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Abstract. We examine whether the Coase conjecture [7, 14, 4, 10] is robust against
slight ability of commitment of the monopolist not to sell the durable goods to con-
sumers. We quantify the commitment ability in terms of the speed that the durable
goods perish, while keeping the time between the offers small. We demonstrate that the
slight commitment capability makes a substantial difference by constructing two kinds
of reservation price equilibria [10] that refute the Coase conjecture.

In the first equilibrium, the monopolist can credibly delay to make an acceptable
offer. All consumers are served, but only after extremely long delay. Most of gains from
trading is discounted away, and the resulting outcome is extremely inefficient. In the
second equilibrium, the monopolist’s expected profit can be made close to the static
monopoly profit, if the goods perish very slowly. By focusing on the reservation price
equilibria, we rigorously eliminate any source of reputational effect. In fact, by using
the first kind of reservation price equilibrium as a credible threat against the seller, we
can construct many other reputational equilibria [2] to obtain the Folk theorem. Various
extensions and applications are discussed.

1. Introduction

The Coase conjecture [7, 4, 14, 10] shows that the dynamic foundation of the monop-
olistic power lies in the monopolist’s commitment ability not to sell durable goods to
consumers who are willing to pay more than the marginal production cost. By commit-
ment, we mean an action that entails an irreversible consequence. Perishability captures
the irreversibility in terms of quantity while the time between the offers measure the ir-
reversibility in terms of timing of sales which is generally considered a measure for the
commitment ability of the monopolist. In order to highlight the different aspect of com-
mitment, we focus on a model with perishable durable goods, where the time between the
offers is small. Throughout this paper, we quantify the monopolist’s commitment ability
in terms of the speed that the durable goods perish away at the instant rate of e−b for
some small b > 0.1
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Despite an extensive literature on the dynamic monopoly problem as well as sequential
bargaining models (e.g., [13, 9, 2, 5, 6, 8]), we have little understanding about how the
market outcome changes with respect to the ability of commitment of the monopolist,
except for the two limit cases: complete decay and no decay. In order to examine how
robust the Coase conjecture is, we should examine whether the Coase conjecture continues
to hold, if the monopolist can be committed not to sell a small amount of goods to
consumers.

We differentiate “perish” from “depreciate,” while we use “perish,” “decay” and “burn
off” interchangeably. Perishable goods decay before they are sold, which affects the future
supply of the goods irreversibly. On the other hand, goods depreciate only after they are
delivered to consumers, which generate the demand for replacement. The strategic impact
of depreciation was analyzed by [3]. It is shown that with a positive rate of depreciation,
the monopolist is not willing to provide the competitive level of goods. Yet, the gap
between the competitive outcome and the monopolistic outcome vanishes as the time
between offers and the depreciation factor converge to 0. In order to highlight the impact
of slight decay, this paper assumes that the good is not depreciated after it is delivered to
consumers.

In contrast to [3], we find a significant discontinuity in outcomes with respect to the
rate of decay around b = 0 (no decay). To differentiate two cases, we call the durable
good problem with b = 0 (no decay) classic problem, while the case with b > 0 (decay)
is referred to as perishable problem. To highlight the impact of the slight decay, we focus
on the same rule of game as the classic durable goods monopoly problem with the linear
(inverse) market demand curve p = 1− q where the monopolist offer pt in period t, which
was accepted or rejected by consumers. After the offer is rejected, the monopolist has to
wait for ∆ > 0 before offering pt+1. The game continues until either all consumers are
served, or all available stock is sold. All agents are risk neutral with the same discount
factor δ = e−r∆ for some r > 0.

We focus on the case where the demand curve does not hit p = 0 (“gap case”) in order
to sharpen the comparison: ∃qf < 1 such that the market demand curve is p = 1 − q
for q ∈ [0, qf ]. We interpret qf as the size of the whole market. In this case, the classic
problem has a unique subgame perfect equilibrium in pure strategies, where the consumer’s
acceptance rule can be represented as a threshold rule. We call such a subgame perfect
equilibrium a reservation price equilibrium [10], for which the Coase conjecture holds: in
any reservation price equilibrium, the initial offer converges to the lowest reservation value
of the consumers, and all consumers are served almost immediately as ∆ → 0.

We construct two reservation price equilibria, which roughly form the upper and the
lower bounds of the set of all subgame perfect equilibrium payoffs of the monopolist. In
the first equilibrium, the monopolist’s expected profit is close to 0 if qf < 1 is close to
1 and b → 0. Interestingly, almost all consumers are served but the market outcome is
extremely inefficient. The monopolist credibly delays to make an acceptable offer until
the available stock reaches the target level. Because b > 0 is small, it takes exceedingly
long periods for the available stock to reach the target level, and the consumer surplus
is discounted away. While the monopolist generates profit slightly higher than what he
could have made in the equilibrium satisfying the Coase conjecture, his profit is also very
small.
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In the second reservation price equilibrium, the monopolist’s expected profit is close
to the static monopoly profit. The slow decay opens up a strategic opportunity for the
monopolist to credibly delay to make an acceptable offer for a significant time. If the
consumer knows that an acceptable offer will arrive in the distant future, he is willing
to accept a high price. By exploiting the impatience of the consumers, the monopolist
can achieve almost the static monopolist’s profit. Interestingly, this equilibrium entails a
randomization strategy off the equilibrium path, in a sharp contrast to the classic problem
which has a unique pure strategy subgame perfect equilibrium if the demand curve is linear
and qf < 1.

The first equilibrium can be served as a credible threat against a deviation by the mo-
nopolist. Following the idea of constructing reputational equilibria in [2], we can sustain
any level of monopolist’s profit as a subgame perfect equilibrium. Note that the second
reservation price equilibrium shows that even without reputational equilibria, the monop-
olist can achieve almost the static monopoly profit.

The set of subgame perfect equilibria is discontinuous with respect to the perishability of
the durable goods in a number of important ways. First, the subgame perfect equilibrium
that satisfies the Coase conjecture is no longer an equilibrium in some nearby game to
the classic problem unless the good is very plentiful in the initial round. Second, the
equilibrium outcome in the nearby game is much richer than the classic problem. Thus,
the equilibrium analysis does provide us a precise benchmark, against which the actual
market outcome can be compared. Substantial market power does not necessarily imply
substantial commitment power. Thus, the classical remedy to unravel the commitment
capability of the monopolist not be as effective as the classic problem suggests.

The rest of the paper is organized as follows. Section 2 formally describes the model
and the key results from the classic durable good monopoly problem. Section 3 examines
a simple example where the market demand curve is a step function. Although our main
result is built around a linear demand curve, we begin with this example, because we can
precisely calculate the subgame perfect equilibrium to reveal the key properties of the
equilibrium we will analyze. Section 4 analyzes a market with a linear demand curve. In
Section 4.1, we explore an artificial game in order to highlight the mechanism that prompts
the monopolist to delay to make acceptable offers. We calculate an equilibrium of the
game. In Section 4.2, we construct a reservation price equilibrium, which approximates
the equilibrium of the artificial game in Section 4.1. We observe that the monopolist
may spend many periods without making acceptable offers, while burning off the available
stock to reach the target level. The equilibrium constructed in Section 4 seems to indicate
that the monopolist’s profit should be small, if the monopolist has little ability to commit
himself not to sell (small ∆ > 0 and b > 0). Section 5 shows the contrary by constructing
an equilibrium where the monopolist can generate a large profit. Section 5.1 examines
another artificial game, in which the monopolist can choose the time interval of making
unacceptable offers to highlight the structure of the second equilibrium. We show that
as b → 0, the monopolist’s equilibrium in this game converges to the static monopoly
profit. In Section 5.2, we construct a reservation price equilibrium, which approximate
the equilibrium constructed in Section 5.1. Section 6 concludes the paper with discussions
on extensions and policy implications.
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2. Preliminaries

Except for Section 3, we focus on a market where the demand curve is linear:

(2.1) p = 1− q q ≤ qf < 1

where q ∈ [0, qf ] is the size of the consumers who were served, and p is the delivery price.
We regard each point in [0, qf ] as an individual consumer. By consumer q, we mean a
consumer whose reservation value is 1− q. We call qf the size of the whole market.

We write a residual demand curve as D(q0, qf ) after q0 ∈ [0, qf ] consumers are served.
Following the convention of the literature, we shall treat two residual demands identical
if they differ only over the null set of consumers. Let yt be the amount of stock available
at the beginning of period t. Except for Section 3, we assume that the initial stock is
sufficient to meet all demand in the market: y = y1 > 1.

Let qt be the total mass of consumers who has been served by the end of period t. Thus,
qt − qt−1 is the amount of sales in period t. Then,

yt+1 = β(yt − (qt − qt−1))

for β = e−∆b, ∆ > 0 and b > 0. We call ∆ > 0 the time interval between the offers, and
b > 0 the instantaneous rate of decay.

Let ht be the history at period t, that is a sequence of previous offers (p1, . . . , pt−1).
A strategy of the monopolist is a sequence σ = (σ1, . . . , σt, . . .) where σt(ht) = pt ∈ R+

∀t ≥ 1. Let Σ be the set of strategies of the monopolist. Similarly, a strategy of a consumer
q is a mapping from his reservation value 1− q, history of offers and the present offer p to
a decision to accept or reject. If he purchases the good at p, then his surplus is (1− q)−p.
All agents in the model have the same discount factor δ = e−r∆ for r > 0.

