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1 Introduction

Structural vector autoregressions (SVARs) identified with sign restrictions are a popular

approach for estimating dynamic causal effects in macroeconomics. Many researchers use

variants of the methods proposed by Uhlig (2005) and Rubio-Ramı́rez, Waggoner, and

Zha (2010) to conduct Bayesian inference.1 These conventional methods can be used to

independently draw from any posterior distribution over the parameterization of interest

subject to the identifying restrictions. Typically, the parameterization of interest consists of

the impulse responses and the posterior is conjugate.

When working within this typical framework, the conventional methods boil down to

independently drawing from a conjugate uniform-normal-inverse-Wishart posterior distribu-

tion over the orthogonal reduced-form parameterization and transforming the draws into the

parameterization of interest. A central ingredient underlying such an approach is the uniform

prior distribution over the set of orthogonal matrices with respect to the Haar measure. The

normal-inverse-Wishart part of this prior is viewed as uncontroversial—the Minnesota prior

and the “weak” prior defined in Uhlig (2005) are the most popular choices. Some researchers

have criticized this conventional approach (see e.g., Baumeister and Hamilton, 2015; Watson,

2020) and strongly caution against using it in applied work.

Both Baumeister and Hamilton (2015) and Watson (2020) adopt a similar line of reasoning

to support their critique. First, they abstract from uncertainty about the reduced-form

parameters by fixing them. Second, they draw orthogonal matrices from the uniform

distribution and argue that the prior distributions over the identified sets of individual

impulse responses may be nonuniform.2 Because the prior and posterior coincide over the

identified sets, posterior distributions over the identified sets of individual impulse responses

may also be nonuniform. As a consequence, they conclude that posterior inference could

be governed by the prior over the set of orthogonal matrices.3 Baumeister and Hamilton

(2015) claim that “users of these methods can in some cases end up performing hundreds

of thousands of calculations, ostensibly analyzing the data, but in fact doing nothing more

1See also Faust (1998) and Canova and De Nicoló (2002).
2For each value of the reduced-form parameters, the identified set is all impulse responses, for a particular

variable, shock, and horizon, associated with the given reduced-form parameters that also satisfy the sign
restrictions.

3See also Wolf (2020).
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than generating draws from a prior distribution that they never even acknowledged assuming”

(pages 1964-1965). Similarly, Watson (2020) writes that “‘good’ priors lead to good inference

and conversely for bad priors. Sorting out the good from the bad requires careful presentation

and justification for the prior actually used, a point forcefully and convincingly made in theory

and practice in Baumeister and Hamilton (2015, 2019). In this regard, the kinds of flat (Haar)

priors made on the rotation matrix [...] seem counterproductive” (page 192). Baumeister

and Hamilton (2015) go a step further and argue that the search for uniform priors over any

objects of interest is ill-fated: “Because the objects of interest in structural VARs are highly

nonlinear functions of the underlying parameters, the quest for ‘noninformative’ priors for

structural VARs is destined to fail” (page 1979).

This paper accomplishes three objectives. First, we illustrate the consequences of fixing

the reduced-form parameters using the empirical example in Watson (2020). We begin by

demonstrating that the conditional prior distributions of individual impulse responses tend

to differ greatly from the unconditional prior distributions of individual impulse responses

embodied in the conventional approach.4 It is important to clarify that it is not the case

that either Baumeister and Hamilton (2015) or Watson (2020) explicitly equalize conditional

to unconditional priors in finite samples. However, Baumeister and Hamilton (2015) claim

that “applied researchers often ignore posterior uncertainty about” reduced-form parameters

(page 1975). We are not aware of any applied work that ignores posterior uncertainty about

reduced-form parameters, hence, we think that the differences between conditional and

unconditional priors need to be clarified. Then, we show that if one employs the standard

priors used in the literature that allow for reduced-form parameter uncertainty, generally the

posterior distributions of individual impulse responses induced by the conventional method

are not an artifact of the priors. We illustrate by example that posterior medians and

probability intervals tend to be quite different from the corresponding statistics based on

the prior. Second, we demonstrate that, although the prior and posterior distributions

over the identified sets of individual impulse responses implicit in the conventional method

4The conditional prior (posterior) distributions of individual impulse responses are equivalent to the
prior (posterior) distributions over the identified sets of individual impulse responses and they are obtained
after conditioning on the reduced-form parameters and then marginalizing out all but an individual impulse
response. The unconditional prior (posterior) distributions of individual impulse responses are equivalent to
the prior (posterior) distributions of individual impulse responses and they are obtained after marginalizing out
all but an individual impulse response without conditioning on the reduced-form parameters. By individual
impulse response we mean the response of a single variable to a single shock at a single horizon.

2



may be nonuniform, the conventional method induces uniform joint prior and posterior

distributions over the identified set for the vector of impulse responses. There is a growing

literature making the case that only joint distributions capture the shape and co-movement

of the responses, which is generally the ultimate interest of empirical studies (e.g., Sims and

Zha, 1999; Fry and Pagan, 2011; Inoue and Kilian, 2013, 2016, 2019, 2022a,b; Lütkepohl,

Staszewska-Bystrova, and Winker, 2015a,b, 2018; Kilian and Lütkepohl, 2017; Bruder and

Wolf, 2018; Montiel Olea and Plagborg-Møller, 2019, among others). Thus, it is essential

that we take a joint approach rather than the more traditional marginal one employed by

Baumeister and Hamilton (2015) and Watson (2020). Third, we show that Baumeister and

Hamilton’s (2015) conjecture that “the quest for ‘noninformative’ priors for structural VARs

is destined to fail” is not true. We show how to construct a uniform joint prior distribution

for the vector of impulse responses for models identified with sign restrictions and how to

conduct joint posterior inference based on this prior using the conventional approach. We

generalize the construction and implementation of a uniform joint prior over a broader class

of objects of interest.

First, using the empirical example in Watson (2020), we provide evidence that, although

it is true that the conditional prior distributions of individual impulse responses may be

nonuniform, the influence of the prior on posterior inference is not as severe as suggested

by Baumeister and Hamilton (2015) and Watson (2020). The key is not to condition on the

reduced-form parameters, and to recognize the reduced-form parameter uncertainty embedded

in the conventional approach. We show that the difference between the conditional and

unconditional prior distributions of individual impulse responses tends to be striking. In

our example, the probability intervals based on the unconditional and conditional priors are

disjoint for many combinations of variables, shocks, and horizons. More importantly, using

the standard Minnesota prior distribution over the reduced-form parameters, we show that

the unconditional posterior distributions of individual impulse responses typically are not

an artifact of the prior. The probability intervals of the unconditional prior and posterior

distributions of several individual impulse responses are also disjoint for many combinations.

Other empirical studies, Inoue and Kilian (2022b) and Shin and Zhong (2020), also find

that the unconditional posterior distributions of individual impulse responses do not simply

reproduce the prior. In addition, using the multiple-prior Bayesian approach described

in Giacomini and Kitagawa (2021), we confirm that, for this empirical example, posterior
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inference about the mean of the impulse responses is robust to the uniform prior over the set

of orthogonal matrices embedded in the conventional method.

Second, Baumeister and Hamilton (2015) and Watson (2020) express concern about

the fact that the conventional approach induces nonuniform prior distributions over the

identified sets of individual impulse responses because the prior and posterior coincide over

identified sets. While this fact could be an issue in the hypothetical case when the number of

observations is large enough that reduced-form parameter uncertainty can be disregarded,

Inoue and Kilian (2022b) demonstrate that this concern may be ignored in tightly identified

models. To further ease this concern, we show that the conventional method induces uniform

joint prior and posterior distributions over the identified set for the vector of impulse responses.

This is an “if and only if” theoretical result that holds for any prior distribution over the

reduced-form parameters, as long as the prior distribution over the orthogonal matrices is

uniform. Any other choice of prior over the set of orthogonal matrices will imply nonuniform

joint prior and posterior distributions over the identified set for the vector of impulse responses.

While having uniform joint prior and posterior distributions over the identified set for the

vector of impulse responses is not a required feature, it is a desirable one. By construction,

the likelihood is uniform over the identified sets, and as a result, having uniform joint prior

and posterior distributions over the identified set for the vector of impulse responses assures

the researcher that only the identifying restrictions will set apart observationally equivalent

vectors of impulse responses.

Third, we show that Baumeister and Hamilton’s (2015) conjecture that “the quest for

‘noninformative’ priors for structural VARs is destined to fail” is not true. As it is common,

we begin by considering the vector of impulse responses as the vector of objects of interest.

Subsequently, we generalize our findings to a more general class of objects of interest. In

particular, we show that a uniform joint prior distribution for the vector of impulse responses

induces a particular (model dependent) prior distribution over the reduced-form parameters

and a uniform prior distribution over the orthogonal matrices. This theoretical result is

also an “if and only if” statement. Any other choice of prior over the set of orthogonal

matrices will imply a nonuniform joint prior distribution for the vector of impulse responses.

Interestingly, the prior distribution over the reduced-form parameters required for this result

differs from the standard Minnesota prior. It is similar in spirit to (although also different

than) the “weak” prior described in Uhlig (2005). We show that the induced prior over the
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orthogonal reduced-form parameterization defines a uniform-normal-inverse-Wishart posterior

distribution over the orthogonal reduced-form parameterization. This allows us to adapt

the conventional approach to draw from the joint posterior distribution for the vector of

impulse responses implied by a uniform joint prior distribution for the vector of impulse

responses. Obviously, because of the uniform prior distribution over the orthogonal matrices,

the conventional approach also induces uniform joint prior and posterior distributions over

the identified set for the vector of impulse responses.

To illustrate our theoretical findings, we examine Watson’s (2020) empirical example

using a uniform joint prior distribution for the vector of impulse responses. Based on the

methods in Inoue and Kilian (2022a), we find that the joint credible sets for the vector of

impulse responses obtained under this prior are similar but slightly wider than those obtained

under the uniform-normal-inverse-Wishart prior distribution over orthogonal reduced-form

parameterization associated with the standard Minnesota prior. In line with the findings in

Inoue and Kilian (2022b), our results suggest that imposing tighter identifying restrictions

helps when evaluating joint posteriors. This message gets stronger when considering a uniform

joint prior distribution for the vector of impulse responses.

