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Abstract

This study develops a framework for testing hypotheses on structural parameters in in-
complete models. Such models make set-valued predictions and hence do not generally yield a
unique likelihood function. The model structure, however, allows us to construct tests based
on the least favorable pairs of likelihoods using the theory of Huber and Strassen (1973). We
develop tests robust to model incompleteness that possess certain optimality properties. We
also show that sharp identifying restrictions play a role in constructing such tests in a com-
putationally tractable manner. A framework for analyzing the local asymptotic power of the
tests is developed by embedding the least favorable pairs into a model that allows local approx-
imations under the limits of experiments argument. Examples of the hypotheses we consider
include those on the presence of strategic interaction effects in discrete games of complete
information. Monte Carlo experiments demonstrate the robust performance of the proposed
tests.
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1 Introduction

Incomplete structures arise in a wide class of economic models when the researcher’s theory does

not fully describe how a particular outcome occurs given the primitives of the model. In this study,

we consider a class of models in which, given structural parameter θ ∈ Θ and latent variable u ∈ U ,

the model predicts the set G(u|θ) of values for discrete outcome s.1 The researcher observes s, but

his/her theory is silent about the mechanism that determines how s is selected from the predicted

set. This class encompasses various models studied in the empirical literature. Examples include

models of market entry (Bresnahan and Reiss, 1990, 1991; Berry, 1992; Ciliberto and Tamer, 2009)

where the theory does not specify how a pure strategy Nash equilibrium is selected, models of self-

selection (Heckman and Honoré, 1990; Mourifie, Henry, and Meango, 2018) where an individual’s

choice of the sector of activity interacts with unobserved skills, and models of English auction

(Haile and Tamer, 2003; Aradillas-Lopez and Tamer, 2008) where the researcher wants to allow

solutions that satisfy weak rationality restrictions.2 In many of these settings, empirical questions

can be investigated by testing hypotheses on the structural parameter. Given the incompleteness of

the theory, it is desirable to conduct tests without adding assumptions on how selections operate.

Despite the need for such robustness, the theoretical study of robust testing procedures and their

properties has been limited.3 This study develops a framework for hypotheses testing in incomplete

models, shows how to construct robust and optimal tests, and provides asymptotic tools to evaluate

their performance.

Each of the hypotheses we consider can be written as

H0 : ϕ(θ) ∈ K0 v.s. H1 : ϕ(θ) ∈ K1, (1)

for some function ϕ : Θ→ Rk and mutually exclusive sets K0, K1 ⊂ Rk. Such hypotheses naturally

arise in applications of incomplete models. For example, in an entry game, a key parameter is

the strategic interaction effect, which measures the effect of an opponent firm’s entry on a firm’s

profit. An important empirical question is whether the presence of such interaction effects can be

supported by the observed data (de Paula and Tang, 2012). One way to address the question is to

formally test the null hypothesis that the strategic interaction does not exist, namely H0 : ϕ(θ) = 0,

against an alternative hypothesis that negative externalities exist, H1 : ϕ(θ) < 0, by choosing a

suitable functional ϕ.

Such a hypothesis testing problem, however, faces several challenges. First, without further

assumptions, the model permits multiple distributions of the observables even if each hypothesis

fully specifies the value of θ. To see this, consider a simplified problem in which H0 : θ = θ0 v.s. H1 :

1Introducing covariates does not fundamentally change the structure. We therefore treat this case in Section 5.2
as an extension.

2Other examples include models of voting (Kawai and Watanabe, 2013), choice of product variety (Eizenberg,
2014), and network formation models (Miyauchi, 2016).

3Studies of tests of the moment inequality model are related, but their model differs from the one we consider.
See Section 1.1.
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θ = θ1. This problem may appear as testing a simple null hypothesis against a simple alternative.

However, under each hypothesis, multiple distributions (of s) may be compatible with the theory

because any distribution P of the outcome is consistent with θ as long as one can augment the model

by finding a suitable selection mechanism that induces P . Therefore, even under the simplest setting,

both null and alternative hypotheses can be composite (in terms of permitted distributions).4 The

problem becomes even more challenging when data are obtained from a sequence of experiments. If

one stays agnostic about the selection, the unknown selection mechanism is allowed to be arbitrary

across experiments. For example, across experiments, the true selection mechanism may vary with

and be correlated through a specific variable; however, the researcher does not even know the

identity of this variable. From the researcher’s viewpoint, the resulting outcome sequence is then

heterogeneous and dependent in an unknown way, which in turn makes it hard to characterize the

large-sample distribution of test statistics and apply standard asymptotic tools to analyze the power

of the tests.

We develop tests that overcome these challenges. For this, we exploit the fact that the sampling

uncertainty and lack of understanding of the selection can be represented by a belief function, a

capacity (or non-additive probability), which belongs to a broader class of two-monotone capacities.

Capacities in this class are known to have properties useful for conducting robust statistical inference

(Huber and Strassen, 1973, HS henceforth).5 We start by demonstrating that for testing between

simple hypotheses, robust tests can be constructed for any finite sample. The proposed test, which

takes the form of a likelihood ratio (LR) test, controls the size in finite samples regardless of the

unknown selection mechanism and maximizes a measure of power, which we call lower power. One

may wonder how such an LR test can be constructed because incomplete models generally admit

infinitely many likelihoods. A key observation is that HS’s theory ensures that there exists the

least favorable pair (LFP) of likelihoods: one compatible with the null that is the least favorable

for size control and the other compatible with the alternative that is the least favorable for power

maximization.6 Distinguishing two such extreme distributions turns out to be the best way to test

one parameter value against another while staying agnostic about the selection.

We then develop LR tests for repeated experiments. Our first main contribution is to show

that despite the potential heterogeneity and dependence of the data, the LFP consists of product

measures as long as the latent variables are independent across experiments. Heuristically, this

means that under the least favorable distribution for size control (or power maximization), the

observables can be viewed as independent across experiments, while the true data-generating process

(DGP) may not satisfy such regularity. This leads to a number of desirable results. In particular, it

allows us to construct robust LR tests that are optimal in the minimax sense, provide a simple critical

value based on a large-sample Gaussian approximation, and develop an asymptotic framework for

evaluating the power of the tests.

4Furthermore, the hypotheses in (1) allow the presence of additional nuisance parameters such as sub-components
of θ. We address this issue separately as an extension of the base framework in Section 5.1.

5See also Huber and Strassen (1974) for corrigendum and Huber (1981) for the broader area of robust statistics.
6They also show that such a pair is unique up to its Radon-Nikodym derivative.
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Our second contribution is on the practical side. While HS’s theory ensures the existence of

the LFP, in practice, one needs to find a way to compute it. We show that in the class of models

we consider, the LFP can be computed by solving a finite-dimensional convex program in which

the constraints of the program are the sharp identifying restrictions studied in the identification

literature (Beresteanu, Molchanov, and Molinari, 2011; Galichon and Henry, 2011; Chesher and

Rosen, 2017). These restrictions simplify the constraints by making them linear in the control

variable, and they therefore play a crucial role in computing the LFP and implementing the robust

optimal tests. While the restrictions are useful for characterizing sharp identified sets, little is known

about whether they lead to statistically optimal inference. Our result shows they are indeed crucial

for likelihood-based inference that has a certain optimality property. Our theoretical result on the

LFP also has a practical implication. In particular, under mild conditions, the distributions forming

the LFP are independently and identically distributed (i.i.d.) laws, and hence the researcher only

needs to find the LFP in a “single” experiment rather than finding it from the entire sequence of

experiments. This result also contributes to a significant reduction in the computational cost of our

tests.

Our third main contribution is to provide a framework for analyzing the asymptotic power of the

tests by embedding the product LFPs into a model that admits local approximations. Specifically,

we show that under regularity conditions, a sequence of experiments characterized by the ratio of the

LFPs, obtained from a null parameter value and a local alternative, converge to a limit in the sense

of Le Cam (1972, 1986). We use this property to characterize the upper bound of the asymptotic

lower power of the tests for one-sided hypotheses. Our approach uses the limits of experiments

argument and can potentially be used in other statistical decision problems in incomplete models.

The main advantage of this approach is that once the LFPs are embedded into a probabilistic model

whose limit is tractable, most of the power analysis can be performed using standard tools.

Our framework, however, also incorporates some non-standard features. First, the underlying

model in which we embed the LFPs may not satisfy the well-known differentiability in quadratic

mean condition, which is sufficient for the local asymptotic normality (LAN) of the experiments

over the entire local parameter space. Instead, the model is typically directionally differentiable

(in the L2 sense) and satisfies the LAN property separately on a collection of convex cones that

partition the local parameter space. Second, perhaps more importantly, incomplete models may

yield alternatives that are not robustly testable. Such an alternative admits a selection mechanism

that makes the lower power of any level-α test weakly below the nominal level. We clarify the

notion of robust testability and relate it to the observational equivalence concepts studied in the

identification literature (Chesher and Rosen, 2017). To conduct a meaningful power analysis, we

then introduce an extended notion of alternatives, which we call shifted local alternatives. The

asymptotic power envelope is shown to be non-trivial against such alternatives.

We further extend our analysis to a model that permits the presence of nuisance components

of the parameter vector. Setting up a statistical decision problem, we construct a robust LR test

that minimizes a certain risk function. We call this test a Bayes–Dempster–Shafer (BDS) test as it
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minimizes a risk that treats parameter uncertainty in a Bayesian way and incorporates ambiguity

due to incompleteness through a belief function. Finally, we establish a minimax theorem for this

setting, which suggests that a level-α test that maximizes a weighted average of lower power can

be approximated using a sequence of BDS tests.

1.1 Relation to the Literature

Our study is most closely related to Epstein, Kaido, and Seo (2016) who developed a theoretical

framework for modeling repeated experiments with incompleteness.7 We adopt their framework and

use the (product) belief function to characterize the set of joint distributions of outcomes across

experiments. This allows us to study the robustness of tests even in settings where selections are

heterogeneous and dependent in an unknown way. This study then takes a step further and develop

ways to examine the optimality of tests in such settings.

Our study is also related to earlier work on incomplete models.8 In particular, our framework

for the single experiment builds on that of Jovanovic (1989), who pointed out that models with

multiple equilibria lead to incomplete structures and face potential difficulty in identifying structural

parameters. Tamer (2003) studied identifying restrictions in an incomplete simultaneous discrete

response model with multiple equilibria. Since his seminal work, it has become common to use

partially identifying inequality restrictions to bound parameters of interest. Galichon and Henry

(2011), Beresteanu, Molchanov, and Molinari (2011), and Chesher and Rosen (2017) characterized

sharp identifying restrictions for a wide range of incomplete models using the theory of random

sets. We also use, as a central tool, the capacities associated with random sets. As discussed above,

the sharp identifying restrictions play an important role in the construction of tests that achieve

robustness and statistical optimality.

Commonly used identifying restrictions take the form of moment inequalities. As such, inference

methods developed for moment inequality models (Chernozhukov, Hong, and Tamer (2007), An-

drews and Soares (2010), Bugni (2010), Andrews and Barwick (2012)) have been commonly used.

Some of them (e.g. Galichon and Henry, 2006, 2009, 2013) use test statistics based on capacities

to construct confidence regions. These methods combine the implications of incomplete models

on moments with an additional assumption on the sampling process (e.g., i.i.d. sampling). By

contrast, our approach uses the model’s implications on certain likelihoods and does not restrict the

sampling process. Chen, Tamer, and Torgovitsky (2011) considered a sieve MLE-based inference,

which can be applied to incomplete models. Their approach profiles out a non-parametric nuisance

parameter (selection) from the likelihood function using a sieve. Our approach, which picks out

the LFP, can also be interpreted as a way to average out the nuisance parameter, in which the

weights are the least favorable priors, and averaging is carried out without explicitly introducing a

7Epstein and Seo (2015) provided axiomatic foundations for robust subjective inference and decision making in
such a setting.

8The analysis of an incomplete system of equations dates back to the early work of Wald (1950). Here, we focus
on reviewing more recent developments in models with multiple equilibria.
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functional space.

The results on the optimality of the tests in related settings are somewhat limited. Within a

moment inequality framework, Canay (2010) found that a test based on the empirical LR statistic

is optimal with respect to the large deviations criterion. In a more specialized setting in which mo-

ment restrictions are convex in the parameter, Kaido and Santos (2014) showed that a test based on

a semiparametrically efficient estimator of the identified set achieves the asymptotic power envelope

against some local alternatives. In models characterized by conditional moment inequalities, Arm-

strong (2014, 2018) compared the relative power of the testing procedures based on Cramer–von

Mises and weighted Kolmogorov–Smirnov statistics. These studies deal with testing problems in

models characterized by moment inequalities, which differ from ours in terms of (i) the hypotheses

they test and (ii) how they extend a single experiment to repeated experiments. For the former,

these studies consider testing whether θ is in the identified set, while our focus is on testing hypothe-

ses of the form in (1), which does not involve identified sets. For the latter, they assume that an

i.i.d. sample is available, and hence the robustness issue against heterogeneity and the dependence

of selection does not arise.9

Finally, our framework for inference is related to others that use limit theorems based on the

thoery of random sets. As mentioned earlier, we use a Gaussian approximation to compute the

critical value for the LR statistic, which is similar in spirit to the central limit theorem (CLT)

in Epstein, Kaido, and Seo (2016), whereas a different tool is used to obtain this result because

of the non-trivial difference between the LR statistic we use here and their Kolmogorov–Smirnov-

type statistic. In a different class of models, in which observations are set-valued, Beresteanu and

Molinari (2008) applied a central limit theorem for random sets to make their inference.

Throughout, for any metric space A, we let ΣA denote its Borel σ-algebra. We then denote the

set of Borel probability measures on A by ∆(A) and equip it with the topology of weak convergence.

Let N(µ, V ) denote the law of a normal random vector with mean µ ∈ Rk and variance-covariance

matrix V ∈ Rk×k. For any integrable random vector X, we let EP [X] denote its expectation with

respect to probability measure P .