Let {q0, q1, q2, . . . , qt, . . .} be a sequence of weakly increasing numbers, which represent
the sequence of the total mass of consumers who have been served by the end of period t.
Naturally, q0 = 0. Let Q be the set of all such sequences. The monopolist’s profit is

∞∑
t=1

δt−1(qt − qt−1)pt

where pt = σt(ht) where ht = (p1, . . . , pt−1).
We say that the market is cleared at t if the monopolist meets all the demand qt = qf

or sells all remaining stock qt − qt−1 = yt > 0 for the first time at t < ∞:

qt = min(qf , yt + qt−1).

We know that in the classic problem, the market is cleared in a finite number of periods
if qf < 1 [9, 10].

Given the monopolist’s strategy σ, consumer q’s action is optimal if he accepts pt in
period t if

(1− q)− σt(p1, . . . , pt−1) > sup
k≥1

δk((1− q)− σt+k(p1, . . . , pt−1, pt, . . . , pt+k−1))

and rejects, if the inequality is reversed, where pt is realized according to σ, ∀t ≥ 1.
By exploiting the monotonicity with respect to the reservation value, the classic problem
allows us to write the optimality condition of the consumers more compactly by focusing



PERISHABLE DURABLE GOODS 5

on the critical type 1 − qt, who is indifferent between accepting the present offer and the
next offer:

(1− qt)− pt = δ ((1− qt)− pt+1)

where pt = σt(ht) and ht = (p1, . . . , pt−1). However, in the perishable problem, we have to
admit the possibility that qt = qt−1 for some t ≥ 1 if the monopolist makes unacceptable
offers.2 We need to write the consumer’s optimality condition in a more general way:

(2.2) (1− qt)− pt = sup
k≥1

δk ((1− qt)− pt+k) .

We say pt is unacceptable if qt−qt−1 = 0. While any arbitrarily large offer is an unaccept-
able offer, it is often convenient to set an unacceptable offer as an offer that makes the
highest reservation value consumer in D(q0, qf ) indifferent between accepting and rejecting
the present offer:

(2.3) (1− q0)− pt = sup
k≥1

δk ((1− q0)− pt+k) .

We can define a Nash equilibrium in terms of the monopolist’s strategy σ that solves

(2.4) max
σ∈Σ

∞∑
t=1

δt−1(qt−1 − qt)pt

where pt = σt(ht) where σ = (σ1, σ2, . . .) and ht = (p1, . . . , pt−1) and q = (q1, q2, . . .) satis-
fies (2.2). We say that σ is a subgame perfect equilibrium if σ induces a Nash equilibrium
following every history.

We shall focus on a class of subgame perfect equilibria where a consumer’s strategy is
characterized by a threshold rule, which is a natural state variable of the game, namely
the residual demand and the available stock.

Definition 2.1. A subgame perfect equilibrium is a reservation price equilibrium, if there
exists P : [0, qf ]2 × [0, y] → R such that

pt = P(qt, qf , yt)

with yt = β(yt−1 − (qt − qt−1)) where pt is the equilibrium price offered in period t, qt is
the total mass of consumers served by the end of period t and yt is the available stock at
the beginning of period t.

The Coase conjecture holds for the classic durable good problem.

Theorem 2.2. [14, 4, 10] Suppose that b = 0. If qf < 1, then a (generically) unique
subgame price equilibrium exists, which is a reservation price equilibrium in pure strategies.
In any reservation price equilibrium, the initial offer of the monopolist converges to 1− qf

and thus, his profit converges to qf (1− qf ) as ∆ → 0.

Before describing and analyzing the perishable problem, let us describe the classic prob-
lem to review useful results. The optimization problem of the risk neutral monopolist for

2Actually, he does in an equilibrium.
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the classic problem is to choose a sequence q ∈ Q to maximize the discounted expected
profit subject to a couple of constraints:

Vc(q0, qf , y) = max
q∈Q

∞∑
t=1

pt(qt − qt−1)δt−1(2.5)

subject to (1− qt)− pt = δ((1− qt)− pt+1)(2.6)
lim
t→∞

(1− qt)− pt = 0.(2.7)

(2.6) is the constraint imposed by the rational expectations of the consumers, which
renders pt as a function of qt and qt+1. (2.7) implies that in order to clear the market, the
“final” offer of the monopolist must be the lowest reservation value of the consumer.3

Let Tf (q0, qf , y) be the total number of periods needed to make sales before serving
every consumer in the market, or exhausting all available stock. If it takes infinitely
many periods to serve all consumers, we let Tf (q0, qf , y) = ∞. In the classic problem,
Tf (q0, qf , y) is precisely the number of offers the monopolist makes in the game. Since the
monopolist must serve a positive portion of consumers in every period,

qt < qt+1 ∀t ≥ 1

must hold, unless the market is closed in period t. We can understand Tf (q0, qf , y) as the
total number of periods needed to serve all consumers in the classic problem. For the later
analysis, it would be more convenient to interpret Tf (q0, qf , y) as the first period to clear
the market either by serving all consumers (qt = qf ) or exhausting all remaining stock
(qt − qt−1 = yt), after making the first acceptable offer at t0 ≥ 1:

Tf (q0, qf , y) = inf{t− t0 + 1 : qt = min(qf , yt + qt−1)}.

In the classic problem, Tf (q0, qf , y) is exactly the total number of periods when the mo-
nopolist keeps the market open, because t0 = 1. Let us summarize the key properties
of the subgame perfect equilibrium in the classic problem, which will be a key building
block for constructing a reservation price equilibrium in the perishable problem. Because
these properties are already proved for the analysis of the classic problem, we state them
without proofs.

Lemma 2.3. Suppose that b = 0.
(1) Fix y. If qf 6= q′f , then there is no q ∈ [0, qf ] such that P(q, qf , y) = P(q, q′f , y).
(2) If qf < 1, Tf (q0, qf , y) < ∞.
(3) q(q0, qf , y) is a continuous function of (q0, qf , y) if qf < 1.
(4) Tf (q0, qf , y) is a decreasing function of q0, but increasing function of qf .

The properties of Lemma 2.3 hold for general continuously downward sloping demand
curve, except for the last part of the last statement. The demand is inelastic in the linear
demand where qf is close to 1, which encourages the monopolist to reduce the quantity
and thus, to spend more time to sort out consumers with different reservation values.
However, if the demand curve is very elastic around qf ' 1, then the monopolist may find

3If qf = 1 so that the lowest reservation value is 0, then the market opens indefinitely so that there is
no “final” offer. Yet, the price must converge to 0 as t →∞.
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it profitable to accelerate the sales. This property is used mainly to establish the existence
of the reservation price equilibrium and to facilitate the construction of an equilibrium.

3. Two Types

Instead of a market with a linear demand, we first examine a market populated with a
continuum of infinitesimal consumers, whose total mass is x+ 1

2 . This example also shows
the technical issues arising from analyzing a general demand curve.

Let us assume that x units of the consumers have valuation 3 and the remaining con-
sumers have valuation 1, where x ∈ (0, 0.5]. The monopolist has y amount of perishable
but durable goods. Assume that y ≥ 0.5 so that in the initial period, the monopolist can
serve every high valuation consumer. While the demand curve is not continuous, this ex-
ample is sufficiently simple that we can precisely calculate a subgame perfect equilibrium
to understand the structure of the equilibrium.

Let us focus on the case where

0 ≤ x ≤ y ≤ x +
1
2
.

If x > y, then the monopolist can charge 3 credibly to serve every high valuation buyer
and close the market. If y ≤ x + 1

2 , the available stock is less than the total number of
remaining consumers, including the low valuation buyers. We shall discuss the remaining
cases after we completely analyze the most interesting cases.

3.1. Construction of an Equilibrium. In the classic problem (b = 0), the optimal
pricing rule is to open the market for two periods, offering p1 = 3− 2δ and p2 = 1 unless
x is too small. The initial offer will be accepted by the high valuation consumers, while
the last offer serves all remaining low valuation consumers.

Suppose that the goods decay (b > 0). What would be the initial offer from the
monopolist? The answer depends upon how quickly yt ≤ x, for a given level of patience
of the players. For example, if y = y1 ≤ x, then the monopolist can credibly charge 3
from the initial period, which will be accepted by all high valuation consumers. What if
y decays slowly so that y2 = βy ≤ x < y? The answer to the same question is no longer
obvious. In fact, if the monopolist is sufficiently patient (small r > 0), he will find it
optimal not to make any sales in the initial round so that the available goods can burn off
as quickly as possible in order to achieve y2 ≤ x. In this way, he can charge 3 from period
2, which will be accepted by the high valuation consumer.

In a sharp contrast to the classic problem, making an unacceptable offer can be a part
of an optimal pricing sequence. To reduce the available amount of goods, the monopolist
can credibly refuse to serve any consumers. As a result, the dynamic market is exposed
to two different sources of inefficiency. First, as in the classic problem, it will take more
than one period to serve the consumers and this delay will be greater than in the classic
problem if the monopolist chooses to burn off some of the goods. Second, if the monopolist
chooses to burn off the available stocks, then some consumers may not be served. One of
our objectives is to understand how the perishability factor affects the overall inefficiency
of the market outcome, especially when ∆ → 0.

A natural state variable is (x, y) which characterize the residual demand and the quan-
tity of available goods. If x ≥ y, then the monopolist can charge 3 and serve all remaining
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high valuation consumers, credibly excluding the low valuation consumers. The key deci-
sion is how long the monopolist has to wait before he can credibly charge 3.

Essentially, the monopolist has three options at (x, y).
• Accelerating. The monopolist can accelerate the sales in one of the two ways.

First is to charge to serve everyone in the market. His profit will be

(3.8) y.

An alternative method is to charge 3− 2δ which is accepted by all high valuation
buyers, and in the following round, charge 1 which is accepted by the remaining
low valuation buyers. The average discounted profit is

(3.9) (3− 2δ)x + δβ(y − x).