Finally, we generalize our results to a broader class of objects of interest.5 Specifically, for

any objects of interest within this class, we show how to implement a uniform joint prior

distribution for the vector of objects of interest using the conventional approach. For example,

imagine a two-variable (price and quantity) stylized model of demand and supply with a

uniform joint prior distribution over the impact impulse responses of price and quantity to

demand and supply shocks, the short-term prices elasticities of demand and supply, and

some lag structural coefficients. In this case, the vector of objects of interest consists of

the coefficients associated with the two impact impulse responses, the two short-term price

elasticities, and the lag parameters. Each particular vector of objects of interest induces a

particular prior distribution over the orthogonal reduced-form parameterization. This induced

prior is also model dependent but need not be uniform over the set of orthogonal matrices. In

the latter case, it is necessary to add an importance sampling step to draw from the induced

joint posterior distribution for the vector of objects of interest. Using a simplified version of

the labor market model described in Baumeister and Hamilton (2015), we compare the joint

credible sets for the vector of objects of interest to those induced by the conventional uniform-

5See Section 6 for a formal definition of the class of objects of interest.
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normal-inverse-Wishart prior over orthogonal reduced-form parameterization associated with

a standard Minnesota prior.6 Although the posterior credible sets are similar regardless of

the priors under analysis, our results reinforce the earlier conclusion that imposing tighter

identifying restrictions could help to reduce joint posterior uncertainty.

The structure of the paper is as follows. Section 2 describes the conventional method.

Section 3 provides evidence that the importance of the uniform prior distribution over the set

of orthogonal matrices for posterior impulse responses inference emphasized by Baumeister

and Hamilton (2015) and Watson (2020) is overstated. Section 4 proves that the conventional

approach implies a uniform joint prior distribution over the identified set for the vector of

impulse responses. Section 5 shows how to define a uniform joint prior distribution for the

vector of impulse responses and how to adapt the conventional method to implement it.

Section 6 generalizes this result to other vectors of objects of interest. Finally, Section 7

concludes.

2 The Conventional Approach

Let the SVAR be represented by:

y′tA0 = x
′
tA+ +ε

′
t for 1 ≤ t ≤ T, (1)

where, for 1 ≤ t ≤ T , yt is an n × 1 vector of endogenous variables, εt is an n × 1 vector

of structural shocks, x′t = [y
′
t−1 ⋯ y′t−p 1], A

′
+ = [A

′
1 ⋯ A′p c′], Aℓ is an n × n matrix of

parameters for 0 ≤ ℓ ≤ p with A0 invertible, c is a 1 × n vector of parameters, p is the lag

length, and T is the sample size. The vector εt, conditional on past information and the

initial conditions, is Gaussian with mean zero and covariance matrix In, the n × n identity

matrix. We call A0 and A+ the structural parameters and we refer to (A0,A+) as the

structural parameterization. In the class of linear Gaussian models under analysis, (A0,A+)

and (Ã0, Ã+) are observationally equivalent if and only if A0 = Ã0Q and A+ = Ã+Q for

some Q ∈ O(n), which is the set of all n × n orthogonal matrices. Hence, the structural

parameters are not identified.

The reduced-form representation of Equation (1) is y′t = x′tB + u′t, for 1 ≤ t ≤ T ,

6See Section 5 in Baumeister and Hamilton (2015) for the description of the full model.
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where B = A+A−10 , u′t = ε′tA
−1
0 , and E [utu′t] = Σ = (A0A′0)

−1
. The matrices B and

Σ are the reduced-form parameters. Given any decomposition of the covariance matrix

Σ satisfying h (Σ)
′
h(Σ) = Σ, we can define a mapping from (A0,A+) to (B,Σ,Q) by

fh(A0,A+) = (A+A
−1
0 , (A0A

′
0)
−1
, h ((A0A

′
0)
−1
)A0). We will take h to be the upper tri-

angular Cholesky decomposition, normalized so that the diagonal is positive, though any

differentiable decomposition would do. The function fh is invertible, with its inverse defined

by f−1h (B,Σ,Q) = (h (Σ)
−1
Q,Bh (Σ)

−1
Q). This makes clear how the structural parameters

depend on the reduced-form parameters and orthogonal matrices. We call (B,Σ,Q) the

orthogonal reduced-form parameterization. Notice that Equation (1) can alternatively be

written as y′t = x
′
tB+ε

′
tQ
′ h(Σ) for 1 ≤ t ≤ T . As we explain in Section 2.1, the orthog-

onal reduced-form parameterization is convenient to obtain independent draws from the

well-known uniform-normal-inverse-Wishart distribution. Then, these independent draws

are mapped into structural parameters or impulse responses, which are in turn used to

independently sample from any distribution over the parameterization of interest such as

the normal-generalized-normal distribution over the structural parameters used in Arias,

Rubio-Ramı́rez, and Waggoner (2018).

To solve the identification problem, one often imposes sign and/or zero restrictions on

either the structural parameters or some function of the structural parameters. The theory and

simulation techniques that we develop apply to sign and zero restrictions on any differentiable

function F (A0,A+) from the structural parameters to the space of r×n matrices that satisfies

the condition F (A0Q,A+Q) = F (A0,A+)Q, for every Q ∈ O(n), which, for example, is

true for impulse responses. For the sake of clarity, the exposition of the algorithms and the

theory developed in this paper will consider only sign restrictions, but they can be easily

extended to zero restrictions, as we highlight in the conclusion. If only sign restrictions are

imposed, the function F needs only to be continuous. The sign restrictions are imposed

using sj × r full row rank matrices Sj, where 0 ≤ sj, for 1 ≤ j ≤ n. Each matrix Sj will define

the sign restrictions on the jth structural shock for 1 ≤ j ≤ n. In particular, we assume that

SjF (A0,A+)ej > 0 for 1 ≤ j ≤ n, where ej is the jth column of In.

Importantly, throughout the rest of the paper all densities will be with respect to the

volume measure, even though sometimes we will not explicitly state it. When working with

structural parameters, impulse responses, or B, the volume measure will be equal to the

Lebesgue measure. However, when we are working with symmetric and positive definite
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matrices, or orthogonal matrices the volume measure will not be Lebesgue. In particular, the

volume measure over orthogonal matrices is a Haar measure.

2.1 The Prior and Posterior Distributions

The conventional methods use a normal-inverse-Wishart distribution prior over the reduced-

form parameters.7 If such prior is NIW (ν̄, Φ̄, Ψ̄, Ω̄), then the posterior distribution over

the reduced-form parameters is NIW (ν̃, Φ̃, Ψ̃, Ω̃), where ν̃ = T + ν̄, Ω̃ = (X′X+Ω̄−1)−1,

Ψ̃ = Ω̃(X′Y + Ω̄−1Ψ̄), Φ̃ = Y′Y + Φ̄ + Ψ̄′Ω̄−1Ψ̄ − Ψ̃′Ω̃−1Ψ̃, for Y = [y1 ⋯ yT ]
′ and

X = [x1 ⋯ xT ]
′. If we use a uniform prior distribution over the set of orthogonal matrices,

then the resulting prior distribution over the orthogonal reduced-form parameterization is

uniform-normal-inverse-Wishart. We denote it by UNIW (ν̄, Φ̄, Ψ̄, Ω̄). This prior is conjugate

and the implied posterior distribution over the orthogonal reduced-form parameterization is

also uniform-normal-inverse-Wishart, denoted by UNIW (ν̃, Φ̃, Ψ̃, Ω̃).

Arias, Rubio-Ramı́rez, and Waggoner (2018) show that the density over the structural

parameterization induced by a uniform-normal-inverse-Wishart density over the orthogonal

reduced-form parameterization is proportional to a normal-generalized-normal density:

NGN(ν,Φ,Ψ,Ω)(A0,A+) ∝ ∣det(A0)∣
ν−ne−

1
2
vec(A0)′(In⊗Φ)vec(A0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
generalized-normal

e−
1
2
vec(A+ −ΨA0)′(In⊗Ω)−1 vec(A+ −ΨA0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
conditionally normal

.

Thus, if we independently draw (B,Σ,Q) from UNIW (ν̄, Φ̄, Ψ̄, Ω̄) distribution and then

transform the draws using f−1h , we are in fact independently drawing (A0,A+) from a

NGN(ν̄, Φ̄, Ψ̄, Ω̄) distribution over the structural parameterization.

There are several routines available for making independent draws from any normal-

inverse-Wishart distribution over the reduced-form parameters. Independent draws from the

uniform distribution over the set of orthogonal matrices are normally based on Theorem 3.2

7A normal-inverse-Wishart distribution over the reduced-form parameters is characterized by four
parameters: a scalar ν ≥ n, an n × n symmetric and positive definite matrix Φ, an m × n matrix Ψ, and an
m ×m symmetric and positive definite matrix Ω. We denote this distribution by NIW (ν,Φ,Ψ,Ω) and its
density by NIW(ν,Φ,Ψ,Ω)(B,Σ). Furthermore,

NIW(ν,Φ,Ψ,Ω)(B,Σ) ∝ ∣det(Σ)∣−
ν+n+1

2 e−
1
2 tr(ΦΣ−1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
inverse-Wishart

∣det(Σ)∣−
m
2 e−

1
2 vec(B−Ψ)′(Σ⊗Ω)−1 vec(B−Ψ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
conditionally normal

.
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of Stewart (1980), summarized by Proposition 1.

Proposition 1. Let X be an n × n random matrix with each element having an independent

standard normal distribution. Let X =QR be the QR decomposition of X with the diagonal

of R normalized to be positive. The matrix Q is orthogonal and drawn from the uniform

distribution over O(n).

2.2 The Algorithm

The preceding discussion justifies using Algorithm 1 to draw from the normal-generalized-

normal posterior distribution over the structural parameterization conditional on the sign

restrictions.

Algorithm 1. The following algorithm independently draws from the NGN(ν̃, Φ̃, Ψ̃, Ω̃)

posterior distribution over the structural parameterization conditional on the sign restrictions.

1. Draw (B,Σ) independently from the NIW (ν̃, Φ̃, Ψ̃, Ω̃) posterior distribution.

2. Draw Q independently from the uniform distribution over O(n) using Proposition 1.

3. Keep (A0,A+) = f−1h (B,Σ,Q) if the sign restrictions are satisfied.

4. Return to Step 1 until the required number of draws has been obtained.

2.3 The Impulse Response Parameterization

In some cases, the researcher will be interested in using a conjugate prior distribution over the

impulse response parameterization. Henceforward, we will refer to this representation as the

IR parameterization, defined as (L0,⋯,Lp,c), where p is the number of lags, the element in

row i and column j of the n×n matrix Lk is the response of the ith variable to the jth structural

shock at horizon k, and c is the 1 × n constant term from the structural parameterization.

