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Abstract

Previous studies have argued that US output growth declined persistently after the Great

Recession. To explain the persistent slowdown in output growth, we develop a simple model that

incorporates wealth preferences and downward nominal wage rigidity into a standard monetary

growth model. Our model predicts that output initially grows at a constant steady rate and

slows endogenously afterward. In the model, persistent stagnation occurs together with the

declining real interest rate. Applying our model to the US data, we show that it successfully

explains the slowdown in output growth along with the declines in the real interest rate. We

also examine the model with the Japanese data. The model replicates the persistent stagnation

that has been observed since the 1990s.
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1 Introduction

The persistent decline in output growth in the United States (US) after the Great Recession has

formed one of the most well-known debates in macroeconomics. In his “secular stagnation hypoth-

esis,” Summers (2014) argues that while long-run US output was expected to grow steadily before

the Great Recession, the actual output after the Great Recession failed to catch up with the ex-

pected output trend. Figure 1 plots two estimated trends for log real gross domestic product (GDP)

per capita along with the actual data. The upper panel shows the US output trends together with

actual output. The linear trend (the dot-dashed line) is estimated using log real GDP data from

1990:Q1 to 2007:Q1 and extrapolated after 2007:Q1. While output was expected to grow based on

the data up to 2007, actual real GDP after 2007:Q1 did not grow as fast as the expected output

trend. Using the data that includes the period after 2007:Q1, we estimate the cubic trend of output

(the dashed line). The cubic trend falls below the linear trend, exhibiting a slowdown in output

growth.1 A similar observation can be made for Japan in the 1990s, as shown in the lower panel of

the figure. We estimate the linear trend of log real GDP from 1980:Q1 to 1991:Q1 and the cubic

trend from 1980:Q1 to 2019:Q4.2 Comparing the linear and cubic trends, we observe that Japan

experienced a significant decline in output growth.

[Figure 1 about here.]

In this paper, we develop a model with wealth preferences and assess the model’s ability to

account for the slowdown in output growth. The literature on wealth preferences has found that

strong wealth preferences could lead to an inherently stagnant economy in the steady state.3 In the

standard model without wealth preferences, households receive market interest from savings. In the

model with wealth preferences, however, households receive additional benefits of savings, namely

holding wealth. Under our preference assumptions, the additional benefits incentivize households

to give up more consumption to enjoy holding more wealth. In turn, the permanent shortage in

aggregate demand or the strong desire for savings leads to the permanently low real interest rate

and low inflation, which well characterize the secular stagnation observed in advanced economies.
1We confirmed a similar pattern in the potential GDP series by the Congressional Budget Office.
2We use 1991:Q1 as the end of the sample period in calculating the linear trend of log GDP because a persistent

decline in output growth started after this year.
3The earliest examples of these studies are Ono (1994) and Ono (2001), among others. In a recent paper, Michau

(2018) also proposes a model with wealth preferences that leads to secular stagnation in the steady state.
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We incorporate two components into the standard monetary growth model. As discussed, the

first component is wealth preferences. Following the literature (e.g., Michau (2018), Michaillat

and Saez (2021), Hashimoto, Ono, and Schlegl (2023)), we introduce wealth preferences with a

strictly positive marginal utility in equilibrium. These preferences lead to a strong desire for

savings compared with the case without wealth preferences. The second component is downward

nominal wage rigidity (DNWR), which is widely discussed in recent studies.4 Together with wealth

preferences, DNWR plays an important role in generating secular stagnation in the monetary

growth model.

We demonstrate that our model endogenously generates a slowdown in output growth in the

transition path to the steady state. In particular, we theoretically show that output initially equals

the first-best allocation, but later falls below the first-best allocation. In our model, strong wealth

preferences lead to disinflation, while DNWR is not binding. However, once DNWR binds, inflation

no longer decreases and the household with wealth preferences accumulates wealth rather than

consuming enough to reach the first-best allocation in output. Then, aggregate demand determines

output, an aggregate demand shortage occurs, and the growth rate of output is lower than that

under the first-best allocation.

In our numerical simulations, we focus on the slowdown in output growth in the US after the

Great Recession. For the US data, our model explains 95.6 percent of the slowdown in output

growth in 2017. Our simple growth model explains surprisingly well the deviations between the

realized output trend and the expected output trend before the Great Recession. We also conduct

numerical simulations for Japan. The simulation results also perform well for the Japanese data

in the 1990s. In particular, the model explains 77.5 percent of the slowdown in output growth in

2001.

Our model also predicts the permanent decline in the real interest rate, which is linked to the

secular stagnation hypothesis.5 In the standard consumption Euler equation, the real interest rate

is determined by the household’s subjective discount rate and the growth rate of consumption.

However, as pointed out by Michaillat and Saez (2021), wealth preferences in the consumption
4See Barattieri, Basu, and Gottschalk (2014), Sigurdsson and Sigurdardottir (2016), Schmitt-Grohé and Uribe

(2016), Fallick, Lettau, and Wascher (2016), Hazell and Taska (2020), and Grigsby, Hurst, and Yildirmaz (2021),
among others.

5Characterizations of secular stagnation appear in Baldwin and Teulings (2014) and Krugman (2014).
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Euler equation create discounting in the real interest rate. This discounting leads to a persistently

low real interest rate, consistent with the data under secular stagnation.

In our model, inflation also declines persistently until the output trend deviates from the pro-

ductivity trend. This observation is consistent with inflation in the US before and after the Great

Recession. Hall (2011) points out that US inflation declined during the 1990s but became stable

even in the presence of long-lasting slack in the economy from the Great Recession. Our model

interprets the missing deflation as being a consequence of the binding DNWR, where inflation stops

declining even if aggregate demand falls short of aggregate supply.

Previous studies have fallen into one of four groups in explaining secular stagnation. The

first focuses on the productivity slowdown (e.g., Fernald (2015), Gordon (2015), Takahashi and

Takayama (2022)). This group emphasizes the decline in productivity growth as a source of the

secular stagnation. In our model, (labor) productivity growth also declines and the decline is

driven by the decline in aggregate demand growth. Moreover, we intentionally remove exogenous

productivity in the production function from the model because we highlight the degree to which

the model with wealth preferences alone explains the observed slowdown in output growth. The

second group focuses on the impact of demographic changes on savings in explaining the declining

real interest rate. (e.g., Carvalho, Ferrero, and Nechio (2016), Gagnon, Johannsen, and Lopez-

Salido (2021), Jones (2022)). We exclude this potentially important factor from our model because

we focus on the mechanism behind the impact of wealth preferences on savings. The third group

relies on debt deleveraging (e.g., Hall (2011), Eggertsson and Krugman (2012), Mian and Sufi

(2014), Guerrieri and Lorenzoni (2017), Eggertsson, Mehrotra, and Robbins (2019)). Among these

studies, Eggertsson, Mehrotra, and Robbins (2019) introduce debt deleveraging into a model that

incorporates declines in productivity and changes in demography. They numerically evaluate their

model of the secular stagnation and discuss its policy implications.6 f Our paper is categorized into

the fourth group, which introduces wealth preferences into a standard macroeconomic model. This

group assumes a strong desire for liquidity or wealth (e.g., Michau (2018), Illing, Ono, and Schlegl

(2018)).7 The study closest to ours is Michau (2018), who incorporates wealth preferences and
6Ikeda and Kurozumi (2019) discuss monetary policy rules to prevent secular stagnation in a model with financial

frictions and endogenous total factor productivity growth. Kobayashi and Ueda (2022) argue that a fear of large-scale
taxation and capital misallocation arising from a debt crisis may be a driving force of the output slowdown in Japan.

7In recent studies, models with wealth preferences are analyzed using the New Keynesian framework (Michaillat
and Saez (2021)) and search models (Michaillat and Saez (2022) and Hashimoto, Ono, and Schlegl (2023)).
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DNWR into the standard neoclassical growth model and shows the existence of both the neoclassical

and stagnation steady states in his model. By contrast, our model has a unique steady state

and endogenously generates a regime change from efficient allocation in the neoclassical economy

to inefficient allocation in the stagnant economy.8 Furthermore, we implement a quantitative

assessment of whether the model with wealth preferences explains the slowdown in output growth

together with permanent trend declines in the real interest rate and inflation.

The paper is organized as follows. Section 2 presents our simple growth model. Section 3 studies

the model dynamics and presents the main analytical results. In Section 4, we simulate the model

and show that its predictions are consistent with the data. Section 5 concludes.

2 The model

This section first presents the setup of the monetary growth model along with two important model

assumptions: wealth preferences and DNWR. We then discuss the implications of DNWR for the

goods market. Finally, we define the competitive equilibrium in this model.