It depends upon the size of x whether (3.8) or (3.9) is optimal.
• Delaying. Continue to charge 3 until the high valuation consumer concludes that

the monopolist will not lower the price, which will make the high valuation buyer
to accept the offer. Let k be the first period that

βk−1y ≤ x

when the monopolist can charge credibly 3, which is accepted by the high valuation
buyer immediately. Thus, if it takes k rounds, the expected profit is

(3.10) 3δk−1 min(βk−1y, x).

In order to delineate the optimal action of the monopolist under (x, y), let us characterize
the “indifference state” between the Coase conjecture type strategy and the last one. That
is state (x, y) solving

(3.11) max (y, (3− 2δ)x + δβ(y − x)) = 3δk−1 min(βk−1y, x).

assuming for a moment that k can take any positive real number.

Lemma 3.1. Suppose that k can be any non-negative real number.
(1) ∀(x, y), ∃k ≥ 0 such that (3.11) holds.
(2) If (x, y) satisfies (3.11), then so does (λx, λy) ∀λ > 0.
(3) Define

K = {k : ∃(x, y) such that (3.11) holds.} .

Then, K is a compact and connected set and therefore,

supK < ∞.

(4) For a fixed x, and y′ > y. Let k and k′ be the solution associated with (x, y) and
(x, y′) in (3.11). Then, k′ > k.

Proof. Define

g(k) = max (y, (3− 2δ)x + δβ(y − x))− 3δk−1 max(βk−1y, x).

which is a continuous function of k. Note g(0) < 0 and limk→∞ g(k) > 0. Moreover,
g(k) is a strictly increasing function of k. Thus, there exists a unique k satisfying (3.11).
Note that g(k) is a linear function of (x, y) which implies the second statement. We know
that the mapping (x, y) 7→ k satisfying (3.11) is continuous. Since (x, y) is contained
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in a compact set, K is compact, which implies the third statement. The last statement
statement follows from the fact that the more the existing stock is, the longer it takes to
reach the area where y ≤ x. ut

For a fixed x, there is one-to-one correspondence between (x, y) and the solution k from
(3.11). For each k, define α(k) = y/x where (x, y) induces k as the solution of (3.11).
From Lemma 3.1,

U(k) = {(x, y) : k is the solution of (3.11)}
is a half line through the origin with slope α(k) which is a strictly decreasing function of
k. The slope of α(k) can range from 1 to +∞.
U(k) represents the collection of states that make the monopolist indifferent between

two options of accelerating and delaying if the delay takes k periods. However, there is no
guarantee that k is self-fulfilled. Again, let us assume for another moment that k can take
any positive real number. Given (x, y), we can find a unique k > 0 such that

βk−1y = x

which is the first time when the monopolist can credibly charge 3, which is accepted by
the remaining high valuation buyer with probability 1. Define

V(k) =
{

(x, y) : y =
1

βk−1
x

}
as the collection of states, which takes k periods to reach the area

{(x, y) : y ≤ x}
where the monopolist’s offer 3 is accepted with probability 1. Note that V(k) is a half-line
passing through the origin. Its slope is ranging from 1 to +∞, which is a strictly increasing
function of k.

Therefore, there exists k∗ > 0 such that

(3.12) V(k∗) = U(k∗).

This k∗ has a special meaning in the sense that if (x, y) ∈ U(k∗), the monopolist expects
that in k∗ periods, his offer 3 will be accepted with probability 1 and indeed, it takes k∗

period before such event occurs.

Remark 3.2. If k can take only a positive integer value, the same analysis proves the
existence of a positive integer k∗ such that

(3.13)
1

βk∗
≥ α(k∗) ≥ 1

βk∗−1
.

According to the definition of α(k∗) and U∗(k∗), if y > α(k∗)x, then the monopolist
charge 1 or 3 − 2δ to 3, depending upon the size of x. Unless x > 0 is too small, the
monopolist immediately makes an offer 3 − 2δ which is accepted by all high valuation
seller whose mass is x, and offer 1 to clear the market. As depicted in Figure 1, the state
moves along 45 degree line passing through (x, y), because each consumer demand exactly
one unit. On the other hand, if x < y < α(k∗)x, then the monopolist refuses to make
an acceptable offer. For analytic convenience, let us assume that the monopolist charges
3 + ε for a small ε > 0, which is rejected by all high valuation consumer. The available
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Figure 1: The left panel illustrates how the available stock decays in case that the monopolist makes no
sales in the first two rounds when ∆ > 0 is relatively large. The right panel depicts the area of (x, y)
associated with the two different strategies when ∆ > 0 is small. The bold straight line is y = αx. The
monopolist makes an acceptable offer immediately if y > αx. Note that if the monopoly makes sales, x and
y decreases by the same amount, and (x, y) is moving along the 45 degree line passing through (x, y). If
all high valuation consumer is served, then x becomes 0. If y′ < αx′, then the state moved down vertically
because no sales are made until the state hits y = x.

stock decays at the rate of β in each period. After k periods of rejected offers, suppose
that βky < x < βk−1y holds. If the high valuation consumer rejects 3 + ε, then βky < x
implies that from the next period, there is excess demand among high valuation consumer
and the monopolist can charge 3. Thus, all high valuation consumer is willing to accept
any offer up to 3. Knowing this, the monopolist charges 3, following k unacceptable offers.

We can sustain this outcome as the subgame perfect equilibrium.

Proposition 3.3. The above outcome path can be sustained by a subgame perfect equilib-
rium, which involves randomization off the equilibrium path.

Proof. See Appendix A. ut

3.2. Properties. The equilibrium strategy may entail a positive amount of time when
the monopolist is willing to make no acceptable offers. Wasting time without making sales
can never be a part of an equilibrium strategy in a classic durable good problem if the
gain from trading is common knowledge, as in our example. However, because the goods
are perishable, however slightly, making no sales does not mean wasting time. Rather,
the monopolist can deliberately wasting some available stocks in order to manipulate the
beliefs of the consumers about the monopolist’s future prices.

Some consumers whose valuations are higher than the production cost may not be
served. In a static monopoly problem, if the demand curve is inelastic, the monopolist
finds it profitable to reduce the total sales and not to serve some consumers. The same
intuition applies here. Because the monopolist may decide to waste some existing stock,
which requires time, it takes more time to complete the sales.

Even if almost all consumers are served in the equilibrium, one cannot conclude that
the market outcome is almost efficient. If it takes substantial time to achieve an optimal
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amount of stock, the realization of the gains from trading can take excessively long time.
As a result, the discounted social surplus could be very small, even if almost all consumers
are eventually served.

While this example is simple enough to allow us to calculate the subgame perfect equi-
librium, it has a couple of rather peculiar features. Because the type space of the con-
sumers is discrete, the gain from the reducing the available stock increase discontinuously.
Combined with the fact that the initial stock is smaller than the whole market demand
(y ≤ x + 0.5), the monopolist has good reason to delay the offer, because a large return
from the delay is realized fairly quickly. A natural question is whether the key properties
of the equilibrium are carried over to the cases where the demand curve is continuous and
the initial stock is larger than the whole market demand. To answer this question, we
examine the market with a linear demand for the rest of the paper.

If we analyze a general downward sloping demand curve, we generally have to admit a
randomized strategy off the equilibrium path even though only pure strategies are used
along the equilibrium path, as shown in this example. By focusing on the linear demand,
we can ensure that the associated optimization problem (2.4) has a unique solution as
demonstrated by [9]. The equilibrium strategies off the path are essentially a properly
“scaled” version of the strategies along the equilibrium path according to the size of the
residual demand. The linear demand allows us to highlight the key features of the subgame
perfect equilibria of the perishable problems by analyzing the equilibrium path.

4. Market with a Linear Demand

In order to highlight the key features of the equilibrium which will be constructed in
this section, let us first examine a simple, but artificial, game. Then, we construct a
reservation price equilibrium, which is approximated by the equilibrium of the artificial
game.

4.1. Example 2. An Artificial Game. Let us consider an artificial game in which the
monopolist in the market with a linear demand curve (2.1) has two options: make one
final sale, or delay the sale. The monopolist can choose when he opens the market, say
τf ≥ 0, and then, he must make an offer to serve everyone in the market or sell all the
goods available at that point, if there is an excess demand.

If the monopolist charges pτf
= 1− qτf

after delaying τf time, qτf
portion of consumers

will be served. Since pτf
must clear the market,

1− pτf
= min(qτf

, e−τf by)

must hold. In any equilibrium, qτf
is selected in such a way that the monopolist cannot

improve his profit by delaying the sale. Define

h(q : τ) = e−τr
[
e−τbq(1− e−τbq)

]
− q(1− q)

as the gain from delaying τ amount of real time and charging 1− e−τbq to serve everyone
whose valuation is higher than 1− q in the market, if the present available stock is q ≤ 1.

It is easy to see that h(q : 0) = 0 and

∂h(q : 0)
∂τ

= −(r + b)q + (r + 2b)q2.
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If
∂h(q : 0)

∂τ
≤ 0,

then ∀τ > 0, ∂h(q:τ)
∂τ < 0. If

∂h(q : 0)
∂τ

≥ 0,

then ∀q′ ≥ q, ∂h(q′:0)
∂τ ≥ 0. If ∂h(q : 0)/∂τ > 0, then the monopolist can be better

off by delaying the sale on period. Although the total stock will be reduced to e−∆bq,
but he can credibly charge higher price 1 − e−∆bq to generate higher profit. Similarly, if
∂h(q : 0)/∂τ < 0, then he should have accelerated the sale. Thus, the optimal quantity q
solves

∂h(q : 0)
∂τ

= 0,

which is

(4.14) q =
r + b

r + 2b
,

and the discounted profit is

e−rτ(y) b(r + b)
(r + 2b)2

where τ(y) is defined implicitly by

e−bτ(y)y =
r + b

r + 2b
.