The matrices Lk are functions of the structural parameterization and they are recursively

defined by L0 = (A
−1
0 )
′
and Lk = ∑

k
ℓ=1 (AℓA

−1
0 )
′
Lk−ℓ, for 1 ≤ k ≤ p. The matrices Ak are

also functions of the IR parameterization and they are recursively defined by A0 = (L
−1
0 )
′

and Ak = (Lk L
−1
0 )
′
A0 −∑

k−1
ℓ=1 (Lk−ℓL

−1
0 )
′
Aℓ, for 1 ≤ k ≤ p. Let L′+ = [L

′
1 ⋯ L′p c′]. Then,

the IR parameterization can be represented by (L0,L+). Importantly, when referring to
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this parameterization in vector form we will use the term vector of impulse responses. We

will denote the mapping from the IR parameterization to the structural parameterization

by fir and the mapping from the IR parameterization to the orthogonal reduced-form

parameterization by ϕh = fh ○ fir.

The advantage of the IR parameterization is that statements about the marginal distri-

bution of individual impulse responses, which are complicated non-linear functions of the

structural parameters, directly translate into statements about the marginal distribution

for individual parameters in the IR parameterization, at least through horizon p. Similarly,

statements about the joint distribution for the vector of impulse responses through horizon p

directly translate into statements about the joint distribution over the IR parameterization.

Within the typical framework described in the introduction, Algorithm 1 can be used

to draw from a conjugate posterior distribution over the IR parameterization conditional

on the sign restrictions. We will just need to modify Step 3 to consider the following

transformation from the orthogonal reduced-form representation to the IR representation

(L0,L+) = ϕ−1h (B,Σ,Q).

3 Re-Examining Watson (2020)

Baumeister and Hamilton (2015) and Watson (2020) report the prior distributions over the

identified sets of selected individual impulse responses induced by Algorithm 1. These distri-

butions are obtained by replacing Step 1 with a fixed value of the reduced-form parameters.

For example, on page 1972, Baumeister and Hamilton (2015) write “this algorithm can be

viewed as generating draws from a Bayesian prior distribution for H [L0 in our notation]

conditional on Ω[Σ],” and document the properties of such an approach. We will refer to

these prior distributions as the conditional prior distributions of individual impulse responses

to emphasize that they do condition on the reduced-form parameters. Both papers claim that

the conditional prior distributions of individual impulse responses may be nonuniform and,

hence, call into question the results obtained by the conventional methods. In this section,

we analyze these two claims in the context of the empirical application in Watson (2020).
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3.1 Data, Model, Identification Restrictions, and Prior

Watson’s (2020) SVAR analysis relies on quarterly data for the U.S. economy over the period

1984Q1:2007Q4. The variables included in the model are: y′t = (∆(yt −nt), nt,∆pt, iLt ), where

yt denotes the logarithm of real output per capita in the nonfarm business sector, nt the

logarithm of hours worked per capita, pt the logarithm of the price level, and iLt the 10-year

Treasury bond rate.8 The SVAR is a constant parameter variant of Debortoli, Gaĺı, and

Gambetti (2020) featuring 4 lags and an intercept. It is assumed that fluctuations in y′t are

driven by technology, demand, supply, and monetary policy shocks, which are identified with

the sign and zero restrictions described in Table 1.9

Variable \Shock Technology Demand Monetary Policy Supply

Restrictions on 4-quarter ahead IRs
Output − − −

Price Level − −

Inflation +

10-Year Treasury Bond Rate − +

Restrictions on long-run IRs
Labor Productivity Growth 0 0 0

Table 1: Identification Restrictions

We parameterize reduced-form parameter uncertainty as a standard Minnesota prior. We

set ν̄ = n + 2, which is the minimum value ν̄ can take that guarantees the existence of a prior

mean for Σ. The matrix Φ̄ is diagonal, with Φ̄ = diag (ϕ1, ϕ2, ϕ3, ϕ4). The values for Ψ̄ and

Ω̄ are chosen to have a flat density over the constant term (Var (d ∣Σ) = 107Σ) and the

following first and second moments over the slope parameters:

E ((Bℓ)ij ∣Σ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 if i = j = 2 and ℓ = 1

0 otherwise

8We kindly obtained this data from Mark Watson and it can be replicated with the following mnemonics
from the FRED database: real output per hour of all persons in the non-farm business sector (OPHNFB),
hours of all persons in the nonfarm business sector (HOANBS), civilian noninstitutionalized population
(CNP16OV), GDP deuniformor (GDPDEF), and the 10-Year Treasury Constant Maturity Rate (GS10).

9We also impose stability of the VAR throughout our paper. This is done by discarding the unstable
draws in Step 1 of Algorithm 1, which is a type of sign restriction.
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Cov ((Bℓ)ij, (Br)hm ∣ Σ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

λ2 1
ℓ2

Σjm(ν̄−n−1)
ϕi

if i = h and ℓ = r for all i, j, h,m, ℓ, r = 1, . . .4

0 otherwise

where Bℓ =AℓA−10 and d = cA−10 . We will treat λ and Φ̄ as hyperparameters. We follow Gian-

none, Lenza, and Primiceri (2015) in choosing the values for these parameters that maximize

the marginal likelihood. This yields λ = 0.3453, and Φ̄ = diag(2.5217,0.3497,0.0478,0.1724).

Following the conventional method described in Section 2, we assume a uniform prior

distribution over the set of orthogonal matrices. The resulting uniform-normal-inverse-Wishart

prior over the orthogonal reduced-form parameterization induces a conjugate prior distribution

over the IR parameterization. The zero restrictions on the long-run impulse responses have a

particular structure that can be exploited to draw from the conjugate posterior distribution

over the IR parameterization conditional on the sign and zero restrictions using Algorithm 1

with Step 2 slightly modified. In Appendix A we show that, given the reduced-form parameters,

uniformly drawing a four-dimensional orthogonal matrix conditional on the zero restrictions

is equivalent to uniformly drawing a three-dimensional orthogonal matrix using Proposition 1

and then mapping it to a four-dimensional orthogonal using a Householder matrix that

depends only on the reduced-form parameters.

3.2 Nonuniform Priors

In order to compute conditional prior distributions of individual impulse responses, Watson

(2020) sets the reduced-form parameters equal to B̂ = (XX′)−1X′Y and Σ̂ = Ŝ
T+n , where

Ŝ = (Y −XB̂)′(Y −XB̂). Ignoring reduced-form parameter uncertainty is either justified

on the grounds that, in the hypothetical case, when the number of observations is large

enough the reduced-form parameters are pinned down (as in Watson, 2020) or by arguing

that “applied researchers often ignore posterior uncertainty about Ω [Σ] and simply condition

on the average residual variance” (as claimed by Baumeister and Hamilton, 2015). However,

we are not aware of any applied work on set-identified Bayesian SVARs where reduced-form

parameter uncertainty is either ignored or negligible.

The light and dark red areas in Figure 1, which reproduce Figure 6 in Watson (2020),

show the equal-tailed 68 and 95 percent conditional prior probability intervals of individual
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impulse responses. Based on this figure, Watson (2020) states (on page 189) that the “prior

on R [Q] together with the authors’ equality and sign restrictions imply quite informative

priors on the impulse responses” over the identified sets.10 Figure 1 in Baumeister and

Hamilton (2015) makes similar arguments using a more general framework. While this claim

is correct, the conditional prior distributions of individual impulse responses are not the prior

distributions of individual impulse responses induced by Algorithm 1. We will refer to the

prior distributions of individual impulse responses as the unconditional prior distributions of

individual impulse responses to emphasize that they do not condition on the reduced-form

parameters.

As made clear by Inoue and Kilian (2022b), it is the interaction of the prior over the set

of orthogonal matrices with the priors over the reduced-form parameters that determines the

shape of the prior distributions of individual impulse responses implicit in the conventional

approach. Thus, it is incorrect to view the algorithm “as generating draws from a Bayesian

prior distribution for L0 conditional on Σ.” Figure 1 shows that there are substantial

differences between the conditional and the unconditional prior distributions in the application

under consideration. The dark and light gray areas show the equal-tailed 68 and 95 percent

unconditional prior distributions of individual impulse responses, respectively. Noticeably, the

probability intervals based on the unconditional and conditional priors are disjoint for several

variable, shock, and horizon triplets. The response of the long interest rate to a demand

shock four quarters after the shock provides an example: While the 68 percent probability

interval based on the unconditional prior is [−0.04,0.00], the same interval for the conditional

prior is [−0.29,−0.09]. The same is true for the response of the real rate to a supply shock

eight quarters after the shock: The 68 percent probability interval based on the unconditional

prior is [−0.02,0.01], while the same interval for the conditional prior is [0.12,0.23]. When

the probability intervals are not disjoint, the figure shows that in general the distributions

either have very different medians or convey very different degrees of uncertainty. Thus,

Figure 1 shows that Baumeister and Hamilton (2015) and Watson (2020) mischaracterize the

unconditional prior distributions of individual impulse responses induced by Algorithm 1.

To make even more clear that it is not the case that the conditional prior distributions

of individual impulse responses tell us anything about the unconditional prior distributions

10The figures reported in this paper address some errata in the original code used in Watson (2020). The
figures reported here reflect these corrections.
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Figure 1: The dark (light) red areas show the equal-tailed 68 (95) percent conditional prior
distributions of individual impulse responses. The dark (light) gray areas show the equal-
tailed 68 (95) percent unconditional prior distributions of individual impulse responses.

of individual impulse responses, Figure 2 compares the conditional and unconditional prior

distributions for the response of inflation to a demand shock four quarters after the shock. A

user of the conditional prior distribution would conclude that the prior has negative support
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while about 50 percent of the unconditional prior probability mass is above zero.

Figure 2: The red histograms show the conditional prior distribution for the response of
inflation to a demand shock four quarters after the shock. The gray histograms show the
unconditional prior distribution for the response of inflation to a demand shock four quarters
after the shock.

