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Abstract

Manufacturers perform the majority of US patenting and R&D. The decades-long decline of US

manufacturing employment has thus raised concerns that US innovation will fall as well. We in-

vestigate the relationship between between physical production and innovation by constructing

a new dataset linking all US firms and their establishments to location geocodes and innovative

activities. Preliminary results are mixed. While firms with both physical-production and inno-

vation establishments exhibit higher patenting when these facilities are more spatially proximate,

manufacturers’ overall contribution to US innovation declines steadily and substantially over time.

In addition, some cohorts of firms that permanently exit manufacturing continue to patent at their

prior pace.

∗We thank seminar participants at Dartmouth, Nathan Goldschlag and Shawn Klimek for comments, Emily Green-
man for help with the disclosure process, and Alex Schott for research assistance. Any opinions and conclusions
expressed herein are those of the authors and do not necessarily represent the views of the US Census Bureau. All re-
sults have been reviewed to ensure that no confidential information is disclosed. The Census Bureau’s Disclosure Review
Board and Disclosure Avoidance Officers have reviewed this data product for unauthorized disclosure of confidential
information and have approved the disclosure avoidance practices applied to this release. DRB Approval Numbers
CBDRB-FY20-P1916-R8726 and CBDRB-FY20-P1916-R8756.
†Tuck School at Dartmouth & CEPR & NBER, email: teresa.fort@dartmouth.edu.
‡University of Colorado & CEPR & NBER.
§Yale School of Management & CEPR & NBER.
¶Penn State University & NBER.
‖Center for Economic Studies US Census Bureau.



1 Introduction

Generating ideas and bringing them to life as new products and processes is critical for growth. Recent

research suggests US innovation efficiency is in decline, as more and more resources are used to create

fewer and fewer ideas (Bloom et al., 2020). Given the large number of patents historically granted to

manufacturers, some attribute this downturn to the erosion of US manufacturing employment (Autor

et al., forthcoming). Indeed, the emergence of China as the world’s factory floor has heightened

concerns in high-wage countries like the United States that innovation will suffer as physical produc-

tion shifts toward lower-wage developing countries. Writing in the Wall Street Journal, Kota and

Mahoney (2019) assert that “once manufacturing departs from a country’s shores, engineering and

production know-how leave as well, and innovation ultimately follows. It’s become increasingly clear

that ‘manufacture there’ now also means ‘innovate there’.”

Theoretically, the relationship between innovation and the loss of manufacturing employment

depends upon how firms respond to the shock causing the decline, and the nature of the complemen-

tarity between manufacturing and innovation. Increased import competition, for example, may lead

some manufacturing firms to shrink or exit, so that production and innovation activities decrease in

tandem. Alternatively innovation may rise if the resources formerly assigned to physical production

are reallocated to the development of new products or production processes, both within and across

firms. Such re-assignment may be more likely among “frontier” firms which possess greater capacity

to either innovate away from foreign competitors (Aghion et al., 2005) or exploit offshoring oppor-

tunities (Boler et al., 2015; Bernard et al., 2020). Innovation efficiency may be further enhanced if

there are gains to specialization in innovation (Arkolakis et al., 2018).

If complementarities between innovation and production workers are strong, however, declining

manufacturing employment may reduce knowledge-worker efficiency, inducing an overall decrease in

innovation (Naghavi and Ottaviano, 2009; Pisano and Shih, 2012).1 Such complementarities may

operate within the borders of a region, within the boundaries of a firm, or both. If face-to-face in-

teractions between production and innovation workers affect innovators’ output, then the geographic

colocation of these activities may be critical, regardless of the firm boundary. Alternatively, if man-

agement facilitates and directs the flow of information across these two groups of workers, then the

presence of both activities within the firm may increase innovative output, regardless of their geo-

graphic location. Finally, if face-to-face interactions matter more within firms, geographic colocation

of the two activities within firms will be most valuable.

In this paper, we investigate the link between physical production and innovation using a novel

dataset that matches the universe of US firms’ and their US establishments to patent grants, and

R&D expenditures. In the first part of the paper we use these data to provide the first comprehensive

portrait of US innovation spanning the decline of US manufacturing employment. Surprisingly, we

find that while firms with manufacturing establishments, i.e., manufacturing firms (MF s), historically

account for the majority of innovation, their share has declined steadily and substantially over time.

In 1977, MF s account for 91 percent of US patents and 99 percent of US R&D expenditures. By

1The effect of declining manufacturing employment on innovation may also be different if it is due to technical change
and automation. Fort et al. (2018) discuss the roles of trade and technology in the evolution of US manufacturing.
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2016, those shares had fallen by almost half, to 54 and 59 percent.

Decomposing firms outside manufacturing into two groups – never-manufacturing firms (NMF s)

and former-manufacturing firms (FMF s) – we find that both provide considerable contributions to

the growth of US innovation.2 By 2016, NMF s and FMF s account for 28 and 18 percent of all

US patent grants, up from a combined share of 9 percent in 1977. Moreover, we find that NMF s’

patents per worker, an often-used measure of patent efficiency (Griliches, 1994; Kortum, 1997), is

roughly equal to that of MF s, and rising similarly over time. FMF s patent efficiency, while lower

in levels, also increases steadily over the sample period. The contribution of FMF s to these trends

is particularly interesting given that the cohort that leaves manufacturing after the Great Recession

actively imports prior to its exit, and accounts for a surge in US imports from China afterwards.

Together, these trends suggest this group of firms was able to exploit low-cost Chinese production for

physical assembly while continuing to innovate in the United States.3

On the face of it, the growth of patenting and R&D expenditures by firms without manufactur-

ing facilities presents a challenge to the idea that innovation depends on the presence of physical

production. We investigate this relationship more formally via a series of descriptive OLS panel re-

gressions of patenting on a series of dummy variables capturing whether firms have manufacturing

or innovation-related establishments, denoted M and P , or both.4 We estimate these regressions

with and without firm fixed effects, and find that firms with manufacturing plants have 1.5 to 3.7

log points more patent grants depending on the specification, while firms with an innovation plant

have 0.5 to 1.7 log points more patents, both relative to firms with no such plants. The more striking

result is the estimated coefficient on the interaction of these two indicators, which suggests that firms

with both types of plants have 14.7 to 66.5 log points more patents. Results are qualitatively similar

for firms’ manufacturing and processing patents, as well as for the citations received by their overall

patent portfolio, an often used measure of patent quality (Trajtenberg, 1990). Overall, the results of

these regressions suggest that manufacturing and innovation may be complementary within the firm.

To get a better sense of the nature of this complementarity, and the potential effects of the

decline in US manufacturing employment on US innovation, we focus on firms with both M and P

establishements, i.e., MP firms, and investigate the relationship between their patenting and the

distance between these two types of plants. Toward this end, we identify the latitudes and longitudes

of all US establishments using information contained in Census datasets, and then match the locations

of all inventors granted patents to the nearest county in which the firm receiving the patent grant has

a plant. Using these new data, we find robust evidence that MP firms’ patenting output is highest

when their manufacturing plants are close to their innovation centers. In our preferred specification

which includes firm fixed effects, we find that when firms’ M and P plants are within 5 miles of each

2NMF s in a given year do not have a manufacturing plant in that or any previous year. FMF s in that year do not
have a manufacturing establishment, but have encompassed such a plant in prior years.

3Greenland et al. (2020) offer a useful example along these lines from the electronics industry. Apple and Gateway
both produced personal computers for the US market prior to the easing of US restrictions on Chinese imports in 2000.
Apple had been making extensive use of Asian suppliers prior to this liberalization, and went on to benefit from further
offshoring to China and focusing on product creation. Gateway, by contrast, focused on producing solely within the
United States, and ceased operation a few years after the liberalization.

4As discussed in greater detail in Section 3.4, we refer to innovation establishments as P plants because they largely
provide Professional Services, such as Scientific Research and Development Services (NAICS 5417).
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other, their patent grants are 12 log points higher relative to when their closest plants are more than

60 miles apart (i.e., more than an hour’s drive away). Intuitively, we also find that when firms’ M

and P plants are a bit further apart, within 5 and 60 miles of each other, their patents are 8 log

points higher than when those plants are more than 60 miles apart. Here, too, results are qualitatively

similar for citations as well as manufacturing and processing patents.

In a future draft, we plan to use a series of firm-region-year panel regressions to examine whether

the patenting that takes place within MP firms occurs in regions where both M and P plants are

present.5 This analysis will speak to the mechanisms that drive the descriptive regressions summarized

thus far, and in part address the endogeneity of firms’ location decisions. More broadly, we plan to

examine the forces behind changing distances between MP firms’ M and P plants, e.g., whether they

are driven by M and P plant entry, exit or industry switching, and how those changes relate to import

competition and firms’ offshoring decisions. As well, we will examine how colocated establishments,

and those in regions in which the firm patents differ from other establishments. Finally, we will

examine whether proximity to other firms’ manufacturing plants relates to innovative efficiency.

This paper makes three main contributions to the literature. First, we add to a large body of

work that studies the economic geography of innovation and manufacturing. Existing studies provide

measures of how much and why manufacturing industries are agglomerated (Ellison and Glaeser,

1997; Duranton and Overman, 2005) and coagglomerated (Ellison et al., 2010). More recent work

documents strong patterns of spatial concentration of employment and establishments that focus on

knowledge creation (Buzard et al., 2017; Davis and Dingel, 2019; Buzard et al., forthcoming). These

papers emphasize the importance of localized knowledge spillovers (e.g., as in Jaffe et al., 1993) as an

explanation for this agglomeration. We build on these two strands of the literature by studying the

extent to which physical production and innovation are spatially proximate. Several recent empirical

papers analyze whether and how innovation is affected by its proximity to manufacturing (Tecu,

2013; Lan, 2019; Delgado, 2020). Ours is the first study to span the rise and fall of US manufacturing

from 1977 to 2016, to analyze the spatial distribution of US manufacturing firms’ innovation and

manufacturing establishments using newly developed plant-level geocode information for this period,

and to estimate how changes in the distances between these establishments relate to changes in a

firm’s patenting.