The optimal quantity, (r + b)/(r + 2b), is very intuitive. For a given time preference
r > 0, if the good is not perishable (b = 0), then all consumers must be served, as in the
classic problem. On the other hand, if the good is perishing quickly (i.e., large b > 0), the
quantity converges to 1/2 which is the monopolistic profit maximizing quantity.

The ensuing analysis shows that the outcome of this artificial game approximate the
outcome of the reservation price equilibrium of the dynamic monopoly problem where he
can charge a series of prices over time, combined with delaying the offers. The missing
step is to make it sure that the delay strategy generates a higher profit than the strategy
satisfying the Coase conjecture, from which the monopolist can generate profit qf (1− qf )
almost instantaneously if ∆ > 0 is small. Note that

e−rτ(y) b(r + b)
(r + 2b)2

> qf (1− qf )

holds as long as qf is sufficiently close to 1 for given b, r, y.4 Then, a substantial delay of
an acceptable offer can arise in a reservation price equilibrium.

Note that for a fixed r > 0,

lim
b→0

r + b

r + 2b
= 1

4One might wonder whether we have to check the same inequality for each τ > 0. From the analysis of
h(q : τ), we know that if this equality holds the beginning of the game, then it continues to hold for τ > 0
until the available stock reaches the optimal level.
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which implies that every consumer will be served in the limit. Yet, the outcome is ex-
tremely inefficient. A simple calculation shows that

τ(y) =
1
b

(
log y − log

r + b

r + 2b

)
.

If y > 1, as b → 0, the right hand side increases indefinitely, implying that the monopolist
is willing to delay the sale as long as possible in order to generate a positive profit, even
if it is realized after a long delay. As a result, the market outcome becomes extremely
inefficient, because the potential gains from trading is discounted away during the long
delay. Even if y = 1, l’Hôpital’s rule implies that

lim
b→0

τ(y) =
1
r

which implies that the delay does not vanish and can be significant if the monopolist is
very patient.

4.2. Construction of a Reservation Price Equilibrium. We search for a reservation
price equilibrium where the equilibrium path consists of two phases: the first phase where
the monopolist is making unacceptable offers, and the second phase where the monopolist
is making a series of acceptable offers. In the second phase, we can invoke the same insight
as in the classic problem to construct the equilibrium path. In particular, we can write
(2.2) in a simpler form (2.6). And, then by calculating the optimal time for delaying to
make the first acceptable offer, we construct the equilibrium outcome, where the total
gains from trading vanishes as ∆ → 0.

We construct an equilibrium for the rest of the section, in which the total surplus from
trading is arbitrarily small, despite the fact that almost every consumer is served by the
monopolist. As in Section 4.1, the monopolist delays to open the market (or equivalently,
making unacceptable offers) for τ1 ∈ {∆, 2∆, . . .} before making an acceptable offer, in
order to avoid the integer problem. After the initial acceptable offer, the monopolist keeps
making acceptable offers.

Given residual demand D(0, qf ) and the initial stock y with qf < 1, the optimization
problem can be written as

max
τ1,q∈Q

e−rτ1

∞∑
t=1

pt(qt − qt−1)δt−1(4.15)

subject to (1− qt)− pt = δ((1− qt)− pt+1)(4.16)
pTf

= 1− qTf
(4.17)

βTf

e−rτ1y −
Tf∑
t=1

β−t(qt − qt−1)

 ≥ 0(4.18)

βTf

e−rτ1y −
Tf∑
t=1

β−t(qt − qt−1)

 (qTf
− qf ) = 0(4.19)

where Tf is the number of periods when a positive portion of consumers is served. τ1

is the time during which the monopolist makes no sale, simply burning off the available
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stock at the rate of e−b. The objective function and the first two constraints are identical
to the classic problem and so is the definition of Tf .

The last two constraints warrant explanation, as they capture the key elements of the
perishable problem. The first step is to observe that the trading must be completed in
finite rounds, which is reminiscent to a well known result from the classic problem [9].

Lemma 4.1. If qf < 1, then in any optimal solution, τ1 + ∆Tf < ∞.

Proof. Given the structure of the candidate equilibrium, the proof to show Tf < ∞ is
identical with the one in the classic problem [9, 10]. It remains to show that τ1 < ∞.

It suffices to show that ∃τ∗ > 0 such that if τ1 > τ∗, then (τ1,q) cannot be an optimal
solution for any q ∈ Q.

Given demand curve D(0, qf ), let qm(0, qf ) be the static monopoly profit maximizing
quantity. The monopolist can choose τ1 so that e−bτ∗yo = qm(0, qf ), and charge 1 −
qm(0, qf ), which will be accepted by all consumers whose valuation is at least 1−qm(0, qf ).
Thus, the equilibrium payoff of the monopolist is uniformly bounded from below by

e−bτ∗(1− qm(0, qf ))qm(0, qf ).

If the monopolist spends more than τ∗ before making an acceptable offer, he cannot achieve
this level of profit. Thus, if τ1 is selected in an equilibrium, then τ1 ≤ τ∗. ut

If q1 − q0 consumers accepts the first acceptable offer from the monopolist, then at the
end of the period, e−bτ1y − (q1 − q0) is available, but by the beginning of period 2, only
β(e−bτ1y − (q1 − q0)) is available. Thus, by the time when all available goods are sold,

β
(
· · ·

(
β(e−rτ1y − (q1 − q0))− (q2 − q1)

))
− (qTf

− qTf−1) ≥ 0

must hold, because the amount of sales in period t cannot exceed the amount of stocks
available in that period. The constraint can be written as

(4.20) βTf

e−rτ1y −
Tf∑
t=1

β−t(qt − qt−1)

 ≥ 0.

However, if qTf
= qf , then it is possible that a positive amount of goods is left over. This

happens when all consumers are served. But, if qTf
< qf , then some consumers are not

served and the final offer must be such that all remaining goods are sold. Hence, the
complementary slackness condition (B.32) must hold.

We show by construction that the above optimization problem has a solution. Let
Wc(∆) and Ws(∆) be the consumer and the producer surplus if the time between the
offers is ∆ > 0.

Proposition 4.2. Fix initial stock y > 1 and size of the demand qf < 1. Given demand
curve D(0, qf ) and initial stock y, there exists an optimal solution (τ1,q), which can be
sustained as a reservation price equilibrium.

Proof. See Appendix B. ut

Fix y, and let qTf (∆) be the total amount that is delivered and T1(∆) be the first round
when the monopolist is making an acceptable offer when the time between the offers is
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∆ > 0. Clearly, ∀∆ > 0, qTf (∆) ∈ [0, y] and ∆T1(∆) ∈ [0, τ∗]. Define

q′ = lim
∆→0

qTf (∆)

and
τ1(0) = lim

∆→0
∆T1(∆)

by taking a convergent subsequence, if necessary.
Note that the sequence of acceptable offers is precisely the same as the one in the classic

counter part where the demand curve is D(0, qTf (∆)). Hence, the Coase conjecture implies
that the profit from the perishable problem converges to

e−τ1(0)bq′(1− q′).

Hence, the limit properties of the reservation price equilibrium can be examined through
the same method as illustrated in Example 4.1.

Let Wc(∆) and Ws(∆) be the (ex ante) expected consumer surplus and the expected
producer surplus from the game where the time between the offers is ∆ > 0. The following
proposition formalizes this observation.

Proposition 4.3. ∀ε > 0, ∃b > 0 such that ∀b ∈ (0, b], ∃qf such that ∀qf ∈ (qf , 1),
∃∆ > 0 such that ∀∆ ∈ (0,∆), Wc(∆) < ε and Ws(∆) < ε.

The constructed equilibrium confirms our intuition that if the monopolist has little
commitment power (small b > 0 and small ∆ > 0), then he can exercise little market power
and entertain small profit. This observation is generally consistent with the key implication
from the classic problem, and has an important policy implication. If the monopolist
exercise substantial market power, then his commitment power must be substantial. Thus,
by unraveling the source of the commitment power, the government can reduce the market
power of the monopolist.

In the perishable problem, this conclusion does not hold in general, because we can con-
struct another reservation price equilibrium that generate substantial profit, despite small
b > 0 and small ∆ > 0. Before jumping into a formal analysis, it is useful to understand
the foundation of the differences between the perishable and the classic problems.

In the classic problem with qf < 1, the total quantity of sales must be qf . Because the
terminal sales amount is qf , we can invoke the backward induction process to construct the
equilibrium strategy. In particular, if qf < 1, the number of periods to make acceptable
offers is uniquely determined.

The equilibrium constructed in Proposition 4.3 shares some of the key features of the
subgame perfect equilibrium of the classic problem. Given the terminal quantity qTf

, we
invoke the backward induction process to calculate the optimal pricing rule, and determine
the number of acceptable offers. However, the terminal quantity qTf

is generally different
from the size of the whole market qf . In fact, qTf

is endogenously determined and there-
fore, the belief of the consumers about how the future pricing rule evolves is critical in
determining qTf

as well as the number of acceptable offers Tf .
We construct the beliefs off the equilibrium path so that the consumers believe that

the monopolist will follow the “same kind” of pricing rule: a series of unacceptable offers
followed by acceptable offers until he clears the market. The substance of Proposition 4.2
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is in fact to show that this class of beliefs off the equilibrium path can sustain the optimal
solution of (B.28) as a reservation price equilibrium.