If one wants to assess the role of the prior in driving the posterior distributions of individual

impulse responses obtained using Algorithm 1, then one has to compare the unconditional

prior and posterior distributions of individual impulse responses. Figure 3 shows that there

are important differences between the unconditional posterior distributions of individual

impulse responses in the application under consideration. The dark and light gray (green)

areas show the equal-tailed 68 and 95 percent unconditional prior (posterior) distributions

of individual impulse responses. As was the case when comparing the unconditional and

conditional priors, the probability intervals based on the unconditional prior and posterior

distributions of individual impulse responses are disjoint for several variable, shock, and

horizon triplets. The response of the real rate to a monetary policy shock four quarters

after the shock provides an example: While the 68 percent probability interval based on the

unconditional prior is [0.00,0.05], the 68 percent probability interval based on the posterior is

[0.06,0.32]. The response of inflation to a supply shock one quarter after the shock provides

another example: While the 68 percent probability interval based on the unconditional prior

is [−0.03,0.02], the 68 percent probability interval based on the posterior is [0.02,0.06], which

indicates that the data support the view that positive supply shocks lead to increases in the
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Figure 3: The dark (light) gray areas show the equal-tailed 68 (95) percent prior distributions
of individual impulse responses. The dark (light) green areas show the equal-tailed 68 (95)
percent posterior distributions of individual impulse responses.

inflation rate. As before, if the probability intervals are not disjoint, the figure shows that

in general the prior and posterior distributions either have very different medians or convey

very different degrees of uncertainty.
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To reinforce that the unconditional prior distributions of individual impulse responses do

not drive the unconditional posterior distributions of individual impulse responses, Figure 4

compares the unconditional prior and posterior distributions for the response of inflation to

a demand shock four quarters after the shock. While most of the probability mass of the

unconditional posterior distribution is below zero, about 50 percent of the unconditional prior

probability mass is above zero.

Figure 4: The gray histograms show the unconditional prior distribution for the response
of inflation to a demand shock four quarters after the shock. The green histograms show
the unconditional posterior distribution for the response of inflation to a demand shock four
quarters after the shock.

3.3 Multiple-Prior Bayesian Approach

We think that the results above convincingly show that the unconditional posterior dis-

tributions of individual impulse responses are not an artifact of the unconditional prior

distributions of individual impulse responses. But it is the case that the prior over the set

of orthogonal matrices is not updated by the data. In addition, there is a concern that the

prior over the impulse responses implied by the conventional method could induce researchers

to report bands that would be too narrow from a frequentist perspective: Baumeister and

Hamilton (2022) “The confidence bands used by practitioners are much too narrow from

the perspective of a frequentist who is unpersuaded by the implicit prior information that
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underlies the popular methods” (page 3). To address these issues, Giacomini and Kitagawa

(2021) adopt a multiple-prior Bayesian approach for inference in set-identified models like the

ones described in this paper. This novel and interesting robust Bayesian approach removes

the need to specify the prior for the orthogonal matrices given the reduced-form parameters.

Among other features, this method allows the researcher to analyze the sensitivity of the

posterior distributions of individual impulse responses to the choice of the uniform prior

over orthogonal matrices by reporting the set of posterior means for a given prior over the

reduced-form parameters as well as robust credible regions. Figure 5 illustrates Giacomini

and Kitagawa’s (2021) procedure in the context of our application. The dashed black lines

are the lower and upper bound posterior means. The magenta dashed lines show the smallest

robust credible regions with credibility 68 percent.

Although the 68 percent robust credible regions are clearly wider than the equal-tailed 68

percent posterior probability bands (shown by the dark green areas), the lower and upper

bounds for the posterior means (depicted by the dashed black lines) show that the identifying

restrictions convey a reasonable amount of information. To simplify the exposition, let us

classify the impulse responses implied by the conventional method into two groups: one

where the equal-tailed 68 percent posterior probability bands and the set of posterior means

simultaneously have either positive or negative support at some horizon, and another where

there is no horizon for which the latter occurs. Under this classification, the conventional

methods provide “convincing” evidence about all the impulse responses except for the ones

of the long (nominal) and real rate to a supply shock, at least at some horizon.

Even though there are also impulse responses—such as the impact impulse responses of

the real rate—for which the lower and upper bounds for the posterior means contain zero

while the conventional methods provide “convincing” evidence, our general assessment of

Figure 5 is that the gap between the conclusions obtained under the conventional and the

robust Bayesian approach is not large.

3.4 Summary

To summarize, Figures 1 through 5 reveal four features of the conventional methods. First, as

suggested by Baumeister and Hamilton (2015) and Watson (2020), Algorithm 1 may generate

nonuniform prior distributions over the identified sets of individual impulse responses, but we
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Figure 5: The solid black lines (dark green areas) show the posterior means (equal-tailed
68 percent posterior probability bands) of individual impulse responses. The dashed black
lines (dash-dotted magenta lines) are the lower and upper bound posterior means (smallest
robust credible region with credibility 68 percent) implied by Giacomini and Kitagawa’s
(2021) procedure.

are not aware of a single Bayesian application of the conventional approach where estimation

uncertainty is negligible. Additionally, even if a researcher were to deliberately ignore reduced-
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form parameter uncertainty, Inoue and Kilian (2022b) show that the nonuniformity of the

prior distributions over the identified sets of individual impulse responses is not a concern

in tightly identified models. In the next section, we further strengthen the rationale for the

conventional approach by showing that the undesirability of the approach reflected in the

nonuniformity of the prior distributions over the identified sets of individual impulse responses

is a consequence of focusing on marginal distributions instead of joint ones. We demonstrate

that the joint prior distribution over the identified set for the vector of impulse responses

induced by the conventional methods is always uniform. This is an important result because

the ultimate interest of empirical studies is in simultaneously assessing a range of different

impulse responses to capture their shape and co-movement. Thus, it is essential to analyze

joint distributions as opposed to the marginal distributions emphasized by Baumeister and

Hamilton (2015) and Watson (2020) and still common in applied work.

Second, we showed by example that the unconditional prior distributions of individual

impulse responses induced by Algorithm 1 are noticeably different from the conditional prior

distributions. Hence, it is wrong to use conditional prior distributions of individual impulse

responses to “characterize the prior distributions that are implicit” in the conventional

approach as claimed on page 1972 of Baumeister and Hamilton (2015).

Third, while our findings and those of Shin and Zhong (2020) and Inoue and Kilian (2022b)

show that results are not bound to be an artifact of the conventional prior specification,

Giacomini and Kitagawa (2021) show examples where the conclusions from a prior robust

approach differ from those of the standard approach and hence the role of the unconditional

prior distributions of individual impulse responses in posterior inference needs to be determined

on a case by case basis.

Fourth, the multiple-prior Bayesian approach of Giacomini and Kitagawa (2021) shows

that although the mean impulse responses depend on the choice of prior over the set of

orthogonal matrices, for this particular example the choice of a uniform prior does not seem

to drive the main conclusions.

4 Conditional Joint Prior for Impulse Responses

Because the posterior reproduces the prior over the identified set, we understand why a

researcher would want a uniform joint prior distribution over the identified set for the vector
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of impulse responses. Oftentimes, we will refer to this prior as the conditional joint prior

distribution for the vector of impulse responses.11 Although the issue is less relevant when the

identified sets are narrow (see Inoue and Kilian, 2022b), in this section we answer the following

question: Are there distributions over the IR parameterization such that the conditional

joint prior distribution for the vector of impulse responses is uniform? Or equivalently, are

there distributions over the IR parameterization such that the joint prior distribution over

the identified set for the vector of impulse responses is uniform? The answer is yes, and

Propositions 2 and 3 give the conditions required for this to be the case. Interestingly, the

conventional methods described in Uhlig (2005) and Rubio-Ramı́rez, Waggoner, and Zha

(2010) imply a uniform joint prior distribution over the identified set for the vector of impulse

responses.

Before stating the proposition, we need a precise understanding of what it means to

condition on the reduced-form parameters. If fp denotes the projection from the orthogonal

reduced-form parameterization onto the reduced-form parameters, then ϕ = fp ○ ϕh is the

mapping from the IR parameterization to the reduced-form parameters, and ϕ does not

depend on h. Given the reduced-form parameters (B,Σ), the set ϕ−1(B,Σ) will be the

submanifold that is the support of the joint distribution of the IR parameterization conditional

on (B,Σ). The submanifold structure induces a natural measure over ϕ−1(B,Σ), which is

called the volume measure.12 If π(L0,L+) is a density over the IR parameterization, then the

density conditional on (B,Σ) with respect to the volume measure over ϕ−1(B,Σ) will be

proportional to π(L0,L+). The volume measure is the only measure, up to a scale factor,

that has this property. In this sense the volume measure is the natural one. Thus, conditional

on (B,Σ), the density with respect to the volume measure over ϕ−1(B,Σ) will be uniform if

and only if π(L0,L+) is constant over ϕ−1(B,Σ).

Proposition 2. For every density over the IR parameterization with respect to Lebesgue

measure, the density with respect to the volume measure over ϕ−1(B,Σ), conditional on (B,Σ),

is uniform for every (B,Σ) if and only if the induced distributions over the orthogonal reduced-

11The joint prior distribution over the identified set for the vector of impulse responses (or equivalently
the conditional joint prior distribution for the vector of impulse responses) is obtained conditioning on the
reduced-form parameters.

12See the discussion of Theorem 2 in Arias, Rubio-Ramı́rez, and Waggoner (2018) for an outline of how
the volume measure is defined over submanifolds. To see that ϕ−1(B,Σ) is a submanifold, let (L0,L+) be
any IR parameters such that ϕ(L0,L+) = (B,Σ). Since ϕ−1(B,Σ) = {(L0Q,L+Q)∣Q ∈ O(n)} and O(n) is
a smooth manifold, so is ϕ−1(B,Σ).
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form parameters (B,Σ) and Q are independent and the distribution of Q is uniform with

respect to the Haar measure.

Proof. See Appendix B.

Proposition 2 was stated in terms of conditional distributions. There is an equivalent

formulation in terms of observationally equivalent parameters.

Proposition 3. For every density over the IR parameterization with respect to Lebesgue

measure, the density with respect to the volume measure over ϕ−1(B,Σ) is constant over

observationally equivalent vectors of impulse responses if and only if the induced distribu-

tions over the orthogonal reduced-form parameters (B,Σ) and Q are independent and the

distribution of Q is uniform with respect to the Haar measure.

Proof. Follows from Proposition 2 and the fact that two impulse responses are observationally

equivalent if and only if there exists a reduced-form parameter (B,Σ) such that both of the

impulse responses lie in the support of the distribution conditional on (B,Σ).