This paper also contributes to a literature that studies the evolution of manufacturing in high-

income countries. A large body of work has documented a role of trade, and imports from China

in particular, in the decline of US manufacturing (Autor et al., 2013; Pierce and Schott, 2016),

and patenting (Autor et al., forthcoming). There is mounting evidence, however, that the firms

that account for the majority of the decline in US manufacturing employment do not exit, and

instead reorient towards non-manufacturing activities such as retail and business services (Fort et

al., 2018; Ding et al., 2019; Bloom et al., 2019). This reorientation of manufacturers away from

production towards innovation is consistent with evidence from other countries (Bloom et al., 2016;

Bernard et al., 2017) and the emergence of factory-less goods producing firms that innovate, purchase

5We will also use these data to assess whether manufacturing establishments themselves seem to patent, i.e., whether
there is colocation of innovation and production within an establishment.
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contract manufacturing services, often from other countries (Bernard and Fort, 2015; Kamal, 2018).6

We contribute to this work by showing that it is critical to include non-manufacturing firms in an

analysis of US innovation, since there is substantial growth in patenting both by firms that decrease

their manufacturing employment (sometimes all the way to zero), as well as by firms that never

manufacture. Non-manufacturing firms’ share of aggregate patents grow from 9 percent in 1977 to

28 percent in 2016.

Finally, we contribute to a growing literature on the relationship between offshoring and innova-

tion. Theoretical work shows that offshoring may decrease innovation if there are strong complemen-

tarities between production and innovation (Naghavi and Ottaviano, 2009), or increase innovation if

it lowers the opportunity cost to innovate (Rodŕıguez-Clare, 2010) and results in gains to specializa-

tion (Arkolakis et al., 2018). Fuchs and Kirchain (2010) find that offshoring in low-wage countries

may also change the feasible set of goods that can be produced, which in turn will influence how the

firm directs its R&D efforts. There is less direct evidence on whether a firm’s decision to relocate

its physical production to a foreign location decreases its domestic innovation efforts and output.

Branstetter et al. (2020) exploit a policy shock that differentially affected the ability of Taiwanese

firms to offshore production to China and find evidence of a negative effect on innovation within the

technologies directly related to the offshored good. Bilir and Morales (2020) estimate that 20 percent

of the returns to US multinational enterprises’ R&D investments take place in their foreign affiliates,

suggesting that innovation in the US leads to gains in foreign markets. Boler et al. (2015) document

the presence of strong complementarities between R&D and imported imports that operate through

a scale effect. Bernard et al. (2020) find that firms that exploit new production opportunities in

low-wage countries increase their share and level domestic employment in research-related occupa-

tions and increase the quality of their domestically produced varieties. We build on this evidence by

assessing whether and how geographic proximity within the United States relates to firms’ patenting,

since separating manufacturing and innovation across borders is less likely to be problematic if it is

already geographically separated.7

The rest of the paper proceeds as follows. Setion 2 describes how we construct our dataset, while

Section 3 provides an overview of US innovation since the late 1970s. Section 4 presents our analysis

of patenting as a function of the spatial proximity of firms’ M and P establishments. Section 5 will

present our firm-region regressions in an upcoming draft. Section 6 concludes. Additional results and

details of our analysis are present in an Appendix.

6This new type of innovation and production process is likely facilitated by the advent of information and commu-
nication technologies that facilitate production fragmentation, as in Fort (2017).

7In future drafts, we will also use firms’ direct imports to assess how they relate to changes in its patenting, and to
measure the extent to which traditional measures of import competition include direct imports by US manufacturing
firms that patent. If these flows are large, then it is possible that the aggregate industry measures of Chinese import
competition may actually capture US firms’ offshoring decisions rather than exogenous increases in Chinese productivity
that differ across sectors. For example, the large surge in Computer and Electronics imports from China may reflect
offshoring by US firms that are specializing in innovation in response to low-wage production opportunities in China.
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2 Data

In this section we describe how we construct a new dataset that tracks the employment, pay, produc-

tion, location and innovation of US firms and establishments.

2.1 US Firms and Establishments

We use the US Census Bureau’s Longitudinal Business Database (LBD) initially assembled by Jarmin

and Miranda (2002) to track the employment, pay, and industry of all private, non-farm US estab-

lishments from 1977 to 2016 annually. An establishment is a single physical location where business

transactions take place and for which pay and employment are recorded.8 The LBD contains a lon-

gitudinally consistent establishment identifier (lbdnum), as well as a firm identifier (firmid) that

captures all of the establishments that are under common ownership or the control in a given year.

We use firmid to aggregate establishments to firms each year, and follow Ding et al. (2019) in

implementing a series of corrections to this identifier over time.9

We track the unique 6-digit NAICS industry of each establishment in each year using the NAICS

industry codes developed by Fort and Klimek (2018). We use these codes to identify the mix of

industries in which multiple-establishment firms operate, and to assign each firm principal six, three,

and 2-digit NAICS codes according to its largest shares of employment and pay, respectively, at those

levels of aggregation.10

A significant contribution of this paper is to assign a latitude and longitude (henceforth “geocodes”)

to all establishments in the LBD from 1977 to 2016. These codes allow us to document where man-

ufacturing and innovation-related activities take place, and to analyze the extent to which they are

spatially colocated. More broadly, they enable us to calculate the distance between any two estab-

lishments within a firm, as well as the distance between the establishments of different firms.

The Census Bureau’s Business Register (BR) has geocodes (i.e., latitude and longitude) for the

majority of establishments starting in 2007. These geocodes are assigned to the Census block of the

physical address of the establishment and are therefore the same for all establishments located in

the same block. As these assignments were initially devised to cover residential zones, they are more

frequently missing in the data for addresses in strictly commercial areas. We use these codes for an

establishment whenever they are available. In earlier years, and in cases where geocode information is

missing from the BR, we attempt to recover a geocode by entering an establishment’s street address

and ZIP code into ArcGIS software. If that fails, we use the establishment’s ZIP code from the

LBD to assign the ZIP code’s centroid latitude and longitude to the establishment.11 This procedure

8Technically, this information is reported at the firm (EIN) level and split to establishments by Census. This split is
noisier in years between Economic Censuses.

9Census’ firmid can break spuriously over time for a number of reasons, such as when a firm transitions between
having a single versus multiple establishments. We discuss the corrections suggested by Ding et al. (2019) in greater
detail in Appendix Section B.

10In the cases where there is no variation in n-digit NAICS sectors within (n− 1)-digit roots, we replace the n-digit
codes with (n+ 1)-digit codes. For example, NAICS sector professional services (54) contains no variation at the 3-digit
level – they are all 541. In that case, we use the 541x codes in place of 3-digit codes.

11Shifting zipcode boundaries over our sample period present a challenge, as the centroid geocode may change with
the zipcode’s borders, inducing spurious movement of establishments. We address this issue by assigning establishments

5



yields a unique geocode for all establishments that is constant across all the years we observe the

establishment. Additional details on our matching procedure are in Appendix Section A.3.

We augment the geocoded LBD with additional information from the Economic Censuses (ECs)

of Manufacturing (CMF), Wholesale (CWH), Retail Trade (CRT), and Services (CSR), which are

collected in years ending in “2” and “7”, henceforth referred to as “Census” years. The EC data

provide establishment-level measures of sales for all sectors. In addition, each Census has industry-

specific information on additional variables, such input purchases (CMF, CWH), auxiliary status

and industry served (CSR), number of products (CMF, CWH), and employment and wagebills by

production versus non-production workers (CMF, CWH).12 In 2007, the CMF and CWH also provide

information related to establishments’ primary activity, and whether or not establishments perform

in-house design or purchase contract manufacturing services.

We also link the geocoded LBD to information on firm trade available from the Longitudinal

Firm Trade Transactions Database (LFTTD). These data are based on US Customs transactions and

capture all import and export transactions by 10-digit Harmonized System (HS10) product categories

and source or destination country. The trade data are available from 1992 to 2018 and are collected by

Employer Identification Number (EIN). The LFTTD maps EINs to firms.13 As a result, we observe

trade at the firm, but not the establishment, level.

2.2 Measures of Innovation

We measure US innovation using patents and research and development (R&D) expenditures from

1977 to 2016.14 We link these data to the geocoded LBD to construct a new dataset tracking the

spatial distribution of firms’ innovation activities.

US patent data are from the publicly available US PatentView (USPV) dataset produced by the

US Patent and Trademark Office (USPTO).15 USPV data provide the application date, grant date,

assignee (i.e., firm) name, type and address (city, state and country), inventor name(s) and address(es)

(city, state or country), forward and backward citations, and patent technology class for every patent

granted in the United States between 1976 and 2020. While the vast majority of patents contain

information allowing us to link them to firms, such as their name, city and state, approximately 14

percent of patents are missing these data. Our analysis focuses on patent grants because these are

patents deemed to be credible contributions to knowledge by patent examiners, and because of the

greater availability of identifier information for patent grants versus applications.16

We combine the USPV data with our geocoded LBD using the assignee name and city-state

address information of the assignee and inventor(s), which we match to firm name and address in

the mean geocode across our sample period.
12Auxiliary establishments provide support functions for other establishments within a firm.
13Canadian exports are only collected with firm name information. For details on the original construction of the

LFTTD, and as well as a more recent update, see Bernard et al. (2007) and Kamal and Ouyang (2020).
14We plan to expand the set of innovative activities we examine to other items, such as trademarks, in a future draft.
15These data can be downloaded from the USPTO’s website at http://www.patentsview.org. The patent information

used in this paper was accessed on May 19, 2020.
16We are investigating whether recent data assembled by the USPTO permit greater matching of patent applications

to US firms.
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the Census Bureau’s Business Register (BR). We note that we match patent grants to firms in their

application year, as the interval between patent application and grant can stretch several years and

our interest is in the firm characteristics that give rise to innovation. Overall, we match 64 percent

of the nearly 3 million patents granted to US firms between 1977 and 2016 to a specific firm and

application year in the LBD. These match rates are relatively consistent over time, varying between

60 and 67 percent across years. Appendix Section A provides additional information on the patent

data and our matching algorithm.

As just noted, an important feature of granted patents is the time lag between patents’ application

and grant dates. Comparing the left panel of Appendix Figure A.1 to Appendix Figure A.3, it is clear

that the count of granted applications declines at the end of the sample due to this lag, as opposed to

a decline in patenting. The first application year in our matched data is 1972, linked to a firm in the

LBD in 1976. Our analysis begins in 1977, but we use patent grants applied for before this period to

estimate patent stocks.