2.1 Setup

2.1.1 The household

The representative household solves the following maximization problem:

max
ct,mt,et,at,ht

∫ ∞

0
exp(−ρt) [u(ct) + v(mt)− φ(et) + β(at)] dt, (1)

s.t. ȧt = rt(at −mt)− πtmt + wtetht − ct + τt, (2)

ht ≤ 1, (3)

where a0 is given and the subjective discount rate ρ is strictly positive. Here ct is consumption,

mt is real money balances (mt = Mt/Pt, where Mt is nominal money balances and Pt is the price

level), et is the labor effort (or the quality of labor), and at is total real asset holdings. In the
8In this sense, our analysis also differs from Benigno and Fornaro (2018), who develop an endogenous growth model

with DNWR. They show that weak growth depresses aggregate demand and that the resulting aggregate demand
shortage may lead to the stagnation steady state. In contrast to our study, stagnation arises as a self-fulfilling
equilibrium.
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budget constraint, rt is the real interest rate (at − mt = bt represents the illiquid asset holdings

of the household), πt is inflation or the opportunity cost of holding money, wt is real wages, ht is

hours worked and τt is lump-sum transfers from government. Here, wage income is proportional

to effective labor nt(= etht). The budget constraint (2) indicates that the sources of consumption

and saving (ȧt) equal income from asset holdings (rt(at − mt) − πtmt), labor income (wtnt), and

the lump-sum transfers from government (τt). In this maximization problem, the effective labor

supply is decomposed into ht ≤ 1 and 0 ≤ et < ∞. We also assume no capital in the economy;

therefore, at = mt holds for all t (i.e., bt = 0 in equilibrium).

The utility functions u(ct), v(mt), and φ(et) take a constant relative risk aversion form. These

functions are expressed as follows:

u(ct) = ln ct, (4)

v(mt) = v
m1−η

t

1− η
, v > 0, η > 0, (5)

φ(et) =
(φtet)

2

2
, φt > 0, (6)

where, with a slight abuse of notations, v > 0 represents a parameter for the function v(mt). The

time-varying parameter φt follows a deterministic process given by

φt = φ0 exp(−gt), g > 0, (7)

where φ0 > 0 denotes the initial value of φt. Here, φt decreases at the rate g. As we show below, φt

enables us to consider endogenous variations in labor productivity through the household’s effort.

Our preference assumptions on the utility from wealth are critical. We assume that the house-

hold has an insatiable desire for wealth. The utility from wealth satisfies β′(at) > 0, β′′(at) ≤ 0,

and β′(at) is strictly positive and constant in equilibrium. The simplest specification that satisfies

these conditions for β(at) is a linear function:

β(at) = β × at, β > 0, (8)

where β is a strictly positive parameter, again with a slight abuse of notations, for the function
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β(at). This specification follows Michau (2018) and extends Ono (1994) and Ono (2001), in which

the household has an insatiable desire for liquidity.

We assume (8) for simplicity, not for the necessity of our main results. A necessary condition for

our main results is that marginal utility from wealth is strictly positive and constant in equilibrium.

As argued by Michau (2018) and Michaillat and Saez (2021), there are a variety of alternative

specifications for the utility from wealth that generate positive constant marginal utility. In these

studies, while the concavity of the utility function is ensured, marginal utility from wealth is

constant in equilibrium.9 We employ linear utility (8) because these specifications lead to the same

results in this paper.10

The first-order conditions are:

v′(mt)

u′(ct)
= rt + πt, (9)

ċt
ct

= rt − ρ+
β′(at)

u′(ct)
, (10)

φ′(et)/ht
u′(ct)

= wt, if the DNWR is not binding, (11)

ht = 1, (12)

and the transversality condition is limt→∞ exp(−ρt)u′(ct)at = 0. In (9), the household pays the

opportunity cost of holding money, rt+πt, to receive the marginal benefits v′(mt) (or v′(mt)/u
′(ct)

when measured in units of consumption goods). In (10), the household pays the marginal cost

of savings, ρ + ċt/ct. This is the household’s consumption discount rate, which allows for the

household’s risk aversion.11 Regarding the marginal benefits of savings, the household receives

market returns on illiquid assets rt and the marginal utility from wealth β′(at) (or β′(at)/u
′(ct) when

9Michau (2018) and Hashimoto, Ono, and Schlegl (2023) consider the preferences for wealth excluding money,
β(at−ms

t ), where ms
t is the real money supply and the household takes it as given. They assume that β′(at−ms

t ) > 0,
β′′(at − ms

t ) < 0, and limat→∞ β′(at − ms
t ) = 0, but β′(0) > 0. Thus, marginal utility from wealth is constant in

equilibrium, where bt = at −ms
t = 0. Ono and Yamada (2018) and Michaillat and Saez (2021) allow for utility from

relative wealth at(i) − ãt. Here, at(i) denotes wealth at the individual household level, and ãt is average wealth
in the economy, which the household takes as given. They assume that β′(at(i) − ãt) > 0, β′′(at(i) − ãt) < 0 and
limat(i)→∞ β′(at(i)− ãt) = 0, but again β′(0) > 0 where at(i) = ãt.

10Constant marginal utility results in equilibrium money holdings beyond the amount the consumers use for their
transactions. Nevertheless, constant marginal utility is not necessarily inconsistent with the neuroscientific evidence.
Based on lab experiments, Camerer, Loewenstein, and Prelec (2005) argue that “people value money without carefully
computing what they plan to buy with it.” (p. 35)

11The consumption discount rate is generally represented by the sum of the steady-state discount rate and the
growth rate of marginal utility. In the equation, it is given by ρ− [du′(ct)/dt][1/u

′(ct)] = ρ+ ċt/ct.
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measured in units of consumption goods). When the wealth preferences are absent, (10) reduces

to the standard Euler equation ċt/ct = rt − ρ and savings only yield market returns rt. When

the wealth preferences are present, however, savings generate additional benefits of β′(at)/u
′(ct).

Thus, the household would give up more consumption and accept a lower interest to enjoy holding

more wealth. Equation (11) has the standard interpretation that the marginal rate of substitution

between effort and consumption (per unit of hours worked) equals the real wage. If we incorporate

(12) into (11), the equation reduces to the standard first-order condition for labor supply. As we

will discuss in Section 2.2, however, this equation only holds with equality when DNWR is not

binding.

Eliminating rt from (9) and (10) and allowing for bt = 0 in equilibrium yields the condition for

aggregate demand:

Ω(mt, ct) = ρ+
ċt
ct

+ πt, (13)

where Ω(mt, ct) ≡
v′(mt) + β′(mt)

u′(ct)
.

Here Ω(mt, ct) denotes the marginal benefits of holding wealth (measured in units of consumption

goods). In Ω(mt, ct), v′(mt) is benefits of increasing money, and β′(mt) = β′(at) is the additional

benefit of increasing wealth. The right-hand side of (13) represents the opportunity cost of holding

wealth. Thus, (13) determines the rate at which the household substitutes wealth for consumption.

To hold an additional unit of assets, the household must give up consumption goods by an amount

equal to the household’s consumption discount rate (ρ+ ċt/ct) and the inflation rate (πt).

2.1.2 The firm

There is a representative firm in a competitive market in the economy. In our model, the firm’s

technology is linear in effective labor nt:

yt = nt, (14)

where yt is output. With this production function, the firm’s effective labor demand condition is:

wt = 1. (15)
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2.1.3 The downward nominal wage rigidity

One of the most important assumptions in our model is the DNWR in the labor market. Following

the literature (e.g., Schmitt-Grohé and Uribe (2016)), we assume that nominal wage inflation

Ẇt/Wt cannot be lower than the lower bound γ:

Ẇt

Wt
≥ γ. (16)

2.1.4 The government

The government has a budget constraint τt = µms
t , where ms

t = M s
t /Pt and M s

t is the nominal

money supply. Throughout this paper, we assume that the money growth rate is strictly positive

(µ > 0) and sufficiently high:

µ > γ, (17)

which means that the money growth rate always exceeds the lowest level of inflation.

2.2 Implications of DNWR for the goods market

To explore the implications of DNWR for the goods market, we first rewrite the equation of DNWR

as a complementary slackness condition in the labor market:

(
Ẇt

Wt
− γ

)
(nf

t − nt) = 0,

where nf
t is the first-best allocation of effective labor when DNWR is not binding. If the nominal

wage inflation exceeds γ, the labor market achieves the first-best allocation of effective labor. If

Ẇt/Wt is equal to γ, DNWR is binding. As a result, the demand for effective labor determines the

allocation of nt in the labor market.