But, this is not the only way to construct the equilibrium outcome. One can imagine a
different pricing rule, for example, which starts with acceptable offers, followed by a series
of unacceptable offers, and then resume to make acceptable offers until the monopolist
clears the market. The ensuing analysis shows that the flexibility of specifying the terminal
quantity qTf

is the source of generating multiple equilibria with dramatically different
properties.

5. Small Commitment but Large Profit

We claim that substantial market power does not imply substantial commitment power.
To substantiate the claim, we need to construct a subgame perfect equilibrium in which the
monopolist can generate a large profit when b > 0 and ∆ > 0 are small. The equilibrium
constructed in Section 4.2 can serve as a credible threat to force the monopolist to follow a
designated outcome path. Following the same idea as in [2], we can obtain the folk theorem
if ∆ → 0 and then b → 0. In particular, we can sustain a subgame perfect equilibrium in
which the monopolist generates an expected profit close to the static monopoly profit.

Proposition 5.1. ∀ε > 0, ∃b > 0, ∃y > 1, ∀b ∈ (0, b), ∀y ∈ (1, y], ∃qf , ∀qf ∈ [qf , 1),
∃∆ > 0, ∀∆ ∈ (0,∆), there is a subgame perfect equilibrium in which the equilibrium
payoff Ws(∆) satisfies

Wm
s ≤ Ws(∆) + ε

where Wm
s is the static monopolist profit.

Proof. Apply [2]. ut

Following [2], we differentiate two kinds of subgame perfect equilibria: reservation price
equilibria as defined in Definition 2.1, and reputational equilibria, where any deviation by
the monopolist triggers a punishment phase as the continuation game is played according to
the equilibrium constructed in Proposition 4.3. The key idea of [2] is to use the reputational
equilibria to sustain an expected payoff close to the static monopoly profit as ∆ → 0. As
it is stated, Proposition 5.1 does not tell us whether the reputational effect or the slight
decay is the key for monopolist to generate a large profit. To crystallize the impact of a
slight decay, we need to construct a reservation price equilibrium with a large profit in a
perishable problem. The main goal of this section is to obtain Proposition 5.1 only with
reservation price equilibria.

As in Section 4, we start with a simple artificial game to explore the key properties of
the equilibrium we shall construct. Then, we construct a reservation price equilibrium,
which generates expected profit close to the static monopoly profit for small b > 0.

5.1. Example 3. Another Artificial Game. The monopolist uses the delay tactic as
a way to influence the consumer’s belief about the future prices offered by the monopolist.
Yet, the delay tactic has an obvious downside: the monopolist has to delay the realization
of the profit. Because the consumers with high reservation value is willing to pay higher
price, the monopolist has to balance the benefit of delaying and burning the available
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stock against the cost of delaying the profit, especially against the high reservation value
consumers.

To explore the tension between these two strategic motivations, let us examine a slightly
more elaborate version of Example 4.1 where the monopolist can only delay the beginning
of the game. Instead, let us allow the monopolist to choose a time interval with length
τ > 0 during which he chooses to burn the stock at the instant rate of e−b. Thus, the sales
can occur twice, before and after the τ break. Let (q1, q2) represent the total amount of
goods delivered after each sales, and (p1, p2) be the respective delivery prices. That is, at
the beginning of the game, the monopolist charges p1 to serve q1, and then, takes break
for τ time. After the break, he charges p2 to serve additional q2 − q1 consumers. As in
Example 4.1, the initial quantity of the goods is y. All other parameters of the models
remain the same as in Example 4.1.

We calculate the optimal solution through backward induction. Suppose that q1 has
been served. Then, y−q1 is available, and the residual demand curve is D(q1, qf ). Through-
out this example, we choose both y > 1 and qf < 1 sufficiently close to 1, and b > 0
sufficiently small. Invoking the same logic as we did in Section 4.1., we have

q2 − q1 = (1− q1)
r + b

r + 2b

and the monopolist has to delay the offer p2 by τ in order to satisfy the market clearing
condition:

(5.21) e−bτ (y − q1) = q2 − q1 = (1− q1)
r + b

r + 2b

which implies that

p2 = (1− q1)
b

r + 2b
.

Let τ(q1) be the solution for (5.21). Note that

τ ′(q1) > 0.

In order to make consumer q1 indifferent between p1 and p2,

(1− q1)− p1 = e−rτ(q1)

(
(1− q1)− (1− q1)

b

r + 2b

)
which implies that

p1 = (1− q1)
[
1− e−rτ(q1) r + b

r + 2b

]
.

Hence, the profit from selling q1 in the first round can be written as

V (q1) = q1(1− q1)
[
1− e−rτ(q1) r + b

r + 2b

]
+ e−rτ(q1)(1− q1)2

(r + b)b
(r + 2b)2

= (1− q1)
(

e−rτ(q1) (r + b)b
(r + 2b)2

+ q1

[
1− e−rτ(q1) (r + b)(r + 3b)

(r + 2b)2

])
.
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Note that as b → 0, V (q1) converges uniformly to (1 − q1)q1 over q1 ∈ [0, qf ]. A simple
calculation shows

V ′(q1) = (1− 2q1)
(

1− e−rτ(q1) (r + b)(r + 3b)
(r + 2b)2

)
−e−rτ(q1) (r + b)b

(r + 2b)2
−

[
(r + b)b
(r + 2b)2

− q1
(r + b)(r + 3b)

(r + 2b)2

]
re−rτ(q1)τ ′(q1).

As τ(q1) is determined by (5.21), τ(q1) → ∞ as b → 0, as long as y > 1. Thus, the first
term in the second line vanishes as b → 0. To show that the second term in the second
line also vanishes, recall (5.21). Thus,

e−rτ(q1)τ ′(q1) =
ω̃e−

rω
b

b
where

ω = − log
(1− q1)(r + b)
(y − q1)(r + 2b)

> 0

and

ω̃ =
(r + b)− e−bτ(q1)(r + 2b)

b(1− q1)
.

Thus,
lim
b→0

e−rτ(q1)τ ′(q1) = 0

which implies that the second line vanishes as b → 0. Thus,

lim
b→0

V ′(q1) = 1− 2q1,

and the delivery price of q1 converges to p1 = 0.5, which generates the static monopolist’s
profit. The slow rate of decay combined with a negligible profit from the continuation
game makes it credible for the monopolist to delay an acceptable offer for an extremely
long period.

5.2. Reservation Price Equilibrium with Large Profit. The key feature of the equi-
librium constructed in Section 4.2 is that the monopolist can credibly delay to make an
acceptable offer, especially when the expected profit from accelerating the sale is small.
Following the same logic as in Section 4.2, we can construct another reservation price
equilibrium, which generates the monopolist the static monopolist’s profit as ∆ → 0 as
illustrated in Section 5.1.

Imagine an equilibrium that consists of two phases, as in Section 4.2. In each phase, the
monopolist is making a series of acceptable offers, denoted as p1,1 and {p2,t}

Tf

t=1 where the
subscript represents the phase and the period within each phase. And, T0 represents the
number of periods during which the monopolist is making unacceptable offers. The first
phase consists of a single offer, which is accepted by q1 consumers. After q1 consumers
are served, the continuation game is played according to the same kind of equilibrium
constructed in Section 4.2: the monopolist makes T0 unacceptable offers and then, make
a series of acceptable offers for Tf rounds to clear the market. We choose an optimal q1

that maximizes the expected discounted profit among all equilibria that have the same
two phase structure as described above.
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In order to formalize this idea, we need to make it sure to have a delay equilibrium in
the second phase.

Lemma 5.2. ∃q′f < 1, y′ > 1 such that ∀qf ∈ (q′f , 1) and ∀y ∈ (1, y′), ∃∆ > 0 and b > 0
such that ∀∆ ∈ (0,∆) and ∀b ∈ (0, b), ∃q∗ such that if q0 > q∗, then the acceleration
strategy is optimal, and if q0 < q∗, then the delay strategy is optimal for residual demand
D(q0, qf ) with available stock y.

Proof. Since the payoff from the two strategies changes continuously with respect to ∆ > 0,
let us consider the limit case examined in Section 4.1. Fix a residual demand D(q0, qf ) and
the available stock y. From the acceleration strategy, the monopolist obtains qf (1 − qf )
instantaneously. On the other hand, from the delay strategy, he obtains

e−rτ(q0)(1− q0)2
(r + b)b
(r + 2b)2

where τ(q0) is defined implicitly by (5.21) with q1 replaced by q0. Choose q′f < 1 and
y′ > 1 sufficiently close to 1 so that

qf (1− qf ) < e−rτ(q0)(1− q0)2
(r + b)b
(r + 2b)2

if q0 = 0. We know that τ ′(q0) > 0, and also, for a given q0, τ(q0) increases without a
bound as b → 0. Thus, for any sufficiently small b > 0, we can find a critical q0 where the
above strict inequality holds with equality. This is q∗. By the continuity of the expected
payoff with respect to ∆ > 0, we can repeat the same reasoning for a small ∆ > 0 to find
q∗. ut

Let us consider the initial demand D(0, qf ) and the initial stock. After q1 consumers are
served, the continuation game is played with residual demand curve D(q1, qf ) and available
stock β(y − q1). Since we choose y > 1, and qf < 1, we can invoke Lemma 5.2 to identify
whether the continuation game can sustain the delay strategy as a Nash equilibrium.