The USPTO classifies patents into specific technology groups according to cooperative patent

classification codes (CPC), jointly developed by the USPTO and the European Patent Office (EPO).17

We are able to link the CPC technology classes to 6-digit NAICS industries using the Algorithmic

Links with Probabilities (ALP) procedure developed by Lybbert and Zolas (2014) and updated in

Goldschlag et al. (2019). This concordance links particular technologies to industries probabilistically

based on the underlying keywords that describe the domain of goods and services they represent.18

For instance, patents related to magnetic and optical media manufacturing (NAICS 3346) will be

linked to technology classes related to information storage (CPC G11) and computing, calculating

and counting (CPC G06). We also identify processing patents using data from Ganglmair et al.

(2020), who exploit the standardized language of patent claims to identify the grammatical structure

and keywords associated with process versus product patents.

In addition to matching the USPV data to firms in the geocoded LBD, we also exploit the inventor

addresses to match each patent to a firm-city-state. For single-establishment firms, this is identical

to matching the patent to a firm. However, the majority of patents are granted to large, multi-

establishment firms that are active in multiple locations. For these firms, we assess whether the

patent inventor is in the same city-state as one (or more) of the firm’s establishments. If it is, then

we assign the patent to that city-state. If the firm has no establishments in the inventor’s city-state,

we then assign the patent to the closest city-state in which the firm has one (or more) establishments.

Further details on the matching procedure are in Appendix Section A.3. Exploiting the inventor

addresses thus allows us to identify which of the firms’ establishments are most closely associated

with patenting activity.

We measure US firms’ research and development (R&D) expenditures using two Census Bureau

17The nine major CPC categories are: Human Necessities; Performing Operations and Transporting; Chemistry
and Metallurgy; Textiles and Paper; Fixed Constructions; Mechanical Engineering, Lighting, Heating, Weapons and
Blasting; Physics; Electricity; and Other. Appendix Figure A.2 provides an annual breakdown of patent grants by these
major groupings.

18More precisely, the algorithm combs through the abstracts and titles of a global set of patents for keywords specifi-
cally developed to describe each NAICS classification, before applying a filter and re-weighting the matches to minimize
Type I and Type II errors.
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surveys: the Survey of Industrial Research and Development (SIRD) and the Business R&D and

Innovation Survey (BRDIS), which cover years 1977 to 2007, and 2008 to 2016, respectively. The SIRD

and the BRDIS record surveyed firms’ overall R&D spending as well as various breakdowns of this

total, e.g., by foreign versus domestic expenditure, as well as basic versus applied and development.

The BRDIS and SIRD also record the number of scientists, engineers, and technical workers employed

by the firm. It is important to note that we observe R&D expenditures only for surveyed firms.

Traditionally, the SIRD focused on large manufacturing firms, though the scope for the two surveys

has increased over time so that both surveys sample a nationally representative set of firms.19 In

terms of the spatial distribution of R&D, the surveys break down R&D expenditures by state, thus

providing some geographic variation for large, multi-unit firms that span different US states.

3 An Overview of US Innovation

In this section we provide an overview of US firms’ innovative activities over the past 45 years, a period

which spans the decline of US manufacturing employment from its peak of 19.1 million workers in

1979 to 11.5 million in 2016.

The left panel of Figure 1 reports the number of patents subsequently granted to firms located

in the United States by their application year. The right panel plots firms’ total worldwide R&D

expenditures. Patent grants are flat in the early years of the sample, and then again between 2000 and

2007. As noted in the last section, the decline starting in 2014 is an artifact of the often multi-year

lag between patents’ application and grant dates, which averages 3 years but can last up to 7 years

or more.

Figure 1: US Innovation

Source: LBD, BR, USPV, SIRD, BRDIS, and author’s calculations. Left panel displays number of
patents subsequently granted to firms by their application year. Right panel displays total R&D
expenditure of US firms. In both cases, totals are for the set of firms for which a match between
the patent and R&D data could be found (see main text for further detail). Vertical bars represent
NBER-dated recessions.

19Sampling is limited to firms with 10 or more employees. Firms with two consecutive years of zero R&D expenditures
are permanently dropped from the survey, while firms with at least one R&D establishment (NAICS 5417) are surveyed
with certainty.
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3.1 Innovation by Manufacturers and Non-Manufacturers

To analyze the evolution of US innovators, and the role of manufacturers in particular, we categorize

firms in year t into three mutually exclusive groups: manufacturing firms (MF s), former manufac-

turing firms (FMF s), and never-manufacturing firms (NMF s). A MF in year t is defined as a firm

that includes a manufacturing establishment in that year. A FMF in year t, by contrast, is a firm

without any manufacturing plants in that year, but which did encompass at least one manufacturing

plant in some prior year of the sample period. Lastly, a NMF in year t is a firm which has not had

a manufacturing establishment up to and including year t.20

The three panels of Figure 2 provide a breakdown of US firms by type in each year, as well as

their total employment and payroll. As indicated in the figure, NMF s represent the vast majority of

firms, but far smaller shares of total employment and payroll. Manufacturing firms’ total employment

(including workers at their manufacturing and non-manufacturing establishments) is relatively flat

until the 2000s, at which point it declines. FMF employment, by contrast grows steadily, even as

the the number of FMF firms’ plateaus at the end of the period.

Figure 2: US Firms by Type

Source: LBD and author’s calculations. Left panel displays numbers of US firms by type using a log scale. Middle and right
panels display their employment and nominal payroll. Firm types are non-manufacturing firms (NMF s), manufacturing firms
(MF s) and former manufacturing firms (FMF s), as defined in the main text. Data for FMF s are suppressed prior to 1982.

Figure 3 provides a breakdown of US patenting and R&D expenditures by type of firm. As

indicated in the left panel, MF s account for the majority of granted patents and R&D expenditures

in all years of the sample, though their share of these activities declines substantially over time, from

91 percent in 1977 to 54 percent in 2016. The decline in R&D expenditures, in the right panel, is

similar, from 99 in 1977 to 59 percent in 2016.21

20These firms may include a manufacturing plant in some future year. In practice, the number of NMF s with
manufacturing in the future is very small compared to the overall number of NMF s in each year. Note that we are
unable to observe whether firms include manufacturing plants prior to 1977. As a result, the number of FMF s in 1977
is zero by definition. Due to the very small number of FMF s in the initial years of our sample period, we do not break
out FMF s from NMF s until 1982 in the results to follow.

21In unreported results, we find that manufacturing firms account for a similarly declining share of manufacturing
patents. Appendix Section A provides a decomposition of US patents by NAICS sector. Manufacturing patents’ share
of overall patents falls from 92 in 1977 to 84 percent in 2016. Among publicly US traded firms in 2007, Autor et al.
(forthcoming) find that manufacturers account for more than two-thirds of US corporate patents and R&D spending.
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A stark difference between the two panels is the overall flatness of granted patent growth among

MF s between 2000 and 2010, a period book-ended by the 2001 and 2007 recessions. Patent growth

by NMF s and FMF s, by contrast, continues relatively unabated during this period. NMF s account

for 9.0 percent of US patents in 1977 and 28 percent in 2016 – a rise of 211 percent. FMF s account

for zero patents in 1977 (by definition) and 18 percent of US patents in 2016, suggesting that at least

for some firms, the presence of US manufacturing activity is not essential for successful innovation.

Figure 3: Innovation by Firm Type

Source: LBD, BR, PatentsView, SIRD, BRDIS and author’s calculations. Left and right panels
report patents granted to US firms by their application year and total research and development
(R&D) expenditures, by type of firm. Firm types are non-manufacturing firms (NMF), manufac-
turing firms (MF) and former manufacturing firms (FMF), as defined in text. Data for FMF are
suppressed prior to 1982.

We provide further context for FMF s in Figure 3, which presents a breakdown of these firms’

patent grants according to the year in which they permanently exit manufacturing. In the figure,

FMF s are assigned to one of five cohorts depending upon the year in which they drop their last man-

ufacturing establishment, e.g., between 1977 and 1996.22 There is almost no patenting growth among

firms that permanently exit manufacturing prior to 1997. In contrast, firms that exit manufacturing

starting in 1997 exhibit relatively strong growth, both prior to and after shedding their manufacturing

plants. The notable exception is the cohort of FMF s that exits manufacturing between 2002 to 2006,

for whom patenting declines after 2001. In contrast, the 2007 to 2011 cohort exhibits particularly

strong patent growth, even after exiting manufacturing. One possibility is that employment at these

firms evolves different, depending on the cohort. The right panel shows that employment by cohort

for FMF firms that patent evolves fairly similarly. The variation in their patent growth therefore

does not simply reflect differences in their growth.

Patents per worker is an often-used indicator of innovation efficiency (Griliches, 1994; Kortum,

1997). For firms with patent grants, Figure 5 displays the number of grants per firm, per total

employment, and per total nominal payroll. We find in the left panel that while MF s historically

have had the largest number of patents per firm, they are overtaken by FMF s in the early 2000s.

Comparison of the panel with Figure 4 reveals that this growth is driven by the cohort of FMF firms

22Patent counts prior to 1987 are suppressed for FMF s in the final three cohorts.
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Figure 4: Patenting and Employment by Permanent FMF Cohort

Source: LBD, LFTTD, PatentsView, and author’s calculations. Panels report patents granted to
permanent former manufacturing firms by cohort. Permanent FMF s are assigned to one of five
cohorts depending upon the year in which they dropped their last manufacturing establishment
during the sample period. For example, the lines for the 1977 and 1996 cohorts represent the
patents granted to and the employment of all firms for which the last year in which they are
observed to have a manufacturing establishment is 1977 to 1996. Patent counts prior to 1987 are
suppressed for FMF s in the final three cohorts. Cohort lines include firms that exit prior to the
end of the sample period.

that leave manufacturing beginning in 1997.

Figure 5: Patent Efficiency

Source: LBD, LFTTD, PatentsView, and author’s calculations. Panels report patents per firm, per total employment, and per
nominal payroll, by firm type. For each year, sample is restricted to firms with patent grants. Firm types are non-manufacturing
firms (NMF), manufacturing firms (MF) and former manufacturing firms (FMF), as defined in text.

The middle panel of Figure 5 reveals that patents per worker are similar and rising over time for

both MF s and NMF s. Patent efficiency for FMF s, while lower, also rises over time. These trends

contrast with recent research suggesting ideas are getting harder to find. Bloom et al. (2020), for

example, provide a series of examples in which innovation per worker is declining.