We translate the complementary slackness condition in the labor market into that in the goods

market. Note that DNWR equates to downward nominal price rigidity πt ≥ γ because real wages

wt = Wt/Pt are constant from (15). Furthermore, the production function is yt = nt. Combining
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these relations with the above condition yields:

(πt − γ)(yft − yt) = 0, (18)

where yft is the first-best allocation of output.

The economy has two regimes. If inflation is high (πt > γ), the goods market achieves the

first-best allocation yt = yft . We refer to this regime as the high-inflation regime. Alternatively, if

the goods market fails to achieve the first-best allocation, namely yt < yft , inflation hits the lower

bound (πt = γ).12 We refer to this regime as the low-inflation regime.

When πt > γ, output grows at an exogenous rate of g > 0. As φt decreases at the rate

g > 0, marginal disutility of effort also decreases. This decline in φt raises the household’s effort.

Furthermore, (11) holds with equality. The assumptions in the model allow us to derive:

yft = φ−1
t = φ−1

0 exp(gt), (19)

which means that output grows at the exogenous rate g > 0.13

When πt = γ, (11) no longer holds with equality. In particular, we obtain:

wt >
φ′(et)/ht
u′(ct)

, if the DNWR is binding. (20)

Here, while ht = 1 continues to hold, DNWR introduces a wedge into the supply of effort. That is,

the household cannot supply the optimal level of effort it desires at a given wage to the firm. We

prove that (20) is equivalent to yt < yft .14 Thus, (11) and (20) are consistent with the complemen-

tary slackness condition (18).15

12We exclude the case of yt > yf
t because it does not achieve feasibility of production.

13To derive this equation, note that (11) and (15) imply that φ′(yt) = u′(yt) because ct = yt = etht and ht = 1
for all t. The utility functions (4) and (6) lead to φ2

tyt = 1/yt. Given that the goods market achieves the first-best
allocation (i.e., yt = yf

t ), this condition leads to yf
t = 1/φt = φ−1

0 exp(gt).
14Note that wt = 1 and ht = 1. Together with the goods market-clearing condition ct = yt = et, (20) becomes

(1−y2
tφ

2
t ) > 0. This inequality is further rewritten as (1−ytφt)(1+ytφt) > 0. As yt and φt are both strictly positive,

this inequality is simplified to 1/φt − yt > 0. Noting the definition of yf
t given by (19), yf

t = 1/φt. Therefore, we
have yt < yf

t .
15When DNWR is not binding, the household’s decision of et influences its decision of ct and mt (see (9)–(11)).

Once DNWR binds, however, (20) implies that the household’s willingness to supply effort does not affect et, and
thus the labor demand determines et in equilibrium. Note that the household’s decisions of ct and mt are independent
of et (See (9) and (10)). Consequently, the household does not need to reoptimize ct and mt after observing the
difference between et and eft in the labor market.
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Labor productivity varies endogenously depending on whether DNWR is binding. In this model,

labor productivity is simply yt/ht = et because of the production function yt = nt = etht. Increased

effort improves the quality of labor, and the improved quality of labor enhances labor productivity.

When DNWR is not binding, labor productivity et = yft /ht grows at the rate g as seen from (19).

When DNWR binds, labor productivity is no longer determined by yft .

2.3 The competitive equilibrium

We are ready to discuss the competitive equilibrium. The market-clearing conditions are:

1. Goods market ct = yt,

2. Labor market (πt − γ)(yft − yt) = 0,

3. Money market mt = ms
t ,

4. Bond market at −mt = 0.

A competitive equilibrium of the model is the set of allocations {ct, yt,mt, at} and prices {wt, rt, πt}

that satisfy the following: (i) the representative household maximizes (1) subject to (2) and (3);

(ii) the representative firm maximizes profits; (iii) the government’s transfers and money supply are

specified as above; and (iv) all markets clear except for the labor market. The labor market-clearing

condition depends on the complementary slackness condition (18).

3 The model dynamics

This section investigates the model dynamics from t = 0 to t = ∞, given the initial state at t = 0.

We first show the system of equilibrium conditions under the two inflation regimes. Then, we

demonstrate that a unique transition path to the “stagnation” steady state exists under wealth

preferences. Along the transition path to the stagnation steady state, slowdown in output growth

occurs endogenously. Finally, we show that the model without wealth preferences fails to generate

a slowdown in output growth.
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Throughout this section, we rely on the equation for aggregate demand, which is the key equa-

tion for understanding the model:

Ω(mt, yt) = ρ+
ẏt
yt

+ πt, (21)

where we integrate the goods market-clearing condition with (13).

It is convenient to define the threshold value of Ω(mt, yt) for which output grows at the rate g

(i.e., the first-best allocation) but inflation is as low as γ (i.e., πt = γ). Substituting ẏt/yt = g and

πt = γ into (13) gives the threshold value of Ω(mt, yt):

Ω∗ = ρ+ g + γ. (22)

We use the threshold Ω∗ to evaluate the allocation and prices in the two inflation regimes.

3.1 High-inflation regime

The high-inflation regime is characterized by the first-best allocation yt = yft and high inflation

πt > γ, where DNWR is not binding in (18). Using the goods and bond market-clearing conditions

ct = yt and bt = 0 (or at = mt), we summarize the system of equilibrium conditions as follows:

ẏt
yt

= g, (23)

ṁt

mt
= µ− γ − [Ω(mt, yt)− Ω∗], (24)

πt = γ + [Ω(mt, yt)− Ω∗], (25)

rt = ρ+ g − β′(mt)

u′(yt)
. (26)

Equation (23) immediately follows from (19) because yt = yft holds under the first-best allocation.

Next, we derive (26) from (10) using ẏt/yt = g in the high-inflation regime. Equation (25) is derived

from (21) and (22) to obtain (25). Finally, (24) is derived from the definition of mt = Mt/Pt,

ṁt/mt = µ − πt. In solving the model, we compute output from yt = yft = φ−1
0 exp(gt), given φ0.

Given m0 = a0, mt can be solved numerically for mt from (24).
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3.1.1 Low-inflation regime

The low-inflation regime is characterized by inefficient allocation yt < yft and the lower bound of

inflation πt = γ, where DNWR is binding in (18). Using the threshold value Ω∗ given by (22), we

summarize the equilibrium conditions as follows:

ẏt
yt

= g − [Ω∗ − Ω(mt, yt)] , (27)

ṁt

mt
= µ− γ, (28)

πt = γ, (29)

rt = ρ+ g − β′(mt)

u′(yt)
− [Ω∗ − Ω(mt, yt)] . (30)

Equation (29) shows that DNWR is binding. Equation (28) immediately follows from (29) because

ṁt/mt = µ − πt. To obtain (27), we use (21) and (22).16 We derive (30) from (10) using ẏt/yt =

g − [Ω∗ − Ω(mt, yt)] in the low-inflation regime.

Comparisons between the two regimes reveal that the difference between Ω(mt, yt) and Ω∗

matters for the model dynamics. For example, (27) indicates that output growth is lower than g

under the low-inflation regime if and only if Ω(mt, yt) < Ω∗. Furthermore, (25) suggests that by

how much inflation under the high-inflation regime exceeds γ depends on the size of Ω(mt, yt)−Ω∗.

The real interest rate under the low-inflation regime depends on the difference between Ω(mt, yt)

and Ω∗. If Ω(mt, yt) < Ω∗, the difference generates downward pressure on the real interest rate as

is seen from (30).

3.2 The stagnation steady state

We characterize the steady state before analyzing the model dynamics. The steady state in our

model is the “stagnation” steady state where (i) DNWR binds and (ii) output converges to a

constant value. We show that the stagnation steady state arises under our preference assumptions.

Let t∗ be the period in which Ω(mt, yt) becomes equal to Ω∗. When Ω(mt, yt) = Ω∗, output

growth is g and inflation is as low as γ. Equation (28) implies that mt goes to ∞ as t → ∞ because
16In particular, we use (21) to obtain ẏt/yt = Ω(mt, yt) − ρ − πt. Because πt = γ, ẏt/yt = Ω(mt, yt) − ρ − γ. By

adding and subtracting g in this equation, we obtain ẏt/yt = g − Ω∗ +Ω(mt, yt) from (22).
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of (17). In particular, mt can be solved as:

mt = mt∗ exp[(µ− γ)(t− t∗)] ⇒ lim
t→∞

mt = ∞, (31)

where mt∗ is the real money balances evaluated at t = t∗.