Because they are if and only if statements, Propositions 2 and 3 bring to the fore the

virtue of joint distributions over the IR parameterization that induce a distribution over

the orthogonal reduced-form parameterization such that the distribution over the set of

orthogonal matrices is uniform.13 Consequently, to have a uniform joint prior distribution

over the identified set for the vector of impulse responses one must use a prior distribution

over the set of orthogonal matrices that is uniform. Any other choice of prior over the set of

orthogonal matrices will imply a nonuniform joint prior distribution over the identified set for

the vector of impulse responses. This is true for any prior distribution over the reduced-form

parameters. The results in this section are relevant for the robust methodology developed by

Giacomini and Kitagawa (2021). First, one should acknowledge that only a uniform prior over

the set of orthogonal matrices induces a uniform prior over observationally equivalent vectors

of impulse responses and hence only in this case researchers can claim that the identification

problem is only resolved by means of sign and zero restrictions, preserving the virtues that

made inference based on sign identified SVARs a useful tool in empirical macroeconomics.

Second, while the analysis in Giacomini and Kitagawa (2021) could potentially be extended

13If a distribution over the orthogonal reduced-form parameterization is such that the distribution over
the set of orthogonal matrices is uniform for all reduced-form parameters, then the reduced-form parameters
and the orthogonal matrices must be independent.
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to the case of joint inference, such an extension is challenging and, hence, our propositions

offer useful insights to researchers concerned with the role of the prior when conducting joint

posterior inference.

4.1 The Case n = 2

If n = 2, then it is possible to analytically illustrate Proposition 2. This example is also

useful for illustrating why focusing on marginal distributions can be misleading about the

nonuniformity of the priors. To further reduce the number of parameters, we assume there

are no lags or constant term. In this case, the only impulse response is L0 and the only

reduced-form parameter is Σ. The support of the joint prior distribution over the identified

set for the vector of impulse responses is of the form:

⎡
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, (2)

where i is either zero or one, −π ≤ θ ≤ π, and L̂0 = h(Σ)′.

The joint prior distribution over the identified set for the vector of impulse responses

is completely determined by the joint distribution over (θ, i), which can be written as

p(θ, i) = p(θ)p(i∣θ). Since ℓ11 = ℓ̂11 cos(θ) and ℓ12 = ℓ̂11 sin(θ), the conditional prior densities

of the individual ℓ11 and ℓ12 are given by:

p(ℓ11) =
p(cos−1(ℓ11/ℓ̂11)) + p(− cos−1(ℓ11/ℓ̂11))

ℓ̂11 sin(cos−1(ℓ11/ℓ̂11))
, (3)

p(ℓ12) =
p(sin−1(ℓ12/ℓ̂11)) + p(sgn(ℓ12)π − sin

−1(ℓ12/ℓ̂11))

ℓ̂11 cos(sin
−1(ℓ12/ℓ̂11))

,

where sgn(ℓ12) is one if ℓ12 is positive and minus one otherwise. We compute and plot the

conditional prior densities of the individual ℓ11 and ℓ12 and the joint prior distribution over

the identified set for the vector of impulse responses in Cases (1) and (2) described below.

To economize language, in the rest of the section we minimize the usage of the word prior.

23



Case (1): The conditional distribution of ℓ11 is uniform over [−ℓ̂11, ℓ̂11]. If the

conditional distribution of ℓ11 is uniform, then p(ℓ11) = 1/(2ℓ̂11) and the distribution of θ

must satisfy p(θ)+p(−θ) = sin(θ)/2 for 0 ≤ θ ≤ π. If p(θ) is any non-negative function defined

over [−π,π] that integrates to one and satisfies p(θ) + p(−θ) = sin(θ)/2, for 0 ≤ θ ≤ π, then

the conditional distribution of ℓ11 will be uniform.

Is there a choice of p(θ) so that the conditional distribution of ℓ21 will be uniform? If

the conditional distribution of ℓ12 is uniform, then p(ℓ12) = 1/(2ℓ̂11) and the distribution of θ

must satisfy p(θ)+p(sgn(θ)π−θ) = cos(θ)/2 for −π/2 ≤ θ ≤ π/2. Since p(−θ) = sin(θ)/2−p(θ)

for 0 ≤ θ ≤ π, it must be the case that cos(θ)/2 = cos(−θ)/2 = p(−θ) + p(−π + θ) =

sin(θ)/2 − p(θ) + sin(π − θ)/2 − p(π − θ) = sin(θ) − cos(θ)/2 for 0 ≤ θ ≤ π/2, which is not true.

So, there is no choice of p(θ) such that the conditional distribution of ℓ11 and ℓ12 are both

uniform.

Case (2): The conditional joint distribution over L0 is uniform for every Σ. By

Proposition 2, the induced distribution over Q will be uniform with respect to the volume

measure, which is arc length in this case. So, the properly scaled density over (θ, i) is

p(θ, i) = p(θ)p(i∣θ) = (1/(2π))(1/2). By Equation (3), the conditional marginal density of ℓ11

is p(ℓ11) =
1
π(ℓ̂

2
11 − ℓ

2
11)
− 1

2 . The density of ℓ12 will have the same form.

The two cases are illustrated in Figures 6 and 7. Figure 6 plots the conditional densities of

ℓ11 and ℓ12, while Figure 7 does the same for the conditional joint distribution over L0 for both

cases. For simplicity, we chose Σ to be the identity, so that L̂0 is also the identity. For Case

(1), we chose p(θ) = ∣ sin(θ)/4∣ and p(i∣θ) = 1/2, which implies that the conditional distribution

of ℓ11 is uniform and probably does the least violence to the conditional distribution of ℓ12.

In this case the density of ℓ12 is p(ℓ12) = ∣ℓ12∣(1 − ℓ212)
− 1

2 /2.

The solid lines in Figure 6 are the conditional densities in Case (1) and the dotted

lines in Figure 6 correspond to Case (2). For Case (1), the conditional distribution of ℓ11

is uniform by construction, but the conditional distribution of ℓ12 is farther from uniform

than in Case (2), where neither conditional distributions are uniform. Figure 6 illustrates

the dangers of analyzing marginal densities. While Case (2) implies a uniform joint prior

distribution over the identified set for the vector of impulse responses, a researcher analyzing

the conditional prior distributions of individual impulse responses may conclude otherwise.
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Figure 6: Case (1): The solid lines are the conditional densities of ℓ11 and ℓ12 with the
conditional density of ℓ11 forced to be uniform. Case (2): The dotted lines are the conditional
densities of ℓ11 and ℓ12 implied by the uniform conditional joint distribution over L0.

Case (1) illustrates a point already made by Baumeister and Hamilton (2015): One cannot

have uniform prior distributions over the identified sets of individual impulse responses.

Let us now depict the joint distributions. From Equation (2), it is easy to see that the

support of the distribution of L0, conditional on Σ, are two ellipses in R4. If ℓ̂21 = 0, then

this reduces to the simpler case of two circles in R4, both of radius
√

ℓ̂211 + ℓ̂
2
22. Since, in the

plots we take Σ = I2, we are in the simpler case. In Figure 7, we plot the conditional joint

density over one of the two circles for both Cases (1) and (2).14 In Case (2), the conditional

joint distribution was uniform by construction. In Case (1), this is not true and the density

14Each point on the circle corresponds to a tuple (ℓ1,1, ℓ1,2, ℓ2,1, ℓ2,2) in the support of L0 conditional on
Σ and lies in a plane in R4.
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Figure 7: Case (1): Conditional joint density over one of the two circles, with the conditional
marginal density of ℓ11 forced to be uniform. Case (2): Uniform conditional joint density
over one of the two circles implied by a uniform conditional joint prior distribution for the
vector of impulse responses.

goes to zero at certain points. This is mirrored in Figure 6 where the conditional marginal

distribution of ℓ12 also goes to zero in Case (1).

In this section, we have shown that the conventional methods do imply a uniform joint

prior distribution over the identified set for the vector of impulse responses. As mentioned, the

key is to focus on joint distributions instead of marginals. In the next sections, we demonstrate

that the conjecture in Baumeister and Hamilton (2015)—“Because the objects of interest in

structural VARs are highly nonlinear functions of the underlying parameters, the quest for

‘noninformative’ priors for structural VARs is destined to fail” (page 1979)—is not true. We

will begin by showing that it is possible to have a uniform joint prior distribution for the

vector of impulse responses and that such a type of prior can be implemented by the methods
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in Uhlig (2005), Rubio-Ramı́rez, Waggoner, and Zha (2010), and Arias, Rubio-Ramı́rez, and

Waggoner (2018). Then, we extend the results to a general class of objects of interest.

5 Uniform Joint Prior for Impulse Responses

In this section, we show how to use the conventional methods to conduct posterior inference

based on a uniform prior distribution over the IR parameterization conditional on the sign

restrictions.15 To do so, we analytically derive the prior distribution over the orthogonal

reduced-form parameterization induced by a uniform prior distribution over the IR param-

eterization. This step is important because, as highlighted in Section 2, the orthogonal

reduced-form parameterization is convenient for obtaining independent and identically dis-

tributed draws. Then, we derive a closed form expression for the posterior over the orthogonal

reduced-form parameterization induced by a uniform joint prior distribution for the vector of

impulse responses. To conclude the section, we propose an algorithm to use the conventional

methods with a uniform prior distribution over the IR parameterization and we illustrate it

using the empirical example in Watson (2020).

5.1 Prior over the Orthogonal Reduced-Form Parameterization

If π(B,Σ,Q) is any density over the orthogonal reduced-form parameterization, then by

Theorem 1 in Appendix C, the induced density over the IR parameterization will be

π(ϕh(L0,L+))vϕh
(L0,L+), where vϕh

(L0,L+) is the volume element induced by ϕh. It is

easy to verify that the hypotheses of Theorem 1 in Appendix C are satisfied and so the

theorem is applicable. The volume element can be computed analytically using Proposition

4, described below.

Proposition 4. The volume element of ϕh at (L0,L+) is vϕh
(L0,L+) = 2

n(n+1)
2 ∣det(L0)∣

−(m−3).

Proof. See Appendix B.

The reader should notice that the volume element does not depend on the choice of h

and that it is immediate that the volume element can be written in terms of the orthogonal

reduced-form parameterization as shown in the following corollary of Proposition 4:

15Oftentimes, we will refer to this prior as a uniform joint prior distribution for the vector of impulse
responses.
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Corollary 1. The volume element of ϕ−1h evaluated at (B,Σ,Q) is vϕ−1
h
(B,Σ,Q) = 2−

n(n+1)
2 ∣det(Σ)∣

m−3
2 .