In the final panel of Figure 5, we exploit our ability to observe firms’ payroll to compute patent

grants per dollar of pay for each type of firm. As indicated in the figure, trends are either flat or

decreasing after initially stark declines in the late 1970s and early 1980s.
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Finally, Figure 6 plots the patent efficiency of firms permanently exiting from manufacturing by

their exit cohorts. Here, too, the later cohorts stand out in terms of seeing their efficiency continuing

to rise after exit.

Figure 6: Patent Efficiency by Permanent FMF Cohort

Source: LBD, LFTTD, PatentsView, and author’s calculations.
Panels report patents granted per total employment to permanent
former manufacturing firms by cohort. Permanent FMF s are
assigned to one of five cohorts depending upon the year in which
they dropped their last manufacturing establishment during the
sample period. For example, the lines for the 1977 and 1996
cohorts represent the patents granted to and the employment of
all firms for which the last year in which they are observed to have
a manufacturing establishment is 1977 to 1996. Patent counts
prior to 1987 are suppressed for FMF s in the final three cohorts.
Cohort lines include firms that exit prior to the end of the sample
period.

3.2 Trade and Innovation

The decline of US manufacturing employment has been accompanied by an increase in US imports,

particularly from China (Autor et al., 2013; Pierce and Schott, 2016). These trends have been linked

to a decline in US innovation by Autor et al. (forthcoming), though Bloom et al. (2016) find the

opposite relationship between Chinese import penetration and innovation in a study of European

manufacturers. In this section, we describe how US trade varies across firm’s type and patenting

status.

The eight panels of Figure 7 focus on overall US imports and exports, as well as US imports from

and exports to China. Each row of panels focuses on a different trade flow. In each row, panels on

the left examine trends among non-patenting firms while those on the right are for patenters. Panels

in the same row have the same scale for their y-axis and units are in billions of US dollars.

Three trends stand out across the panels. First, US trade predominantly flows through MF s that
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patent. As evident in the top four panels of Figure 7, aggregate imports and exports of non-patenting

MF and NMF s are similar, while MF patenters’ imports are about twice as large in 2016, and

their exports are 3 times as large compared to non-patenters. The bottom four panels display similar

patterns for Chinese imports and exports, with the notable exception of NMF s’ Chinese imports,

which are similar in magnitude to MF s’ Chinese imports.

Second, in stark opposition to the trends for MF s, NMF s that do not patent trade more than

NMF s that do patent. In fact, the high share of NMF imports from China is driven by non-patenting

firms. This result may not be surprising since wholesalers and retailers are particularly important for

US imports from China (Bernard et al., 2010). In contrast, MF s’ Chinese imports are about twice

as large for patenting firms, raising the question about the extent to which offshoring and patenting

may be complementary activities. The third row of Figure 7 highlights the fact that the majority

of US imports from China are mediated by MF s and FMF s, and thus raises the possibility that

aggregate measures of Chinese import competition may reflect offshoring by US manufacturers. We

plan to investigate this possibility in a future draft.

Finally, the third panel of Figure 7 shows that US imports from China by FMF s that patent

surge starting in the mid-2000s. We examine these imports more closely in Figure 8, which plots

overall US imports as well as US imports from China for the FMF cohorts described above. We find

that FMF s’ import growth is driven by the cohort that leaves manufacturing between 2007 and 2011.

This cohort’s total imports exhibit strong growth throughout the 1990s, and their Chinese imports

accelerate after 2002. This cohort is also the one that displays the strongest growth in patent grants

in Figure 4. These trends suggest firms leaving manufacturing after the Great Recession may have

begun relying on Chinese production for physical assembly while continuing to innovate. We return

to this potential relationship below.

3.3 Industry Variation in Patenting

In a future draft, this section will document the distribution of patenting versus non-patenting firms’

employment across 2-digit NAICS sectors. That analysis will demonstrate that several sectors are dis-

proportionately large among patenting firms. Examination of these sectors’ descriptions also provides

further rationale for the view that they support innovation.

Based on the patenting firms’ disproportionate employment shares and the NAICS industry de-

scriptions, we classify establishments as innovation plants if they are in one of the following Pro-

fessional and Technical Services (54) or Information (51) sectors: Architectural, Engineering, and

Related Services (5413); Specialized Design Services (5414); Computer Systems Design and Related

Services (5415); Management, Scientific, and Technical Consulting Services (5416); Scientific Re-

search and Development Services (5417); Software Publishers (5112); Telecommunications (517); and

Data Processing, Hosting, and Related Services (518). We also classify establishments in Corporate,

Subsidiary, and Regional Managing Offices (551114) as innovation plants. Establishments that per-

form more than one core support function (e.g., Accounting and R&D) are classified as 551114, and

these establishments often explicitly include R&D employment. Given the importance of Professional

Services in this list of sectors, we refer to these innovation plants as “P” plants.
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Figure 7: US Trade by Firm Type and Patent Status

Source: LBD, LFTTD, and authors’ calculations. Left panels
report aggregate US imports and exports as well as China imports
and exports for firms that do not patent, by firm type. Right
panels report analogous information for patenting firms. Firm
types are non-manufacturing firms (NMF), manufacturing firms
(MF) and former manufacturing firms (FMF), as defined in text.
Data for FMF are suppressed prior to 1982.

3.4 Patenting by Manufacturing versus Non-Manufacturing Firms

Our analysis thus far has shown that while manufacturing firms are important patenters, non-

manufacturing firms increasingly contribute to aggregate US patent growth. To explore how in-

novation varies by firm type more formally, we estimate the relationship between a firm’s patenting
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Figure 8: FMF Patenting Firms’ Imports by Cohort

Source: LBD, LFTTD, and authors’ calculations. Top panel reports aggregate US imports and
exports by firm type. Bottom panel reports US imports from and exports to China by firm
type. Firm types are non-manufacturing firms (NMF), manufacturing firms (MF) and former
manufacturing firms (FMF), as defined in text. Data suppressed prior to the 2007-11 cohort in
1992.

output and whether the firm has a manufacturing (M) or P plant via the following specification:

ln(ỹft) = γ1Mft + γ2Pft + γ3Mft × Pft + (1)

γ4FMFft + γ5FMFft × Pft +

βXft + αt + αr + εfrt,

where ỹit represents a count of firm patents or citations for firm f in years t through t+4. Mft and Pft

are dummy variables indicating whether firm f has M or P establishments in year t, and Mft×Pft is

the interaction between those dummies, indicating whether the firm has both M and P plants in that

year. In some of the specifications, we also include indicators to identify if a non-manufacturing firm is

a former manufacture (FMF ), and the interaction of FMFft×Pft, which identifies whether a FMF

has P plants in that year. Xft denotes a vector of indicators for time-varying firm characteristics

such as employment size and age.23 Finally, Equation (1) includes year fixed effects to remove

any macroeconomic drivers of patenting common across firms, and Federal Information Processing

Standards (FIPS) fixed effects for the firm’s main county based on employment. We also estimate a

variant of Equation (1) with firm fixed effects to assess whether a particular firm’s patenting output

varies with changes in its M and P status. We restrict the sample period to Census years between

1977 and 2012, which captures firm patenting activity through 2016.24

We estimate Equation (1) using a range of innovation outcomes for yit, including the firm’s overall

number of granted patents, as well as its manufacturing and processing patent counts.25 In each case,

23Following Haltiwanger et al. (2013), we measure firm age in year t as the age of the establishment in the firm in t.
As data on plants is not available prior to 1977, plants present in that year are assumed to be born in that year.

24As noted in Section 2, Census years end in 2 and 7.
25Ganglmair et al. (2020) exploit the standardized language of patent claims to identify the grammatical structure

and keywords associated with process versus product patents. We thank them for generously providing their data.
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yit is computed as the sum of patents for which the firm applied in years t to t + 4 and that were

granted by May 2019 (the date of our USPV download). To account for potential variation in patent

quality, we also examine patent citations in year t, which are the total number of citations as of 2019

for patents that were applied for in year t and eventually granted up to 2019.

As patenting is an unusual event (i.e., there are many zeros in the data), we transform the patent

counts just described using an inverse hyperbolic sine function,

ln(ỹft) = ln
(
yft + (y2

ft + 1)1/2
)
. (2)

Given the close correspondence between the natural log and this transformation, we will use “log” as

a shorthand when referring to it, and note that the regression coefficients in Equation (1) may loosely

be thought of as the percent difference in patent grants among firms with the noted attribute relative

to the left-out group, i.e., firms without either M or P plants.

We report the results from estimating Equation (1) via Ordinary Least Squares (OLS) in Table 1.

Column 1 presents the estimates without firm fixed effects and shows that firms with a manufacturing

plant have 0.37 log points more patents, while firms with an innovation plant have 0.17 log points

more patents, both relative to firms with no manufacturing or innovation plants. The most striking

result in Table 1 is the estimated coefficient on the interaction between Mft and Pft, which indicates

that firms with both manufacturing and innovation in a given year have 67 log points more patents.

Columns 2 and 3 in Table 1 add the FMF indicator and the interaction between FMF and P .

The estimates for these variables indicate that former manufacturing firms do patent relatively more

than firms without M or P plants, but that this is driven by FMF firms that have P plants. In fact,

Column (3) shows that FMF s without P plants have 0.16 log points fewer patents, while FMF s

with P plants have 23 log points more patents than firms without M or P establishments. Perhaps

most surprising is the fact that the estimated coefficient on P in column 3 is negative, large, and

statistically significant, suggesting that the firms with P establishments patent more only when the

firm has a manufacturing plant, or had one in the past.26

Columns 4 to 6 in Table 1 present the results from estimating Equation (1) with firm fixed effects.