To prove the existence of the stagnation steady state, we use the transversality condition:

limt→∞ u′(yt)at exp(−ρt) = limt→∞mt/yt exp(−ρt) = 0. Taking the time derivative of this con-

dition translates the condition into ṁt/mt − ẏt/yt − ρ < 0. In the stagnation steady state,

ṁt/mt = µ − πt = µ − γ (because (i) DNWR binds) and ẏt/yt = 0 (because (ii) output con-

verges to a constant value). Thus, µ− γ < ρ ensures the transversality condition. Note that if the

assumption µ > 0 holds, the transversality condition implies that ρ+ γ > 0.

Now, the allocations and prices in the steady state are characterized as follows. Because (i)

DNWR binds, inflation equals its lower bound: πss = γ. Output growth is zero in the stagnation

steady state because (ii) output converges to a constant value. These results imply that the right-

hand side of (21) is ρ + γ in the stagnation steady state. Next, the left-hand side of (21) in the

stagnation steady state is:

Ωss ≡ lim
t→∞

Ω(mt, yt)

= lim
t→∞

[v′(mt) + β′(mt)]yt

= βyss.

(32)

Combining these results, we have the steady-state level of output yss:

yss =
ρ+ γ

β
, (33)

which is strictly positive because ρ + γ > 0. For the remaining variables, the steady-state growth

rate of real money balances is µ−γ because (28) holds under binding DNWR. The nominal interest

rate in the stagnation steady state is zero because of (9): limt→∞(rt + πt) = limt→∞[v′(mt)yt] = 0.

The real interest rate in the stagnation steady state is rss = −πss = −γ.
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3.3 Transition dynamics to the stagnation steady state

We are now ready to discuss the transition path to the stagnation steady state given the initial

state at t = 0. We first present two lemmas. The first lemma describes the uniqueness of the

transition path:

Lemma 1. Suppose that g > 0, µ > 0, µ > γ, and µ − γ < ρ. Under the preference assumptions

specified by (4)–(8) with a strictly positive β, we have a unique dynamic path of output toward the

stagnation steady state. Furthermore, assume that π0 > γ at the initial state. Then, the economy

experiences a regime change from a high-inflation regime to a low-inflation regime at t = t∗.

Proof. See Appendix A.1.

The second lemma discusses the properties of Ω(mt, yt):

Lemma 2. Under the assumptions in Lemma 1, the marginal benefits of holding wealth Ω(mt, yt)

satisfy the following:

Ω(mt, yt) > Ω∗, for 0 ≤ t < t∗,

Ω(mt, yt) < Ω∗, for t > t∗,

Proof. See Appendix A.2.

Using Lemmas 1 and 2, we demonstrate that the model exhibits an endogenous slowdown in

output growth.

Proposition 1. Under the assumptions in Lemma 1, the slowdown in output growth occurs at

t = t∗. For 0 ≤ t ≤ t∗, output growth is equal to g. For t∗ < t < ∞, output growth is strictly

positive but lower than g.

Proof. It is obvious from (23) and (27). Equation (23) shows that output growth is g in the high-

inflation regime. Equation (27) and Lemma 2 suggest that output growth is lower than g in the

low-inflation regime.

The slowdown in output growth results from a regime change from a high-inflation to low-

inflation regime. In our model, steady growth of output persists as long as DNWR is not binding
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(i.e., 0 ≤ t < t∗). However, after DNWR binds at t = t∗, the growth rate becomes lower than

g for t > t∗. As we suggested earlier, output growth in the low-inflation regime is lower than g

if Ω(mt, yt) < Ω∗. Lemma 2 proves this inequality. Furthermore, output continues to slow until

output growth converges to zero in the stagnation steady state at t = ∞:

lim
t→∞

ẏt
yt

= lim
t→∞

[g +Ω(mt, yt)− Ω∗] = βyss − ρ− γ = 0 (34)

where the first equality is from (27) and the second equality is from (33).

The prediction in Proposition 1 is consistent with the fact emphasized in the literature on

secular stagnation. That is, output growth in the US was high prior to the Great Recession but

was low after the Great Recession. The slowdown in output growth is not transitory in the US

data. Similar but more notable observations are confirmed for Japan after the early 1990s.

To better understand the model dynamics, it is useful to investigate the marginal benefits

of holding wealth Ω(mt, yt) shown in (21). Lemma 2 means that Ω(mt, yt) declines between the

high- and low-inflation regimes. While Ω(mt, yt) is always larger than Ω∗ under the high-inflation

regime, it is always smaller than Ω∗ under the low-inflation regime. Thus, Ω(mt, yt) after t∗

must be lower than Ω(mt, yt) before t∗. In simulations implemented in the subsequent section,

we confirm that Ω(mt, yt) decreases smoothly over time. Under our specification of preferences,

Ω(mt, yt) = (β + vm−η
t )yt is decreasing in mt and increasing in yt so that there are two offsetting

effects on Ω(mt, yt). Numerically, Ω(mt, yt) tends to decrease over time because the effect of mt on

Ω(mt, yt) overwhelms the effect of yt on Ω(mt, yt). Intuitively, this is because strong preferences

for wealth make real money balances grow faster than aggregate demand.

The declining marginal benefits of holding wealth and DNWR give rise to the slowdown in

output growth. Equation (21) shows that the marginal cost represented by the right-hand side

of the equation must decline in equilibrium. Namely, either output growth (ẏt/yt) or inflation

(πt) must decline, given a constant ρ. If the economy is initially in the high-inflation regime (i.e.,

π0 > γ), output growth can be kept at ẏt/yt = g. As long as DNWR is not binding, decreases in

inflation can lower the marginal cost of holding wealth. By contrast, if the economy turns to be in

a low-inflation regime (i.e., πt = γ), inflation no longer decreases. Only through the slowdown in

output growth can the marginal cost of holding wealth decrease.
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We emphasize that the aggregate demand shortage drives this slowdown in output growth. In

our model, the household’s wealth preferences weaken aggregate demand growth by substituting

wealth for consumption goods. Initially, because DNWR is not binding, the weakened aggregate

demand leads to disinflation and the economy achieves the first-best allocation in output under

flexible prices. However, when DNWR makes price adjustment rigid, the weakened aggregate

demand determines equilibrium output. As a result, the growth rate of output is g for t ≤ t∗ and

becomes lower than g for t > t∗.

There are some remarks on the transition path. First, the initial state of the economy matters

for the slowdown in output growth. In Lemma 1, we assume that inflation exceeds γ at t = 0 (i.e.,

π0 > γ). This inequality is satisfied when wealth accumulation at t = 0 is low enough to ensure

that the marginal benefits of holding wealth is high. When the marginal benefits of holding wealth

is high, inflation is also high (see (21)). As wealth deepening proceeds, the marginal benefits of

holding wealth decrease and thus disinflation occurs. When inflation hits the lower bound, output

growth starts declining. The timing of the slowdown in output growth depends on preference

parameters such as β and the degree of DNWR γ.

Second, the declining marginal benefits of holding wealth also account for the declining real

interest rate over time. While Section 4 will demonstrate that the simulated real interest rate

declines over time, the following proposition provides the analytical results of the declining real

interest rate between the high- and the low-inflation regimes.

Proposition 2. Let rt∗ be the real interest rate when the slowdown in output growth starts, where

rt∗ = ρ+ g−βyt∗. Under the assumptions in Lemma 1, the real interest rate is strictly higher than

rt∗ for 0 < t < t∗, and the real interest rate is strictly lower than rt∗ for t > t∗. In the stagnation

steady state, rt converges to −πss.

Proof. It immediately follows from (26) that rt = ρ+ g − βyt > rt∗ = ρ+ g − βyt∗ for t < t∗. This

is because Proposition 1 implies that output growth is positive; therefore, yt < yt∗ for t < t∗. It is

straightforward to obtain rt = ρ + g − βyt − [Ω∗ − Ω(mt, yt)] < rt∗ = ρ + g − βyt∗ for t > t∗ from

(30). This is because Ω∗ > Ω(mt, yt) from Lemma 2 and yt > yt∗ from Proposition 1. For proof of

the steady-state real interest rate, note that (9) with the goods market-clearing condition implies

that m−η
t yt = rt + πt. While mt goes to infinity (see (31)), output converges to the constant given
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by (33). As t → ∞, the above equation converges to 0 = rt + πss, resulting in rt = −πss.

Finally, our model also predicts the slowdown in labor productivity growth as discussed by

Fernald (2015). He argues that labor productivity slowed in the middle of the 2000s. Recall that

labor productivity in our model is et = yt/ht where ht = 1. Thus, labor productivity initially grows

at g and later slows at a rate lower than g.

3.4 The role of wealth preferences

As we emphasized in the previous subsections, strong wealth preferences of β > 0 are a key

assumption for generating the results of Proposition 1. To crystallize the role of wealth preferences,

this subsection discusses the model’s prediction under no wealth preferences (i.e., β = 0). The

following proposition shows that, if the wealth preferences are absent, Ω(mt, yt) is constant in

equilibrium.