Corollary 5.3. ∃q′f < 1, y′ > 1 such that ∀qf ∈ (q′f , 1) and ∀y ∈ (1, y′), ∃∆ > 0 and
b > 0 such that ∀∆ ∈ (0,∆) and ∀b ∈ (0, b), ∃q∗1 such that the continuation game after q1

consumers are served can sustain the delay strategy as a Nash equilibrium if and only if
q1 ≤ q∗1.

Proof. Note that y > 1 and qf < 1. It is clear that infq1
β(y−q1)−(qf −q1) > 0 as long as

∆ > 0 is sufficiently small. Thus, ∀q1 ≤ qf , the amount of delay, τ(q1), defined by (5.21)
increases without a bound as b → 0. The conclusion follows from the same reasoning as
the proof of Lemma 5.2. ut

From the analysis in Section 5.1, the high expected payoff is sustained by the delay
strategy in the second phase. Thus, if the initial offer p1,1 is accepted by more than
q∗1 consumers, the continuation game strategy must be an acceleration strategy, and the
resulting profit is lower than otherwise.

In order to simplify the characterization of the optimal q1, let us assume for a mo-
ment that the continuation game strategy in the second phase is a delay strategy. Let
V (0, qf , y, q1) be the expected payoff when the monopolist
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By invoking the same logic as Lemma 2.3, we can show that Tf < ∞ and lim sup∆→0 ∆Tf <
∞. Let us write down the optimization problem of the monopolist for a given q1 = q1(0, α).

V (0, qf , y, q1) = max
T0≥0,q∈Q

q1p1,1 + δT0

∞∑
t=1

p2,t(qt − qt−1)δt−1(5.22)

such that (1− qt)− p2,t = δ((1− qt)− p2,t+1) ∀1 ≤ t ≤ Tf

(1− q1)− p1,1 = δT0((1− q1)− pT0+1)(5.23)
p2,Tf

= 1− qTf
(5.24)

βTf−1−T0

βT0(y − q1)−
Tf−1−T0∑

t=1

β−t(qt − qt−1)

 ≥ 0(5.25)

βTf−1−T0

βT0(y − q1)−
Tf−1−T0∑

t=1

β−t(qt − qt−1)

 (qTf
− qf ) = 0(5.26)

The optimization problem is virtually identical with (B.28). After q1 consumers are served,
the continuation game is played according the equilibrium strategy constructed in Section
4.2 associated with residual demand D(q1, qf ). Then, (5.23) ensures that consumer q1 is
indifferent between p1,1 and p2,t after T0 periods. Let

Ws(∆) = max
q1∈[0,qf ]

V (0, qf , y, q1)

and denote the optimal value of q1 as qe
1.

We can show that the constructed path can be sustained as a reservation price equilib-
rium.

Proposition 5.4. ∃b > 0, ∃y > 1, ∀b ∈ (0, b), ∀y ∈ (1, y], ∃qf , ∀qf ∈ [qf , 1), the con-
structed outcome path can be sustained as a reservation price equilibrium, which involves
randomization by the monopolist following some histories off the equilibrium path.

Proof. See Appendix C ut

Recall that given demand curve D(0, qf ), and that

(1− q1)− p1,1 = δT0((1− q1)− p2,1).

Let b → 0. From the analysis of Section 4.1, we know that

lim
b→0

lim
∆→0

T0 = ∞.

Hence,
1− q1 − p1,1 → 0.

In particular, if q1 = 0.5 which need not be an optimal value qe
1, the resulting expected

payoff converges to the static monopoly profit. Thus, if we choose q1 optimally, the
resulting profit Ws(∆) must converge to the static monopoly profit.

Proposition 5.5. ∀ε > 0, ∃b > 0, ∃y > 1, ∀b ∈ (0, b), ∀y ∈ (1, y], ∃qf , ∀qf ∈ [qf , 1),
∃∆ > 0, ∀∆ ∈ (0,∆), there exists a reservation price equilibrium in which the monopolist’s
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expected profit is Ws(∆) such that Wm
s ≤ Ws(∆) + ε where Wm

s is the static monopolist
profit.

6. Concluding Remarks

6.1. Delayed offer. In order to highlight the impact of the perishability to the Coase
conjecture, we literally follow the rule of the classic durable goods monopoly problem,
forcing the monopoly to announce an unacceptable price in order to delay the game.
Thus, the delay occurs as a positive integer multiple of ∆ > 0.

A more general, perhaps more natural, formulation would be to let the monopolist to
delay the bargaining continuously. That is, following each history, the monopolist can
choose a pair of numbers, (p, τ): p is offered but the good is delivered to the consumer
τ unit of time after p is accepted. Given p, consumers decided to accept or reject. If
the offer is rejected, then the monopolist has to wait ∆ > 0 unit of time before making
another move. If p is accepted, the consumption of the good occurs in τ units of time
after accepting the offer.

In the classic problem, the monopolist has no reason to delay: τ = 0 following every
history.5 Thus, the Coase conjecture holds. Because the monopolist can delay the bar-
gaining continuously, the analysis is in fact simpler and closer to the examples where we
assume that the game is delayed continuously.

6.2. Increasing Demand. The strategic impact of the decay arises from the fact that the
excess demand for the goods increases as fewer goods become available. One can apply
the same logic of the perishable problem to the case where the demand is expanding.
[12] investigates the dynamic sales problem with new entry of consumers in the market.
Because the goods are sold to the high valuation consumers, the remaining consumers
have lower reservation value and the residual demand curve becomes more elastic. As a
result, the seller offers a low price in order to clear the market occasionally. We except
a similar dynamics. But, we also expect that the monopolist may not serve some low
valuation consumers by burning off existing stock, which results in considerably delay in
offering sales price to clear the market. Formal analysis is left as a future research project.

6.3. Endogenous Stock. Cement is an example of perishable durable goods [11]. After
it is delivered to the consumer, it generates utility to the consumers over many periods.
However, while in the storage, a small portion of cement is hardened and rendered useless.
Because of its weight, it is not unusual that the delivery of cement is scheduled over a
certain interval. The present model provides insight about how the sales of cement can
evolve after a fixed batch of cement is delivered, as we assume that the initial available stock
is exogenous. It remains to be analyzed how the pricing rule changes, if the monopolist
can control the delivery schedule and quantity as well as the pricing after the delivery.

5This is true because the monopolist has no private information. If the monopolist has private infor-
mation, then the analysis of [1] implies that the monopolist may have incentive to delay.
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Appendix A. Construction of Strategies off the Equilibrium Path

Recall that because each consumer purchases a single unit, the state moves along the 45 degree line
passing through the given state (x, y), if some consumers purchase the good and α(k∗) > 1.

If the initial state (0.5, y) is above U(k∗), then the construction of the actions off the equilibrium path
follows the same idea as the weak stationary equilibrium in [10] with minor twist. We only describe the
case where the monopolist charges 3 − 2δ along the equilibrium path. Let U∗ be the half line passing
through the origin along which the monopolist is indifferent between charging 1 and 3− 2δ. Let α∗ be the
slope of U∗. One can easily show that

α∗ > α(k∗) > 1.

If the initial equilibrium offer is 3− 2δ, then the initial state is located between U∗ and U(k∗).
If p > 3−2δ2, then no consumer accepts the offer, expecting that in the following period, the monopolist

will charge 3− 2δ. If p < 3− 2δ, then every consumer purchases the good. The state moves from (0.5, y)
to (0, y − 0.5), which implies that the monopolist has some goods for future sale, because y > 0.5. In the
next round following such p, the monopolist charge 1 to serve all low valuation consumers.

If 3− 2δ < p < 3− 2δ2, we first locate a point along

y =
α∗

β
x

that intersects with the 45 degree line passing through initial state (0.5, y). Let (0.5− x∗, y − x∗) be such
a point. Such p is accepted by x∗ portion of high valuation consumers who expects that in the following
period, the monopolist randomizes between 1 and 3− 2δ with probability λ to 1 so that

3− p = δ(3− (λ + (1− λ)(3− 2δ))).

In the following round, β(y − x∗) is available and the new state (0.5 − x∗, β(y − x∗)) is located along U∗
where the monopolist is indeed indifferent between 1 and 3− 2δ.

If state (x, y) is below U(k∗) but y < x, then the high valuation consumer accepts any offer p < 3.
Finally, suppose that state (x, y) is below U(k∗) but y > x. For simplicity, let us assume that the monopolist
is indifferent between charging 3 and 3−2δ along U(k∗). The other case follows from the same logic, where
the monopolist is indifferent between charging 3 and 1 along U(k∗).

The monopolist is charging 3 in the equilibrium. If he charges p > 3, it is clearly optimal for the
consumer to reject the offer with probability 1. If he charges p ≤ 3− 2δ, then every high value consumer
accepts the offer with probability 1, expecting that the monopolist will charge 1 in the following round.
Indeed, after serving all high valuation consumers, the monopolist still have β(y − x) amount for sale in
the next round. He charges 1 to serve some of the low valuation consumers.

Suppose that the monopolist charges p ∈ (3− 2δ, 3). Recall that α(k∗) > 1. Find a point along

y =
α(k∗)

β
x

that intersects with the 45 degree line passing through the given state (x, y). Let (x − x′, y − y′) be
the intersection. Given p, x′ portion of consumers accepts the offer, expecting that the monopolist will
randomize between 3 and 3 − 2δ in the following round. Indeed, in the following round, the state is
(x − x′, β(y − y′)) which is located on U(α∗), where the monopolist is indifferent between charging 3 − δ
and 3.

This completes the construction of the equilibrium strategy. It remains to verify that this configuration
constitutes a perfect equilibrium, except for the part where the monopolist cannot benefit from accelerating
the sales. In particular, given the fact that the monopolist has to charge 3 which is not accepted by any
buyer for a long time, it is not obvious whether or not a slight price cut can increase the profit of the
monopolist.