Although the coefficient magnitudes are smaller, the same basic patterns are evident for firms with M

and P establishments. Firms tend to patent more when they have one or the other, and their granted

patents are 15 log points higher in the years in which they have both. In contrast to the specifications

without firm fixed effects, firms patent more when they are FMF s, relative to when they have no M

or P plants. As in the cross-firm specifications, the relationship between FMF status and patenting

is stronger in years in which the FMF s also have at least one P plant.27

Table 2 presents results from estimating Equation (1) for the firm’s patent citations, manufacturing

patents, and its processing patents. For each of these outcome variables, we present the results from

including all covariates in Equation (1). Columns 1, 3, and 5 present estimates without firm fixed

effects, while columns 2, 4, and 6 include them. The primary and strongest message from Table 2 is

that firms with M and P plants have considerably higher patent citations, manufacturing patents,

26The full effect of being an FMF with a P plant in column 3 is actually quite small (i.e., -0.213+-0.016+0.231=0.002).
27In column 6, the full effect of being an FMF with a P plant is 1 log point.
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Table 1: Patenting by Manufacturing versus Non-Manufacturing Firms

Dependent variable is ln(Patentsf,t:t+4): firm f ’s total patent grants from t to t+ 4

(1) (2) (3) (4) (5) (6)

Mft 0.0374*** 0.0376*** 0.0365*** 0.0149*** 0.0179*** 0.0174***
(0.0003) (0.0004) (0.0003) (0.0009) (0.001) (0.001)

Pft 0.0172*** 0.0172*** -0.213*** 0.0047*** 0.0047*** -0.0199
(0.0004) (0.0004) (0.0206) (0.0006) (0.0006) (0.0126)

MPft 0.665*** 0.665*** 0.707*** 0.147*** 0.147*** 0.154***
(0.0132) (0.0133) (0.0149) (0.0082) (0.0082) (0.0090)

FMFft 0.0046* -0.016*** 0.0081*** 0.0061***
(0.0024) (0.0015) (0.0019) (0.0016)

FMFft × Pft 0.231*** 0.0247*
(0.0206) (0.0127)

Workersft

10 - 99 0.0059*** 0.0059*** 0.0059*** 0.0021*** 0.0021*** 0.0021***
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

100 - 499 0.0518*** 0.0518*** 0.0521*** 0.0226*** 0.0225*** 0.0226***
(0.0009) (0.0009) (0.0009) (0.0007) (0.0007) (0.0007)

500 - 4999 0.255*** 0.256*** 0.257*** 0.112*** 0.111*** 0.111***
(0.0050) (0.0050) (0.0050) (0.0035) (0.0035) (0.0035)

5000+ 1.505*** 1.506*** 1.515*** 0.563*** 0.562*** 0.562***
(0.0398) (0.0398) (0.0397) (0.0216) (0.0216) (0.0216)

Ageft

5 - 9 -0.0017*** -0.0017*** -0.0017*** -0.0012*** -0.0012*** -0.0012***
(0.0000) (0.0000) (0.0000) (0.0001) (0.0001) (0.0001)

10+ -0.0030*** -0.0030*** -0.0030*** -0.0018*** -0.0018*** -0.0018***
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

FIPS Fixed Effects Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes Yes
Firm Fixed Effects No No No Yes Yes Yes

R-squared 0.152 0.152 0.153 0.742 0.742 0.742
N (millions) 27 27 27 27 27 27

Source: LBD, BR, USPTO and authors’ calculations. Table reports the results of estimating
Equation 1 using the universe of firms in the US in Economic Census years 1977 to 2012 that
are present in at least two Census years. This restriction ensures that the samples are identical
across all specifications, including those with firm fixed effects, and does not alter the results.
Dependent variable is the inverse hyperbolic sine transformation of the total patents granted to
firm f between Census year t and t + 4. Its mean and standard deviation are 0.0074 and 0.1360,
respectively. Mft and Pft are dummy variables indicating whether firm f has manufacturing or
innovation (P ) establishments in Census year t. FMFft indicates whether firm f is a former
manufacturing firm in year t. FIPS fixed effects capture the main FIPS code for a firm, based
on its employment. Standard errors clustered by firm. Number of observations is rounded per
Census disclosure guidelines.

17



and processing patents than firms without M or P . In addition, firms tend to patent more in those

years in which they have both of these types of establishments. Table 2 also shows that FMF firms

with P plants tend to have more manufacturing and processing patents than firms without M or P ,

though fewer patent citations.

Table 2: Patent Citations and Counts by Manufacturing versus Non-Manufacturing Firms

Dependent variable is:

ln(Citationsf,t:t+4) ln(ManufPatentsf,t:t+4) ln(ProcessingPatentsf,t:t+4)

(1) (2) (3) (4) (5) (6)

Mft 0.0817*** 0.0250*** 0.0311*** 0.0142*** 0.0098*** 0.0064***
(0.0007) (0.0024) (0.0003) (0.0011) (0.0001) (0.0007)

Pft -0.174*** 0.188*** -0.213*** -0.0141 -0.135*** -0.0435***
(0.0348) (0.0231) (0.0196) (0.0115) (0.0150) (0.0094)

MPft 1.195*** 0.167*** 0.655*** 0.139*** 0.367*** 0.0868***
(0.0234) (0.0163) (0.0143) (0.0083) (0.0106) (0.0063)

FMFft -0.0391*** -0.0196*** -0.0116*** 0.0033** -0.0061*** 0.0041***
(0.0032) (0.0032) (0.0013) (0.0014) (0.0007) (0.0010)

FMFft × Pft 0.211*** -0.184*** 0.229*** 0.0182 0.145*** 0.0466***
(0.0348) (0.0232) (0.0196) (0.0116) (0.0150) (0.0094)

Workersft

10 - 99 0.0129*** 0.0027*** 0.0047*** 0.0016*** 0.0019*** 0.0006***
(0.0002) (0.0002) (0.0001) (0.0001) (0.0000) (0.0000)

100 - 499 0.113*** 0.0330*** 0.0422*** 0.0181*** 0.0148*** 0.0074***
(0.0017) (0.0015) (0.0008) (0.0007) (0.0005) (0.0004)

500 - 4999 0.477*** 0.156*** 0.224*** 0.0962*** 0.115*** 0.0520***
(0.0086) (0.0066) (0.0047) (0.0032) (0.0031) (0.0022)

5000+ 2.411*** 0.731*** 1.390*** 0.497*** 1.013*** 0.366***
(0.0561) (0.0353) (0.0389) (0.0201) (0.0328) (0.0173)

Ageft

5 - 9 -0.0035*** -0.0010*** -0.0014*** -0.0009*** -0.0008*** -0.0007***
(0.0001) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000)

10+ -0.0064*** 0.0004** -0.0025*** -0.0014*** -0.0014*** -0.0013***
(0.0001) (0.0002) (0.0001) (0.0001) (0.0000) (0.0001)

FIPS Fixed Effects Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes Yes
Firm Fixed Effects No Yes No Yes No Yes

R-squared 0.119 0.661 0.154 0.749 0.141 0.743
N (million) 27 27 27 27 27 27

Dep Var Mean & SD 0.0153, 0.2690 0.0063, 0.123 0.0029, 0.0797

Source: LBD, BR, USPTO and authors’ calculations. Table reports the results of estimating Equation 1 using the
universe of firms in the US in Economic Census years 1977 to 2012 that are present in at least two Census years. This
restriction ensures that the samples are identical across all specifications, including those with firm fixed effects, and
does not alter the results. Dependent variables are the inverse hyperbolic sine transformation of total citations, manu-
facturing patents, and processing patents for patents granted to firm f between Census year t and t + 4. Mft and Pft

are dummy variables indicating whether firm f has manufacturing or innovation (P ) establishments in Census year t.
FMFft indicates whether firm f is a former manufacturing firm in year t. FIPS fixed effects capture the main FIPS
code for a firm, based on its employment. Standard errors clustered by firm. We control for firm employment size and
age categories. Observations rounded per Census disclosure guidelines.

The main message from the descriptive regressions presented in this section is that firms with M
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and P establishments patent considerably more than other firm types. While FMF firms also have

higher patenting output when they have a P establishment, this interaction is considerably smaller

than the relationship between patenting and having both an M and a P plant. The results also

show that firms patent more during those periods in which they have both a manufacturing and P

establishment. These results suggest a potential complmentarity between innovation workers and

manufacturing activity within the firm. We investigate this relationship more closely in the next

section by analyzing how the spatial distribution of M and P plants among firms that have both

relates to patenting.

4 Patenting and the MP Firms’ M and P Plant Distance

Results in the previous section indicate that firms with both manufacturing (M) and innovation-

related (P ) establishments patent more than other firms. In this section, we show that among

firms with both types of establishments, i.e., MP firms, patents are higher among firms whose M

and P facilities are spatially proximate. We first document the spatial distribution of M and P

establishments among M and P firms over our sample period. We then estimate the relationship

between firm patenting and these distances using a series of panel regressions, with and without firm

fixed effects.

4.1 M-P Plant Distance

For each MP firm in each year we compute the distance between all pairs of M and P establishments

within the firm using the geocode information described in Section 2.1. The minimum and average

distances between M and P establishments within firm f in year t are denoted distmin
ft and distavgft .

Table 3 presents the yearly means and medians of these distances.28 The starkest result in Table 3

is the large difference between distmin
ft and distavgft , highlighing the data’s sharp skewness. In 1977,

the median firm’s minimum distance is only 3 miles, while the median firm’s average distance is 301

miles – 100 times the minimum. A similar pattern is evident when comparing the means of distmin
ft

and distavgft . These results suggest that although a firm’s manufacturing and innovation plants tend

to be hundreds of miles apart, they often have at least one pair of these establishments that are very

close.29

Table 3 also shows that distances between a firm’s manufacturing and innovation plants have

risen over time. Columns 1 and 2 show the median distmin
ft doubling from 3 to 6 miles and the mean

distmin
ft increasing about 44 percent, from 95 to 137 miles. distavgft also rises, though not as sharply:

the median increases about 38 percent, from 301 to 416 miles, while the mean rises about 16 percent,

28Distances are rounded and medians are constructed as the average of all establishment pairs in the 49th through
51st percentiles, per Census disclosure guidelines.

29An example of this type of spatial variation is evidence in Pharmaceutical Manufacturing. For example, publicly
available data show that the Danish firm Novonordisk has 7 manufacturing locations and 4 R&D facilities around the
world. Of the 4 R&D facilities, 2 are colocated with production sites: one in Denmark and one in China. These
colocated production sites are often used for testing of new products and for production of complex goods that require
continual input from scientists. In contrast, production of mature and simpler compounds tends to occur in the low-wage
locations. Appendix Figure A.5 shows these locations.
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Table 3: Distances between MP Firm’s M and P Establishments

Minimum (distmin
ft ) Average (distavgft )

Mean Median Mean Median

1977 95 3 445 301
1982 115 4 457 322
1987 120 5 470 336
1992 141 6 487 359
1997 153 6 502 381
2002 139 5 501 387
2007 142 5 498 383
2012 137 6 517 416

Source: LBD, BR, and authors’ calculations. Table re-
ports summary statistics for the minimum and mean dis-
tances (in miles) between MP firm f ’s M and P establish-
ments in each Census year t, denoted distmin

ft and distavgft .
The first two columns report the mean and median for
distmin

ft , while the second two columns report the analo-
gous statistics for distavgft . The set of firms included in
the counts is restricted to the regression sample used in
Tables 4 and 5.

from 445 to 517 miles. Despite the larger percentage increases for the minimum distances, they still

remain significantly smaller than average distances. Establishments only 3 to 6 miles apart make it

relatively easy for employees to visit both facilities in the same day.