Proposition 3. Suppose that the assumptions in Lemma 1 hold except for β > 0. If β = 0,

Ω(mt, yt) is constant in equilibrium. The regime is predetermined and regime change never occurs.

There is no endogenous slowdown in output growth.

Proof. See the Appendix A.3

The model without wealth preferences (β = 0) fails to generate an endogenous slowdown in out-

put growth because Ω(mt, yt) is constant in equilibrium. The parameters in the model predetermine

the regime in equilibrium. For example, if the economy is initially in a high-inflation regime, the

economy is on the balanced growth path where the goods market achieves the first-best allocation

with output growth of g. If the economy instead starts from a low-inflation regime, the economy

experiences low economic growth given the rigid wage adjustment arising from DNWR. In this case,

the allocation is inefficient because the aggregate demand shortage makes economic growth slower

than g. In either case, however, we do not observe a slowdown in output growth, in contrast to the

case of β > 0. Moreover, the growth rate of output with the binding DNWR does not converge to

zero. Even if DNWR is binding, there is no stagnation steady state under β = 0. Therefore, the

essential ingredient for generating a slowdown in output growth and stagnation steady state is a

strictly positive β in the wealth preferences.
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3.5 The role of DNWR

The other key assumption in the model is DNWR. To understand the role of DNWR, we next

consider what happens if DNWR is absent, but β is strictly positive. Using (21), Section 3.3

explained that, after πt hits the lower bound, output growth must decline in response to decreases

in Ω(mt, yt). However, a slowdown in output growth can be explained when both ẏt/yt and πt

decrease in response to decreases in Ω(mt, yt). In this case, DNWR may not be necessary.

If DNWR is removed from the model, however, there is no monetary equilibrium with a strictly

positive β. To see this, assume that γ = −∞. This assumption ensures that DNWR never binds. In

this case, the transversality condition µ− γ < ρ is not satisfied and steady-state output is negative

from (33). As we discussed, when µ > 0, the transversality condition becomes ρ+ γ > 0. Thus, γ

is at least strictly larger than −ρ to guarantee the equilibrium in this model.

4 Simulating the model

While our model is qualitatively consistent with the observed slowdown in output growth, it is

not necessarily clear whether the model numerically explains the data. It is also worth assessing

macroeconomic variables other than output growth. In this section, we simulate the model for the

US and Japan. We will explore whether our model quantitatively explains the observed slowdown

in output growth as well as the declining real interest rate and inflation.

4.1 Calibration

Before simulating the model, we calibrate the parameters for the simulations. We first discuss the

timing of the regime change from the high-inflation to the low-inflation regime. Comparing the

linear trend and the cubic trend shown in Figure 1, we interpret that t∗ is the period in which the

cubic trend (dashed line in the figure) starts falling below the linear trend (dot-dashed line). After

a closer look at Figure 1, we set t∗ at 2001:Q3 for the US and at 1989:Q1 for Japan.

Some deep parameters are assumed to be common between the US and Japan. The subjective

discount factor ρ is 0.04. The degree of relative risk aversion for ct is one (σ = 1) and that for mt

is four (η = 4).

Other deep parameters differ between the US and Japan, and we use the data to parameterize
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them. We first calibrate the parameters for the US economy. Recall that we estimated the linear

trend (dot-dashed line in the upper panel of Figure 1) from log real GDP over 1990:Q1 and 2007:Q1.

The mean growth rate over the sample period (or the slope of the linear trend) is 0.022 at the

annual rate. We take this value as the growth rate of output under the first-best allocation,

g = 0.022. The money growth rate µ is 0.043, using the mean growth rate of M2 stock (per capita)

over 1990:Q1–2019:Q4. For calibrating γ, we use πt = γ after t∗ (see (29)). We extract trend

inflation using a cubic trend over 1990:Q1–2019:Q4 and calculate the mean of the cubic trend after

2001:Q3, where the period of 2001:Q3 corresponds to t∗ in our model. The resulting mean trend

inflation is 0.017. Here, the actual inflation is the year-on-year inflation calculated from the Personal

Consumption Expenditure Price Index Excluding Food and Energy. To parameterize v and β in

the utility functions v(mt) and β(at), we target the 2001:Q3 values of the cubic trend for the real

interest rate and the velocity of money. For the real interest rate, we use 1-year real Treasury yields

from the database of the Cleveland Federal Reserve Bank and estimated by Haubrich, Pennacchi,

and Ritchken (2012).17 The real interest rate in 2001:Q3 is 1.56 percent in the cubic trend. For the

velocity of money, we employ the velocity of M2. The velocity of money in 2001:Q3 is 2.10 in the

cubic trend. The values of v and β that achieve these target values are v = 0.054 and β = 0.014,

respectively.

We next calibrate the parameters for the Japanese economy. We set g = 0.039 from the growth

rate of real GDP per capita between 1980:Q1 and 1991:Q1 (corresponding to the linear trend in

Figure 1). We parameterize µ = 0.041 from per capita M2 growth averaged over 1980:Q2 –2019:Q4.

As before, we calibrate γ using πt = γ after t∗. Given t∗ corresponds to 1989:Q1 for Japan, we

calibrate γ at 0.003 based on trend inflation after 1989:Q1. Here, we calculate the trend inflation

after 1989:Q1 from the Consumer Price Index for All items less fresh food.18 To obtain v and

β in v(mt) and β(at) for Japan, we target the real interest rate and the velocity in 1989:Q1. We

construct the real interest rate using the nominal interest rate and the actual inflation from 1986:Q3

to 2019:Q4.19 We use velocity of M2 as in the calibration for the US. We calibrate v and β to hit
17The most recent data are available at https://www.clevelandfed.org/our-research/indicators-and-data/

inflation-expectations/background-and-resources.aspx#research.
18The price index is adjusted for consumption tax hikes in 1997 and 2014.
19To compute the 1-year real interest rate, we use the 12-month Japanese yen London Inter-Bank Offered Rate (JPY

LIBOR) as an interest rate benchmark over 1986:Q3–2019:Q4. We combine core inflation from 1986:Q3 to 1989:Q4
and tax-adjusted core inflation from 1990:Q1 to 2019:Q4 because the consumption tax-adjusted core inflation is only
available from 1990. Note that inflation is not adjusted for the introduction of the consumption tax in 1989:Q2 and
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the target of the 1989:Q1 values of the real interest rate (3.78 percent in cubic trend) and velocity

of money (1.07 in cubic trend). We obtained v = 0.063 and β = 0.027, respectively.

We solve the model using a method similar to the shooting algorithm. We calculate the transi-

tion path forward from t∗ to t̄, where t̄ is a sufficiently large number to approximate t = ∞. In this

transition path, the economy moves toward the stagnation steady state. We guess output in the

period of a regime change (denoted by yt∗) and compute real money balances in the same period

(denoted by mt∗).20 Together with yt∗ and mt∗ , we use (27) and (28) to obtain future variables

yt+∆ and mt+∆, where ∆ is a small increment of time. We iterate this calculation forward until we

have yt̄ ' yt̄+∆ and define yt̄ as a candidate of the steady-state output yss. If yt̄ ' yss, we conclude

that the transition path to the stagnation steady state is obtained. If not, we update the guess of

the output yt∗ and iterate computations until we have yt̄ ' yss. Regarding the transition path for

t < t∗, output growth always equals g. We compute the transition path backward from t∗ to t = 0,

where t = 0 refers to the first period of the sample.21

4.2 Simulation results

Figures 2 and 3 report our simulation results for the US and Japan, respectively. The upper panel

presents log real GDP per capita, the middle panel shows the real interest rate, and the lower panel

is inflation. Each panel contains the simulated data (solid line), estimated cubic trend (dashed

line), and actual data (dotted line). Our model has no stochastic shocks. Therefore, our model

aims to explain the estimated cubic trend rather than the actual data.

4.2.1 The US

The upper panel of Figure 2 presents US output. In this panel, the simulated output at t∗ is

equalized to the linear trend in the same period. We investigate how closely the simulated output

after t∗ tracks the cubic trend. Note that, because the simulated output grows at g when t ≤ t∗,

the simulated output is designed to match perfectly with the linear trend, which grows at the same

the increase in 2019:Q4.
20Here we use Ω(mt∗ , yt∗) = Ω∗ to obtain mt∗ . The threshold value Ω∗ is given by (22).
21All variables including ẏt/yt and ṁt/mt are smoothly connected between the high-inflation and the low-inflation

regimes. We can confirm this smooth transition by evaluating Ω(mt, yt) in both systems of equations (23)–(26) and
(27)–(30) at Ω∗. At t = t∗, the marginal benefits of holding wealth are equal to the threshold level, and (27)–(30)
are equivalent to (23)–(26), respectively.
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rate of g.