Using Corollary 1, we have that if π(L0,L+) is any density over the IR parameterization,

then the induced density over the orthogonal reduced-form parameterization will be:

π(ϕ−1h (B,Σ,Q))vϕ−1
h
(B,Σ,Q) = π(ϕ−1h (B,Σ,Q))2−

n(n+1)
2 ∣det(Σ)∣

m−3
2 .

This last expression justifies the following proposition:

Proposition 5. A joint prior distribution for the vector of impulse responses is uniform if

and only if the equivalent prior density over the orthogonal reduced-form parameterization is

proportional to ∣det(Σ)∣
m−3
2 .

Proof. If π(L0,L+) is any density over the IR parameterization, then the induced density

over the orthogonal reduced-form parameterization will be:

π(B,Σ,Q) = π(ϕ−1h (B,Σ,Q))2−
n(n+1)

2 ∣det(Σ)∣
m−3
2 .

Since a uniform joint prior distribution for the vector of impulse responses implies that

π(ϕ−1h (B,Σ,Q)) ∝ 1, π(B,Σ,Q) ∝ ∣det(Σ)∣
m−3
2 .

Proposition 5 shows that if one defines a uniform prior distribution over the IR pa-

rameterization, then one is irremediably defining a prior over the orthogonal reduced-form

parameterization whose density is proportional to ∣det(Σ)∣
m−3
2 . Importantly, Proposition 5

applies to those cases in which the impulse responses of interest are linear transformations of

the IR parameterization. It is also the case that a prior over the orthogonal reduced-form

parameterization proportional to ∣det(Σ)∣
m−3
2 induces a uniform joint prior for any subset

of the vector of impulse responses. This is because if the prior distribution over the IR

parameterization is uniform, the joint prior over the subset of the vector of impulse responses

is also uniform. For example, in Section 3, the vector of objects of interest are the impulse

responses of output, inflation, the long rate, and the real rate to a demand shock, a monetary

policy shock, and a supply shock, respectively. These objects are a linear transformation of a

subset of the vector of impulse responses.

The following corollary of Proposition 5 shows three additional straightforward conse-

quences of working with a uniform prior distribution over the IR parameterization. First,
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the induced posterior over the orthogonal reduced-form parameterization is such that (B,Σ)

and Q are independent. Second, the induced prior density over the reduced-form parameters

takes a particular form. Third, the induced prior distribution of Q is uniform.

Corollary 2. The joint prior distribution for the vector of impulse responses is uniform if and

only if the induced prior distribution over the orthogonal reduced-form parameterization (B,Σ)

and Q are independent and the distribution over the reduced-form has density proportional to

∣det(Σ)∣
m−3
2 and the distribution of Q is uniform with respect to the Haar measure.

Hence, because of the results in Section 4, a uniform prior distribution over the IR

parameterization implies a uniform joint prior and posterior distributions over the identified

set for the vector of impulse responses.

5.2 Posterior over the Orthogonal Reduced-Form Parameterization

The following proposition due to DeJong (1992) shows that a prior over the reduced-form

parameters proportional to ∣det(Σ)∣
m−3
2 implies a normal-inverse-Wishart posterior over the

reduced-form parameters.

Proposition 6. Let a > 2n + 2 +m − T . If the reduced-form prior density is proportional

to ∣det(Σ)∣−
a
2 , then the normal-inverse-Wishart posterior density over the reduced-form

parameters is defined by:

NIW(ν̂(a),Ŝ,B̂,(X′X)−1)(B,Σ),

where ν̂(a) = T + a −m − n − 1.

With Proposition 6 in hand we have the following corollary characterizing the posterior

over the orthogonal reduced-form parameterization induced by a uniform prior distribution

over the IR parameterization.

Corollary 3. If the prior density over the orthogonal reduced-form parameterization is propor-

tional to ∣det(Σ)∣
m−3
2 , the posterior density over the orthogonal reduced-form parameterization

is:

UNIW(ν̂(−(m−3)),Ŝ,B̂,(X′X)−1)(B,Σ).

Corollary 3 implies that if one wants to conduct inference based on a uniform prior

distribution over the IR parameterization, then one must have a particular (model dependent)
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uniform normal-inverse-Wishart posterior over the orthogonal reduced-form parameterization.

Specifically, the marginal posterior of Σ is inverse-Wishart with parameters ν̂(−(m−3)) and Ŝ

and the posterior of B, conditional on Σ, is normal with mean B̂ and variance Σ⊗(X′X)
−1
.

5.3 The Algorithm

The above discussion justifies Algorithm 2 to independently draw from the posterior distribu-

tion over the IR parameterization conditional on the sign restrictions implied by a uniform

prior distribution over the IR parameterization.

Algorithm 2. The following algorithm independently draws from the joint posterior distri-

bution for the vector of impulse responses conditional on the sign restrictions implied by a

uniform joint prior distribution for the vector of impulse responses.

1. Draw (B,Σ) independently from the NIW (ν̂(−(m − 3)), Ŝ, B̂, (X′X)
−1
) distribution.

2. Draw Q independently from the uniform distribution over O(n) using Proposition 1.

3. Keep (L0,L+) = ϕ−1h (B,Σ,Q) if the sign restrictions are satisfied.

4. Return to Step 1 until the required number of draws has been obtained.

We see this algorithm as complementing Plagborg-Møller (2019). While his approach

cannot produce independent draws, it does not require invertibility.

5.4 An Application

We illustrate how to conduct inference based on a uniform joint prior distribution for the

vector of impulse responses using the model described in Section 3. For completeness, we

will begin the analysis comparing the unconditional posterior distributions of individual

impulse responses implied by the uniform prior distribution over the IR parameterization

with the unconditional posterior distributions of individual impulse responses implied by

the prior distribution over the IR parameterization induced by the more commonly used

Minnesota prior discussed in Section 3. Figure 8 shows the equal-tailed 68 percent conditional

posterior probability intervals of individual impulse responses implied by each of the priors.

As expected, the figure shows how the uniform joint prior distribution for the vector of
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impulse responses implies more posterior uncertainty. In some cases, e.g., the responses of

the real rate, the uncertainty (measured as the width of the intervals) increases noticeably.

Figure 8: The dark (light) green areas show the equal-tailed 68 percent marginal posterior
probability bands of individual impulse responses implied by the uniform joint prior distribu-
tion for the vector of impulse responses (Minnesota prior).

Next, we compare marginal and joint inference. The former is based on the unconditional
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Figure 9: Bayes estimator of the joint posterior distribution for the vector of impulse responses
(black lines) and its 68 percent credible set (dark green lines) under the absolute value loss
function. Light green areas show the equal-tailed 68 percent unconditional prior distributions
of individual impulse responses. Both posteriors are implied by the uniform joint prior
distribution for the vector of impulse responses.

posterior distributions of individual impulse responses. The latter is based on the joint

posterior distribution for the vector of impulse responses. Figure 9 compares the Bayes
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Figure 10: Bayes estimator of joint posterior impulse responses (dashed-dotted black lines
with green round markers) and the 68 percent credible sets under the absolute value loss
function under uniform joint prior distribution for the vector of impulse responses (dashed-
dotted black lines with green round markers for the estimator and green lines for the credible
sets) and under the Minnesota prior (dashed black lines with yellow cross markers for the
estimator and yellow lines for the credible sets).

estimator of the joint posterior distribution for the vector of impulse responses (black lines)

and its 68 percent credible set (dark green lines) under the absolute value loss function
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following Inoue and Kilian (2022a) with the commonly used 68 percent point-wise posterior

probability bands (light green areas), which are normally used to report unconditional

posterior distributions of individual impulse responses. The figure makes clear that: (1)

joint inference protects the researcher from excessively optimistic conclusions about the

uncertainty surrounding the posteriors, as Inoue and Kilian (2022a) highlight; and (2) this

particular model does not seem tightly identified by the imposed sign and zero restrictions.

These conclusions are robust to using the sup-t Bayesian joint credible sets proposed by

Montiel Olea and Plagborg-Møller (2019), see Appendix D.

We conclude this section by comparing the joint posterior distribution for the vector of

impulse responses implied by two different joint priors. Figure 10 shows the Bayes estimators

of joint posterior impulse responses and the 68 percent credible sets under the absolute value

loss function when using a uniform joint prior distribution for the vector of impulse responses

(dashed-dotted black lines with green round markers for the estimator and green lines for the

credible sets) and when using the joint prior distribution for the vector of impulse responses

induced by the Minnesota prior (dashed black lines with yellow cross markers for the estimator

and yellow lines for the credible sets). Focusing on the Bayes estimators, the Minnesota prior

exacerbates the negative effects on inflation caused by negative demand shocks and dampens

the effects on inflation caused by unfavorable supply shocks. Although the 68 percent credible

sets are much narrower when using the Minnesota prior, a visual inspection reveals that even

when using a Minnesota prior there is substantial joint uncertainty about the macroeconomic

consequences of the shocks under study. A similar picture emerges when using the sup-t

Bayesian joint credible sets shown in Appendix D. As mentioned above, this is clearly in line

with the conclusions in Inoue and Kilian (2022a).

6 Uniform Joint Priors for Objects of Interest

There are cases in which the vector of objects of interest is not the vector of impulse

responses. In this section, we show that the insights of the previous sections apply to

a general class of objects of interest parameterizations, which are transformations of the

orthogonal reduced-form parameterization.16 Denote the vector of objects of interest by Υ

16Alternatively, one could define the objects of interest parameterization as being a transformation of
either the structural parameterization or the IR parameterization.
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and the transformation from Υ to the orthogonal reduced-form parameterization by ϕo. We

assume that ϕo is invertible and that both ϕo and its inverse are continuously differentiable.

In general, Υ is a smooth manifold of dimension n2 + nm, but here we focus on the case in

which Υ is an open subset of Rn2+nm and use Lebesgue measure over Υ. As in the case of

the IR parameterization, statements about the marginal distribution of individual objects

of interest directly translate into statements about the marginal distribution of individual

parameters in the objects of interest parameterization. Similarly, statements about the joint

distribution of the vector of objects of interest also directly translate into statements about

the distribution over the objects of interest parameterization.

If π(B,Σ,Q) is any density over the orthogonal reduced-form parameterization, the

induced density over the objects of interest parameterization is π(ϕo(Υ))vϕo(Υ), where

vϕo(Υ) is the volume element induced by ϕo.17 If π(Υ) is any density over the objects

of interest parameterization, then the induced density over the orthogonal reduced-form

parameterization will be π(B,Σ,Q) = π(ϕ−1o (B,Σ,Q))vϕ−1o (B,Σ,Q), where vϕ−1o (B,Σ,Q) is

the volume element of ϕ−1o evaluated at (B,Σ,Q). Hence, a uniform joint prior distribution

for the vector of objects of interest induces a prior over the orthogonal reduced-form parame-

terization such that π(B,Σ,Q) ∝ vϕ−1o (B,Σ,Q). Because, in general, the volume element

vϕ−1o (B,Σ,Q) depends on Q, the induced prior over the set of orthogonal matrices is not

uniform.