These minimum distance statistics motivate our construction of three dummy variables indicating

whether the minimum distance between a firm’s M and P facilities are within 5 miles of each other,

distmin
ft ∈ (0, 5), between 5 and 60 miles of each other, distmin

ft ∈ (5, 60), or greater than 60 miles

apart, distmin
ft > (0, 5). The first captures firms with industrial parks in which the two types of

establishments are sufficiently close for employees to travel between them at a low cost, while the

second captures locations that are within about an hour’s drive.

The left panel of Figure 9 displays the distribution of MP firms across these dummy variables

and Census years. As indicated in the figure, MP firms rise from about 3.5 to 5 thousand between

1977 and 1992 before falling to their initial level in 2012. This rise and fall pattern occurs within

all three distance categories, though the share of firms with at least one pair of manufacturing and

innovation plants less than five miles falls from 54 to 49 percent, while the share of firms with a

minimum distance greater than 60 miles rises from 20 to 27 percent.

The right panel of Figure 9 displays the patenting activity of the firms by M -P plant distance. For

each firm, we compute the sum of subsequently granted patents applied for in years t to t+4. We then

aggregate these counts across each set of firms. As indicated in the figure, counts rise substantially

in the 1990s, primarily due to firms whose M and P plants are within 5 miles of each other. This

growth, however, is relatively slower than the growth in the forward patent counts of the remaining

MP firms, with the result that their share falls from 89 to 78 percent over the sample period. The

largest growth in relative terms is the forward patent count of firms whose M and P plants are more
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Figure 9: MP Firms and Patents by Minimum M -P Establishment Distance

Source: LBD, BR, and authors’ calculations. Left panel displays a breakdown of MP firms across
Census years according to the minimum distance (distmin

ft ) between their M and P establishments.

Right panel reports the analogous distribution of the sum of these firms’ subsequently granted
patents applied for in years t to t + 4. MP firms contain both manufacturing and innovation
establishments. P establishments consist of plants in the following (NAICS) sectors: Architec-
tural, Engineering, and Related Services (5413); Specialized Design Services (5414); Computer
Systems Design and Related Services (5415); Management, Scientific, and Technical Consulting
Services (5416); Scientific Research and Development Services (5417); Software Publishers (5112);
Telecommunications (517); Data Processing, Hosting, and Related Services (518); and Corporate,
Subsidiary, and Regional Managing Offices (551114). Firm and patent counts are rounded per
Census disclosure guidelines. The set of firms included in the counts is restricted to the regression
sample used in Tables 4 and 5.

than 60 miles apart. Their share rises from 2 to 9 percent.

Figure 10 displays analogous distributions of firms’ overall as well as M and P employment.30

As indicated in the figure, the overall employment of firms with the closest M and P establishments

declines steadily starting in 1982. Part of this decline is due to the shifting of firms to the more

distant bins over time, as noted above, with the result that the employment of firms in the middle

distance category increases the most, from 10 to 29 percent, as employment in the closest bin falls

from 85 to 59 percent.

The middle panel of Figure 10 reveals that manufacturing employment falls more sharply than

innovation employment over the sample period, particularly among firms whose M -P plants are within

5 miles of each other. Indeed, M employment drops by more than half, from 8.2 to 3.4 million, among

these firms. Their innovation employment, in the right panel of the figure, also falls substantially,

from a high of 3.1 million in 1982 to a low of 1.7 million in 2012.

Finally, Figure 11 displays firms’ overall, M and P employment per firm. We find that MP

firms on average reallocate towards innovation workers over the sample period: their average overall

employment is fairly constant, while their average M employment shrinks from about 6 to 3.5 million

and their average P employment hovers around 1.5 million, falling temporarily during the 1990s. A

notable distinction for the MP firms in the closest distance bin is that their average M employment

falls considerably, while it is steady or growing for the other two distance bins. This pattern is

consistent with firms in this bin maintaining colocation even as they decrease their US manufacturing

presence.

30Firm’s overall employment includes workers outside M and P , and is not shown.
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Figure 10: MP Firm Employment by Minimum M -P Establishment Distance

Source: LBD, BR, and authors’ calculations. Panels display the distribution of MP firms’ total, manufacturing and innovation
employment across Census years according to the minimum distance (distmin

ft ) between their M and P establishments. MP firms

contain both manufacturing and innovation establishments. P establishments consist of plants in the following (NAICS) sectors:
Architectural, Engineering, and Related Services (5413); Specialized Design Services (5414); Computer Systems Design and
Related Services (5415); Management, Scientific, and Technical Consulting Services (5416); Scientific Research and Development
Services (5417); Software Publishers (5112); Telecommunications (517); Data Processing, Hosting, and Related Services (518);
and Corporate, Subsidiary, and Regional Managing Offices (551114). Firm and patent counts are rounded per Census disclosure
guidelines. The set of firms included in the counts is restricted to the regression sample used in Tables 4 and 5. Firm’s overall
employment includes workers outside M and P , and is not shown. This “other” employment is not shown separately.

Figure 11: Average Employment per MP Firm by Minimum M -P Establishment Distance

Source: LBD, BR, and authors’ calculations. Panels display the distribution of MP firms’ total, manufacturing and innovation
employment across Census years according to the minimum distance (distmin

ft ) between their M and P establishments. MP firms

contain both manufacturing and innovation establishments. P establishments consist of plants in the following (NAICS) sectors:
Architectural, Engineering, and Related Services (5413); Specialized Design Services (5414); Computer Systems Design and
Related Services (5415); Management, Scientific, and Technical Consulting Services (5416); Scientific Research and Development
Services (5417); Software Publishers (5112); Telecommunications (517); Data Processing, Hosting, and Related Services (518);
and Corporate, Subsidiary, and Regional Managing Offices (551114). Firm and patent counts are rounded per Census disclosure
guidelines. The set of firms included in the counts is restricted to the regression sample used in Tables 4 and 5. This “other”
employment is not shown separately.
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4.2 Patenting and M-P Establishment Distance

We investigate the relationship between patenting and M -P plant distance within MP firms using a

simple panel specification:

ln(ỹft) = δ1

[
distmin

ft ∈ (0, 5)
]

+ δ2

[
distmin

ft ∈ (5, 60)
]

+ (3)

γln(PatentStockdepf,t−1) + βXft + αt + αr + εfrt,

where ỹft andXft are defined as in Equation 1.31 The first two terms on the right-hand-side are the

minimum-distance indicator variables defined in the previous section, while ln(PatentStockdepf,t−1) rep-

resents firm f ’s one-year-lagged and depreciated stock of patent grants.32 As in the previous section,

we also include full sets of year and major-FIPS (i.e., county) fixed effects, and estimate specifications

with and without firm fixed effects. The latter are particularly revealing as the relationship between

M -P plant distance and patenting is identified solely from variation in these distances within MP

firms over time. We note that distft > 60 is the omitted category for the distance indicators, so that

δ1 is interpreted as the average log-point difference in the number of patents accumulated by firms

with M and P plants within 5 miles of each other, relative to firms that whose plants are more than

60 miles apart. The estimation sample consists of all MP firms in Census years from 1977 to 2012

that are present in at least two EC years.33 We cluster the standard errors by firm.

Table 4 presents the results from estimating Equation (3) via OLS using firms’ overall forward

patent count as the dependent variable.34 The results in Column 1 indicate that firms’ whose minimum

M -P plant distance is less than 5 miles have granted patents that are 13 log points higher than

firms whose plants are more than 60 miles apart, with an estimate that is statistically significant

conventional levels. Column 2 repeats this specification, but with firm fixed effects. These estimates

suggest that firms’ patents are 15 log points higher when their closest M and P plants are within 5

miles of each other, and 9.8 log points higher when they are 5 to 60 miles apart. In Columns 3 and

4 we repeat the specifications and control for the firm’s lagged depreciated stock of patent grants.

Although the estimate on distmin
ft ∈ (0, 5) falls to 0.02 with a p-value of only 0.12, the two distance

estimates in the specification with firm fixed effects remain large and statistically significant.

Table 5 presents results from estimating Equation (3) with firm fixed effects, using firms’ granted

patents’ citations, manufacturing patents, and processing patents as dependent variables. Results in

the first two columns reveal that patent quality, as measured via citations, like patents, is higher when

firms’ M and P plants are more proximate, and exhibit a similar decay when these plants go from

distmin
ft ∈ (0, 5) to distmin

ft ∈ (5, 60). Coefficient estimates indicate that firms earn approximately 25

31In this regression, the firm-size covariates as well as firm fixed effects control for the probability that colocation is
higher among firms that have more establishments because they have more establishment pairs that could be flagged as
colocated, but the Firm FE and size controls should cover that

32We compute these stocks as the discounted sum of firm f granted patent applications from 1977 to year t−1, where
the discount rate is 0.15, which follows the literature (see Hall (2006) for a discussion on this topic).

33This restriction is necessary for the specification with firm fixed effects. We limit the specifications without firm
fixed effects to the same sample both to allow for a comparison of the estimates and to facilitate disclosure. The results
from estimating Equation (3) on all MP firms are qualitatively the same.