[Figure 2 about here.]

Comparing the solid and dashed lines in the upper panel of Figure 2 reveals that the model

accounts for a substantial fraction of the slowdown in output growth relative to the linear trend

(dotted line). For example, the model explains 75.8 percent of the slowdown in output growth

in 2012:Q1 (5 years after the start of the Great Recession) and 95.6 percent of the slowdown in

output growth in 2017:Q1 (10 years after the start of the Great Recession).22 Thus, the model

almost entirely explains the slowdown in output growth in 2017.

The middle panel shows the simulated real interest rate. Overall, the model successfully repli-

cates the real interest rate that has decreased since the 1990s. The real interest rate in the cubic

trend (dashed line) peaks at 2.43 percent in 1994:Q3 and reaches a minimum at -0.70 percent in

2014:Q1. The simulated real interest rate exhibits a similar pattern to the data. The simulated

real interest rate was 2.34 percent in 1994:Q3 and -0.60 percent in 2014:Q1.

As discussed in the previous section, the decline in trend results from decreases in Ω(mt, yt)

together with wealth preferences. Under the high-inflation regime, the additional benefit of holding

wealth β′(mt)/u
′(yt) = βyt in (30) lowers the real interest rate. Once DNWR binds and regime

change occurs, the real interest rate further declines because of additional downward pressure on

the real interest rate represented by Ω∗ − Ω(mt, yt) (see (30)).

The lower panel of Figure 2 plots inflation.23 The simulated inflation replicates the estimated

cubic trend quite well, especially in replicating the decline in the 1990s. The figure indicates that

trend inflation (dashed line) decreased steadily until 2003:Q2 and became stable at around 1.5–2

percent. In our simulation, inflation also decreases steadily until 2001:Q3 and becomes constant at

γ (see (29)).
22In the case of 2012:Q1, the linear trend of output is 43.6 percent higher in 2012:Q1 than the actual output in

1990:Q1. The cubic trend is 33.1 percent higher in 2012:Q1 than the actual output in 1990:Q1. Thus, the difference
in the percentage, namely the decrease in output growth in the data, is 9.9(= 43.6− 33.4) percentage points between
the linear and cubic trends. Next, the simulated output trend is 36.1 percent higher in 2012:Q1 than the actual
output in 1990:Q1, so the decrease in output growth explained by the model is 7.5(= 43.6− 36.1) percentage points.
Taking the ratio of these numbers yields 0.758 = 0.075/0.099, so the model explains 75.8 percent of the decrease in
output growth. We implement the same calculation to obtain the number for 2017.

23We use year-on-year inflation to remove noise in inflation.
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4.2.2 Japan

Figure 3 conducts the same exercise with the Japanese data. As in the US case, the model performs

well. Recall that we set the timing of the regime change to 1989:Q1. Thus, changes in model

dynamics become significant in the early 1990s. Once again, the model explains a substantial

fraction of the slowdown in output growth relative to the linear trend. Shown in the upper panel

of Figure 3, the model explains 63.6 percent of the slowdown in output growth in 1996:Q1 (5 years

after the peak of the business cycle) and 77.5 percent of the slowdown in output growth in 2001:Q1

(10 years after the peak of the business cycle). The simulated real interest rate closely keeps track

of the cubic trend of the real interest rate that declined from about 4.95 percent in 1986:Q3 to a

slightly negative value of around -0.53 percent in 2019:Q4. The simulated real interest rate is 5.03

percent in 1986:Q3 and -0.28 percent in 2019:Q4 before converging to the steady-state value of -0.3

percent.24 Finally, simulated inflation also explains the observed decreases in the actual inflation

in the early 1980s.

[Figure 3 about here.]

5 Conclusion

Output growth in the US was persistently low after the Great Recession. In this paper, we ex-

plained this slowdown in output growth by introducing wealth preferences and DNWR into a

standard monetary growth model. We theoretically showed that our model generates a slowdown

in output growth in the transition path to the stagnation steady state. Consistent with the litera-

ture on secular stagnation, the model also explains the declining real interest rate over time. Using

numerical simulations, we found that our model explains 75.8 and 95.6 percent of the slowdown in

US output growth in 2012 and 2017, respectively. We also implemented simulations for Japan and

confirmed that the model also explains the stagnation in Japan.

It is quite surprising that a simple model can account for the long-run patterns in the data.

Further research would enrich our understanding of secular stagnation and its policy prescriptions.

Many questions remain. What are the implications of growth-enhancing policy on the model
24Note that we plot real interest rates from 1986:Q3 because of data availability of the nominal interest rate.
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dynamics? What happens to output growth and the real interest rate if we prompt nominal wage

adjustment by removing institutional frictions in the labor market? What are the impacts of

forward guidance on output growth? Exploring these questions would be important for future

research.

References

Baldwin, Richard and Coen Teulings. 2014. “Introduction.” In Secular Stagnation: Facts, Causes,

and Cures, edited by Coen Teulings and Richard Baldwin, chap. 1. CEPR Press, 1–23.

Barattieri, Alessandro, Susanto Basu, and Peter Gottschalk. 2014. “Some evidence on the impor-

tance of sticky wages.” American Economic Journal: Macroeconomics 6 (1):70–101.

Benigno, Gianluca and Luca Fornaro. 2018. “Stagnation traps.” The Review of Economic Studies

85 (3):1425–1470.

Camerer, Colin, George Loewenstein, and Drazen Prelec. 2005. “Neuroeconomics: How neuro-

science can inform economics.” Journal of Economic Literature 43 (1):9–64.

Carvalho, Carlos, Andrea Ferrero, and Fernanda Nechio. 2016. “Demographics and real interest

rates: Inspecting the mechanism.” European Economic Review 88:208–226.

Eggertsson, Gauti B and Paul Krugman. 2012. “Debt, deleveraging, and the liquidity trap: A

Fisher-Minsky-Koo approach.” The Quarterly Journal of Economics 127 (3):1469–1513.

Eggertsson, Gauti B, Neil R Mehrotra, and Jacob A Robbins. 2019. “A model of secular stagnation:

Theory and quantitative evaluation.” American Economic Journal: Macroeconomics 11 (1):1–48.

Fallick, Bruce, Michael Lettau, and William Wascher. 2016. “Downward nominal wage rigidity in

the United States during and after the Great Recession.” Available at SSRN: https://ssrn.com/ab-

stract=2725019.

Fernald, John G. 2015. “Productivity and potential output before, during, and after the Great

Recession.” NBER Macroeconomics Annual 29 (1):1–51.

24



Gagnon, Etienne, Benjamin K Johannsen, and David Lopez-Salido. 2021. “Understanding the new

normal: The role of demographics.” IMF Economic Review 69 (2):357–390.

Gordon, Robert J. 2015. “Secular stagnation: A supply-side view.” AEA Paper & Proceedings

105 (5):54–59.

Grigsby, John, Erik Hurst, and Ahu Yildirmaz. 2021. “Aggregate nominal wage adjustments: New

evidence from administrative payroll data.” American Economic Review 111 (2):428–71.

Guerrieri, Veronica and Guido Lorenzoni. 2017. “Credit crises, precautionary savings, and the

liquidity trap.” The Quarterly Journal of Economics 132 (3):1427–1467.

Hall, Robert E. 2011. “The long slump.” American Economic Review 101 (2):431–469.

Hashimoto, Ken-ichi, Yoshiyasu Ono, and Matthias Schlegl. 2023. “Structural unemployment,

underemployment, and secular stagnation.” ISER Discussion Papers No. 1088RRR, forthcoming

Journal of Economic Theory.

Haubrich, Joseph, George Pennacchi, and Peter Ritchken. 2012. “Inflation expectations, real

rates, and risk premia: Evidence from inflation swaps.” The Review of Financial Studies

25 (5):1588–1629.

Hazell, Jonathon and Bledi Taska. 2020. “Downward rigidity in the wage for new hires.” Available

at SSRN: https://ssrn.com/abstract=3728939.

Ikeda, Daisuke and Takushi Kurozumi. 2019. “Slow post-financial crisis recovery and monetary

policy.” American Economic Journal: Macroeconomics 11 (4):82–112.

Illing, Gerhard, Yoshiyasu Ono, and Matthias Schlegl. 2018. “Credit booms, debt overhang and

secular stagnation.” European Economic Review 108:78–104.

Jones, Callum. 2022. “Aging, secular stagnation and the business cycle.” The Review of Economics

and Statistics forthcoming.