To complete this part of the proof, let us fix state (x, y). If y ≤ x
β
, then the equilibrium offer 3 is

accepted with probability 1. Thus, it is obvious that the monopolist has no incentive to lower his price.
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Fix y ∈ ( x
β` , x

β`+1 ] for some ` > 1 but ` ≤ k∗. Conditioned on p < 3, q portion of high valuation

consumer will accept the offer where

q =
x− βky

1− βk

so that (x− q, β(y− q)) is located along U(k∗) where the monopolist is indifferent between the two pricing
rules: charge 3 or follow the path abiding the Coase conjecture (which in this case is 3− 2δ). By charging
p < 3 in this round, the monopolist can make at most

3
(
q + δk∗(x− q)

)
while by following the equilibrium strategy the monopolist can make at least

3δ`.

It suffices to show that

3
(
q + δk∗(x− q)

)
≥ 3δ`.

After substituting q, one can show that this inequality is equivalent to

y ≥ 1− βk∗

βk∗(1− δk∗)

(
1− δk∗

1− βk∗
− (δ` − δk∗)

)
x.

If ` ≤ k∗ and y ≥ x/β`, then

x

β`
≥ 1− βk∗

βk∗(1− δk∗)

(
1− δk∗

1− βk∗
− (δ` − δk∗)

)
x

Therefore, we conclude that y ∈ ( x
β` , x

β`+1 ], then the monopolist’s profit from deviation cannot be larger

than the equilibrium payoff.

Appendix B. Proof of Proposition 4.2

We have to calculate the optimal strategy of the monopolist for all feasible configurations of D(q0, qf ) and
y. However, we can exploit the linearity of the demand curve to simplify the characterization substantially.

Lemma B.1. Suppose that p = {pt} and q = {qt} are the optimal pricing and the quantity sequences
of the constrained optimization problem (B.28) associated with D(0, qf ) and y, and it takes Tf periods to
clear the market. If the demand curve is given by D(1 − α, 1 − α + αqf ) and the initial stock is αy, then
αp and αq are the solution, and the trading is completed exactly in Tf periods. This relation holds ∀b ≥ 0
(both for the perishable and for the classic problems).

Proof. The proof follows from the fact that the objective function and the constrains are linear functions
of qt − qt−1. ut

Instead of all three parameters (q0, qf , y), we assume without loss of generality q0 = 0, and consider an
arbitrary pair (qf , y) to characterize the optimal strategy of the monopolist.

Fix q, q0 ∈ [0, qf ] and define

(B.27) yf (q0, q) = sup

{
T∑

t=1

(qt − qt−1)β
−t : ∃T ≥ 1, ∃q0 ≤ q1 ≤ · · · ≤ qT = q, satisfying (B.29)

}
.

yf (q0, q) is the minimal stock needed to serve the residual demand D(q0, q) if the monopolist begins to offer
an acceptable offer immediately. That is, if the monopolist begins to make an acceptable offer to meet
residual demand D(q0, qf ), the available stock must be yf (q0, q).

Lemma B.2. yf (q0, q) is a strictly decreasing continuous function of q0 but a strictly increasing continuous
function of q.
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Proof. By the construction of yf (q0, q), it is obvious that yf (q0, q) is a decreasing continuous function of
q0. The continuity follows from the fact that in each period, the objective function is strictly concave,
which is implied by the linearity of the demand curve [9]. To show that yf (q0, q) is a strictly increasing
function of q < 1, we assume without loss of generality that q0 = 0 to simplify notation.

For α < 1 which is close to 1, consider D(0, q) and D(1−α, (1−α)+αq). By Lemma B.1, we know that
the two residual demand curves generate essentially identical optimal solution, except that the solution
from the second residual demand curve is obtained by multiplying α to the optimal pricing and the optimal
quantity solutions of the first residual demand curves. Let Tf (0, q) and Tf (1−α, 1−α+αq) be the number
of periods needed serve the demand curve. We know that

Tf (0, q) = Tf (1− α, 1− α + αq).

Given a new demand curve D(0, (1− α) + αq), the monopolist has a feasible pricing sequence that serves
1− α in the initial round, and then follow the optimal pricing sequence induced by D(1− α, 1− α + αq).
Thus,

yf (0, (1− α) + αq) ≥ (1− α)β−Tf (1−α,1−α+αq)−1 + β−1

Tf (1−α,(1−α)+αq)∑
t=1

(qt − qt−1)β
−t

=
(1− α) + yf (1− α, (1− α) + αq)

β
=

(1− α) + αyf (0, q)

β
.

We can find α′ < 1 such that ∀α ∈ (α′, 1),

1− α > (β − α)yf (0, q)

which implies that
(1− α) + αyf (0, q)

β
> yf (0, q).

Then, ∀α ∈ (α′, 1),

yf (0, 1− α + αq) > yf (0, q).

Since the strict inequality holds for a small neighborhood of any q < 1, we conclude that yf (0, q) is a
strictly increasing function of q < 1. Continuity follows from the maximum principle combined with the
fact that the objective function is strictly concave, which is again implied by the linearity of the demand
curve. ut

Clearly,

q ≤ yf (0, q).

If yf (0, q) ≥ y, then the existing stock is too small to serve D(0, q). Since yf (q0, q) is strictly decreasing in
q0, we can find q0 ≥ 0 such that

yf (q0, q) = y.

The constrained optimal pricing rule is thus an acceleration strategy defined as follows.

Definition B.3. An acceleration strategy is an outcome path in which the monopolist serves q0 imme-
diately, and then follows the optimal pricing sequence associated with D(q0, q). The initial offer p′ is
determined according to

1− q0 − p′ = δ((1− q0)− p1)

where p1 is the initial offer from the optimal pricing sequence associated with D(q0, q).

If yf (0, q) ≤ y, then the existing stock is too large to credibly serve q, because the terminal condition
(B.30) does not hold for y. The monopolist follows another outcome path, a delay strategy, defined as
follows.

Definition B.4. A delay strategy is an outcome path in which the monopolist makes unacceptable offers
for T1 periods, where

T1(0, q, y) = inf
{

T : e−b∆T y ≤ yf (0, q)
}

.

Then, the monopolist follows the acceleration strategy.
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Consider the following optimization problem:

max
T1≥0,q∈Q

δT1

Tf∑
t=1

pt(qt − qt−1)δ
t−1(B.28)

(1− qt)− pt = δ((1− qt)− pt+1)(B.29)

pTf = 1− qTf(B.30)

βTf

βT1y −
Tf∑
t=1

β−t(qt − qt−1

 ≥ 0(B.31)

βTf

βT1y −
Tf∑
t=1

β−t(qt − qt−1)

 (qTf − qf ) = 0.(B.32)

A natural state variable is the residual demand D(q0, qf ) and the available stock at the time when the
monopolist makes the decision. By state, we mean a triple (q0, qf , y) representing residual demand and
the available stock.

Let q∗(0, qf , y) be the total amount of goods served in an optimal solution of (B.28) where the state
is (0, qf , y). If q∗(0, qf , y) = qf , then the associated optimal pricing sequence is precisely the optimal
pricing sequence from the classic problem, because (B.31) constraint is not binding. Otherwise, (B.31)
constraint is binding, and inevitably, some consumers are not served as the available goods are burned off,
and therefore, the optimal solution should be a delay strategy.

Based on the analysis of the optimal strategy under state (0, qf , y), we have a “rough” characterization
of optimal strategy for an arbitrary state (q0, qf , y) and q∗(q0, qf , y) which is the counter part of q∗(0, qf , y)
for state (q0, qf , y):

• if q∗(q0, qf , y) ≥ min(qf , y), the monopolist follows the acceleration strategy, and
• if q∗(q0, qf , y) < min(qf , y), then the monopolist delays T1(q0, q

∗(q0, qf , y), y) periods before mak-
ing the acceptable offers. After making T1(q0, q

∗(q0, qf , y), y) unacceptable offers, the monopolist

follows the acceleration strategy associated with state (q0, qf , e−b∆T1(q0,q∗(q0,qf ,y),y)y).

It is only a rough characterization, because we have yet to identify how many consumers will accept an
offer p′1 which is not an equilibrium offer. We shall focus the analysis on the deviation from the first offer
in the equilibrium, because the general case follows from the same logic.

We need to consider two separate cases depending upon whether the initial offer is acceptable (i.e.,
the monopolist follows an acceleration strategy), or the initial offer is unacceptable (i.e., the monopolist
follows a delay strategy).

B.1. p1 is an acceptable offer. Fix p′1 6= p1. We only examine the case where p′1 < p1, because the
other case follows from the symmetric logic. If the acceptable strategy does not bind (B.31), then the
complementary slackness condition implies that

qf = q∗(0, qf , y).

Since we are considering an acceleration strategy, it is precisely the total number of periods when the
market is open. In this case, the equilibrium strategy off the equilibrium path is identical with that in the
classic problem. Because the unique subgame perfect equilibrium in the classic problem is a reservation
price equilibrium, the acceleration strategy can be sustained by a reservation price equilibrium. By the
nature of the reservation price equilibrium, a lower than an equilibrium offer increases the sales in that
period. As a result, (B.31) condition is not binding in any continuation game. That is why we can use the
same reservation price equilibrium strategy of the classic problem, as if the good does not perish.