The remainder of the paper is organized as follows. Section 2 introduces the model and provides

illustrative examples. In Section 3, after reviewing the theory of Huber and Strassen (1973) (Sec-

tion 3.1), we present our main result on minimax tests in repeated experiments (Section 3.3). We

also discuss the robust testability of the hypotheses and computational aspects (Sections 3.1–3.2).

Section 3.4 provides results on the local asymptotic power of the tests. Section 4 then provides sim-

ulation evidence. Section 5 contains extensions of the baseline framework and Section 6 concludes.

Appendices B and C collect the proofs of the theoretical results.

9See Epstein, Kaido, and Seo (2016) for this distinction as well as Molchanov and Molinari (2018) (Section 5.3).
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2 Setup

Let S be a finite set of observable outcomes and let u ∈ U denote a variable unobservable to the

researcher, where U is assumed to be a Polish space. Let Θ denote the parameter space. We

let m = {mθ, θ ∈ Θ} denote a family of Borel probability measures on U . For each θ ∈ Θ, let

G(·|θ) : U � S be a weakly measurable correspondence. This map shows how latent variable u is

mapped to a set of permissible outcomes. Observable outcome s is then a measurable selection of

random set G(u|θ). As such, the model does not impose any restrictions on how s is selected. One

may also introduce observable covariates to this model. As the core analysis remains unaffected,

we defer the analysis of this case to Section 5.2.

The incomplete structure above is summarized by tuple (S, U,m,Θ;G). Such structures arise

in various economic models. To fix the ideas, we present several examples based on simplifications

of well-known models. The first example is a binary response game, which is commonly used to

analyze environments such as firms’ entry into markets and households’ joint labor supply decisions

(Bresnahan and Reiss, 1990, 1991; Berry, 1992; Ciliberto and Tamer, 2009).

Example 1 (Binary response game). Consider a two-player binary response game with the following

payoff:

out in

out 0, 0 0, u(2)

in u(1), 0 u(1) + θ(1), u(2) + θ(2)

The effect of the other player’s action (e.g., entry) on player k’s payoff is represented by θ(k).

Throughout, we call θ = (θ(1), θ(2))′ ∈ Θ ⊂ R2 the players’ strategic interaction effects. Let U = R2.

The latent payoff shifter u = (u(1), u(2))′ follows a continuous distribution mθ. Consider pure

strategy Nash equilibria in this game when θ(1) ≤ 0 and θ(2) ≤ 0.10 There are four possible

equilibrium outcomes: S = {(0, 0), (1, 1), (1, 0), (0, 1)}. How u and θ are mapped to the equilibrium

outcomes is summarized by the following correspondence:

G(u|θ) =





{(0, 0)} u(1) < 0, u(2) < 0

{(1, 1)} u(1) ≥ −θ(1), u(2) ≥ −θ(2)

{(1, 0)} u ∈ U1,

{(0, 1)} u ∈ U2,

{(1, 0), (0, 1)} 0 ≤ u(1) < −θ(1), 0 ≤ u(2) < −θ(2),

(2)

where U1 = {u : u(1) ≥ −θ(1), u(2) < −θ(2)) ∪ {u : 0 ≤ u(1) < −θ(1), u(2) < 0} and U2 = {u : 0 ≤
u(1) < −θ(1), u(2) ≥ −θ(2)} ∪ {u : u(1) < 0, u(2) ≥ 0}. The model predicts multiple equilibria when

each player’s latent payoff shifter is between the two thresholds (0 and −θ(k), k = 1, 2).

10For simplicity, we focus on games with strategic substitutes throughout. Games with strategic complements, in
which θ(1) > 0, θ(2) > 0, can be analyzed similarly.
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The second example is the (binary) Roy model studied in Mourifie, Henry, and Meango (2018).

Example 2 (Roy model). Consider an individual who chooses a sector of activity D ∈ {0, 1} and

whether to work Y ∈ {0, 1} in the sector. The binary outcome is given by Y = Y1D + Y0(1 −
D), where selection indicator D is determined by binary potential outcomes (Y0, Y1) through the

following structure:

D =





1 Y1 > Y0

0 or 1 Y1 = Y0

0 Y1 < Y0.

(3)

Binary potential outcome Yd represents whether one has good economic prospects in sector d ∈
{0, 1}.11 The sector choice is not uniquely determined if Y1 = Y0. This model can be mapped to the

present framework by letting s = (y, d) ∈ S = {(0, 0), (0, 1), (1, 0), (1, 1)} be observable outcomes

and u = (Y0, Y1) ∈ U ≡ {(0, 0), (0, 1), (1, 0), (1, 1)} be latent variables. Since u is discrete, we take

the probability mass function of u as a parameter vector. For this, let θ = (θ(0,0), θ(0,1), θ(1,0))′ ∈ Θ,

where θ(0,0) = mθ((Y0, Y1) = (0, 0)), for instance, and Θ = {θ ∈ [0, 1]3 : θ(0,0) + θ(0,1) + θ(1,0) ≤ 1}.
The Roy selection in (3) then yields the following correspondence:

G(u) =





{(0, 0), (0, 1)} u = (0, 0)

{(1, 1)} u = (0, 1)

{(1, 0)} u = (1, 0)

{(1, 0), (1, 1)} u = (1, 1).

(4)

The model implies a unique outcome only if the potential outcomes are ordered (e.g., an individual

works in sector 1 when Y0 = 0 and Y1 = 1). Otherwise, it predicts multiple outcome values.

The third example is an incomplete model of an English auction (Haile and Tamer, 2003).

Example 3 (English auction). For each auction, there are k = 1, · · · , N̄ potential bidders whose

valuations u(k), k = 1, · · · , N̄ are drawn independently from common distribution Fθ with support

[u, u] ⊂ R, which is indexed by parameter θ ∈ Θ. There is reserve price r and minimum bid

increment ∆̄ > 0. Each bidder’s set of actions is {r, r + ∆̄, r + 2∆̄, · · · , r + K∆̄}, where K ∈ N
is such that r + K∆̄ > u. Bidders with valuations above the reserve price bid in the auction.

Let N ≤ N̄ be the number of such bidders. Haile and Tamer (2003) assumed the following weak

restrictions on observed bids s = (s(1), · · · , s(N)): (i) bidders do not bid more than their valuations,

implying s(k) ≤ u(k), k = 1, · · · , N , and (ii) bidders do not allow an opponent to win at a price

11We focus on the case in which the potential outcomes are binary. Mourifie, Henry, and Meango (2018) extended
their analysis to more general settings in which Yd is discrete or continuous (or both). As discussed in Section 2 of
their paper, one could also think of the binary Roy model as a consequence of a two-step decision process in which
D is determined first by potential wage Y ∗d in sector d, and whether to work in section d is determined by whether
Y ∗d crosses a threshold.

8



they can beat, which implies u(N−1,N) ≤ s(N,N) +∆̄, where x(k,N) denotes the k-th (ascending) order

statistic within a sample (x(1), · · · , x(N)).

Let S = (∅ ∪ {r, r + ∆̄, r + 2∆̄, · · · , r + K∆̄})N̄ be the set of bids. Let U = [u, u]N̄ be the

set of valuations and mθ = FN
θ be the (N -fold) product measure on U , which represents the joint

distribution of private valuations. The prediction of the model is then given by

G(u) =
{
s ∈ S : s(k) ≤ u(k), u(N−1,N) ≤ s(N,N) + ∆̄, k = 1, · · · , N

}
. (5)

2.1 Set of Permitted Distributions and Robustness

To develop tests for incomplete models, we start by defining the family of probability distributions

compatible with the model structure. For each θ ∈ Θ, define

Pθ ≡
{
P ∈ ∆(S) : P =

∫

U

Pudmθ(u), for some Pu ∈ ∆(G(u|θ))
}
, (6)

where Pu is a conditional law of s (supported on G(u|θ)), which represents the unknown selection

mechanism. This set collects probability distributions P , for which one can find a suitable selec-

tion mechanism and make it consistent with a given parameter value θ and the model structure.

Economic theory rarely provides any guidance on selection. The researcher therefore views any

distribution in Pθ as consistent with θ.

Within this model, consider testing parameter value θ0 against another value θ1 on the basis

of observed outcome s ∈ S. This is equivalent to testing the null hypothesis, P ∈ Pθ0 , against the

alternative hypothesis, P ∈ Pθ1 . Note that Pθ0 and Pθ1 may contain multiple (typically infinitely

many) elements because the selection is left unspecified. Therefore, even for testing a single value

of θ against another value, the hypotheses are composite in terms of the permitted distributions.12

Given this challenge, we pursue a robust approach to inference. That is, we construct tests that (i)

control the size uniformly across distributions permitted under the null and (ii) maximize certain

measures of power under the alternative.

3 Robust Tests for Incomplete Models

We provide the main theoretical results below. For this, we start with preliminaries including an

introduction of the key technical tools and the important extension of the Neyman–Pearson lemma

presented by Huber and Strassen (1973). We then discuss the computational aspects of our LR

tests, novel results on minimax tests, and LFPs in repeated experiments as well as a local asymptotic

power analysis, which builds on our main theorem (Theorem 3.1).

12The composite nature of the hypotheses arises because the unknown selection is a nuisance parameter. It is
possible to allow some components of structural parameter θ to be additional nuisance parameters. We analyze this
extension in Section 5.1.
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3.1 Preliminaries

Belief Functions

For any P ⊆ ∆(S), define the upper and lower probabilities of P pointwise by ν∗(A) ≡ supP∈P P (A)

and ν(A) ≡ infP∈P P (A), A ⊂ S, respectively. These functions are conjugate to each other in the

sense that ν∗(A) = 1−ν(Ac) for any A ⊂ S. Under mild restrictions on P , they define set functions

called capacities.13

For each θ ∈ Θ and A ⊂ S, define νθ and ν∗θ as the lower and upper probabilities of Pθ defined

in (6):

νθ(A) ≡ inf
P∈Pθ

P (A), and ν∗θ (A) ≡ sup
P∈Pθ

P (A). (7)

The key factor for our analysis is that the lower probability νθ of Pθ is a belief function (or infinitely

monotone capacity).14 From Choquet’s theorem (e.g., Choquet, 1954; Philippe, Debs, and Jaffray,

1999; Molchanov, 2006), it is related to the probability distribution of random set G(u|θ) as follows:

νθ(A) = mθ(G(u|θ) ⊂ A), for any A ⊂ S. (8)

This representation allows us to obtain νθ without explicitly solving the minimization (or maximiza-

tion) in (7) by computing the right-hand side of (8) directly. Another key property of the belief

function is that P ∈ Pθ is equivalent to the following statement:

νθ(A) ≤ P (A), A ⊂ S. (9)

Galichon and Henry (2011) used the restrictions above to characterize the smallest possible (or

“sharp”) identification region of the parameters.15 Following the literature, we call these the sharp

identifying restrictions (see also Beresteanu, Molchanov, and Molinari, 2011; Chesher and Rosen,

2017).16

Theory of Huber and Strassen (1973)

Our starting point is an analog of the Neyman–Pearson framework, which builds upon HS. For

θ0, θ1 ∈ Θ such that Pθ0 and Pθ1 are disjoint, consider testing a simple null hypothesis, H0 : θ = θ0,

13Appendix A provides the details. Some authors distinguish a capacity from its conjugate (co-capacity). For
simplicity, we call both of these “capacities” throughout.

14The infinite monotonicity of νθ follows from Philippe, Debs, and Jaffray (1999) (Theorem 3). The foundations
of belief functions are given by Dempster (1967) and Shafer (1982). See Gul and Pesendorfer (2014) and Epstein
and Seo (2015) for the axiomatic foundations of the use of belief functions in incomplete models.

15Galichon and Henry (2011) used the conjugate of νθ, which yields equivalent identifying restrictions.
16While the restrictions play a role in constructing robust tests, the sharp identified set does not play a role as the

latter is an object of interest when the sampling processes reveals the unique data generating process in the limit,
which is not guaranteed in our setting. See Epstein, Kaido, and Seo (2016) for a discussion.
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against a simple alternative hypothesis, H1 : θ = θ1. In complete models, in which G is singleton-

valued, a well-defined reduced form induces a unique likelihood function (Tamer, 2003). In such

settings, an optimal test is an LR test, as is well known from the Neyman–Pearson lemma. In

incomplete models, however, the model generally admits a (non-singleton) set Pθ of likelihoods,

which prevents us from directly applying the Neyman–Pearson lemma.

In this setting, it is useful to consider minimax tests (see Lehmann and Romano, 2006, Ch. 8

for the general principles). Let φ : S 7→ [0, 1] denote a (possibly randomized) test. For each P on

(S,ΣS), the rejection probability of φ is

EP [φ(s)] =

∫
φ(s)dP. (10)

Let πθ1(φ) ≡ infP1∈Pθ1 EP [φ(s)] be the lower power of φ under θ1. This is the power value certain to

be obtained regardless of the unknown selection mechanism. We then call test φ a level-α minimax

test if it satisfies the following conditions:

sup
P∈Pθ0

EP [φ(s)] ≤ α , (11)

and

πθ1(φ) ≥ πθ1(φ̃), ∀φ̃ satisfying (11). (12)

The condition in (11) imposes a uniform size control requirement. In (12), tests are ranked in terms

of their lower power. This reflects the researcher’s preference for tests that exhibit robust power

performance across selections.