34As defined above, a firm’s forward patent count is the sum of subsequently granted patents applied for in years t to
t + 4.
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Table 4: Patenting Among MP Firms

Dependent variable is: ln(Patentsf,t:t+4)

(1) (2) (3) (4)

distmin
ft ∈ (0, 5) 0.131*** 0.149*** 0.0201 0.116***

(0.0284) (0.0300) (0.0131) (0.0279)
distmin

ft ∈ (5, 60) -0.0230 0.0984*** 0.00690 0.0764***
(0.0303) (0.0298) (0.0148) (0.0281)

ln(Patent Stockdep
f,t−1) 0.833*** 0.278***

(0.00526) (0.0148)
Workersft

10 - 99 0.0543 0.0121 0.0133 -0.0366
(0.0513) (0.0471) (0.0333) (0.0509)

100 - 499 0.365*** 0.0902* 0.0612* 0.0178
(0.0517) (0.0495) (0.0330) (0.0529)

500 - 4999 1.273*** 0.283*** 0.193*** 0.172***
(0.0562) (0.0544) (0.0340) (0.0570)

5000+ 3.125*** 0.868*** 0.504*** 0.638***
(0.0866) (0.0721) (0.0405) (0.0714)

Ageft

5 - 9 -0.0871* -0.0710** -0.136*** -0.0777**
(0.0453) (0.0346) (0.0364) (0.0337)

10+ -0.108** -0.115** -0.236*** -0.130***
(0.0536) (0.0490) (0.0351) (0.0466)

Year Fixed Effects Yes Yes Yes Yes
FIPS Fixed Effects Yes Yes Yes Yes
Firm Fixed Effects No Yes No Yes

R-Squared 0.401 0.875 0.787 0.881
Observations 34,500 34,500 34,500 34,500

Source: LBD, BR, USPTO and authors’ calculations. Table reports the
results of estimating Equation 3 on US firms with both M and P establish-
ments in at least two Census years from 1977 to 2012. Dependent variable
is the inverse hyperbolic sine transformation of the sum of subsequently
granted patents applied for by firm f in years t to t+4. Its mean and stan-
dard deviation are 1.114 and 1.768. distmin

ft ∈ (0, 5) and distmin
ft ∈ (5, 60)

are dummy variables indicating whether the M and P establishments are
within 5 miles of each other, or 5 to 60 miles apart. The omitted category
is firms with M and P establishments over 60 miles apart. FIPS fixed ef-
fects capture the main FIPS code (i.e., county) for each firm, based on its
employment. Standard errors clustered by firm. Number of observations
rounded per Census disclosure guidelines.
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log points more citations when their M and P plants are within 5 miles of each other, relative to

when than those whose plants are greater than 60 miles apart. When plants are between 5 and 60

miles apart, the relative citation premium is 13 to 14 log points.

The final four columns of Table 5 examine firms’ manufacturing and process patents. Here,

too, we find that patents are higher when firms’ M and P plants are closer. For manufacturing

patents, the coefficient estimates are similar in magnitude and significance to overall patents, which

is not unexpected given that manufacturing patents represent the bulk of all patents. For processing

patents, in the right panel, we find a somewhat weaker relationship. When firms M and P plants

are less than 5 miles apart, they exhibit processing patent grants that are 10 and 6 log points higher.

Coefficient estimates for distmin
ft ∈ (5, 60) are also correspondingly lower, at 6 and 4 log points.35

The results in this section point to a strong relationship between the proximity of a firm’s M and

P plants and their patenting output. Clearly, however, plant location is an endogenous decision of

the firm. Plant location is also affected by macroeconomic factors that may separately influence a

firm’s ability to innovate. For example, a firm may shutter manufacturing plants due to increased

import competition, and this import competition may also reduce the firm’s size and thus its ability

to invest in R&D.

To address these possibilities and investigate the impact of colocation on innovation, we plan to

analyze where firm innovation occurs, as described in the next section. We also aim to analyze the

source of variation in distmin
ft within firms, i.e., whether it is driven by M or P plant entry or exit, or

changes in the major activity of the plant. Exploring these margins will help tease apart the different

channels by which the results documented in this section are generated.

5 Firm-Region-Level Regressions

The firm-level regressions presented in the last section establish a link between patenting and firms

that have colocated manufacturing and innovation facilities. In a future draft, we will exploit the

firm-city-state patent data to investigate whether the patenting by these firms occurs in the regions

where those establishments are colocated using a simple panel regression

ln(ỹfrt) = γ1Mfrt + γ2Mfrt + γ3Mft ∗ Pft + (4)

βXft + αf + αt + αr + εfrt.

and, in the next section, . In the next section, we will exploit the inventor location data to analyze

whether MP firms actually patent in the colocated establishments.

6 Conclusion

To be written.

35In Table A.1 of Appendix Section D we present analogous regression results for specification without firm fixed
effects. In those results, the estimated coefficient for distmin

ft ∈ (0, 5) is positive and statistically significant in five of
the six specifications.
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Table 5: Patenting Among MP Firms

Dependent variable is: ln(Citationsf,t:t+4) ln(ManufPatentsf,t:t+4) ln(ProcessingPatentsf,t:t+4)

(1) (2) (3) (4) (5) (6)

distmin
ft ∈ (0, 5) 0.258*** 0.243*** 0.146*** 0.115*** 0.101*** 0.0682***

(0.0519) (0.0514) (0.0282) (0.0263) (0.0223) (0.0204)
distmin

ft ∈ (5, 60) 0.143*** 0.133** 0.0929*** 0.0721*** 0.0634*** 0.0415**
(0.0528) (0.0523) (0.0279) (0.0265) (0.0223) (0.0208)

ln(Patent Stockdep
f,t−1) 0.126*** 0.264*** 0.278***

(0.0228) (0.0147) (0.0136)
Workersft

10 - 99 -0.102 -0.124 0.0141 -0.0321 0.0212 -0.0275
(0.104) (0.106) (0.0440) (0.0474) (0.0303) (0.0335)

100 - 499 0.0301 -0.00277 0.0792* 0.0105 0.0439 -0.0285
(0.108) (0.110) (0.0462) (0.0492) (0.0316) (0.0345)

500 -4999 0.326*** 0.276** 0.252*** 0.147*** 0.131*** 0.0207
(0.117) (0.118) (0.0507) (0.0530) (0.0346) (0.0370)

5000+ 1.144*** 1.040*** 0.810*** 0.592*** 0.592*** 0.362***
(0.138) (0.138) (0.0679) (0.0671) (0.0539) (0.0516)

Ageft

5 - 9 -0.0553 -0.0583 -0.0445 -0.0508 -0.0265 -0.0331
(0.0759) (0.0760) (0.0339) (0.0326) (0.0264) (0.0249)

10+ -0.116 -0.123 -0.0575 -0.0720 -0.0203 -0.0356
(0.0991) (0.0990) (0.0473) (0.0447) (0.0386) (0.0353)

Year Fixed Effects Yes Yes Yes Yes Yes Yes
FIPS Fixed Effects Yes Yes Yes Yes Yes Yes
Firm Fixed Effects Yes Yes Yes Yes Yes Yes

R-Squared 0.834 0.835 0.877 0.883 0.860 0.872
Observations 34,500 34,500 34,500 34,500 34,500 34,500

Dep Var Mean & SD 1.955, 2.843 1.017, 1.686 0.588, 1.271

Source: LBD, BR, USPTO and authors’ calculations. Table reports the results of estimating Equation 3 on US firms
with both M and P establishments in at least two Census years from 1977 to 2012. First dependent variable is inverse
hyperbolic sine transformation of the subsequently granted patents firm f applied for in years t to t + 4. Remaining
dependent variables are the inverse hyperbolic sine transformation of subsequently granted manufacturing and pro-
cessing patents applied for by firm f in years t to t + 4. distmin

ft ∈ (0, 5) and distmin
ft ∈ (5, 60) are dummy variables

indicating whether the M and P establishments are within 5 miles of each other, or 5 to 60 miles apart. The omit-
ted category is firms with M and P establishments over 60 miles apart. FIPS fixed effects capture the main FIPS
code (i.e., county) for each firm, based on its employment. Standard errors clustered by firm. Number of observations
rounded per Census disclosure guidelines.
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A USPTO PatentView Data

This section provides a brief overview of publicly available US patent data as well as a description of
how we match these data to US firms in the Census Bureau’s Longitudinal Business Database (LBD).

A.1 USPTO PatentView Data

The left panel of Figure A.1 plots the number of US patent grants in the publicly available USPV data
available from the USPTO, overall and for manufacturing. The right panel reports manufacturing
patents as a share of overall patents. As indicated in the figure, manufacturing patents account for
the largest share of patents, though the growth of these patents slows vis-à- vis all other sectors
starting in the early 1990s. As a result, manufacturing patents as a share of total patents falls over
the sample period, from 92 percent in 1976 to 84 percent in 2017.

Figure A.1: US Patent Grants

Source: USPV and authors’ calculations. Left panel plots the number of US patent grants, overall
and for manufacturing, by grant year and NAICS sector from 1976 to 2016. Patent counts are on
a log scale.

Within manufacturing, we find that patent grants increase in all 3-digit NAICS manufacturing in-
dustries except Textiles (NAICS 314) and Printing (NAICS 323) between 1976 and 2016. As reported
in the left panel of Figure A.2, growth of manufacturing patents between these years is dominated by
Computers (NAICS 334), which increased from 17 to 34 percent (about 45 million patents). This sec-
tor includes computers and peripherals, semiconductors, and navigational, measuring, electromedical
and control instruments. As noted in the introduction, we find that FMF s are disproportionately
rooted in this sector.

The right panel of Figure A.2 reports a similar brekdown of overall US patents by their CPC
cateogory and grant year. As illustrated in the figure, by this categorization scheme, patent growth
between 1976 and 2016 is particularly strong in Electricity and Physics, two CPC categories that map
disproportionately into NAICS 334.

A.2 Matching PatentView Data to US Firms

Our matching procedure builds upon Fort et al. (2020) and prior efforts to construct bridges between
USPTO patent data and Census microdata by Kerr and Fu (2008), Balasubramanian and Sivadasan
(2011), Graham et al. (2018) and Dreisigmeyer et al. (2018). The former two link firms to patents in
the NBER Patent Database via the names and addresses of assignees. This approach, while effective
in identifying potential matches, has difficulty in disambiguating and deduplicating multiple matches
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Figure A.2: Distribution of Patent Grants Across Manufacturing Patent Grants by 3-Digit NAICS
Sector

Source: USPV and authors’ calculations. Left panel plots the distribution of US manufacturing
patent grants by patent grant year across 3-digit NAICS manufacturing sectors. Right panel
reports breakdown of overall US patents by CPC category.

due to the relatively broad location information, i.e., city and state.36 Graham et al. (2018) and
Dreisigmeyer et al. (2018), by contrast, address this issue by employing a “triangulation” method
that incorporates information about inventors from the employee-employer linkages in Census’ Longi-
tudinal Employer-Household Dynamics (LEHD) dataset. This method results in higher-quality links
but in practice is applicable only to years after 2000, when the employee-employer data are available
for a large number of states. While combining these approaches, that is, using the first method until
2000 and the triangulation strategy afterwards, can create an awkward discontinuity.