On the other hand, if the acceptable strategy binds (B.31) so that

qf > q∗(0, qf , y),

then the equilibrium strategy off the equilibrium path differs from that from the classic problem. Yet, we
can show that an offer lower than an equilibrium price always increases the sales in that period.
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Because (B.31) holds with an equality, the market must be cleared in the sense that the monopolist
sells all available stocks, even though some consumers are not served. Since p1 is an acceptable offer, all
ensuing offers from the monopolist are also acceptable for some consumers. Thus, after q1 consumers are
served,

yf (q1, q
∗(q1, qf , y)) = β(y − q1)

must hold, where the left hand side is the amount of goods needed to serve the remaining consumers in
the continuation game following p1, while the right hand side is the good available at the beginning of the
second round. We can re-write the same equality as

(B.33) q1 +
1

β
yf (q1, q

∗(q1, qf , y)) = y.

Recall the definition of yf (q′, q′′). It is clear that

∂yf (q′, q′′)

∂q′′
≥ 1 and

∂yf (q′, q′′)

∂q′
≤ −1.

Fix p′1 < p1, and let q′1 and q1 be the mass of consumers who accept p′1 and p1, respectively. We claim
that

q′1 ≥ q1.

To prove our claim by way of contradiction, suppose that

q′1 < q1.

Even though p1 is an acceptable offer, we have yet to prove that p′1 is also an acceptable offer.

Lemma B.5. If p1 is an acceptable offer, then ∀p′1 < p1 is an acceptable offer.

Proof. Suppose that p′1 is not an acceptable offer (q′1 = 0). By the definition of a delay strategy, p′1 is a
part of a delay strategy. By the definition of a delay strategy, the continuation strategy involves T ′

1 periods
of delay, followed by a sequence of acceptable offers. The sequence of acceptable offers is identical to the
optimal pricing sequence associated some residual demand D(0, q′) where q′ > q∗(0, qf , y). Thus,

1

βT1
yf (0, q′) ≤ y

which is impossible, because

1

βT1
yf (0, q′) ≥ 1

β
yf (0, q′) > q1 +

1

β
yf (q1, q

∗(0, qf , y)) = y.

ut

Now, we know p′1 < p1 is an acceptable offer. By the construction, every offer following p′1 is an
acceptable offer. Thus, all offers following p′1 is identical to an optimal solution from the classic problem
associated with demand D(q′1, q

′′) for some q′′ ≤ 1. By Lemma 2.3, we know that no two reservation price
functions associated with two demand curves with different lowest reservation value consumers intersect
with each other. In particular, if p′1 < p1 and q′1 < q1, then the reservation price function associated with
(p′1, q

′
1) is located “below” the reservation price function associated with (p1, q1). Since the demand curve

is downward sloping,

q′′ > q∗(0, qf , y).

Since (B.31) holds following p′1, we have

q′1 +
1

β
yf (q′1, q

′′) ≤ y.

From (B.33),

q′1 +
1

β
yf (q′1, q

′′) ≤ y = q1 +
1

β
yf (q1, q

∗(0, qf , y))

which is impossible, because q′1 < q1 and q′′ > q∗(0, qf , y) imply that

q′1 +
1

β
yf (q′1, q

′′) > q1 +
1

β
yf (q1, q

∗(0, qf , y)).
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B.2. p1 is not an acceptable offer. The construction follows almost the same idea. While there are
many unacceptable offers, let us streamline the construction by focusing on a series of “lowest” unacceptable
offers. Suppose that the monopolist makes T1 unacceptable offers, before making the first acceptable offer
pT1+1. Define p1 (t ≤ T1) implicitly as

1− q0 − pt = δT1−t+1(1− q0 − pT1+1)

or equivalently as

pt = (1− δT1−t+1)(1− q0) + δT1−t+1pT1+1.

In particular, if q0 = 0,

p1 = (1− δT1)(1− q0) + δT1pT1+1.

Fix p′1 6= p1. As in the previous case, let us focus on the case where p′1 < p1. We need to find an
optimal strategy with an additional constraint that the initial offer is p′1. By Lemma 2.3, we know that the
initial acceptable offer is a continuous function of the terminal offer. Since the initial unacceptable offer
is a continuous function of the first acceptable offer, it is also a continuous function of the terminal offer.
Recall that q∗(0, qf , y) is the equilibrium quantity delivered to the consumers. For each q ≥ q∗(0, qf , y),
Constructing an optimal pricing rule with the terminal condition that pTf = 1− q. Let p∗1(q) be the first
offer (which may be unacceptable) in the optimal pricing rule that terminates with pTf = 1− q.

Since p∗1(q) is a continuous function of q, ∀p′1 < p1, there exists q > q∗(0, qf , y) such that p′1 = p∗1(q).
If p′1 = 1− qf , then the consumer must accept the offer, because the monopolist will never charge a price
lower than 1 − qf . Thus, there exists q′ such that p′1 = p∗(q′) ≥ 1 − qf is an acceptable offer. By the
construction of the strategy off the equilibrium path from the acceptable offer, we know that the mass of
consumers who accepts p′′1 ≤ p′1 does not decrease.

Appendix C. Proof of Proposition 5.4

Choose the parameters according to Lemma 5.2 so that q∗ ∈ [0, qf ] exists. Fix the outcome path
associated the optimal value qe

1. We need to construct the strategy off the equilibrium path. We focus
on the initial offer, because we already know that the second phase can be sustained by a reservation
price equilibrium, if qe

1 ≤ q∗. If we choose the parameters according to Lemma 5.2, then qe
1 ≤ q∗ for any

sufficiently small ∆ > 0.
Fix p′1 6= p1,1. We focus on the case p′1 < p1,1, because the other case follows from the symmetric

reasoning. Since p1,1 must satisfy (5.23), ∀p′1 there exists q′1 and a delay strategy in D(q′1, qf ) with the
available stock β(y − q′1) such that

1− q′1 − p′1 = δT ′
0(1− q′1 − p′2,1)

where T ′
0 and p′2,1 are the number of unacceptable offers and the initial offer in the delay strategy associated

with state (q′1, qf , β(y−q′1)). Since the initial offer of the delay strategy associated with state (q′1, qf , β(y−
q′1)) is continuous function of q′1, we can choose

(C.34) q1(p
′
1) = sup{q′1 : there is a delay strategy associated with (q′1, qf , β(y − q′1)) satisfying (5.23)}.

Remark C.1. In the limit as ∆ → 0 and b → 0, the initial offer to serve q1 becomes 1 − q1. Thus, for
each p′1 < p1,1, we can associate q′1 > qe

1, which implies that a lower price is always accepted by more
consumers. However, for a positive ∆ > 0, this sort of monotonicity may fail. Note that the amount of
delay in the continuation game is determined by the time needed to achieve the desired target level of the
stock. We know that as more consumers are served in the first phase, it will take more time to achieve the
desired target level. Let q1, p1,1, p2,1, T0 be the size of consumers served by p1,1, the initial offer, the first
acceptable offer of the second phase and the number of unacceptable offers. Recall that ∀∆ > 0, ∀b > 0,

1− q1 − p1,1 = δT0(1− q1 − p2,1) > 0.

Since T0 is increasing as q1 increases, it is possible that 1− q1 − p1,1 is decreasing as q1 is increasing and
p1,1 is decreasing. Because of this possible failure of monotonicity, (C.34) may not generate a decreasing
function for ∆ > 0 and b > 0, although it does in the limit. To address this issue, we need to do some
additional work.
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Note that qe
1 has to converge to 0.5, which generates the maximum profit in the limit. We can choose

the parameters according to Lemma 5.2 so that qe
1 < q∗, and the initial offer associated with the original

demand D(0, qf ) is within ε neighborhood of 1 − qe
1, while the initial offer associated with the residual

demand D(q∗, qf ) is also within ε neighborhood of 1− q∗.
Thus, the initial offer p1,1 changes from the neighborhood of 1−qe

1 to the neighborhood of 1−q∗, which
is smaller than 1 − qe

1. We know the mapping q1 7→ p1,1 may not be strictly decreasing over [qe
1, q

∗] but
the value around qe

1 is strictly larger than the value around q∗, if ∆ is sufficiently small. Therefore, (C.34)
is a strictly decreasing function.

Define
p∗1 = sup{p1,1 ≥ 1− qf : q1(p

′
1) ≥ q∗}.

The right hand side is not empty, because if the monopolist offers 1 − qf , all consumers must accept
immediately. In fact, if q∗1 = 1− qf , then the proof is completed, as we have already shown that whenever
the monopolist deviates to a lower price, more consumers accept the offer.

Suppose that p∗1 > 1− qf . Then, ∀p′1 < p∗1, the continuation game cannot sustain the delay strategy as
a Nash equilibrium outcome. As a result, we need a randomization by the monopolist to smooth out the
transition from the delay strategy to the acceleration strategy.

Consider a continuation game after q∗ consumers are served. The residual demand is D(q∗, qf ) and the
available stock is β(y − q∗). By the definition of q∗, both the acceleration and the delay strategies are
optimal. Let pa

2,1 be the initial offer of the acceleration strategy, and pd
2,1 be the initial offer of the delay

strategy, which is offered after T0 periods. Since p′1 < p∗1,

1− q∗ − p′1 > δT0(1− q∗ − pd
2,1).

If p′1 > pa
2,1, then

1− q∗ − pa
2,1 > 1− q∗ − p′1.

Choose α ∈ (0, 1) so that

1− q∗ − p′1 = αδT0(1− q∗ − pd
2,1) + (1− α)(1− q∗ − pa

2,1).

That is, the consumers expect that the monopolist randomize over two strategies so that q∗ consumer is
indifferent between accepting and rejecting p′1.

If p′1 ≤ pa
2,1, the consumers expect that the monopolist follow an acceleration strategy. The continuation

strategy is identical to the continuation game following a deviation from an acceptable offer (which in this
case is pa

2,1.
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