A belief function (and its conjugate) is a special case of two-monotone (and two-alternating)

capacities whose properties have proven powerful for conducting robust inference (Huber, 1981).17

For a class of models whose lower probabilities are two-monotone, HS showed that the rejection

region of a minimax test takes the form {s : Λ(s) > t} for a measurable function, Λ : S → R, which

they called the Radon–Nikodym derivative of ν∗θ1 with respect to ν∗θ0 . Further, they showed that

there exists an LFP of distributions (Q0, Q1) ∈ Pθ0 × Pθ1 such that for all t ∈ R+,

Q0(Λ > t) = ν∗θ0(Λ > t), (14)

and

Q1(Λ > t) = νθ1(Λ > t), (15)

17Capacity ν is said to be monotone of order k or, for short, k-monotone if for any Ai ⊂ S, i = 1 · · · , k,

ν
(
∪ki=1 Ai

)
≥

∑

I⊆{1,··· ,k},I 6=∅

(−1)|I|+1ν
(
∩i∈I Ai

)
. (13)

Conjugate ν∗(A) = 1− ν(Ac) is then called a k-alternating capacity.
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where Λ can be taken to be a version of the Radon–Nikodym derivative:

dQ1

dQ0

=
{q1

q0

: qj ∈
dQj

dυ
, qj ≥ 0, j = 0, 1, q0 + q1 > 0

}
, (16)

where υ is a measure that dominates Qj, j = 0, 1. Below, we take υ to be the counting measure.

Heuristically, this means that Q0 is the probability distribution consistent with the null param-

eter value, under which the size of the test is maximal. Similarly, Q1 is the distribution consistent

with the alternative parameter value, which is the least favorable for power maximization. The fol-

lowing extension of the classic Neyman–Pearson lemma (tailored to our setting) then follows from

HS.

Lemma 3.1. Let Pθ0 and Pθ1 be defined as in (6) with θ = θ0 and θ = θ1, respectively. Then, there

is a level-α minimax test φ: S → [0, 1] such that

φ(s) =





1 if Λ(s) > C

γ if Λ(s) = C

0 if Λ(s) < C,

(17)

where Λ ∈ dQ1/dQ0 is a version of the Radon–Nikodym derivative of the LFP (Q0, Q1) ∈ Pθ0×Pθ1,

and (C, γ) solves EQ0 [φ(s)] = α.

Lemma 3.1 characterizes a level-α minimax test as an LR test in which the ratio is formed by

the LFP. Recall that Q1 is the least favorable for maximizing the test’s power, while Q0 is the least

favorable for controlling the size. Heuristically, a large value of their ratio can then be taken as

evidence against the null hypothesis. Lemma 3.1 states that it is indeed optimal in the minimax

sense to reject H0 when this ratio is sufficiently high.18

Lemma 3.1 is an existence and characterization result useful for obtaining the more general

results below. To implement LR tests in practice, one needs to compute the LFPs (typically in a

single experiment). We discuss the computational aspects in Section 3.2.

Testability of Hypotheses

Before proceeding further, we comment on the testability of the hypotheses. The theory of HS

requires that Pθ0 and Pθ1 are disjoint. Otherwise, any test is vacuous from the minimax viewpoint

because probability distribution P ∈ Pθ0∩Pθ1 is consistent with both hypotheses. If this is the case,

we say θ1 is not robustly testable relative to θ0 because the lower power of any level-α test cannot

exceed α. This issue does not arise in complete models as long as the likelihood function satisfies

f(s; θ0) 6= f(s; θ1), a.s. for any θ0 6= θ1. One should therefore expect non-trivial lower power only if

18In addition, the binary experiment (S,ΣS , P ∈ {Q0, Q1}) in which one tests Q0 against Q1 is the hardest
(or least informative) in terms of Bayes risk among all binary experiments such that (S,ΣS , P ∈ {P0, P1}) with
Pj ∈ Pθj , j = 0, 1 (Bednarski, 1982).
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an alternative hypothesis induces set Pθ1 that does not intersect with Pθ0 . For this, there needs to

be an event Ā ⊂ S such that ν∗θ0(Ā) < νθ1(Ā) (or ν∗θ1(Ā) < νθ0(Ā)).19

The lack of robust testability is also related to the notion of observational equivalence (see

Chesher and Rosen, 2017, and references therein). Let s follow distribution P and suppose P is

known. Consider parameter values θ, θ′ ∈ Θ such that θ 6= θ′, P ∈ Pθ, and P ∈ Pθ′ . In other

words, the true distribution can be justified by structure θ augmented with some selection or by

another structure θ′ (again augmented with some selection). When this holds, θ and θ′ are said

to be observationally equivalent with respect to P . In incomplete models, P is not in general

identifiable, as the sampling process does not necessarily reveal it even asymptotically (Maccheroni

and Marinacci, 2005; Epstein, Kaido, and Seo, 2016). Following Chesher and Rosen (2017), we

say that θ and θ′ are potentially observationally equivalent if two structures are observationally

equivalent for some P . Clearly, any pair of potentially observationally equivalent parameter values

are not robustly testable, as Pθ and Pθ′ share a distribution in common. This feature of the model

raises a challenge for analyzing the local power of the tests because some local alternatives may not

be robustly testable. Evaluating the power of the tests under such alternatives does not lead to a

meaningful comparison. We therefore introduce a suitably modified notion of local alternatives if

such an issue arises (see Section 3.4).

3.2 Computing LFPs

A key step toward implementing our tests is the computation of the LFPs, in which the sharp

identifying restrictions play a role. Let H : [0, 1]→ R be a twice-continuously differentiable convex

function. Our proposal is to find the LFP through the following characterization:

(Q0, Q1) = arg min
(P0,P1)∈∆(S)2

∫
H
( dP0

d(P0 + P1)

)
d(P0 + P1) (18)

s.t. νθ0(A) ≤ P0(A), A ⊂ S

νθ1(A) ≤ P1(A), A ⊂ S,

where the constraints on (P0, P1) are the sharp identifying restrictions.20 The number of restrictions

can be reduced further by restricting the class of events to the core determining class (see Galichon

and Henry, 2011; Luo and Wang, 2017a). This is a convex program with a convex objective function

and linear constraints.21

19In Example 1, Ā = {(1, 1)} (or Ā = {(1, 0), (0, 1)}) constitutes such an event for testing H0 : θ = 0 against
H1 : θ = θ1 with θ1 < 0 when u is continuously distributed over R2.

20An alternative approach would be to use the sharp identifying restrictions of Beresteanu, Molchanov, and Molinari
(2011), which also yield a finite number of linear restrictions. While we do not pursue that here, the insights presented
in this paper may be useful for constructing optimal tests in models with endogeneity. Such models are studied by
Chesher and Rosen (2017), who obtained sharp identifying restrictions using generalized instrumental variables.

21The convexity of the objective function follows from the convexity of the perspective g(x, t) = tH(x/t) on its
domain (Boyd and Vandenberghe, 2004, Sec. 3.2.6).

13



Our proposal builds on Theorem 6.1 in HS, which characterizes the LFP as a solution to a more

general and abstract optimization problem in which (P0, P1) is constrained to Pθ0 ×Pθ1 . However,

because of the presence of an unknown selection in the definition of Pθ (see (6)), directly imposing

such constraints does not lead to a tractable program. Restating the constraints using the sharp

identifying restrictions, we may reduce the problem to a convex one with linear constraints, which

can then be solved using efficient algorithms (e.g., Boyd and Vandenberghe, 2004). Computing νθ0

and νθ1 in the constraints is often straightforward (see Example 1 and the supplementary material

of Epstein, Kaido, and Seo (2016)).

Emphasizing the role of the sharp identifying restrictions is worthwhile. Instead of using them

to characterize the set of identifiable parameter values, we use them to obtain the LFP. To the best

of our knowledge, this way of using the sharp identifying restrictions is new. Further, imposing

only a subset of them in (18) does not generally yield an LFP. In this sense, these restrictions are

crucial for robust and optimal inference.

Remark 3.1. Since S is finite, the program in (18) can be simplified further. Let p0 denote the

probability mass function of P0 ∈ Pθ0 and p1 be defined similarly. For simplicity, suppose p0(s) > 0

for all s ∈ S and let H(x) = − lnx. Then, one may solve

(q0, q1) = arg min
(p0,p1)∈∆(S)2

∑

s∈S
ln
(p0(s) + p1(s)

p0(s)

)
(p0(s) + p1(s)) (19)

s.t. νθ0(A) ≤
∑

s∈A
p0(s), A ⊂ S

νθ1(A) ≤
∑

s∈A
p1(s), A ⊂ S.

In this finite-dimensional convex program, one minimizes Kullback–Leibler divergence DKL(p0 +

p1‖p0) subject to linear constraints on (p0, p1). One may then use efficient numerical solvers (e.g.,

CVX) to obtain the LFP.

We illustrate the computation of an LFP and minimax test using Example 1.

Example 1 (Binary response game (continued)). Let 0 < α < 1/2. Consider testing H0 : θ = 0

against H1 : θ = θ1, where θ
(k)
1 < 0, k = 1, 2. Suppose that u follows the standard bivariate normal

distribution N(0, I2).

It is straightforward to calculate νθ(A). As discussed earlier, a key feature of the belief function

is that it is related to a probability distribution of a random set in (8). This allows us to compute

νθ(A) analytically. For example, let A = {(1, 0), (1, 1)}. From (2) and (8), the lower probability of

14



A is then

νθ
(
{(1, 0), (1, 1)}

)
= mθ

(
G(u|θ) ⊆ {(1, 0), (1, 1)}

)

= mθ

(
G(u|θ) = {(1, 0)}

)
+mθ

(
G(u|θ) = {(1, 1)}

)
+mθ

(
G(u|θ) = {(1, 0), (1, 1)}

)

=
1

4
+

Φ(θ(1))

2
, (20)

where Φ is the CDF of a standard normal random variable (see Table D.1 in Appendix D for νθ(A)

for other events). In more complex models, simulation-based methods can be used (Galichon and

Henry, 2011; Ciliberto and Tamer, 2009; Epstein, Kaido, and Seo, 2016).

Suppose that Φ(θ
(k)
1 )(1 − Φ(θ

(−k)
1 )) ≤ 1

4
for k = 1, 2.22 Solving (19), we obtain the following

probability mass functions of the LFP (Q0, Q1):

(q0(0, 0), q0(1, 1), q0(1, 0), q0(0, 1)) =
(1

4
,
1

4
,
1

4
,
1

4

)
(21)

(q1(0, 0), q1(1, 1), q1(1, 0), q1(0, 1)) =
(1

4
,Φ(θ

(1)
1 )Φ(θ

(2)
1 ),

3− 4Φ(θ
(1)
1 )Φ(θ

(2)
1 )

8
,
3− 4Φ(θ

(1)
1 )Φ(θ

(2)
1 )

8

)
.

(22)

The LR statistic Λ is then given by

Λ(s) =





1 s = (0, 0)

4Φ(θ(1))Φ(θ(2)) s = (1, 1)

3−4Φ(θ
(1)
1 )Φ(θ

(2)
1 )

2
s = (1, 0)

3−4Φ(θ
(1)
1 )Φ(θ

(2)
1 )

2
s = (0, 1).

(23)

An LR test based on Λ is level-α when C =
3−4Φ(θ

(1)
1 )Φ(θ

(2)
1 )

2
and γ = 2α. Hence, the test can be

simplified as

φ(s) =





2α s = (1, 0) or (0, 1)

0 otherwise.
(24)

This test rejects the null hypothesis with probability γ = 2α when either s = (1, 0) or (0, 1) is

observed. Otherwise, the null hypothesis is retained.

The intuition behind this test is as follows. When H0 is true (θ(j) = 0 for both players), the

model is indeed complete. The four possible outcomes occur with equal probabilities because of

u ∼ N(0, I2) (Figure 1, left). When H1 is true, there exists a region of incompleteness: the set

of values of u for which multiple equilibria {(1, 0), (0, 1)} are predicted. While the model is silent

about the exact allocation of the probabilities across equilibria, it predicts a higher probability of

22The form of the minimax test depends on the relative magnitude of θ
(1)
1 and θ

(2)
1 . This assumption is made for

analyzing one of the subcases. See Section 3.4 for the full description of the minimax test in Example 1.
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s ∈ {(1, 0), (0, 1)} under H1 than H0 (Figure 1, right). The robust LR test then interprets s = (1, 0)

or s = (0, 1) as evidence of the presence of strategic interaction and rejects the null hypothesis with

a positive probability. This mechanism does not rely on any knowledge of the selection.

Remark 3.2. Consider a special case of the example above in which the alternative hypothesis is

symmetric: θ
(1)
1 = θ

(2)
1 = θ. The minimax test in (24) does not depend on the value of θ under the

alternative. Hence, it can be interpreted as a “uniformly most powerful” test in terms of the lower

power for testing H0 : θ = 0 against H1 : θ < 0.23

Figure 1: Level sets of G under H0 (left) and H1 (right)

u1

u2

θ = (0, 0)

{(1, 1)}

{(1, 0)}

{(0, 1)}

{(0, 0)}

u2

u1

{(1, 1)}

{(1, 0)}

{(0, 1)}

{(0, 0)}

{(0, 1),
(1, 0)}

(−θ(1),−θ(2))

Note: The area in red represents the values of u under which {(1, 1)} is predicted. The area in green
represents the values of u under which {(0, 1)}, {(1, 0)}, or their union is predicted.

3.3 Minimax Tests in Repeated Experiments

The sequence of outcomes sn = (s1, s2, · · · , sn) is commonly generated from repeated experiments.

In this section, we present a set of theoretical results that characterize a minimax test in such a

setting and provide an asymptotic Gaussian approximation to its (upper) rejection probability.

For any set B, let Bn denote the n-fold Cartesian product of B. For each n ∈ N, let Sn and Un be

the sets of outcome sequences sn = (s1, s2, · · · , sn) and latent variable sequences un = (u1, · · · , un),

respectively. Below, we use the abbreviation mn to denote the family {mn
θ}θ∈Θ of un’s joint laws

permitted by the model. We then make the following assumption on each member of this family.

Assumption 3.1. For each θ ∈ Θ, mn
θ ∈ ∆(Un) is a product measure.