Our approach borrows from both methods. We expand the pool of patent grants to those contained
in the USPV, which currently stretch from 1976 to 2020, and use both assignee and inventor name
and address information in searching for links, while relying on the tools developed by Kerr and Fu
(2008), Balasubramanian and Sivadasan (2011) to assist in the deduplication. This strategy yields a
consistent and relatively high match rate of 60 to 67 percent across the sample period for the full set
of patent grants assigned to US-based companies between 1976 and 2020. The details of the approach
are available in Fort et al. (2020).

The left panel of Figure A.3 plots the total level of granted patents by application year in the
USPTO data for patents with assignee type equal to “2 - US Company or Corporation” against our
matched sample. The often multiple-year lag between patent applications and grants noted above
creates the notable drop in both series towards the end of the sample period: as that end draws
near, fewer of the patents applied for in those years have yet been granted. The right panel of Figure
A.3 depicts the share of matched patents by year. Shares range from 60 to 67 percent over the
sample period. This crosswalk provides the backbone of our analysis into both the levels and types
of innovation outcomes that may result from colocation.

To summarize, our matching procedure extends prior attempts to link USPTO patent data to
Census microdata by pushing the set of available patents back in time and enlarging the scope of
available patents to be linked. Our method yields a consistently high match rate throughout our time
period (1977 to 2016) that compares favorably with the prior crosswalks in terms of match rate.37

36“Deduplication” of the matches occurs when a patent and the assignee yield more than one firm match. In many
such cases, the firm names are similar, but they contain multiple firm identifiers.

37For example, we are able to match nearly twice as many patents as (Kerr and Fu, 2008).
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Figure A.3: Matched vs Total Patent Grants by Application Year

USPV, BR, LBD, and authors’ calculations. Figure plots the level and shares of US patents for
which assignee type is “2 - US Company or Corporation” by application year.

A.3 Matching PatentView Data to Firm-City-States

In this section we outline our procedure for linking USPV patent grants via their inventors to the
nearest city and state in which the firm granted the patent has an establishment.38 As inventors’
cities and states often differ from those in which their patents’ firms have establishments, we perform
this match by calculating the minimum distance from each inventor to each establishment.

We start with our combined patent-to-firm location file and collapse the data to the patent by
firm by inventor city by inventor state level, tabulating the number of inventors within each location.
We then attempt to assign a geocode to each inventor city and state. Unfortunately, no crosswalk
exists that is able to assign a geocode to every city or town in the United States, so we rely on the
following approach.

A.3.1 Using the BR City and State Geocodes

Our first step to assigning geocodes to inventors’ cities and states is to take all of the Census block-
level geocodes listed for a city-state in the BR and take the combined mean geocode across all
establishments in that city-state. The benefit of this approach is that it is ”economically weighted”
by the set of business establishments located within the city and covers most of the city-states in the
United States where businesses are located. This information is insufficient for our purposes partly
because, as noted in the previous section, geocodes from the BR are based on block-level assignments
built primarily to cover residential areas. As a result, commercial zones may be excluded.

A.3.2 Bringing in outside crosswalks

For inventor cities or tows that do not appear in the BR, we incorporate two separate city-state
crosswalks: a town-state crosswalk with geocodes provided by the US geological survey (USGS)39

and a two-stage crosswalk that first assigns the city-state to a ZIP code, and then assigns a geocode
based on the ZIP code centroid. The USGS crosswalk consists of a “populated place” variable and

38We find that both the number of invetors per patent Wuchty et al. (2007) and the number of inventor locations
per patent rise over time. For example, the share of inventors based in the United States among patents assigned to
US-based firms declines from 91.6 percent in 1977 to 83.3 percent in 2016.

39See https://www.usgs.gov/core-science-systems/ngp/board-on-geographic-names/download-gnis-data.
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state variable. The former are governed by the US Board of Geographic Names (BGN), a federal
body created to maintain uniformity in geographic name usage throughout the federal government.

The city-state to ZIP code crosswalk originates from the social security administration (SSA)40

Because a city-state often comprises more than one ZIP code, we randomly select a single ZIP code to
be representative of that city-state. To ensure consistency, we perform a similar geocode assignment
to the firm-city-state data coming from the BR and LBD.

Once a city-state has a unique ZIP code assigned to it from the SSA data, we merge it directly to
the inventor city-state before we layer the zip-to-geocode crosswalk. This completes the second step
of the geocode assignment for the patent locations.

A.3.3 Google Maps API

As with all administrative data, not all city and state information for US-based inventors can be
identified from the BR city-state geocodes, or the SSA ZIP codes. This is either attributed to
misspelling of the city or the city being too small or rural to be counted in either the BR or SSA
data. To address this contingency, we take the remaining inventor locations and utilize the Google
Maps API and run geocode queries using the given spelling of the city and state. This is our last step
in geocoding inventor locations.

The above procedure allows us to assign a unique geocode to more than 99% of the cities and
states for US-based USPV inventors. Unfortunately, we are not able to able to assign a geocode for
every inventor in the US, meaning that there will be some slippage in the patent counts when we
assign the patents to exact geographies.

A.3.4 Geocoding Firms’ City-States

Once the patent inventor city and states have been assigned a geocode, we perform the exact same
steps to assign the geocodes to the city-states in which each firm has an establishment. This firm-
city-state database combines the LBD (which has a consistent firm identifier) with the city and
state information from the BR. We begin by taking every combination of firm city-states and year.
We repeat the steps above in terms of first assigning each city-state a geocode based on the mean
establishment geocodes within the BR, and then using the SSA ZIP code and ZIP code to geocode
crosswalks. For this match, we do not use the Google Maps API.

A.3.5 Combining the patent and firm-city-state

With the above information in hand, we assign the closest firm-city-state to every inventor within our
patent-firm data. If there is no direct match, we perform a 1-to-many merge of the firm by city-state
by year dataset into the inventor dataset and retain the firm-city-states with the minimum distance,
breaking ties arbitrarily.

This step completes our assignment of inventor locations to the nearest city-state in which the
firm granted their patent has an establishment.

B Corrections to the firmid variable

To be completed.

C Examples from Public Data

Figure A.4 displays the locations of Bristol Myers Squibb’s worldwide establishments as of Novem-
ber 7, 2020. Facilities are grouped into three types: manufacturing plants (MAN), research and

40See https://www.ssa.gov/policy/docs/statcomps/oasdi_zip/index.html.
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development establishments (R&D) and headquarters locations (HQ).

Figure A.4: Bristol Myers Squibb Locations

Source: Bristol Myers Squibb, Google Maps and authors’ calculations. Map displays Bristol My-
ers Squibb locations as noted on the firm’s website – https://www.bms.com/about-us/our-company/

worldwide-facilities.html – as of November 7, 2020.

Figure A.5: Novo Nordisk Locations

 

Source: Slide 5 from Novo Nordisk presentation materials posted here: https://en.ppt-online.org/

76178.
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D Additional Tables and Figures

Table A.1 presents results analogous to those in Table 5 of the main text but without firm fixed
effects.

Table A.1: Patenting Among MP Firms

Dependent variable is: ln(Citationsf,t:t+4) ln(ManufPatentsf,t:t+4) ln(ProcessingPatentsf,t:t+4)

(1) (2) (3) (4) (5) (6)

dmin
ft ∈ (0, 5) 0.174*** 0.0146 0.143*** 0.0376*** 0.119*** 0.0438***

(0.0462) (0.0258) (0.0270) (0.0131) (0.0200) (0.0123)
dmin
ft ∈ (5, 60) -0.0477 -0.00459 -0.0164 0.0122 -0.0158 0.00439

(0.0504) (0.0297) (0.0287) (0.0145) (0.0206) (0.0131)
ln(Patent Stockf,t−1) 1.201*** 0.795*** 0.563***

(0.0078) (0.0058) (0.0082)
Size2ft 0.181* 0.121 0.0434 0.0042 0.0010 -0.0268

(0.0990) (0.0753) (0.0496) (0.0321) (0.0372) (0.0260)
Size3ft 0.791*** 0.353*** 0.322*** 0.0325 0.131*** -0.0741***

(0.0998) (0.0745) (0.0500) (0.0318) (0.0374) (0.0261)
Size4ft 2.347*** 0.788*** 1.158*** 0.127*** 0.600*** -0.131***

(0.105) (0.0758) (0.0543) (0.0330) (0.0408) (0.0281)
Size5ft 4.986*** 1.205*** 2.923*** 0.423*** 2.038*** 0.265***

(0.134) (0.0851) (0.0851) (0.0395) (0.0706) (0.0359)
Age2ft -0.102 -0.172** -0.0803* -0.127*** -0.0565* -0.0892***

(0.0929) (0.0818) (0.0426) (0.0344) (0.0299) (0.0260)
Age3ft -0.288*** -0.474*** -0.102** -0.224*** -0.0401 -0.127***

(0.104) (0.0777) (0.0502) (0.0331) (0.0348) (0.0271)

Year Fixed Effects Yes Yes Yes Yes Yes Yes
FIPS Fixed Effects Yes Yes Yes Yes Yes Yes

R-Squared 0.385 0.695 0.393 0.780 0.367 0.708
Observations 34,500 34,500 34,500 34,500 34,500 34,500

Dep Var Mean & SD 1.955, 2.843 1.017, 1.686 0.588, 1.271

Source: LBD, BR, USPTO and authors’ calculations. Table reports the results of estimating Equation 3 on US
firms with both M and P establishments in at least two Census years from 1977 to 2012. Dependent variables
are the inverse hyperbolic sine transformation of total citations, manufacturing patents, and processing patents for
patents granted to firm f between Census year t and t+ 4. distmin

ft ∈ (0, 5) and distmin
ft ∈ (5, 60) are dummy vari-

ables indicating whether the M and P establishments are within 5 miles of each other, or between 5 and 60 miles
of each other. The omitted category is firms with M and P establishments over 60 miles apart. FIPS fixed effects
capture the main FIPS code for a firm, based on its employment. Standard errors clustered by firm. We control
for firm employment size and age categories. Number of observations rounded per Census disclosure guidelines.
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