Kobayashi, Keiichiro and Kozo Ueda. 2022. “Secular stagnation and low interest rates under the

fear of a government debt crisis.” Journal of Money, Credit and Banking 54 (4):779–824.

25



Krugman, Paul. 2014. “Four observations on secular stagnation.” In Secular Stagnation: Facts,

Causes, and Cures, edited by Coen Teulings and Richard Baldwin, chap. 1. CEPR Press, 61–68.

Mian, Atif and Amir Sufi. 2014. “What explains the 2007–2009 drop in employment?” Econometrica

82 (6):2197–2223.

Michaillat, Pascal and Emmanuel Saez. 2021. “Resolving New Keynesian anomalies with wealth in

the utility function.” The Review of Economics and Statistics 103 (2):197–215.

———. 2022. “An economical business-cycle model.” Oxford Economic Papers 74 (2):382–411.

Michau, Jean-Baptiste. 2018. “Secular stagnation: Theory and remedies.” Journal of Economic

Theory 176:552–618.

Ono, Yoshiyasu. 1994. Money, Interest, and Stagnation: Dynamic Theory and Keynes’s Economics.

Oxford University Press.

———. 2001. “A reinterpretation of chapter 17 of Keynes’s general theory: Effective demand

shortage under dynamic optimization.” International Economic Review 42 (1):207–236.

Ono, Yoshiyasu and Katsunori Yamada. 2018. “Difference or ratio: Implications of status preference

on stagnation.” Australian Economic Papers 57 (3):346–362.

Schmitt-Grohé, Stephanie and Martin Uribe. 2016. “Downward nominal wage rigidity, currency

pegs, and involuntary unemployment.” Journal of Political Economy 124 (5):1466–1514.

Sigurdsson, Jósef and Rannveig Sigurdardottir. 2016. “Time-dependent or state-dependent wage-

setting? Evidence from periods of macroeconomic instability.” Journal of Monetary Economics

78:50–66.

Summers, Lawrence H. 2014. “U.S. economic prospects: Secular stagnation, hysteresis, and the

zero lower bound.” Business Economics 49 (2):65–73.

Takahashi, Yuta and Naoki Takayama. 2022. “Tech-driven secular stagnation: Cross-country evi-

dence.” Unpublished manuscript.

26



A Proofs of lemmas and propositions

A.1 Proof of Lemma 1

To prove Lemma 1, the phase diagram in the (mt, yt) plane is convenient. We derive the loci in

each inflation regime in Figure 4.

[Figure 4 about here.]

We first consider the high-inflation regime. In this regime, (23) implies that ẏt > 0. We

thus focus on the ṁt = 0 locus drawn as the red solid line in Figure 4. The ṁt = 0 locus is

obtained from (24) and given by µ − γ − Ω(mt, yt) + Ω∗ = 0. Under our preference assumptions,

Ω(mt, yt) = (β + vm−η
t )yt. Therefore, the ṁt = 0 locus is:

yt =
Ω∗ + µ− γ

β + vm−η
t

=
ρ+ g + γ + (µ− γ)

β + vm−η
t

= fH(mt),

(35)

where the second equality comes from (22) and we define the ṁt = 0 locus as yt = fH(mt). Here

mt increases with time whenever (mt, yt) lies to the right of the ṁt = 0 locus. Together with ẏt > 0

under the high-inflation regime, the directions of the changes are indicated by red arrows in the

figure.

Next, consider the low-inflation regime. Under the assumption of µ > γ (see (17)), (28) implies

that ṁt > 0. We thus focus on the ẏt = 0 locus drawn as the blue solid line in Figure 4. The

ẏt = 0 locus is obtained from (27) and given by g − Ω∗ + Ω(mt, yt) = 0. Again, noting that

Ω(mt, yt) = (β + vm−η
t )yt and Ω∗ = ρ+ g + γ, we have the ẏt = 0 locus as follows:

yt =
Ω∗ − g

β + vm−η
t

=
ρ+ γ

β + vm−η
t

= fL(mt),

(36)

where we define the ẏt = 0 locus as yt = fL(mt). Note that fL(mt) < fH(mt) holds for any mt > 0
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because µ − γ > 0 and g > 0. Here yt increases with time whenever (mt, yt) lies to the left of the

ẏt = 0 locus. Together with ṁt > 0 under the low-inflation regime, the directions of the changes

are indicated by blue arrows in the figure.

Let us introduce another locus that determines the regime change. This locus is drawn as the

black solid line in Figure 4 and defined as a set of (mt, yt) in which output growth is g and inflation

is γ. In other words, the locus specifies a set of (mt, yt) that satisfies Ω(mt, yt) = Ω∗. Using

Ω(mt, yt) = (β + vm−η
t )yt, we rewrite Ω(mt, yt) = Ω∗ as:

yt =
Ω∗

β + vm−η
t

=
ρ+ g + γ

β + vm−η
t

= fT (mt),

(37)

where we define the locus as yt = fT (mt). As shown in Figure 4, we have fL(mt) < fT (mt) <

fH(mt) given mt because of µ > γ and g > 0. It is easy to show that the economy is in the

high-inflation regime if (mt, yt) lies above the locus.25 When (mt, yt) lies below the locus, DNWR

is binding and the economy is in the low-inflation regime.

Figure 4 also draws the optimal transition path (curve with arrows) starting from the initial

state of the economy. In the figure, π0 > γ is assumed. Thus, the economy is in the high-inflation

regime, and (m0, y0) is located above the locus of fT (mt). Once (mt, yt) moves to the right of the

fT (mt) locus, the regime in the economy turns to the low-inflation regime. Note that, as t → ∞,

mt → ∞ from (31) and ẏt/yt → 0 from (34). Thus, (mt, yt) asymptotically converges to the dotted

line located at the bottom where yt = yss = (ρ + γ)/β. In the transition, ẏt/yt is always positive

because (mt, yt) is located above the blue solid line (see Figure 4).

We prove two claims to show the uniqueness of the transition path to the stagnation steady

state. First, we show that the transition path is saddle-path stable around the stagnation steady

state. Second, we prove that the regime change from the high-inflation to the low-inflation regime

occurs at a unique pair of (mt, yt) = (mt∗ , yt∗). The first claim ensures that the transition path in
25We prove this claim by contradiction. Suppose that πt = γ and ẏt/yt < g. Then, (21) implies that Ω(mt, yt) =

ρ + ẏt/yt + πt < ρ + g + γ = Ω∗. That is, Ω(mt, yt) < Ω∗. It immediately follows from Ω(mt, yt) = (β + vm−η
t )yt

that yt = Ω(mt, yt)/(β + vm−η
t ) < Ω∗/(β + vm−η

t ) = fT (mt), which contradicts the supposition. Note also that we
do not need to consider πt < γ and ẏt/yt > g because they are infeasible.
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the low-inflation regime is unique. The second claim implies that the transition path in the high-

inflation regime is unique because (mt, yt) is smoothly and uniquely connected to the transition

path in the low-inflation regime. With these claims, we prove that the transition path to the

stagnation steady state is unique as a whole. It is necessary to prove the second claim because, if

(mt, yt) moves along the curve represented by yt = fT (mt) in which ẏt/yt = g and πt = γ, multiple

transition paths connected to the curve may exist in the high-inflation regime.

Let us prove the first claim. Define zt = 1/mt and consider the system of the equations under

the low-inflation regime:

ẏt
yt

= g − [Ω∗ − Ω(1/zt, yt)] ,

żt
zt

= −(µ− γ).

By linearizing the above two equations around the stagnation steady state (zt, yt) = (0, yss), we

have the eigenvalues ζ such that:

∣∣∣∣∣∣∣
ρ+ γ − ζ 0

0 −(µ− γ)− ζ

∣∣∣∣∣∣∣ = 0,

where we use (33) to replace βyss by ρ + γ. As mentioned in the main text, we assume that

ρ + γ > 0. The condition ρ + γ > 0 then ensures that one eigenvalue is positive. In addition,

(17) implies that the other eigenvalue is negative. Because the system of the equations under the

low-inflation regime includes one jump variable yt and one predetermined variable zt, the transition

path is saddle-path stable and unique under this regime. Along any path located above the saddle

path, mt eventually becomes negative so that it is infeasible. Along any path located below the

saddle path, yt eventually becomes zero so that the transversality condition does not hold.