This assumption requires that ui’s are distributed independently across experiments. A leading

case is that (u1, . . . , un) are i.i.d. This can also accommodate heteroskedasticity and other types of

heterogeneity across cross-sectional units or clusters of them (e.g., group-specific effects).

23If θ
(1)
1 = θ

(2)
1 is not imposed, the form of the minimax test depends on the relative magnitude of the interaction

effects. See Table 1.
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Without further assumptions, sn takes values in the Cartesian product of the sets of permissible

outcome values:

Gn(un|θ) =
n∏

i=1

G(ui|θ), (25)

where G(·|θ) is given as in (2).24 This set collects outcome sequences that are compatible with the

model and θ. We represent the repeated experiments by the tuple (Sn, Un,Θ, Gn;mn). Although

un is assumed to be independent, the outcome sequence sn can be dependent because the model

does not restrict the selection mechanism. Similarly, even if one makes the stronger assumption

that the ui’s are i.i.d., the distribution of outcome si may be heterogeneous because of the potential

heterogeneity of selection across experiments. This feature arises because the joint selection mech-

anism (across all experiments) is left unspecified and the joint distribution of the outcome sequence

depends on this incidental parameter.

For each θ ∈ Θ and n ∈ N, the set of distributions compatible with the model is

Pnθ =
{
P ∈ ∆(Sn) : P =

∫
Pudm

n
θ , for some Pu ∈ ∆(Gn(un|θ))

}
. (26)

This set collects all the distributions of sn consistent with θ. Pu is unrestricted in the sense that

the selection may be heterogeneous and dependent across experiments. Hence, Pnθ contains a broad

range of distributions that can exhibit arbitrary dependence and heterogeneity. In particular, Pnθ
allows measures under which the distributions of sample moments are not well approximated by

classical limit theorems—even in large samples (see Epstein, Kaido, and Seo (2016)).

Finding the LFP in such a rich set of distributions may be challenging. However, under As-

sumption 3.1 and with the correspondence in (25), the model has a tractable “product” structure,

which significantly simplifies the characterization of the LFPs.

Let νn,∗θ and νnθ denote the upper and lower probabilities of Pnθ . For each i ∈ {1, . . . , n} and

θ ∈ Θ, let

Pθ,i ≡
{
P ∈ ∆(S) : P =

∫

U

Pudmθ,i(u), for some Pu ∈ ∆(G(u|θ))
}
, (27)

where mθ,i is the i-th marginal distribution of mn
θ . The following theorem shows that the minimax

test in repeated experiments is an LR test and that the LFPs are product measures.

Theorem 3.1. Suppose Assumption 3.1 holds. Then, (i) an LFP (Qn
0 , Q

n
1 ) ∈ Pnθ0 ×Pnθ1 exists such

24It is possible to allow the functional form of G(ui|θ) to vary across i as well. For notational simplicity, we do
not explicitly consider this extension here. We introduce the heterogeneity of G due to covariates in Section 5.2.
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that for all t ∈ R+,

ν∗,nθ0 (Λn > t) = Qn
0 (Λn > t) (28)

νnθ1(Λn > t) = Qn
1 (Λn > t), (29)

where Λn is a version of the Radon–Nikodym derivative dQn
1/dQ

n
0 . The LFP consists of the product

measures:

Qn
0 =

n⊗

i=1

Q0,i, and Qn
1 =

n⊗

i=1

Q1,i, (30)

where, for each i ∈ N, (Q0,i, Q1,i) ∈ Pθ0,i × Pθ1,i is the LFP in the i-th experiment:

(ii) A minimax test φn: Sn → [0, 1] can be constructed as

φn(sn) =





1 if Λn(sn) > Cn

γn if Λn(sn) = Cn

0 if Λn(sn) < Cn,

with Λn(sn) =
n∏

i=1

Λi, (31)

where Λi ∈ dQ1,i/dQ0i for all i, and Cn and γn are chosen so that EQn0 [φn(sn)] = α.

The LFP consists of the product measures.25 Heuristically, this means that either for controlling

size or maximizing power, the least favorable distribution in Pnθ0 (or Pnθ1) is a law that multiplies up

the least favorable distributions in the individual experiments. When the ui’s are i.i.d., this char-

acterization has a particularly useful implication for the implementation. To construct a minimax

test, it suffices to find the LFP (Q0, Q1) ∈ Pθ0 × Pθ1 in a single experiment (S, U,Θ, G,m). One

may then obtain the LR statistic by taking the product of their ratios across experiments. We state

this result as a corollary.

Corollary 3.1. Suppose (u1, . . . , un) are identically and independently distributed. Then, a mini-

max test φn: Sn → [0, 1] can be constructed as

φn(sn) =





1 if Λn(sn) > Cn

γn if Λn(sn) = Cn

0 if Λn(sn) < Cn,

with Λn(sn) =
n∏

i=1

Λi, (32)

where Λi ∈ dQ1/dQ0, (Q0, Q1) ∈ Pθ0×Pθ1 is the LFP in (S, U,Θ, G,m), and Cn and γn are chosen

so that EQn0 [φn(sn)] = α.

The LFP consisting of the product measures in Theorem 3.1 provides an important link through

which we may connect the incomplete model to standard frameworks. Below, we demonstrate this

by studying the large-sample approximations and asymptotic local power of the tests. While both

25This result does not follow from Corollary 4.2 of HS, who assumed that a sample is independently distributed
(p. 258).
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issues can be analyzed without assuming identically distributed latent variables, we maintain this

assumption to simplify the notation and our analysis.26

Gaussian Approximation

One of the consequences of the product structure is that the upper rejection probability of φn admits

a Gaussian approximation in large samples. For ease of exposition, we assume that the ui’s are

i.i.d., which in turn implies that Qn
0 is an i.i.d. law from Corollary 3.1. Hence, properly normalized

sample averages follow classical limit theorems under this law. We use this insight to obtain an

asymptotically valid critical value. Since Qn
0 is the least favorable, the asymptotic size is controlled

under any distribution under the null hypothesis.

Let zα be the 1−α quantile of the standard normal distribution and let Λ ∈ dQ1/dQ0. For each

n, let

C∗n ≡ exp
(
nµQ0 +

√
nzασQ0

)
, (33)

where µQ0 ≡ EQ0 [ln Λ(s)], and σ2
Q0
≡ VarQ0(ln Λ(s)). Observe that µQ0 and σQ0 depend only

on the LFP but not on the unknown DGP. Once the LFP is found, computing µQ0 and σQ0 is

straightforward because Q0 is a discrete distribution and Λ is known. The critical value in (33) is

constructed in such a way that the following convergence holds:

sup
Pn∈Pnθ0

P n
(
Λn(sn) > C∗n

)
= Qn

0

(
Λn(sn) > C∗n

)
→ Pr

(
Z > zα

)
= α, (34)

where Z is a standard normal random variable. This critical value is computed without any resam-

pling or simulation and therefore can be done so easily. Despite its simplicity, it has the advantage

of being asymptotically valid even if the true DGP is highly heterogeneous and dependent.

Let φ∗n be a test that rejects the null hypothesis if and only if Λn > C∗n. The following proposition

then follows.

Proposition 3.1. Suppose Assumption 3.1 holds and that 0 ≤ σ2
Q0

< ∞. Then, the test controls

the asymptotic size:

lim sup
n→∞

sup
P∈Pnθ0

EP [φ∗n(sn)] ≤ α. (35)

Furthermore, (35) holds with equality when σ2
Q0
> 0.

26If ui is not identically distributed, one should invoke a central limit theorem for independent and not identically
distributed (i.n.i.d.) sequences under Qn0 (e.g., White, 2001) to obtian a Gaussian approximation. Similarly, for local
approximations of experiments with an i.n.i.d. sequence, Rieder (1994) (Section 2.3) provides a general framework,
which can be applied to the sequence {Qnθn,ξ,h} defined below.

19



3.4 Asymptotic Local Power

Building on Theorem 3.1, we analyze the asymptotic local power of the tests. In what follows,

suppose that Θ is a subset of Euclidean space Rd and let ϕ : Θ→ R be a continuously differentiable

function with gradient ϕ̇θ : Rd → R. Consider the following hypotheses:

H0 : ϕ(θ) ≤ 0, v.s. H1 : ϕ(θ) > 0. (36)

Various hypotheses of empirical interest can be formulated in this way. Our goal here is to char-

acterize the upper envelope of the lower power of the tests for (36) in an asymptotic framework.

Theorem 3.1 serves as a building block for this purpose, as it allows us to embed our problem into

a more standard one. In this section, we assume that ui, i = 1, . . . , n are i.i.d. throughout.

We consider localized experiments. Let θ0 ∈ Θ be a parameter such that ϕ(θ0) = 0 and let

{θn,ξ,h}, (ξ, h) ∈ Rd × Rd be a sequence of alternative parameter values, which we specify below.

We call ξ a fixed shift and h a local parameter. The sequence of parameters induces a sequence of

belief functions νnθn,ξ,h . Suppose that for each n and (ξ, h), the conditions of Theorem 3.1 hold for

νnθ0 and νnθn,ξ,h . Then, there exists an LFP (Qn
0 , Q

n
1 ) ∈ Pnθ0 × Pnθn,ξ,h . If there exists model θ 7→ Qθ

indexed by θ defined on a neighborhood of θ0 such that Qn
0 = Qn

θ0
and Qn

1 = Qn
θn,ξ,h

for all n, one

may consider the following sequence of experiments:

En =
(
Sn,ΣSn ,Q

n
θn,ξ,h

: h ∈ Rd
)
. (37)

In this hypothetical environment, observations are generated using a sequence of probability laws

that are the least favorable for testing θ0 against θn,ξ,h. The fact that the experiments are char-

acterized by probabilities instead of capacities allows us to employ standard asymptotic tools. In

particular, we employ the limits of experiments argument in the style of Le Cam (1972, 1986).

Heuristically, if one wants to obtain an asymptotic upper envelope of πθn,ξ,h , one may consider the

least favorable sequence of DGPs {Qn
θn,ξ,h
} for power maximization. It turns out that the lower

power of any test can be matched by a power function of a limit experiment, which is often more

straightforward to analyze. The limit experiment can then be used to derive an asymptotic power

envelope.

While the argument above suggests that we may use the standard limits of experiments frame-

work, a few non-standard features arise. First, the underlying model may not satisfy the differentia-

bility in quadratic mean condition, which is sufficient for the LAN of the experiments. Instead, the

model is typically directionally differentiable (in the L2 sense) and satisfies the LAN property sep-

arately on a finite number of convex cones that partition the local parameter space, which requires

us to consider sub-experiments of (37). Second, some alternatives are not robustly testable. Hence,

to conduct a meaningful power analysis, one needs to construct local alternatives with care.27

27We modify the definition of the local alternative so that the sequences of LFPs {Qnθ0} and {Qnθn,ξ,h} are contiguous.
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3.4.1 Asymptotic Power against Robustly Testable Local Alternatives

Recall that in Example 1, setting the strategic interaction effects to θ1 < 0 made Pθ0 and Pθ1 disjoint

no matter how small the deviation from the null θ0 = 0 was. Below, we start with a relatively simple

setting in which H0 : θ = θ0 and H1 : θ = θ0 + h/
√
n induce sets of distributions that are disjoint

for any n. In this setting, it suffices to index local alternatives using h only, and hence we use θn,h

instead of θn,ξ,h.
28

We define the notion of differentiability below. For this, let L2
P denote the set of square integrable

functions on S with respect to measure P . For each f, g ∈ L2
P , we then let 〈f, g〉L2

P
and ‖f‖L2

P
denote

the L2 inner product and L2 norm, respectively. Consider a parametric family of distributions

{Pθ, θ ∈ V }, where V is an open subset of Θ.

Definition 3.1. Let θ 7→ Pθ be a model such that Pθ is absolutely continuous with respect to a

σ-finite measure µ on S. The model is said to be L2 differentiable at θ ∈ V tangentially to set

T ⊂ Rd if there exists a square integrable (w.r.t. Pθ) function ˙̀
θ : S → Rd such that, for every

h ∈ T ,

∥∥∥p1/2
θ+τh − p

1/2
θ (1 +

1

2
τh′ ˙̀θ)

∥∥∥
L2
µ

= o(τ), (38)

as τ ↓ 0, where pθ = dPθ/dµ for all θ.

This is the L2 differentiability of the square root density commonly used in the literature. If

one could embed the LFPs into an L2 differentiable model θ 7→ Qθ with T being a suitable limit

of the local parameter space {h ∈ √n(Θ − θ0) : ϕ(θ0 + h/
√
n) > 0}, asymptotic local power can

be analyzed in a standard way. However, as we show below, the model is often only directionally

differentiable. That is, the form of the derivative, ˙̀
θ, varies across the subsets of T (see the

discussions below). The following high-level assumption states this formally.29 For this, let
Pn
 

denote weak convergence under the sequence {P n} of distributions. Let C(0, ε) denote an open

cube centered on the origin with edges of length 2ε. A set Γ ⊂ Rd is said to be locally equal to set

Υ ⊂ Rd if Γ ∩ C(0, ε) = Υ ∩ C(0, ε) for some ε > 0 (Andrews, 1999).

Assumption 3.2 (Local parameter cones and L2 directional differentiability). (i) Set {ξ ∈ Θ−θ0 :

ϕ(θ0 +ξ) > 0} is locally equal to convex cone T (θ0); (ii) There exists set J and a collection of convex

cones (containing 0) {Tj(θ0), j ∈ J} such that Tj(θ0)∩Tj′(θ0) = {0},∀j 6= j′ and
⋃
j Tj(θ0) = T (θ0);

(iii) For each j ∈ J, there exists model θ 7→ Qj,θ defined on a neighborhood of θ0 such that an LFP

(Q0,j,τh, Q1,j,τh) ∈ Pθ0 × Pθ0+τh satisfies

Q0,j,τh = Qj,θ0 , and Q1,j,τh = Qj,θ0+τh, (39)

28We elaborate on the role of ξ in the next section.
29For the results that follow, it suffices that a model satisfies Assumption 3.2 for an LFP. The LFPs are unique up

to the Radon–Nikodym derivative (HS, 1973), and thus they all lead to the same quadratic expansion of the log-LR
process. While one could alternatively take (40) as a high-level condition, we do not do so because Assumption 3.2
is often easier to check. A similar comment applies to Assumption 3.3.
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for all τ ∈ (0, τ̄ ] for some τ̄ > 0, and θ 7→ Qj,θ is L2 differentiable at θ0 tangentially to Tj(θ0).