To relate this to the previous sections, where the objects of interest are the vector of

impulse responses, the mapping ϕo corresponds to ϕh and the volume element vϕ−1o (B,Σ,Q)

corresponds to the volume element vϕ−1
h
(B,Σ,Q), which can be explicitly computed to be

2−
n(n+1)

2 ∣det(Σ)∣
m−3
2 , and hence, it does not depend on Q. In general, it may not be possible

to analytically compute the volume element and it may be the case that the volume element

depends on Q.

6.1 Conditional Joint Prior for Objects of Interest

As mentioned in Section 4 for the case of the IR parameterization, because the posterior

reproduces the prior over the identified set, a researcher may want a uniform joint prior

distribution over the identified set for the vector of objects of interest. Oftentimes, we will

17As in Section 5, it is easy to verify that the hypotheses of Theorem 1 in Appendix C are satisfied and so
the theorem is applicable.
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refer to this prior as the conditional joint prior distribution for the vector of objects of

interest.18 In this section, we characterize the class of priors over the orthogonal reduced-form

parameterization that induces a uniform joint prior distribution over the identified set for

the vector of objects of interest. As expected, the uniform joint prior distribution for the

vector of objects of interest belongs to such a class.

The composite ϕ̂o = fp ○ ϕo maps the objects of interest parameterization to the reduced-

form parameters. Given the reduced-form parameters (B,Σ), the set ϕ̂−1o (B,Σ) will be the

submanifold that is the support of the joint distribution of the object of interest param-

eterization conditional on (B,Σ). As noted in the case that the objects of interest were

the impulse responses, the submanifold structure induces a natural measure over ϕ̂−1o (B,Σ),

which is called the volume measure (as before, see Arias, Rubio-Ramı́rez, and Waggoner,

2018, for details.) If π(Υ) is a density over the object of interest parameterization, then the

density conditional on (B,Σ) with respect to the volume measure over ϕ̂−1o (B,Σ) will be

proportional to π(Υ). The volume measure is the only measure, up to a scale factor, that has

this property. Thus, conditional on (B,Σ), the density with respect to the volume measure

over ϕ̂−1o (B,Σ) will be uniform if and only if π(Υ) is constant over ϕ̂−1o (B,Σ).

Proposition 7. For every density over the objects of interest parameterization with re-

spect to Lebesgue measure, the density with respect to the volume measure over ϕ̂−1o (B,Σ),

conditional on (B,Σ), is uniform for every (B,Σ) if and only if the induced distribution

over the orthogonal reduced-form parameterization is such that π(Q ∣B,Σ) is proportional to

vϕ−1o (B,Σ,Q).

Proof. See Appendix B.

An immediate implication of Proposition 7 is that a uniform joint prior distribution for

the vector of objects of interest implies a uniform joint prior and posterior distributions over

the identified set for the vector of objects of interest. It should be clear that Proposition 7

is a generalization of Proposition 2 for our class of objects of interest. Proposition 2 just

shows that for the case when the objects of interest are the impulse responses, π(Q ∣B,Σ) is

uniform and independent of (B,Σ).

18The joint prior distribution over the identified set for the vector of objects of interest (or equivalently
the conditional joint prior distribution for the vector of objects of interest) is obtained conditioning on the
reduced-form parameters.
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6.2 The Algorithm

The above discussion justifies using Algorithm 3 to independently draw from the posterior

distribution over the objects of interest parameterization conditional on the sign restrictions

for inference based on a uniform prior distribution over the objects of interest parameterization.

The algorithm is a simple modification of Algorithms 1 and 2 that incorporates an importance

sampling step.

In order to justify the weights in the importance sampling step, note that the likelihood is

proportional to NIW(ν̂,Φ̂,Ψ̂,Ω̂)(B,Σ), where ν̂ = T −m−n− 1, Ω̂ = (X′X)−1, Ψ̂ = Ω̂X′Y, and

Φ̂ =Y′Y−Ψ̂′Ω̂−1Ψ̂. If the prior over the objects of interest parameterization is uniform, then

the posterior density at Υ = ϕ−1o (B,Σ,Q) will also be proportional to NIW(ν̂,Φ̂,Ψ̂,Ω̂)(B,Σ).

Algorithm 3. The following algorithm independently draws from the posterior distribution

over the objects of interest parameterization conditional on the sign restrictions implied by a

uniform prior distribution over the objects of interest parameterization.

1. Draw (B,Σ) independently from the NIW (ν,Φ,Ψ,Ω) distribution.

2. Draw Q independently from the uniform distribution over O(n) using Proposition 1.

3. If Υ = ϕ−1o (B,Σ,Q) satisfies the sign restrictions, then set its importance weight to:

NIW(ν̂,Φ̂,Ψ̂,Ω̂)(B,Σ)

NIW(ν,Φ,Ψ,Ω)(B,Σ)v−1ϕo
(Υ)

.

Otherwise, set its importance weight to zero.

4. Return to Step 1 until the required number of draws has been obtained.

The choice of (ν,Φ,Ψ,Ω) is important. An obvious choice would be (ν,Φ,Ψ,Ω) =

(ν̂, Φ̂, Ψ̂, Ω̂), which would simplify the importance weight. More generally, one could choose

(ν,Φ,Ψ,Ω) to maximize the effective sample size of the importance sampler. It is also

important to highlight that one could use Algorithm 3 to work with any joint posterior

distribution for the vector of objects of interest provided that Step 3 is modified accordingly.
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6.3 An Example

To illustrate Algorithm 3, consider a simplified version of the two-variable SVAR described

in Baumeister and Hamilton (2015). In particular, let

∆nt = kd + βd∆wt + b
d
w∆wt−1 + b

d
n∆nt−1 + σ

dud
t , (4)

∆nt = ks + αs∆wt + b
s
w∆wt−1 + b

s
n∆nt−1 + σ

sus
t , (5)

where the vector (ud
t , u

s
t)
′
, conditional on past information and the initial conditions, is

Gaussian with mean zero and covariance matrix I2. Letting yt denote the endogenous

variables (i.e., yt = (∆wt,∆nt)
′), it should be clear that Baumeister and Hamilton’s (2015)

(A,D,Π) parameterization of Equations (4) and (5) is:

Ayt =Πxt−1 + ut, (6)

where ut = (ud
t , u

s
t)
′
, xt−1 = (yt−1,1)′, and:

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−βd 1

−αs 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,D =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σd 0

0 σs

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,and Π′ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

bdw bdn kd

bsw bsn ks

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Our version of Baumeister and Hamilton’s (2015) two-variable SVAR features one lag

and a constant, and we assume that the objects of interest are the short-run wage elasticity

of demand, βd, the short-run wage elasticity of supply, αs, the standard deviation of the

structural demand and supply shocks, and the lag structural coefficients plus the constants

(σd, σs, bdw, b
d
n, k

d, bsw, b
s
n, k

s)
′
. For compactness, we let Υ = (βd, αs, σd, σs, bdw, b

d
n, k

d, bsw, b
s
n, k

s)
′

denote the vector of objects of interest. Given Υ, we will construct a mapping ϕo from Υ to

the orthogonal reduced-form parameters, as the composite mapping ϕo = fh ○ fo, where fh

was defined in Section 2 and fo is a mapping from Υ to the structural parameters defined

below as follows:

fo(Υ) =
⎛
⎜
⎝
A′D−1
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

A0

,ΠD−1
´¹¹¹¹¹¸¹¹¹¹¹¶

A+

⎞
⎟
⎠
.
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The inverse of the fo mapping is given by:

f−1o (A0,A+) = (−A(1,1),−A(2,1),diag(D),vec(Π)) ,

where:

D =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A−10 (2,1) 0

0 A−10 (2,2)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,A =DA′0,and Π =A+D.

We use Algorithm 3 to obtain draws from the posterior implied by a uniform joint

prior distribution for the vector of objects of interest. When applying Algorithm 3, we set

(ν,Φ,Ψ,Ω) = (ν̂, Φ̂, Ψ̂, Ω̂).

Finally, following Baumeister and Hamilton (2015), we impose the following sign re-

strictions: βd < 0 and αs > 0.19 We will compare the results to ones obtained with the

posterior distribution over the objects of interest parameterization conditional on the sign

restrictions associated with a conjugate uniform-normal-inverse-Wishart prior distribution

over the orthogonal reduced-form parameterization where the normal-inverse-Wishart part

of the prior is a standard Minnesota. To draw from this posterior, we use Algorithm 1

with the posterior distribution implied by the class of priors described in Section 3 where,

following Giannone, Lenza and Primiceri’s (2015) approach, we set ν̄ = 4, λ = 0.3055, and

Φ̄ = diag(2.1232,0.0598).20

Importantly, the aim of this section is not to argue that using a uniform joint prior

distribution for the vector of objects of interest is preferred to using other priors. The results

discussed below are meant to (1) emphasize that it is possible to conduct inference about

joint posterior distribution for the vector of objects of interest implied by uniform prior

distribution over the objects of interest parameterization and (2) highlight any difference

with respect to a more typical choice of priors. As mentioned above, the algorithm can be

used to work with any joint posterior distribution for the vector of objects of interest. In

particular, one could work with the posterior described in Baumeister and Hamilton (2015).

Panel (a) of Figure 11 compares the 68 percent posterior joint credible sets for βd and αs

19In addition, we impose normalization on the standard deviation of the shocks (σd and σs must be
positive) and a bound on their size (σd and σs must be smaller than 4 times the standard deviation of the
more volatile time series in the system) to increase the efficiency of Algorithm 3. Without the bounds on the
size of the shocks, the effective number of draws in Algorithm 3 collapses to one.