Next, we prove the second claim by contradiction. Suppose that there exist other pairs of (mt, yt)

in which output grows at a rate of g and inflation is equal to γ. In this case, the transition path

of (mt, yt) must be along the curve represented by yt = fT (mt) in Figure 4. Note also that mt and

yt cannot jump between the high- and the low-inflation regimes and (mt, yt) must be connected to

the unique transition path in the low-inflation regime that goes through (mt∗ , yt∗). In other words,
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if (mt, yt) moves along the curve without a jump, then there exists a pair of (mt, yt) = (mt̃, yt̃) that

is not only along the curve but is also close to (mt∗ , yt∗) in time. Because (mt̃, yt̃) exists in the

neighborhood of (mt∗ , yt∗), t̃ = t∗ + ∆ where ∆ is an infinitesimally small increment of time. In

this case, the growth rate of Ωt̃ must be zero around t = t∗ because Ω(mt∗ , yt∗) = Ω∗ = ρ+ g + γ

along the curve.

Let us denote Ω(mt, yt) by Ωt. The growth rate of Ωt is given by:

Ω̇t̃

Ωt̃

=
ẏt̃
yt̃

− η
v

v + βmη

t̃

ṁt̃

mt̃

= g − η
v

v + βmη

t̃

(µ− γ)

= 0.

(38)

The first equality is derived from the total derivative of Ωt = Ω(mt, yt) = (β + vm−η
t )yt. In the

second equality, ẏt/yt = g and ṁt/mt = µ−γ because Ω(mt̃, yt̃) = Ω∗. The third equality shows that

the growth rate of Ωt̃ must be zero. The above equation suggests that mt̃ = {v[η(µ− γ)− g]/β}1/η

is constant. However, this contradicts the assumption that ṁt̃/mt̃ = µ − γ > 0 if Ω(mt, yt) = Ω∗

holds.

We conclude that the transition path to the stagnation steady state is unique as a whole. The

regime change occurs only at t = t∗ and the transition path under the high-inflation regime is

smoothly and uniquely connected to the unique transition path under the low-inflation regime.

A.2 Proof of Lemma 2

We first prove that Ω(mt, yt) > Ω∗ for 0 ≤ t < t∗. The economy is in the high-inflation regime

in 0 ≤ t < t∗. As shown in Figure 4, yt is located above the locus of fT (mt). Thus, we have

yt > fT (mt) for 0 ≤ t < t∗. Then, the definition of fT (mt) shown in (37) leads to Ω(mt, yt) > Ω∗

for 0 ≤ t < t∗.

We also prove that Ω(mt, yt) < Ω∗ for t > t∗ from Figure 4. The figure indicates that yt <

fT (mt) for t > t∗ because the economy is in the low-inflation regime. Again, the definition of

fT (mt) shown in (37) leads to Ω(mt, yt) < Ω∗ for t > t∗.
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A.3 Proof of Proposition 3

To prove the proposition, we focus on the growth rate of Ωt = Ω(mt, yt) = (β + vm−η
t )yt. When

β = 0, the growth rate of Ω(mt, yt) is written as:

Ω̇t

Ωt
=

ẏt
yt

− η
ṁt

mt
. (39)

In the general case of β 6= 0, Ω̇t/Ωt = ẏt/yt−ηv/(v+βmη
t )ṁt/mt. In the case of β = 0, however, the

coefficient on ṁt/mt is a constant η. We will show below that Ωt is constant in equilibrium when

β = 0. The constant Ωt rules out the possibility of an endogenous slowdown in output growth.

Output growth under the high-inflation regime Suppose that the economy is initially in

the high-inflation regime. Substituting (23) and (24) into (39) yields the differential equation for

Ωt under the high-inflation regime:

Ω̇t

Ωt
= g − η(µ− γ − Ωt +Ω∗)

= η(Ωt − ΩH),

(40)

where

ΩH = Ω∗ + (µ− γ)− g

η
. (41)

Equation (40) is the differential equation for Ωt with a positive coefficient on Ωt. If there is a

deviation of Ωt from ΩH , Ωt would explode to either ∞ or −∞. Therefore, when β = 0, only

Ω̇t = 0 is feasible in equilibrium. Therefore, Ωt in equilibrium is constant at Ωt = ΩH .

The high-inflation regime under β = 0 is feasible only when g < η(µ − γ). To see this,

suppose that g ≥ η(µ − γ) in the high-inflation regime. In this case, (41) implies that ΩH ≤ Ω∗.

Given ẏt/yt = g in the high-inflation regime, (21) and (22) imply that ΩH ≤ Ω∗ is rewritten as

ΩH = ρ + ẏt/yt + πt = ρ + g + πt < Ω∗ = ρ + g + γ and thus πt < γ. However, it violates the

assumption of DNWR, πt > γ.

If Ωt is constant at ΩH , ẏt/yt, ṁt/mt, πt, and rt are all constant over time. In particular,

(23)–(26) reduce to ẏt/yt = g, ṁt/mt = g/η, πt = µ− g/η, and rt = ρ+ g. The economy achieves

the first-best allocation on the balanced growth path.
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Output growth under the low-inflation regime Substituting (27) and (28) into (39) yields:

Ω̇t

Ωt
= g + (Ωt − Ω∗)− η(µ− γ)

= (Ωt − ΩL),

(42)

where

ΩL = Ω∗ + η(µ− γ)− g. (43)

As in (40), (42) is the differential equation for Ωt with a positive coefficient on Ωt. Once again,

only Ω̇t = 0 is feasible in equilibrium. Therefore, Ωt in equilibrium is constant at Ωt = ΩL.

The low-inflation regime under β = 0 is feasible only when g ≥ η(µ−γ). To prove this, suppose

that g < η(µ − γ) in the low-inflation regime. In this case, (43) implies that ΩL > Ω∗. Given

πt = γ in the low-inflation regime, (21) and (22) imply that the condition ΩL > Ω∗ is rewritten as

ΩL = ρ+ ẏt/yt + πt = ρ+ ẏt/yt + γ > Ω∗ = ρ+ g + γ and thus ẏt/yt > g. However, it is infeasible

because output growth cannot exceed g.

If Ωt is constant at ΩL, then ẏt/yt, ṁt/mt, πt, and rt are all constant over time. In particular,

(27)–(30) reduce to ẏt/yt = η(µ− γ), ṁt/mt = µ− γ, πt = γ, and rt = ρ+ η(µ− γ). The economy

achieves the inefficient allocation on the balanced growth path because output growth is η(µ− γ),

which is lower than g.

To summarize, there is no endogenous slowdown in output growth when β = 0. The parameters

in the model fully determine the regime. If g < η(µ − γ), the growth rate of output is g and the

economy remains in the high-inflation regime. Alternatively, if g ≥ η(µ − γ), the growth rate of

output is η(µ − γ) and the economy is always in the low-inflation regime starting from the initial

period.
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Figure 1: Real GDP per capita and trend

Notes: Each panel of the figure plots the estimated output trend for log real GDP per capita, along with
the actual data. The upper panel plots US data for 1990:Q1–2019:Q4, while the lower panel shows Japanese
data for 1980:Q1–2019:Q4. In each panel, the dotted line represents actual GDP. The dashed line is the
cubic trend of output. The dot-dashed line is the linear trend estimated from the subsample. We use the
period over 1990:Q1–2007:Q1 for the US and the period over 1980:Q1–1991:Q1 for Japan as the subsample
for their linear trend. The linear trend after the last period of the subsample represents the projected values.
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Figure 2: Simulation results for the US: Output, real interest rate, and inflation

Notes: Each panel of the figure compares the simulated data, estimated cubic trend, and actual data in the
US. The solid line represents the simulated data, the dashed line represents the estimated cubic trend, and
the dotted line represents the actual data. The upper panel is log real GDP, the middle panel is the real
interest rate, and the lower panel is (year-on-year) inflation. The dot-dashed line in the upper panel is the
linear trend estimated from the data over 1990:Q1–2007:Q1. For details of the data, see the main text.
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Figure 3: Simulation results for Japan: Output, real interest rate, and inflation

Notes: Each panel of the figure compares the simulated data, estimated cubic trend, and actual data in Japan.
The dot-dashed line in the upper panel is the linear trend estimated from the data over 1980:Q1–1991:Q1.
For other details, see the notes in Figure 2.
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Figure 4: Phase diagram
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Notes: The red solid line denoted by yt = fH(mt) represents the locus that achieves ṁt = 0 when the
economy is in the high-inflation regime. This ṁt = 0 locus determines the direction of change in mt in the
high-inflation regime. In this regime, ẏt > 0 always holds. The blue solid line denoted by yt = fL(mt) is the
locus that achieves ẏt = 0 when the economy is in the low-inflation regime. This ẏt = 0 locus determines
the direction of change in yt in the low-inflation regime. In this regime, ṁt > 0 always holds. The black
solid line denoted by yt = fT (mt) points to the locus that achieves ẏt/yt = g at the lowest level of inflation
πt = γ. If (mt, yt) is located above (below) the locus, the economy is in the high- (low-)inflation regime.
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