The assumption above imposes a regularity condition on the LFP for testing H0 : θ = θ0 against

H1 : θ = θ0+τh for τ > 0. While θ0 is fixed, both the least favorable distributions (under H0 and H1)

may depend on deviation τh. Hence, we index the LFP using τh. The restrictions in (39) require

that the least favorable distribution Q0,j,τh under H0 remains the same for all sufficiently small τ ,

and this is given by point Qj,θ0 in the L2 differentiable model θ 7→ Qj,θ. As we demonstrate below

through examples, Assumption 3.2 (and similarly Assumption 3.3) can be checked by analyzing

the LFP. In all our examples, the cardinality of J is finite. Appendix E also provides the primitive

conditions that ensure the key condition (L2 differentiability) (see Assumption E.1, Proposition E.1,

and Corollary E.1).

Below, we let ˙̀
j,θ0 denote the L2 derivative defined for h ∈ Tj(θ0). Under Assumption 3.2, one

may expand the log-LR for every h ∈ Tj(θ0) as follows:

ln
dQn

j,θ0+h/
√
n

dQn
j,θ0

= h′∆j,n −
1

2
h′Cjh+ oQnj,θ0

(1), (40)

where ∆j,n

Qnj,θ0 ∆j ∼ N(0, Cj) and Cj = EQj,θ0
[ ˙̀
j,θ0

˙̀′
j,θ0

]. In what follows, we call ∆j,n the cen-

tral sequence (or normalized score) and Cj the information matrix. Consider the following sub-

experiments:

Ej,n ≡
(
Sn,ΣSn ,Q

n
j,θ0+h/

√
n : h ∈ Tj(θ0)

)
, j ∈ J. (41)

When Assumption 3.2 holds, for each j, the limit of the experiments (as n→∞) is

Ej =
(
Rd,ΣRd , N(Cjh,Cj) : h ∈ Tj(θ0)

)
, (42)

which is also equivalent to (Rd,ΣRd , N(h,C−1
j ) : h ∈ Tj(θ0)) if Cj is non-singular (see Van der Vaart,

2000, Ch. 9). In other words, the experiment is equivalent to the one in which the researcher observes

a single normal random vector whose mean and variance are h ∈ Tj(θ0) and C−1
j , respectively. The

asymptotic local (lower) power of a test is then bounded from above by the corresponding power in

the limit experiment. The power envelope can be derived by considering the highest possible power

for testing H0 : ϕ̇θ0h ≤ 0 against H1 : ϕ̇θ0h > 0 at level-α.

As is well known, these limit experiments are Gaussian shift experiments defined on suitable

subsets of Rd. If Assumption 3.2 holds with J = {I} and TI,θ0 = Rd, we obtain the LAN (Le Cam,

1986). Assumption 3.2 slightly extends the LAN, and this allows us to consider experiments defined

separately on the subsets (cones) of the local parameter space. This extension is motivated by the

fact that central sequence ∆j,n and information matrix Cj may differ across the local parameter

cones. This is because as h varies (and hence νθn,h varies), the LFP defined through the convex
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program in (18) may change in a non-differentiable (but directionally differentiable) way.30 This

may lead to distinct central sequence and information matrix pairs across the cones. Owing to this

non-standard feature, our results below concern asymptotically optimal statistical decisions when

the underlying model may only be directionally differentiable (in the L2 sense). This complements

the recent developments on statistical inference and decisions in non-standard models in which the

parameters of interest are only directionally differentiable, whereas the underlying model is regular

(Hirano and Porter, 2012; Song, 2014; Fang, 2014; Fang and Santos, 2018; Hong and Li, 2018).

To characterize the power envelope, we define the tangent cone of the score functions and efficient

influence function of ϕ. For each j ∈ J, let

Gj,θ0 ≡ {g ∈ L2
Qj,θ0

(S) : g = h′ ˙̀j,θ0 , h ∈ Tj(θ0)}. (43)

We call the set above the tangent cone of the model. The influence curve %j ∈ L2
Qj,θ0

(S) of ϕ is such

that, for any g ∈ Gj,θ0 ,
∣∣ϕ(θ0 + τh)− ϕ(θ0)− τ〈%j, g〉L2

Qj,θ0

∣∣ = o(τ), (44)

as τ ↓ 0. The efficient influence function (or canonical gradient) %̃j of ϕ is then defined as the

projection of %j on the closure of Gj,θ0 (which is often called the tangent set).

The following theorem characterizes the asymptotic upper bound of the lower power and provides

a test that achieves the bound (for a given cone).

Theorem 3.2. Suppose Assumption 3.2 holds. Let j ∈ J. Suppose that ϕ is such that ϕ(θ0) = 0

and has influence curve %j. Let φn be a level-α test for H0 : ϕ(θ) ≤ 0 against H1 : ϕ(θ) > 0 and

πn,θ(φn) be its lower power under νnθ . Then, for any h ∈ Tj(θ0),

lim sup
n→∞

πn,θ0+h/
√
n(φn) ≤ 1− Φ

(
zα −

〈%j, h′ ˙̀j,θ0〉L2
Qj,θ0

‖%̃j‖L2
Qj,θ0

)
. (45)

Let Tj,n be a statistic such that

Tj,n =
n−1/2

∑n
i=1 %̃j(si)

‖%̃j‖L2
Qj,θ0

+ oQnj,θ0
(1). (46)

Let φ∗j,n be a test that rejects the null hypothesis iff Tj,n ≥ zα. Then, the test is of asymptotically

30See Shapiro (1988), Dempe (1993), and the references therein for the directional differentiability of solutions to
parametric convex programs. Our primitive conditions (see Appendix E.1) for Assumptions 3.2 and 3.3 are based
on Shapiro (1988).
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level-α and, for any h ∈ Tj(θ0),

lim
n→∞

πn,θ0+h/
√
n(φ∗j,n) = 1− Φ

(
zα −

〈%j, h′ ˙̀j,θ0〉L2
Qj,θ0

‖%̃j‖L2
Qj,θ0

)
. (47)

The asymptotic power envelope in (45) coincides with that for the one-sided test ϕ̇θ0h ≤ 0

against ϕ̇θ0h > 0 in the Gaussian shift experiment. The theorem also implies that the test based

on the (rescaled) efficient influence function achieves the power envelope toward alternatives with

h ∈ Tj(θ0).31 Therefore, the key factor is to find the efficient influence function.

We next revisit Example 1.

Example 1 (Binary response game (continued)). Let Θ = {θ ∈ R2 : θ(1) ≤ 0, θ(2) ≤ 0}. Consider

testing the hypothesis as in (36) with ϕ(θ) = p′θ = −θ(1) − θ(2), where p = (−1,−1)′. To localize

the experiment at θ0 = (0, 0)′, we start by describing the LFPs (and minimax tests) for all the

parameter values under consideration. Let Θ1 ≡ {θ ∈ Θ : ϕ(θ) > 0} be the set of parameter values

under the alternative.

Let J = {I, II, III}. Then, define the following parameter sets:

ΘI ≡
{
θ1 ∈ Θ1 : Φ(θ

(1)
1 )(1− Φ(θ

(2)
1 )) ≤ 1

4
,Φ(θ

(2)
1 )(1− Φ(θ

(1)
1 )) ≤ 1

4

}
(48)

ΘII ≡
{
θ1 ∈ Θ1 : Φ(θ

(1)
1 )(1− Φ(θ

(2)
1 )) >

1

4

}
(49)

ΘIII ≡
{
θ1 ∈ Θ1 : Φ(θ

(2)
1 )(1− Φ(θ

(1)
1 )) >

1

4

}
. (50)

Figure 2 (left) shows these sets. In addition to the case in which θ
(1)
1 and θ

(2)
1 are both strictly

negative and comparable in magnitude (as discussed in Section 3.2), we consider two other cases

here. Across all subcases, the density of Q0 is (q0(0, 0), q0(1, 1), q0(1, 0), q0(0, 1)) = (1
4
, 1

4
, 1

4
, 1

4
).

However, Q1 and the minimax test vary (Table 1).32 If θ
(1)
1 is substantially smaller than θ

(2)
1 (i.e.,

θ1 ∈ ΘII), a larger mass moves to the region over which s = (1, 0) is predicted than to the region

over which s = (0, 1) is predicted (recall Figure 1). The minimax test then rejects H0 with a positive

probability (γ = 4α) only when s = (1, 0) is observed. A similar comment applies to the case in

which θ ∈ ΘIII.

Consider a local alternative θn,h = θ0 + h/
√
n such that ϕ(θn,h) > 0. Suppose that θn,h ∈ Θj

for some j ∈ J for all sufficiently large n. Then, the local parameter must belong to one of the

31The power envelope can be expressed using ϕ̇h and Cj as in Theorem 15.4 in Van der Vaart (2000) if Cj is
non-singular and Gj,θ0 is a linear subspace. The description above is slightly more general to handle cases in which
Cj may be singular and Gj,θ0 is a convex cone (Rieder, 2014).

32Proposition D.1 in Appendix D provide these results formally.
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Table 1: Q1 and minimax tests

Q1

Sets q1(0, 0) q1(1, 1) q1(1, 0) q1(0, 1) Minimax test

ΘI
1
4

Φ(θ
(1)
1 )Φ(θ

(2)
1 ) 3

8
− Φ(θ

(1)
1 )Φ(θ

(2)
1 )/2 3

8
− Φ(θ

(1)
1 )Φ(θ

(2)
1 )/2 φ(s) =

{
2α s ∈ {(1, 0), (0, 1)}
0 otherwise

ΘII
1
4

Φ(θ
(1)
1 )Φ(θ

(2)
1 ) 1

4
− Φ(θ

(1)
1 )(Φ(θ

(2)
1 )− 1

2
) 1

2
(1− Φ(θ

(1)
1 )) φ(s) =

{
4α s = (1, 0)

0 otherwise

ΘIII
1
4

Φ(θ
(1)
1 )Φ(θ

(2)
1 ) 1

2
(1− Φ(θ

(2)
1 )) 1

4
− Φ(θ

(2)
1 )(Φ(θ

(1)
1 )− 1

2
) φ(s) =

{
4α s = (0, 1)

0 otherwise

Figure 2: Subcases in Proposition 1 and local parameter cones
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following cones:

TI(θ0) = {h ∈ R2 : h = (h̄, h̄)′, h̄ ∈ (−∞, 0]} (51)

TII(θ0) = {h ∈ R2 : h = (h(1), h(2))′,−∞ < h(2) < h(1) ≤ 0} (52)

TIII(θ0) = {h ∈ R2 : h = (h(1), h(2))′,−∞ < h(1) < h(2) ≤ 0}. (53)

These cones are localized versions of the parameter subsets (ΘI-ΘIII), as shown in Figure 2 (right).

Below, as an example, we consider the case θn,h ∈ ΘII for all sufficiently large n. Since Q1 is as

shown in Table 1, one may embed the LFP into model θ 7→ QII,θ whose density is

(qII,θ(0, 0), qII,θ(1, 1), qII,θ(1, 0), qII,θ(0, 1))

=
(1

4
,Φ(θ(1))Φ(θ(2)),

1

4
− Φ(θ(1))(Φ(θ(2))− 1

2
),

1

2
(1− Φ(θ(1)))

)
. (54)

Then, the L2 derivative of the model for h ∈ TII(θ0) is

˙̀
II,θ0(s) = 1{s = (1, 1)}

(
2√
2π
2√
2π

)
+ 1{s = (1, 0)}

(
0
−2√
2π

)
+ 1{s = (0, 1)}

(
−2√
2π

0

)
. (55)

The log-likelihood function can be expanded as in (40) with ∆II,n = 1√
n

∑n
i=1

˙̀
II,θ0 and the informa-

tion matrix: CII =
( 1

π
1
2π

1
2π

1
π

)
. Therefore, the limit experiment is

EII =
(
R2,ΣR2 , N(h,C−1

II ) : h ∈ TII(θ0)
)
, (56)

in which one observes a single random vector Z ∼ N(h,C−1
II ). From Theorem 3.2, it then suffices

to consider the power for testing H0 : p′h = 0 against p′h > 0 in this simple experiment. With

p = (−1,−1)′, it can be shown that the power envelope is

lim sup
n→∞

πn,θ0+h/
√
n(φn) ≤ 1− Φ

(
zα −

−h(1) − h(2)

√
4π/3

)
. (57)

This bound can be achieved using a test that rejects the null when the following statistic exceeds

zα:

TII,n =
1√
n

n∑

i=1

[
− 4

3

√
3

2
1{si = (1, 1)}+

2

3

√
3

2
(1{si = (1, 0)}+ 1{si = (0, 1)})

]
. (58)

Heuristically, this means that the test rejects H0 when one observes (1, 0) or (0, 1) frequently

relative to (1, 1). In general, the power envelope and optimal test depend on local cone Tj(θ0) and

the functional of interest. Appendix D describes the efficient influence functions for this example.

Remark 3.3. The optimal test above compares the relative frequencies of two events {(1, 1)} and

{(1, 0), (0, 1)}. It therefore only uses the information on the number of entrants (i.e., duopoly
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v.s. monopoly) in each market, which is the feature (or transformation) of the outcome s used

in Bresnahan and Reiss (1990, 1991) and Berry (1992). For testing competing hypotheses on

ϕ(θ) = −θ(1) − θ(2), using such a transformed outcome indeed leads to an optimal test. However,

our theory suggests that the choice of transformation depends, in general, on the functional of

interest (ϕ) and the direction of alternatives (Tj(θ0)). For example, with ϕ(θ) = −θ(1) − 2θ(2) and

h ∈ TII(θ0), the optimal test compares the relative frequencies of {(1, 1)} and {(1, 0)}.

