Key Workers and Funding Horizons: Interest Rates and Growth

John Moore

Current Advances in Macro and Financial Markets Monday, 30 May 2022 Reporting on two papers, both with Nobuhiro Kiyotaki (Princeton) and Shengxing Zhang (LSE):

- "Key Workers and Funding Horizons"
- "Funding Horizons, Interest Rates, and Growth"

- To finance investment, entrepreneurs raise external funds against the value of the firm
- Value of the firm, debt + equity, appears to have short horizons:
 - cash-flow based debt is limited by 3 to 4.5 years' worth of recent EBITDA

(Lian and Ma, QJE 2021)

- under equity financing, stock analysts typically provide 5-year earning forecast (De la O and Myers, JF 2021)
- Why are external financiers' horizons short, even when the firm's duration is long?How do short funding horizons interact with growth and business cycles?
- •Approach:
 - Key workers' human capital is essential for constructing and maintaining production facilities
 - Their human capital is inalienable (Hart and Moore, QJE 1994)

Discrete time, infinite horizon, t = 0, 1, 2, ...

At date 0, construction requires a group of $n \ge 1$ engineers (key workers): per unit,

$$\begin{cases} x \text{ goods} \\ 1 \text{ building} \end{cases} \rightarrow 1 \text{ plant with initial productivity } z_1 = 1 \end{cases}$$

Let $q = \frac{f}{R-1}$ be price of a building (*f* is rental price), where R > 1 is gross interest rate

investment scale =
$$\frac{n \times \text{net worth of an engineer}}{x + q - b}$$

where b = external funding capacity per unit

To finance as big an investment as possible, engineers sell the plant ownership to a saver

- At date $t \ge 1$, a plant with productivity $z_t = z$, say, where $z \le 1$, generates az goods
- Owner automatically receives these *az* goods (no need for engineers)
- Engineers' skills are needed to maintain the productivity next period z_{t+1} :

all *n* engineers work
$$\rightarrow \qquad z_{t+1} = z' = \rho z + 1 - \rho$$

only $n - 1$ work $\rightarrow \qquad z_{t+1} = \hat{z} = \left[1 - \frac{1 - \theta}{n}\right] z'$
fewer work $\rightarrow \qquad$ complete and permanent plant failure

here, notice the production "roundaboutness" – cf Böhm-Bawerk 1889 & Austrian School

• Engineers negotiate wage payment with plant owner every period

along equilibrium path, productivity *z* stays at maximum value 1:

• External funding capacity per unit equals plant value to an owner: $b = \frac{1}{R}V(1)$,

$$V(z) = az + \max\left\{q, -nw(z) + \frac{1}{R}V(z')\right\}$$

where w(z) is wage payment per unit to each engineer

• Each engineer makes a take-it-or-leave-it offer to owner,

taking other engineers' offers as given

In Nash equilibrium, away from liquidation, $V(z) = az - nw(z) + \frac{1}{R}V(z')$ and

$$w(z) = \frac{1}{R} [V(z') - V(\widehat{z})]$$

Proposition: Away from liquidation, within the class of polynomials, V(z) is unique and affine: V(z) = c + vz.

So
$$w(z) = \frac{1}{R} [V(z') - V(\hat{z})] = \frac{v}{R} (z' - \hat{z}) = \frac{v}{R} \frac{1 - \theta}{n} z'$$

and
$$V(z) = az - nw(z) + \frac{1}{R}V(z')$$
$$= az - n\left[\frac{v}{R}\frac{1-\theta}{n}z'\right] + \frac{1}{R}[c+vz']$$
$$= az + \frac{1}{R}[c+v\theta z']$$

Substituting V(z) = c + vz into LHS, and $z' = \rho z + 1 - \rho$ into RHS, we get:

$$c + vz = az + \frac{1}{R} \left[c + v\theta(\rho z + 1 - \rho) \right]$$
 for all z in $[\underline{z}, 1]$

To solve for the unknowns *c* and *v*, we equate coefficients in this identity:

Coefficient of *z*:

$$v = a + \frac{1}{R}v\theta\rho$$

Solving for *v*:

$$v = \frac{Ra}{R - \theta\rho}$$

= $a + \frac{\theta\rho}{R}a + \left(\frac{\theta\rho}{R}\right)^2 a + \left(\frac{\theta\rho}{R}\right)^3 a + \dots$ Short-
termism

(we could also obtain this expression for *v* by iterating forward the coefficient of *z*)

Along equilibrium path, z = z' = 1 and w(1) = w, say, and wage bill equals

$$nw = n\left[\frac{v}{R}\frac{1-\theta}{n}\right] = \frac{1-\theta}{R}v = \frac{1-\theta}{R}\left[a + \frac{\theta\rho}{R}a + \left(\frac{\theta\rho}{R}\right)^2a + \dots\right]$$

External funding capacity equals

$$b = \frac{1}{R}V(1) = \frac{1}{R}(a - nw) + \frac{1}{R^2}(a - nw) + \frac{1}{R^3}(a - nw) + \dots$$

horizontal line a - nw on next page ...

$$= \frac{1}{R}a + \frac{1}{R^2}a\left[1 - (1 - \theta)\right] + \frac{1}{R^3}a\left[1 - (1 - \theta) - (1 - \theta)\theta\rho\right] \\ + \frac{1}{R^4}a\left[1 - (1 - \theta) - (1 - \theta)\theta\rho - (1 - \theta)\theta^2\rho^2\right] + \dots$$

downward-sloping green line on next page ...

Earnings Share of Owner and Engineers

= PDV of area under downward-sloping green line

Why doesn't the plant owner eventually liquidate?

Human capital and credit horizons

from Yueran Ma's ongoing research

Human capital and credit horizons

from Yueran Ma's ongoing research

Long-Run implications of short funding horizons

gross investment = $\frac{\text{net worth of engineers after consumption}}{\text{investment cost } (x + q) - \text{external funding capacity } b}$

- External funding capacity *b* has a shorter horizon than building price *q*
- How does a persistent fall in interest rate affect *net* funding capacity, b q?
- Our macro model: small open economy with exogenous world interest rate R

Cashflow behind net funding capacity b - q

Why this "funky" Austrian technology? Why not standard depreciation:

Proposition:

For $n \ge 2$, a persistent fall in *R* can cause *q* to rise more than *b*, so that net funding capacity b - q falls

cf. housing market

In our macro model, this effect can be strong enough — overcoming rise in net worth — to stifle investment and growth:

gross investment = $\frac{\text{net worth of engineers after consumption}}{\text{investment cost } (x+q) \uparrow - \text{ borrowing capacity } b \uparrow$

Unexpected fall of interest rate from 2.5% to 1.5% at date 5

Medium-Run implications of short funding horizons

gross investment = $\frac{\text{net worth of engineers after consumption}}{\text{investment cost } (x + q) - \text{external funding capacity } b}$

If the fall in interest rate is only transitory, b rises more than q, so that b - q rises

Welfare: *all* domestic agents (engineers as well as savers) can suffer from drop in R

Policy?

- Inalienability of the engineers' human capital is the sole departure from Arrow-Debreu
- Suppose that the government could tax the plant owner's payroll at rate τ
- The government uses the revenue to subsidise investment with balanced budget
- Welfare can rise with τ :

government is acting as a social creditor to engineers