, 1, 1] 0.0000 14.9858 0.1373 0.1316 145.4411 145.6307 0.0426 0.0476
[0, 1, 1, 1, 1, 1] 0.0006 15.0818 0.1071 0.1024 142.0606 142.2957 0.0898 0.0972
[1, 0, 1, 1, 0, 1] 0.0029 15.2750 0.1465 0.1391 145.7322 145.9522 0.0005 0.0006
[1, 1, 1, 1, 0, 1] 0.0003 15.5223 0.1458 0.1387 147.7737 147.9870 0.0059 0.0067
[1, 0, 0, 1, 1, 1] 0.0247 16.7629 0.1203 0.1157 157.6138 157.7899 0.0003 0.0003
[1, 1, 0, 1, 1, 1] 0.0013 17.0102 0.1191 0.1148 159.6961 159.8658 0.0034 0.0039
[1, 0, 1, 1, 1, 1] 0.0054 17.3878 0.1203 0.1157 161.8185 161.9945 0.0034 0.0037
[1, 1, 1, 1, 1, 1] 0.0000 17.6350 0.1191 0.1148 163.9008 164.0705 0.0369 0.0410
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8 Economic Benefits from Public Provision of Preschool

We have shown that investment in preschool enhances certain skills that are important for

learning and earning. We have also seen that the parents of poor SES do not invest in

their children's preschool. If preschool is publicly provided for the children of poor SES,

it will have many economic benefits: It will increase social mobility, it will reduce income

inequality, it will improve college enrollment rate, it will improve the community or criminal

behavior, and it will also bring higher tax revenues because more workers will be earning

high wages. It is important to note that the magnitude of the effect of publicly provided

preschool will depend on if the social protection will be available to all future generations

or it is just a one time policy.

While looking at the magnitude of the estimated economic benefits below, it is important

to keep in mind that the effects that we report are underestimated for many reasons: First,

we have treated the Head Start children same as children without preschool. Second, the

preschool programs that the respondents went into were the ones that existed during the

sixties. The quality of preschool programs ever since has improved significantly and thus

the effects of current preschool programs will be much higher than the estimates that we

have.

Note that since ε does not affect earnings, the optimal a depends only on the observable

component x of a parent's state variable, i.e. optimal preschool plan is a (x). In the ab-

sence of the social contract suppose the parents follow the optimum preschool investment

plans a (x) as shown in table 6. The invariant distribution of the corresponding transition

matrix {p (x′) |x, a (x) , x ∈ X} is shown in table 6 under the heading Pb (a = 1|x). The
interpretation of this invariant distribution is as follows: If Pb (a = 1|x) is the distribution
of population over the observable states of generation t, and the parents of generation t fol-

low the optimal preschool investment plan a (x), the distribution of population of the next

generation will also be Pb (a = 1|x).

8.1 Social Mobility

Given any transition matrix p (x′|x, a (x)) over the observable states, there exists a number

of mobility measures in the literature. Sommers and Conlisk [1979] argued that out of

the existing measures, 1− λmax is the most appropriate measure of social mobility, where

λmaxis the second highest positive eigenvalue of the transition matrix (the highest positive

eigenvalue of a transition matrix is always 1). We use this measure of social mobility to
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examine how the introduction of the social contract would improve social mobility. Our

estimate of the measure of social mobility before the social contract is 0.568759 and after

introduction of social program it improves to 0.598074. The estimate of 0.568759for the

measure is very close to the estimates found in other studies of social mobility in the US.

8.2 College Mobility

Denote by Qs =
[
qij
]
, i, j = 1, 2, the intergenerational college mobility matrix in which

state 1 represents no college and state 2 represents college and higher. The element qij
represents the probability that a child of a parent of college education status i will move to

the college education status j. We report below the estimated college mobility matrices, the

corresponding invariant distributions, and the estimates of the mobility measure before and

after the introduction of social contract. These estimates indicate that the introduction of

the social contract will increase college enrollment from a 32.90 percent to a 37.21 percent,

i.e. a 4.31 percent increase for a child of non-college parent. And the percentage of college

enrolled population will increase in the long-run from the rate of 48.17 percent without

social contract to a higher rate of 51.18 percent with the social contract. That is, there will

be about a 3.01% increase in college enrollments in the long-run.

College mobility statistics before introduction of social contract:

Qs
b =

[
0.6710 0.3290
0.3541 0.6459

]
, psb =

[
0.518327 0.481673

]
, 1− λs

max,b = 0.683070

College mobility statistics after introduction of social contract:

Qs
a =

[
0.6279 0.3721
0.3550 0.6450

]
, psa =

[
0.488177 0.511823

]
, 1− λs

max,a = 0.727102

8.3 Income Inequality

Preschool experience will increase the income of the children of poor SES and thus it will

reduce the income gap between the rich and the poor. Using Gini-coefficient to measure the

income inequality, we would expect that over time the income inequality will improve. In

the long-run, the income distribution that one observes is the invariant distribution. Thus

we compute the Gini-coefficient of income inequality for the invariant income distribution

before introduction of the social contract and compare it with the Gini-coefficient for the
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invariant income distribution after introduction of the social contract. The estimated Gini-

coefficients are respectively 0.2133 without the social contract, and 0.2087 with the social

contract. The estimated Gini-coefficient of earnings 0.2133 turns out to be very close to the

estimates found in other studies on US.We note that the social contract of publicly providing

preschool to children of poor SES leads to a significant reduction in the inequality of long-

term earnings.

8.4 Tax Burden of the Social Contract

Suppose the government provides preschool to the children of poor SES perpetually. We

know that the size of the population of poor SES will become smaller over time. Thus

the resource needs of the program will become smaller, and the tax revenues will become

higher over time. We can look at the stream of these costs and benefits to the society and

then compute the average per period costs and benefits to calculate the tax-burdens of the

social contract. Applying the Ergodic theorem, however, this boils down to computing the

costs and benefits of the invariant distribution that will result after the introduction of the

social contract.

There are approximately 28.39 percent of the population will fall in the poor socio eco-

nomic status using our definition. Thus the per capita cost to the economy in the long-run

of the social contract is $195.638 but gain in the per capita income due to the introduction

of social contract is $309.60, so there is a net gain to the economy. This net gain is based

on a reasonable value of the altruistic parameter β. The simulation results in our sensitivity

analysis shows that, the lower is the value of the altruism parameter β, the higher is the gain

from the introduction of the social contract. The economic reason for this is quite obvious.

When parents have lower altruism towards children, they will invest less on their children's

preschool since such investment decreases their own felicity index and increase welfare of

the children which got a lower weight when β has lower value. This estimate of net gain is

based on calibrating the value of β to the cost data of a high cost program as noted earlier

whose benefits are supposed to be higher than our estimated benefits. Thus this gain is an

underestimate of the actual net benefit. Furthermore, our benefit calculation does not take

into account other public savings such as savings from welfare assistance and savings to the

criminal justice system and potential victims of crimes. If we incorporate these, the returns

will be much higher. Using data from the High/Scope Perry Preschool Program Schwein-

hart et al. estimated a total benefit of $7.16 from all these sources for each dollar spent on

the preschool program.
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