Remark 3.4. Theorem 3.2 applies to each cone Tj(θ0) and hence can be used to obtain a test that

asymptotically achieves the power envelope against the alternatives in Tj(θ0). The optimal test,

however, may differ by cone.33

3.4.2 Asymptotic Power against Shifted Local Alternatives

As discussed earlier, not all alternatives are robustly testable. Consider the following example.

Example 2 (Roy model (continued)). Suppose that the researcher wants to know if the share of

individuals who have higher economic prospects in sector 0 is above a certain percentage. The

parameter of interest is θ(1,0) = mθ((Y0, Y1) = (1, 0)), and the null and alternative hypotheses can

be expressed as H0 : p′θ = θ(1,0) ≤ c and H1 : p′θ > c for some c ∈ [0, 1] with p = (0, 0, 1). Mourifie,

Henry, and Meango (2018) showed that the sharp identifying restrictions are

θ(1,0) ≤ P ({(1, 0)}) (59)

θ(0,1) ≤ P ({(1, 1)}) (60)

θ(0,0) = P ({(0, 0)}) + P ({(0, 1)}). (61)

For simplicity, suppose that θ(0,0) is known to be 1/6. This implies P ({(1, 0)}) +P ({(1, 1)}) = 5/6,

which in turn simplifies the restrictions to

θ(1,0) ≤ P ({(1, 0)}) ≤ 5

6
− θ(0,1) (62)

1

6
= P ({(0, 0)}) + P ({(0, 1)}). (63)

Now, consider testing θ0 against the alternative θ1 = θ0 + ξ, where ξ = (0, ξ(0,1), ξ(1,0))′ with

ξ(1,0) > 0. As shown in Figure 3 (Alt. 1), the interval [θ
(1,0)
0 + ξ(1,0), 5

6
− θ(0,1) − ξ(0,1)] to which

P ({(1, 0)}) belongs under this alternative has a non-empty intersection with the interval under

the null until ξ(1,0) becomes sufficiently large. Indeed, Pθ0+ξ becomes disjoint from Pθ0 only when

ξ(1,0) > 5
6
− θ

(0,1)
0 − θ

(1,0)
0 (Alt. 2).34 This means that against any local alternative of the form

33When a functional satisfies ϕ̇θ0 = c× (−1,−1) for some c > 0 in Example 1, the optimal test is common across
the cones because the projection of the influence function onto cl(Gj,θ0) is common across j. However, this does not
hold with the other functionals.

34Another way to make Pθ0 and Pθ0+ξ disjoint is to shift the interval to the left in Figure 3 by a sufficiently large

amount. For this, one needs 5/6− θ(0,1)0 − ξ(0,1) < θ
(1,0)
0 . However, θ0 + ξ does not satisfy ϕ(θ0 + ξ) > 0 in this case.
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θ0 + h/
√
n, the lower power of any level-α test is eventually dominated (weakly) by α, which does

not lead to useful comparisons.

Figure 3: Bounds on P ({(1, 0)})

0 1

Null:

0 1

Alt.1:

0 1

Alt.2:

[

θ
(1,0)
0

]

5/6− θ(0,1)0

[

θ
(1,0)
0 + ξ(1,0)

]

5/6− θ(0,1)0 − ξ(0,1)

[

θ
(1,0)
0 + ξ̃(1,0)

]

5/6− θ(0,1)0 − ξ̃(0,1)

Note: The interval under Alt.1 has a non-empty intersection (in green) with the interval under the null.

When ξ̃(1,0) > 5
6 − θ

(0,1)
0 − θ(1,0)

0 (Alt.2), the two intervals are disjoint, i.e., Pθ0+ξ̃ ∩ Pθ0 = ∅.

Given the challenge above, we conduct a local power analysis as follows. First, we shift θ0 by

vector ξ, which does not depend on n. Hence, at θ0 + ξ, certain local deviations can be robustly

detectable. We then analyze the limit of experiments constructed from a sequence of LFPs induced

by such alternatives. Specifically, the shifted local alternative is

θn,ξ,h = θ0 + ξ + h/
√
n, (64)

where θ0 ∈ Θ is such that ϕ(θ0) = 0, and ξ and h take values in the following sets:

Ξθ0 ≡ {ξ ∈ Θ− θ0 : ϕ(θ0 + ξ) > 0,Pθ0 ∩ Pθ0+ξ 6= ∅} (65)

Tn(θ0, ξ) ≡ {h ∈
√
n(Θ− θ0 − ξ) : Pθ0 ∩ Pθ0+ξ+h/

√
n = ∅}. (66)

In other words, Ξθ0 collects the deviations for which θ0 + ξ are not robustly testable. Set Tn(θ0, ξ)

then collects local deviations that make θn,ξ,h robustly testable. Among the points in Ξθ0 , we focus

on those for which Tn(θ0, ξ) is non-empty.

Under this construction, we may apply Theorem 3.1 for any τ > 0 to obtain the LFP (Q0,j,τh, Q1,j,τh) ∈
Pθ0 × Pθ0+ξ+τh. Suppose that the following assumption holds for θ0 ∈ Θ and ξ ∈ Ξθ0 .

Assumption 3.3 (Local parameter cones and L2 directional differentiability). (i) Set {h ∈ Θ−θ0−
ξ : Pθ0∩Pθ0+ξ+h = ∅} is locally equal to convex cone T (θ0, ξ); (ii) There exists set J and a collection

of convex cones (containing 0) {Tj(θ0, ξ), j ∈ J} such that Tj(θ0, ξ) ∩ Tj′(θ0, ξ) = {0},∀j 6= j′ and⋃
j Tj(θ0, ξ) = T (θ0, ξ); (iii) For each j ∈ J, there exists model ϑ 7→ Qj,ϑ defined on a neighborhood

of ϑ = 0 such that the LFP (Q0,j,τh, Q1,j,τh) ∈ Pθ0 × Pθ0+ξ+τh satisfies

Q0,j,τh = Qj,0, and Q1,j,τh = Qj,τh, (67)
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for all τ ∈ (0, τ̄ ] for some τ̄ > 0, and ϑ 7→ Qj,ϑ is L2 differentiable at 0 tangentially to Tj(θ0, ξ).

In what follows, we let ˙̀
j,0, j ∈ J denote the L2 derivatives and focus on testing the linear

hypotheses, namely ϕ(θ) = p′θ − c. Define the influence curve %j of ϕ(θ) = p′θ − c as a square

integrable function %j that satisfies, for every h ∈ Tj(θ0, ξ), p
′h = 〈%j, g〉L2

Qj,0
, where g = h′ ˙̀j,0. Let

Gj,θ0 = {g ∈ L2
Qj,0

: g = h′ ˙̀j,0, h ∈ Tj(θ0, ξ)}. Let %̃j be the efficient influence function, which is the

projection of %j to the closure of Gj,0. We then obtain the following result.

Theorem 3.3. Suppose Assumption 3.3 holds. Let j ∈ J. Let θ0 ∈ Θ such that ϕ(θ0) = 0. Let φn

be a level-α test for H0 : ϕ(θ) ≤ 0 against H1 : ϕ(θ) > 0 and πn,θ(φn) be its lower power under νnθ .

Then, for any h ∈ Tj(θ0, ξ),

lim sup
n→∞

πn,θn,ξ,h(φn) ≤ 1− Φ

(
zα −

〈%j, h′ ˙̀j,0〉L2
Qj,0

‖%̃j‖L2
Qj,0

)
. (68)

Let Tj,n be a statistic such that

Tj,n =
n−1/2

∑n
i=1 %̃j(si)

‖%̃j‖L2
Qj,0

+ oQnj,0(1). (69)

Let φ∗j,n be a test that rejects the null hypothesis iff Tj,n ≥ zα. Then, the test is of level-α and, for

any h ∈ Tj,θ0,

lim inf
n→∞

πn,θn,ξ,h(φ∗j,n) = 1− Φ

(
zα −

〈%j, h′ ˙̀j,0〉L2
Qj,0

‖%̃j‖L2
Qj,0

)
. (70)

Below, we again use Example 2 to illustrate the local power analysis.

Example 2 (Roy model (continued)). Figure 4 shows Ξθ0 and the cones in Assumption 3.3. Since

θ(0,0) = 1/6 is known, we can plot the parameters in a two-dimensional simplex {(θ(1,0), θ(0,1)) ∈
[0, 1]2 : θ(0,1) + θ(1,0) ≤ 5/6}. Here, we take θ

(1,0)
0 ,= 1/6, θ(0,1) = 1/2, and test H0 : θ(1,0) ≤ 1/6

against H1 : θ(1,0) > 1/6. This configuration implies that the alternative θ0 + ξ is not robustly

testable unless ξ(1,0) > 1/6. The green region in Figure 4 shows the set of not robustly testable

alternatives.35

One can see that the local parameter space T (θ0, ξ) is non-empty when ξ is a boundary point

of Ξθ0 toward p. For example, at θ0 + ξA, the local parameter space T (θ0, ξA) is given by a half

space {h = (h(0,0), h(0,1), h(1,0)) : h(0,0) = 0, h(1,0) > 0}. At θ0 + ξB, the local parameter space is

{h = (h(0,0), h(0,1), h(1,0)) : h(0,0) = 0, h(1,0) > 0, h(0,1) + h(1,0) = 0}. At each boundary point, one can

then conduct a local power analysis.

As an illustration, take ξ = ξA ≡ (0, 1/6,−1/6)′. It turns out that in this setting, it suffices to

consider a single convex cone TI(θ0, ξA) ≡ T (θ0, ξA). Let θn,ξA,h = θ0 +ξA+h/
√
n with h ∈ TI(θ0, ξA)

35Once translated by −θ0, this region represents the set Ξθ0 of fixed shifts.
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Figure 4: Set of not robustly testable alternatives and local parameter spaces

θ(1,0)

θ(0,1)

p′θ > 0p′θ ≤ 0

0

θ0
ξB

ξA

h(1,0)

h(0,1)

TI(θ0, ξA)

h(1,0)

h(0,1)

TI(θ0, ξB)
TII(θ0, ξB)

Note: TI(θ0, ξA) (half space) coincides with the local parameter space at θ0 + ξA.
TI(θ0, ξB) (shaded area not including the solid line) and TII(θ0, ξB) (solid line) are tangent cones at
θ0 + ξB.
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be our shifted local alternative.36 Hence, the LFP for Pθ0 and Pθn,ξA,h has the densities

(q0(0, 0), q0(0, 1), q0(1, 0), q0(1, 1)) = (
1

12
,

1

12
,
1

3
,
1

2
) (71)

(q1(0, 0), q1(1, 1), q1(1, 0), q1(1, 1)) = (
1

12
,

1

12
,
1

3
+
h(1,0)

√
n
,
1

2
− h(1,0)

√
n

). (72)

These LFPs can be embedded into model ϑ 7→ QI,ϑ whose density qI,ϑ is given by

(qI,ϑ(0, 0), qI,ϑ(1, 1), qI,ϑ(1, 0), qI,ϑ(1, 1)) = (
1

12
,

1

12
,
1

3
+ ϑ(1,0),

1

2
− ϑ(1,0)). (73)

This model is L2 directionally differentiable (at 0) tangentially to TI(θ0, ξA) with the following

directional derivative:

˙̀
I,0(s) = 1{si = (1, 0)}




0

0

3


+ 1{si = (1, 1)}




0

0

−2


 . (74)

The log-likelihood function can then be expanded as in (40) with ∆I,n = 1√
n

∑n
i=1

˙̀
I,0 and informa-

tion matrix CI =
(

02 0
0 5

)
, which is singular, where 02 is a two-by-two matrix of zeros. The limit

experiment is

EI =
(
R3,ΣR3 , N(CIh,CI) : h ∈ TI(θ0, ξA)

)
, (75)

in which one observes a single random vector Z ∼ N(CIh,CI). Here, the information matrix is not

full rank. This experiment essentially involves a single normal random variable with mean 5h(1,0)

and variance 5. With p = (0, 0, 1)′, the efficient influence function is

%̃I(s) =
3

5
1{s = (1, 0)} − 2

5
1{s = (1, 1)}. (76)

Theorem 3.2 then implies, for any level-α test φn,

lim sup
n→∞

πn,θn,ξA,h(φn) ≤ 1− Φ
(
zα −

√
5h(1,0)

)
. (77)

This bound can be achieved using a test that rejects the null when the following statistic exceeds

zα:

TI,n =
1√
n

n∑

i=1

[ 3√
5

1{si = (1, 0)} − 2√
5

1{si = (1, 1)}
]
. (78)

Heuristically, the test rejects H0 when one observes (1, 0) sufficiently more frequently than (1, 1),

which is the robust prediction of the model when θ(1,0) is sufficiently large.37

36At θ0 + ξA, one needs to consider a single cone that coincides with the local parameter space.
37The case with ξB = (0, 1/6, 0)′ can be analyzed similarly. For θn,ξB ,h = θ0 + ξB + h/

√
n, one needs to consider
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4 Monte Carlo Experiments

We conduct Monte Carlo experiments to examine the performance of our tests.