20Obviously, when executing Step 3 of the algorithm, we replace (A0,A+) = f−1h (B,Σ,Q) with Υ =
ϕ−1o (B,Σ,Q).
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Figure 11: Posterior distributions implied by a uniform joint prior distribution for the vector
of objects of interest (blue) versus Minnesota prior (red). The 68 percent credible sets under
the absolute value loss function using a uniform joint prior distribution for the vector of
objects of interest and a Minnesota prior over the reduced-form parameters.

obtained using a uniform joint prior distribution for the vector of objects of interest (blue)

with the ones obtained using the Minnesota prior described above (red). As the reader can

see, for both priors the posterior is concentrated around low (absolute) values of either βd or

αs. It is also clear from the figure that the uniform joint prior distribution for the vector of

objects of interest implies much more uncertainty about the estimates. Panel (b) makes the

same comparison for σd and σs obtaining similar results. Consequently, researchers using a

uniform joint prior distribution for the vector of objects of interest are likely to face wider

posterior joint credible sets.

To highlight one of the key advantages of working with joint credible sets, Figure 12

relies on colors (as suggested by Inoue and Kilian, 2022a) to show the relation between the

posterior estimates of elasticities and standard deviations when using a uniform joint prior

distribution for the vector of objects of interest. Figure 13 shows the same relation when

using the Minnesota prior. Clearly, in both cases, large values for the standard deviation

of the demand shock σd are associated with large values for the demand elasticity βd. A

similar conclusion emerges when assessing the relation between the supply elasticity and the

standard deviation of the supply shock.
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Figure 12: The 68 percent credible sets under the absolute value loss function using a uniform
joint prior distribution for the vector of objects of interest.
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Figure 13: The 68 percent credible sets under the absolute value loss function using a
Minnesota prior.

7 Conclusion

Our paper demonstrates that there is nothing fundamentally wrong with the conventional

method for Bayesian inference in SVARs identified with sign restrictions. Using an empirical

example, we show that the concerns about the role played by the uniform prior over the set

of orthogonal matrices in shaping posterior inference over impulse responses are overstated

by ignoring reduced-form parameter uncertainty and focusing on marginal distributions. We

show that the uniform prior over the set of orthogonal matrices is not only sufficient but

also necessary to have uniform joint prior and posterior distributions over the identified
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set for the vector of impulse responses. The key is to consider joint instead of marginal

distributions. The most popular choice of prior when using the conventional method induces

a uniform joint prior distribution over the identified set for the vector of impulse responses

and straightforward variants of the approach can be used to conduct joint inference using

either a uniform joint prior distribution for the vector of impulse responses or a joint prior

distribution for the vector of objects of interest within a general class of objects of interest.

Our paper can also be viewed as offering a practical complementary alternative to

Giacomini and Kitagawa (2021) for researchers whose goal is to perform joint posterior

inference without favoring some vector of impulse responses over others a priori. This is

because even though their prior robust numerical methodology is attractive, it does not

consider the case of joint inference and such an extension is challenging.

This paper has focused on SVARs identified with sign restrictions. Nevertheless, the con-

ventional method can also be used to independently draw from the posterior distribution over

the IR parameterization implied by a uniform prior distribution over such parameterization

in SVARs identified with sign and zero restrictions. The same applies when the objective is

to draw from the posterior distribution over the objects of interest parameterization implied

by a uniform prior distribution over such parameterization conditional on sign and zero

restrictions. As described in Arias, Rubio-Ramı́rez, and Waggoner (2018), in both cases an

importance sampling step could be needed depending on the nature of the parameterization

of interest and the zero restrictions in use.
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Appendix Not for Publication

A Posterior Simulation of Watson (2020)

The model in Watson (2020) has three zero restrictions on the long-run impulse response of

labor productivity growth. The long-run impulse response is given by:

L∞ = (A
′
0 −

p

∑
i=1

A′i)

−1

= (In −
p

∑
i=1

B′i)

−1

(A−10 )
′ = (In −

p

∑
i=1

B′i)

−1

h(Σ)′Q,

where Bi = AiA
−1
0 . If labor productivity is the first variable and the technology shock is

ordered last, then the first three elements in the first row of L∞ must be zero. Given a

non-zero n-vector x, the Householder matrix Hn(x) is given by:

Hn(x) = In − 2
xx′

x′x
.

Householder matrices are reflection matrices, and hence orthogonal. If x and y are two distinct

unit vectors, then x′Hn(x − y) = y. Let x(B,Σ)′ be the first row of (In −∑
p
i=1B

′
i)
−1
h(Σ)′,

normalized to be of unit length, and let e4 be the last column of I4. It is easy to see

that (In −∑
p
i=1B

′
i)
−1
h(Σ)′Hn(x(B,Σ) − e4) will satisfy the zero restrictions, as long as

x(B,Σ) ≠ e4. Furthermore, if L∞ = (In −∑
p
i=1B

′
i)
−1
h(Σ)′Q satisfies the zero restrictions,

then Q must be of the form Hn(x(B,Σ) − e4)P, where:

P =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P3 03×1

01×3 ±1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7)

and P3 ∈ O(3). Thus, given the reduced-form parameters (B,Σ), a Q can be obtained by:

1. drawing P3 using Proposition 1

2. drawing ±1 uniformly

3. forming P

4. and finally multiplying by the Householder matrix Hn(x(B,Σ) − e4)
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is a uniform draw from O(4) conditional on the zero restrictions.

In addition, it can be shown that the mapping from P3 and ±1 to the IR parameterization

conditional on the zero restrictions does not depend on P3 or ±1. This implies that the ratio

of volume elements associated with the target and the proposals that does not depend on

Q. Thus, Algorithm 1 can be used in this case provided that a simple re-weighing step is

implemented.

Notice that Propositions 2 and 3 directly apply to the IR parameterization identified with

sign restrictions. It can be shown that they also apply to the model in Watson (2020) with

an alternative IR parameterization defined as (L0,L1,L2,L3,L∞,c). The mapping from this

alternative IR parameterization to the structural parameterization is one-to-one and onto,

although we do have to restrict the structural parameters so that L∞ is well defined. Using

this alternative IR parameterization the zero restrictions define a lower dimensional linear

subspace where the volume measure is Lebesgue.

B Proofs of Proposition 2, 4, and 7

Proof of Proposition 2. If π is any density of the impulse responses with respect to Lebesgue

measure, then the induced density over orthogonal reduced-form parameters with respect to

volume measure is:

p(B,Σ,Q) =
π((fh ○ fir)−1(B,Σ,Q))

2
n(n+1)

2 ∣det(Σ)∣−
np+2

2

.

Because ϕ = fp ○ (fh ○ fir), π is constant over ϕ−1(B,Σ) if and only if p(B,Σ,Q) =

p(B,Σ)p(Q ∣B,Σ) does not depend on Q. If p(Q ∣B,Σ) is constant, then the induced

distributions of (B,Σ) and Q are independent and the distribution of Q must be uniform

with respect to the Haar measure.

Proof of Proposition 4. Proposition 1 in Arias, Rubio-Ramı́rez, and Waggoner (2018) gives

that vfh(A0,A+) = 2
n(n+1)

2 ∣det(A0)∣
−(2n+m+1). Because Ak does not depend on Lj for j > k,

the derivative of fir is a block lower triangular (n2(p + 1) + 1) × (n2(p + 1) + 1) matrix of the
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form:
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−(L′0⊗L0)
−1Kn,n 0 ⋯ 0 0

× (L′0⊗L0)
−1Kn,n ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

× × ⋯ (L′0⊗L0)
−1Kn,n 0

0 0 ⋯ 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where Kn,n is the commutation matrix, which is the unique n2 × n2 matrix such that

vec(X′) =Kn,n vec(X) for every n×nmatrixX. The volume element of fir is the absolute value

of the determinant of the above matrix, which is ∣det(L0)∣
−2n(p+1). Thus the volume element

of ϕh = fh ○ fir is 2
n(n+1)

2 ∣det ((L−10 )
′
)∣
−(2n+m+1)

∣det(L0)∣
−2n(p+1) = 2

n(n+1)
2 ∣det(L0)∣

−(m−3).

Proof of Proposition 7. If π(Υ) is any density over the objects of interest parameterization

with respect to the Lebesgue measure, then the induced density over the orthogonal reduced-

form parameterization with respect to volume measure will be:

π(B,Σ)π(Q ∣B,Σ) = π(ϕ−1o (B,Σ,Q))vϕ−1o (B,Σ,Q).

If π(Υ) is constant over ϕ̂−1o (B,Σ), then π(ϕ−1o (B,Σ,Q)) will not depend onQ and it must be

the case that π(Q ∣B,Σ) is proportional to vϕ−1o (B,Σ,Q), though the proportionality constant,

which is equal to π(ϕ−1o (B,Σ,Q))/π(B,Σ), could depend on B and Σ. If π(Q ∣B,Σ) is

proportional to vϕ−1o (B,Σ,Q), then π(ϕ−1o (B,Σ,Q)) cannot depend on Q and so is constant

over ϕ̂−1o (B,Σ).

C The Change of Variable Theorem

We will use the change of variable theorems outlined in Arias, Rubio-Ramı́rez, and Waggoner

(2018). In particular, we will use Theorem 2 of that paper, which is reproduced here as

Theorem 1.

Theorem 1. Let U ⊂ Rb be an open set, let V ⊂ Ra be a b-dimensional smooth manifold,

and let γ ∶ U → V be a one-to-one and continuously differentiable function. If A ⊂ γ(U) and
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λ ∶ A→ R is an integrable function, then:

∫
A
λ(v)dVv = ∫

γ−1(A)
λ(γ(u))∣det(Dγ(u)′Dγ(u))∣

1
2du. (8)

D Sup-t Bayesian Credible Sets

Montiel Olea and Plagborg-Møller (2019) propose a method for joint inference on impulse

responses that is equal to the Cartesian product of the commonly used equal-tailed posterior

probability bands, where the tail probability is set to achieve the desired simultaneous

credibility for the vector of impulse responses of interest. A key difference between this

method and the one proposed by Inoue and Kilian (2022a) is that in the latter case the

credible sets are constrained to contain impulse responses consistent with a given draw of the

structural parameters. Even so, the results implied by both methods are similar as can be

seen comparing Figure 14 with Figure 9, and Figure 15 with Figure 10.
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Figure 14: Sup-t 68 percent Bayesian credible set (dark green areas) based on Montiel Olea
and Plagborg-Møller (2019). Light green areas show the equal-tailed 68 percent unconditional
prior distributions of individual impulse responses. Both posteriors are implied by the uniform
joint prior distribution for the vector of impulse responses.
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Figure 15: Sup-t 68 percent Bayesian 68 percent credible sets based on Montiel Olea and
Plagborg-Møller (2019) under a uniform joint prior distribution for the vector of impulse
responses (dark green areas) and under the Minnesota prior (yellow areas).
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