4.1 Tests of Strategic Interaction Effects

The first set of experiments evaluates the size and power of the tests on the strategic interaction

effects. The design of the experiment is based on Example 1, in which we generate ui
i.i.d.∼ N(0, I2)

for i = 1, · · · , n. Whenever multiple equilibria exist, we select an outcome using one of the three

selection mechanisms below. The first one is an i.i.d. selection mechanism, which selects (1, 0) out

of G(u|θ) = {(1, 0), (0, 1)} if an i.i.d. Bernoulli random variable vi takes 1. Otherwise, (0, 1) is

selected. The second mechanism selects (1, 0) when another Bernoulli random variable ṽi takes 1,

where {ṽi} is a i.n.i.d. sequence. Let N∗k be an increasing sequence of integers.38 For each i, let

h(i) = N∗k , where N∗k−1 < i ≤ N∗k . We define

ṽi =





1 ΨG
h(i)(u

∞) > 1/4+Φ(θ(1))/2−Φ(θ(1))Φ(θ(2))

1/2+(Φ(θ(1))+Φ(θ(2)))/2−2Φ(θ(1))Φ(θ(2))

0 ΨG
h(i)(u

∞) ≤ 1/4+Φ(θ(1))/2−Φ(θ(1))Φ(θ(2))

1/2+(Φ(θ(1))+Φ(θ(2)))/2−2Φ(θ(1))Φ(θ(2))
,

(79)

where ΨG
n (u∞) =

∑n
i=1 I[G(ui|θ)={(1,0)}]∑n

i=1 I[G(ui|θ)={(1,0)}or{(0,1)}] . One may view observations for which N∗k−1 < i ≤ N∗k
as members of a cluster. Under this selection mechanism, the outcomes are dependent on each

cluster, which in turn makes the outcome sequence heterogeneous (and non-ergodic). The third

mechanism generates data from the LFP, which draws an outcome sequence from Qn
0 when θ = θ0

and from Qn
1 when θ = θ1.

We evaluate the size and power of the test in Section 3.4.1 on H0 : p′θ = 0 against H1 : p′θ > 0

with p = (−1,−1)′. The test based on the statistic in (58) achieves the power envelope (see Appendix

D.1.2). We therefore evaluate the size and power of this test. To make a comparison, we consider

another test, namely the Wald–Wolfowitz runs test, which non-parametrically tests the i.i.d.-ness

of the outcome sequence (see Wald and Wolfowitz, 1940; Cho and White, 2011). Since the model is

complete under H0 and ui is i.i.d., the resulting outcome sequence is i.i.d. under the null hypothesis.

The test therefore should have power only when the selection introduces heterogeneity and/or

dependence.

Figures 5 and 6 show the power of the optimal test and runs test, respectively. The power

of our test changes little across the selection mechanisms. This can be explained as follows. Our

test statistic in (58) treats the two outcomes, (0, 1) and (1, 0), symmetrically. While the selection

mechanism affects the relative frequencies of the two outcomes, what matters for the statistic is

the frequency of {(0, 1), (1, 0)} (relative to (1, 1)), and hence its power curve is insensitive to the

two tangent cones, Tj(θ0, ξB), j ∈ {I, II}, because the form of the LFP changes depending on the cone h to which
belongs (see Appendix D.2). Interestingly, the optimal test statistic is still given by (78) in both cases.

38In our simulations, we set N∗k = 22
k

.
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selection mechanism.39 The Wald–Wolfowitz test has non-zero power when the selection is i.n.i.d.;

it becomes noticeable only when h is very large and its lower power is significantly below that of

the optimal test. As expected, it does not have any power when the selection mechanism is i.i.d.

or the LFP.

4.2 Tests on the Distribution of Potential Outcomes

The second set of experiments is based on Example 2, which we use to evaluate the performance

of the tests when the model is incomplete under H0. The model may be complete under certain

alternatives. As described in Section 3.4, we consider testing H0 : p′θ ≤ c against H1 : p′θ > c,

where p = (0, 0, 1)′ and c = 1/6. As before, we assume that θ(0,0) = 1/6 is known and localize the

experiment at θ0 = (θ
(0,0)
0 , θ

(0,1)
0 , θ

(1,0)
0 )′ = (1/6, 1/2, 1/6)′.

The set of selection mechanisms is the same as the one in Section 4.1. One difference is that the

model predicts multiple outcomes when u = (0, 0) or u = (1, 1). In both cases, an i.i.d. selection

mechanism selects one of the outcomes (s = (0, 0) when G(u) = {(0, 0), (0, 1)} and s = (1, 0)

when G(u) = {(1, 0), (1, 1)}) when an i.i.d. Bernoulli random variable vi is 1. Similarly, an i.n.i.d.

selection mechanism selects one of the predicted outcomes when ṽi in (79) is 1. The LFP selection

mechanism is defined in the same way as before.

We consider the following shifted local alternatives:

Alt.A: θn,ξA,h = θ0 + ξA + (0, 0, h̄)′/
√
n, h̄ > 0 (80)

Alt.B-I: θn,ξB ,h = θ0 + ξB + (0,−h̄, h̄/2)′/
√
n, h̄ > 0 (81)

Alt.B-II: θn,ξB ,h = θ0 + ξB + (0,−h̄, h̄)′/
√
n, h̄ > 0. (82)

Under Alternative A, we consider a sequence of the parameters that tends to θ0 + ξA, where h ∈
TI(θ0, ξA). Under Alternatives B-I and B-II, we consider the parameters that tend to θ0 + ξB, where

h ∈ TI(θ0, ξB) and h ∈ TII(θ0, ξB), respectively.

Figures 7 and 9 report the results with n = 1000 and S = 2000, respectively. The right panel of

Figure 7 shows the power curves of the optimal test against Alternative A. Because of the model

incompleteness, its performance varies significantly across the selection mechanisms. As predicted

by the theory, the power of the test under the LFP selection mechanism essentially coincides with

the power envelope. Both the i.i.d. and the i.n.i.d. selection mechanisms are considerably more

favorable; that is, the actual power of the test under these mechanisms is much higher than under

the LFP selection. In particular, the power of the test under the i.i.d. selection mechanism is

already 1 even when h̄ = 0 because the test can detect deviations from the null under this selection

mechanism even for θ = θ0 + ξ that are not robustly testable. The left panel of Figure 7 shows the

power curves against alternatives of the form θ0 + wξA with w ∈ [0, 1]. The figure shows that the

39This insensitivity is not a generic feature of the optimal test. See the next example.
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test may have non-trivial power even for such alternatives when the selection mechanisms are i.i.d.

or i.n.i.d.40

Figure 8 shows the power curves against Alternative B-I. When h̄ = 0, the model is indeed

complete.41 However, as h̄ increases, the region of incompleteness enlarges, leading to differences in

the local power across the selection mechanisms. Under Alternative B-II, the model stays complete

under the local alternatives. Therefore, the power of the test is essentially the same across the

selection mechanisms.

5 Extensions

5.1 Tests in the Presence of Nuisance Components

We now consider testing the hypotheses on subcomponents of θ. Let θ = (β′, δ′)′ ∈ Θβ ×Θδ, where

β is a k × 1-sub-vector of interest and δ is a (d − k) × 1 vector of nuisance parameters. Consider

the following hypotheses:

H0 : β = β0, δ ∈ Θδ, v.s. H1 : β 6= β0, δ ∈ Θδ. (83)

This problem can be recast as a special case of (1) with ϕ(θ) = β, K0 = {β0}, and K1 = {β ∈ Rk :

β 6= β0}.42

In this general setting, both hypotheses are composite in terms of the structural parameters.

Therefore, Lemma 3.1 is not directly applicable. However, the result is still useful for constructing

tests that have desirable properties. To this end, we partition the parameter space into two sets,

namely Θ0 and Θ1, where Θ0 = {β0} ×Θδ and Θ1 = {β : β 6= β0} ×Θδ. We focus on this setting,

whereas the theory below applies more generally to the hypotheses of the form in (1) by taking

Θ0 = {θ : ϕ(θ) ∈ K0} and Θ1 = {θ : ϕ(θ) ∈ K1}.

Throughout, the researcher’s action is binary, that is a = 1 (reject) or a = 0 (accept). For each

θ ∈ Θ and action a ∈ {0, 1}, define a loss function L : Θ× {0, 1} → R+ by

L(θ, a) ≡ aIΘ0(θ) + ζ(1− a)IΘ1(θ),

where ζ > 0. The loss from the Type-I error is normalized to 1. The trade-off between the Type-I

and Type-II errors is determined by parameter ζ.

40Under the LFP selection, the data are drawn from Qθ0 ∈ Pθ0+wξA , and hence the power of the test does not
exceed the nominal level.

41The model remains incomplete regarding selection from G(u) = {(0, 0), (0, 1)} when u = (0, 0), however, these
outcomes are not used by the test and hence do not affect the power.

42Sub-vector inference has been actively studied in the context of partially identified models, particularly moment
inequality models (Romano and Shaikh, 2008; Bugni, Canay, and Shi, 2017; Kaido, Molinari, and Stoye, 2019). Here,
we focus on hypothesis tests on the sub-vectors of the structural parameters.
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For each test φ and θ ∈ Θ, define the upper risk by

R(θ, φ) = max
P∈Pθ

∫
φ(s)IΘ0(θ) + ζ(1− φ(s))IΘ1(θ)dP (s)

=

∫
φ(s)dν∗θ (s)IΘ0(θ) + ζ(1−

∫
φ(s)dνθ(s))IΘ1(θ), (84)

where the integrals in (84) are Choquet integrals (see Appendix A). The upper risk determines the

trade-off between the size (R0(θ, φ) ≡ supP∈Pθ
∫
φdP =

∫
φdν∗θ for θ ∈ Θ0) and the lower power

(infP∈Pθ
∫
φdP =

∫
φdνθ for θ ∈ Θ1). What remains is to incorporate parameter uncertainty. For

this, let µ be a (prior) probability distribution over Θ. We write µ as µ = τµ0 + (1 − τ)µ1, where

τ ∈ (0, 1) and µ0, µ1 are suitable probability measures supported on Θ0 and Θ1, respectively. Define

r(µ, φ) ≡
∫

Θ

R(θ, φ)dµ(θ)

= τ

∫
φ(s)dκ∗0(s) + (1− τ)ζ(1−

∫
φ(s)dκ1(s)), (85)

where κ∗0 =
∫

Θ0
ν∗θdµ0 and κ1 =

∫
Θ1
νθdµ1.43 This risk function uses the prior probability to

reflect parameter uncertainty, while it uses the belief function (and its conjugate) to incorporate

the decision maker’s willingness to be robust against incompleteness. In what follows, we call r the

Bayes–Dempster–Shafer (BDS) risk. We then call φ a BDS test if it minimizes the BDS risk.44 One

of the components of the BDS risk is πκ1(φ) =
∫
φdκ1. We call this object the weighted average

lower power (WALP). The interpretation of πκ1(φ) is similar to that of the standard weighted

average power (Andrews and Ploberger, 1994, 1995). Choosing a suitable µ1, one may direct the

power of a test toward certain alternatives. However, πκ1 takes the average of the guaranteed power

value instead of the actual unknown power.

The following theorem characterizes the BDS test. For this, let core(κ) ≡ {P ∈ ∆(S) : P (A) ≥
κ(A),∀A ⊂ S}. In what follows, we assume that core(κ0) ∩ core(κ1) = ∅.45

Lemma 5.1. Let the BDS risk be defined as in (85). Then, there exists a BDS test such that, for

any ζ > 0,

φ(s) =





1 if Λ(s) > C

γ if Λ(s) = C

0 if Λ(s) < C,

(86)

where C = τ/ζ(1− τ), and Λ is a version of dQ1/dQ0 for the LFP (Q0, Q1) ∈ core(κ0)× core(κ1)

43The second equality in (85) is established in the proof of Theorem 5.1.
44The axiomatic foundations for this type of preference (when S is the payoff-relevant state space) is given in Gul

and Pesendorfer (2014) and Epstein and Seo (2015) (in the context of repeated experiments).
45To ensure this condition, it is sufficient to have at least one Ā ⊂ S such that P0(Ā) < P1(Ā) (or P0(Ā) > P1(Ā))

for all (P0, P1) ∈ Pθ0 × Pθ1 and (θ0, θ1) ∈ Θ0 ×Θ1. In Example 1, one may take Ā = {(1, 1)}.
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such that, for all t ∈ R+,

Q0(Λ > t) = κ∗0(Λ > t), and Q1(Λ > t) = κ1(Λ > t). (87)

One may view this as an analog of Lemma 3.1. A key difference is that the LFP belongs to the

product of the cores of the capacities κ0 and κ1. Hence, κ0 and κ1 are both belief functions, which

in turn allows us to compute the LFP in a tractable way.

The analysis above is useful for constructing optimal tests for minimizing risk. However, the

BDS tests are not designed to control size uniformly over Θ0. Therefore, we consider a test that

controls size and maximizes the WALP. For this, we fix µ1 throughout and follow the developments

on the tests in the presence of nuisance parameters (Chamberlain, 2000; Elliott, Müller, and Watson,

2015; Moreira and Moreira, 2013).

The following minimax theorem characterizes the minimax test as a BDS test for the least

favorable prior (if it exists). For this, letM(µ1) ≡ {µ : µ = τµ0 + (1− τ)µ1, µ0 ∈ ∆(Θ0), τ ∈ [0, 1]},
where µ1 is fixed. In what follows, we drop µ1 from the argument ofM, but its dependence should

be understood. We then let Φ be the set of randomized tests.

Theorem 5.1. Let the upper risk R be defined as in (84). Suppose that Θ is compact. Then,

sup
µ∈M

inf
φ∈Φ

∫

Θ

R(θ, φ)dµ(θ) = inf
φ∈Φ

( sup
θ∈Θ0

R0(θ, φ) ∨R1(φ)), (88)

where R0(θ, φ) =
∫
φ(s)dν∗θ (s)IΘ0(θ) and R1(φ) = ζ(1− πκ1(φ)). Furthermore, there exists φ† that

achieves equality in (88).

Remark 5.1. Suppose that ζ is chosen so that the maximum BDS risk (left-hand side of (88))

equals α. Then, φ† is a level-α test that maximizes the WALP. The theorem suggests that such a

test can be approximated (in terms of risk) by the sequence of tests {φ`, ` = 1, 2, . . . } such that φ`

is a BDS test for some prior µ`, and
∫

Θ
R(θ, φ`)dµ`(θ)→ supµ∈M

∫
Θ
R(θ, φ†)dµ(θ).

5.2 Covariates

This section extends the base framework to incorporate observable covariates. Each individual

experiment is described by (S,X,U,G,Θ; υ,m), where S, U,G,Θ are defined as before. We let X

denote the finite set of covariate values and {υθ, θ ∈ Θ} be a family of distributions on X. Through-

out, we assume that each υθ ∈ ∆(X) has full support on X. Measure mθ(·|x) then determines the

conditional law of u given x. The prediction of the model is then summarized by a weakly mea-

surable correspondence (u, x) 7→ F (u, x|θ) ≡ {(s, x) : s ∈ G(u|θ, x)} ⊂ S ×X for each θ ∈ Θ. As

before, this correspondence induces a belief function on S ×X

νθ(A) =

∫
1{F (u, x|θ) ⊂ A}dmθ(u|x)dυθ(x), A ⊂ S ×X. (89)
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If A is a rectangle A = As × Ax for some As ⊂ S and Ax ⊂ X, one may write it as

νθ(A) =

∫

Ax

mθ(G(u|θ, x) ⊂ As|x)dυθ(x) =

∫

Ax

νθ(Au|x)dυθ(x), (90)

which can be viewed as the mean of the conditional belief function νθ(·|x). The subsequent analysis,

starting with the Neyman–Pearson lemma, is then essentially the same as before.

A simplification occurs when υ does not depend on θ. Consider θ0, θ1 ∈ Θ with θ0 6= θ1. Because

of the additivity of υ, it suffices to consider sets of the form B × {x}, where B ⊂ S and x ∈ X.
Then, the program that determines the LFP is

(Q0, Q1) = arg min
P0,P1∈∆(S×X)

∫
H
( dP0

d(P0 + P1)

)
d(P0 + P1) (91)

s.t. νθ0(B × {x}) ≤ P0(B × {x}), B ⊂ S, x ∈ X
νθ1(B × {x}) ≤ P1(B × {x}), B ⊂ S, x ∈ X.

Observe that the constraints simplify to

νθj(B × {x}) = νθj(B|x)υ(x) ≤
∑

s∈B
pj(s|x)υj(x), j = 0, 1. (92)

Taking B = S, one obtains υ(x) ≤ υj(x) for all x ∈ X with j = 0, 1. Since υ is a measure,

this implies υ0 = υ1 = υ, and the resulting LR statistic does not depend on υ. The LR statistic

dQ1/dQ0 = q1(s|x)/q0(s|x) can then be calculated by solving, for each x,

min
p0(·|x),p1(·|x)

∑

s∈S
ln
(p0(s|x) + p1(s|x)

p0(s|x)

)
(p0(s|x) + p1(s|x)) (93)

s.t. νθ0(B|θ, x) ≤
∑

s∈B
pj(s|x), B ⊂ S, x ∈ X

νθ1(B|θ, x) ≤
∑

s∈B
pj(s|x), B ⊂ S, x ∈ X.

6 Concluding Remarks

This study explored robust likelihood-based inference methods for incomplete economic models. A

key result is the existence of an LFP consisting of product measures, through which we may connect

incomplete models to standard frameworks and thus obtain asymptotic approximations and analyze

optimality properties while remaining agnostic about the selection. However, some problems need

further work. They include methods of inference on the subcomponents of θ, especially when the

dimension of the parameter is moderately high and a framework that can handle solution concepts

involving some form of mixing (e.g., mixed Nash, Bayes correlated equilibria) which are undertaken

in ongoing work. Another important avenue for future research is an extension of the current results
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to statistical inference or decision problems outside hypothesis testing.
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Figure 5: Local power of the robust test: n = 1000, S = 5000, θn,h = (−h̄/√n,−h̄/√n)
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Figure 6: Local power of the Wald-Wolfowitz test: n = 1000, S = 5000, θn,h = (−h̄/√n,−h̄/√n)
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Supplementary Material for “Robust Likelihood Ratio
Tests for Incomplete Economic Models”

A Capacities

Let Ω be a compact metric space and let ΣΩ denote its Borel σ-algebra. Let K(Ω) be the set of compact

subsets of Ω endowed with the Hausdorff metric. Let C(Ω) be the set of continuous functions on Ω. Let

∆(Ω) be the set of Borel probability measures on Ω endowed with the weak topology.

A set function ν∗ is said to be a capacity if ν∗ satisfies the following conditions:

(i) ν∗(∅) = 0, ν∗(Ω) = 1,

(ii) A ⊂ B ⇒ ν∗(A) ≤ ν∗(B), for all A,B ∈ ΣΩ.

(iii) An ↑ A⇒ ν∗(An) ↑ ν∗(A), for all {An, n ≥ 1} ⊂ ΣΩ and A ∈ ΣΩ.

(iv) Fn ↓ F, Fn closed ⇒ ν∗(Fn) ↓ ν∗(F ).

One may define integral operations with respect to capacities as follows. Let f : Ω → R be a measurable

function. The Choquet integral of f with respect to ν is defined by

∫
fdν ≡

∫ 0

−∞
(ν({ω : f(ω) ≥ t})− ν(Ω))dt+

∫ ∞

0
ν({ω : f(ω) ≥ t})dt, (94)

where the integrals on the right hand side are Riemann integrals.

The following result due to Choquet follows from Theorems 1-3 in Philippe, Debs, and Jaffray (1999).

Lemma A.1. Let Ω be a Polish space. Let M be a probability measure on K(Ω). Let P = {P ∈ ∆(Ω) :

P =
∫
PKdM(K), PK ∈ ∆(K)}. Then, ν(·) = infP∈P P (·) is a belief function and satisfies

ν(A) = M({K ⊂ A}). (95)

In each experiment characterized by the tuple (S,U,Θ, G;m), one may apply the lemma above with

P = Pθ, ν = νθ, K = G(u|θ), and M is the law of K induced by correspondence G and mθ.

B Proofs

B.1 Proof of Lemma 3.1

Proof of Lemma 3.1. It is straightforward to show ν∗θ is a capacity satisfying conditions (i)-(iv) in Appendix

A. Since G(·|θ) is weakly measurable, the map u 7→ G(u|θ) defines a measurable map from U to K(S).

Let m̃ be the induced measure of mθ on K(S) by this map. Then, by Lemma A.1, P ∈ Pθ is equivalent to

1



P ∈ core(ν) for an infinitely monotone capacity ν such that ν(A) = m̃(K ⊂ A) for all A ∈ ΣΩ. By Lemma

2.5 in HS,

ν(A) = inf
P∈Pθ

P (A) = νθ(A), for all A ∈ ΣS , (96)

and hence νθ is infinitely monotone. By the previous step, ν∗θ1 and ν∗θ0 are also 2-alternating and 2-monotone

capacities respectively. Let Λ be the Radon-Nikodym derivative of ν∗θ1 and ν∗θ0 in the sense of HS (Section

3). Then, by their Theorem 4.1, the conclusion of the lemma follows.

B.2 Proof of Theorem 3.1, Corollary 3.1 and Auxiliary Lemmas

We use Theorem 8.1.1 in Lehmann and Romano (2006) to show Theorem 3.1. For ease of reference, we copy

their theorem below (with a slight change of notation to avoid conflicts). For this, let E,E′ be measurable

spaces and let P = {Pη ∈ ∆(S) : η ∈ E ∪ E′} be families of probability distributions on S with densities

pη = dPη/dυ parameterized by η ∈ E ∪ E′. Throughout, we assume that the map (s, η) 7→ pη(s) is jointly

measurable.

Theorem B.1 (Theorem 8.1.1. of Lehmann and Romano (2006)). For any distributions µ, µ′ over ΣE

and ΣE′, let φµ,µ′ be the most powerful test for testing

f(s) =

∫

E
pη(s)dµ(η) (97)

at level α against

f ′(s) =

∫

E′
pη(s)dµ(η) (98)

and let βµ,µ′ be its power against the alternative f ′. If there exist µ and µ′ such that

sup
η∈E

EPη [φµ,µ′(s)] ≤ α (99)

inf
η∈E′

EP ′η [φµ,µ′(s)] = βµ,µ′ , (100)

then:

(i) φµ,µ′ maximizes infη∈E′ EP ′η [φµ,µ′(s)] among all level-α tests of the hypothesis H : η ∈ E and is the

unique test with this property if it is the unique most powerful level-α test for testing f against f ′.

(ii) The pair of distributions µ, µ′ is least favorable in the sense that for any other pair µ̃, µ̃′ we have

βµ,µ′ ≤ βµ̃,µ̃′ . (101)

Lemma B.1. Let νθ be defined as in (7), and let ν∗θ be its conjugate. Let f : S → R be a measurable

function. Similarly, for each i ∈ N, let fi : S → R be a measurable function. Then,

(i) There exists a minimizing measure Q ∈ ∆(S) and a maximizing measure Q∗ ∈ ∆(S) such that, for

2



any t ∈ R,

νθ(f(s) > t) = Q(f(s) > t), (102)

and

ν∗θ (f(s) > t) = Q∗(f(s) > t). (103)

(ii) If, for each i ∈ N and each measurable function fi, Qi, Q
∗
i are the minimizing and maximizing

measures in the sense of (102)-(103), it follows that

νnθ

( n∑

i=1

fi(si) > t
)

= Qn
( n∑

i=1

fi(si) > t
)
, (104)

and

ν∗,nθ

( n∑

i=1

fi(si) > t
)

= Q∗n
( n∑

i=1

fi(si) > t
)
, (105)

for all t ∈ R, where Qn =
⊗n

i=1Qi and Q∗n =
⊗n

i=1Q
∗
i ∈ ∆(Sn).

Proof. (i) As shown in the proof of Lemma 3.1, ν∗θ is a 2-alternating capacity. Since S is finite, any function

on S is upper semi-continuous by the continuity of f . By Lemma 2.4 in HS, there exists a probability

measure p∗ ∈ ∆(S) such that for all t ∈ R, ν∗θ (f(s) > t) = p∗(f(s) > t). This ensures (103). Similarly, let

g = −f and note that g is again upper semicontinuous. Applying Lemma 2.4 in HS to the event {g ≥ −t},
there exists p ∈ ∆(s) such that, for any t ∈ R,

ν∗θ (g ≥ −t) = p(g ≥ t) ⇔ 1− ν∗θ (g < −t) = 1− p(g < t)

⇔ νθ(f > t) = p(f > t). (106)

This therefore establishes (102).

(ii) For each i, let Yi ≡ minsi∈G(ui|θ) fi(si) and Zi ≡ fi(si). Note that Yi is a function of ui, and hence

we use mθ,i for the law of Yi induced by ui. For each experiment, we have

G(u|θ) ⊆ {s ∈ S : fi(s) > t} ⇔ min
s∈G(u|θ)

fi(s) > t. (107)

Therefore, by Lemma A.1,

νθ,i(fi(si) > t) = mθ,i( min
si∈G(ui|θ)

fi(si) > t) = mθ,i(Yi > t), ∀t ∈ R. (108)

By (i), there is Qi ∈ ∆(S) such that

νθ,i(fi(si) > t) = Qi(Zi > t), ∀t ∈ R. (109)

Hence, by (108)-(109), Yi
d
= Zi for all i.

Let Pnθ be defined as in (26) and let νnθ ,ν∗nθ be the lower and upper probabilities of Pnθ respectively. By

3



Lemma A.1, νnθ is a belief function and ν∗nθ is its conjugate. Therefore,

νnθ

( n∑

i=1

fi(si) > t
)

= mn
θ

(
un ∈ Un : Gn(un|θ) ⊆ {

n∑

i=1

fi(si) > t}}
)
. (110)

Since Gn(un|θ) =
∏n
i=1G(ui|θ), inside the parenthesis we have:

n∏

i=1

G(ui|θ) ⊆ {sn :

n∑

i=1

fi(si) > t}

⇔ min
sn∈∏n

i=1G(ui|θ)

n∑

i=1

fi(si) > t⇔
n∑

i=1

min
si∈G(ui|θ)

fi(si) > t. (111)

By (110)-(111) and recalling that Yi = minsi∈G(ui|θ) fi(si), we have

νnθ

( n∑

i=1

fi(si) > t
)

= mn
θ

( n∑

i=1

min
si∈G(ui|θ)

fi(si) > t
)

= mn
θ

( n∑

i=1

Yi > t
)
. (112)

Let {Y1, Y2,· · · , Yi,· · ·} be independently distributed according to mn
θ , and let {Z1, Z2,· · · , Zi· · ·} be inde-

pendently distributed according to Qn. Then,
∑n

i=1 Yi
d
=
∑n

i=1 Zi because (Y1, . . . , Yn)
d
= (Z1, . . . , Zn).

Therefore, for all t ∈ R,

mn
θ

( n∑

i=1

Yi > t
)

= Qn(

n∑

i=1

Zi > t). (113)

By (112)-(113) and νnθ being the lower probability of Pnθ , we have

min
P∈Pnθ

P (
n∑

i=1

fi(si) > t) = νnθ

( n∑

i=1

fi(si) > t
)

= Qn(
n∑

i=1

fi(si) > t). (114)

This establishes (104). One may show (105) by a similar argument.

Proof of Theorem 3.1. Recall that Qn0 = ⊗ni=1Q0,i, Q
n
1 = ⊗ni=1Q1,i, and Λn is a version of the Radon-

Nikodym derivative of them. We follow Section 8.3 in Lehmann and Romano (2006) and show the following

statements:

(a) When sn is distributed according to a distribution in Pnθ0 , the probability of the event {sn : Λn > t}
is largest (for any t), i.e. Λn is stochastically largest, when the distribution of sn is Qn0 = ⊗ni=1Q0,i.

(b) When sn is distributed according to a distribution in Pnθ1 , the probability of the event {sn : Λn > t}
is smallest (for any t), i.e. Λn is stochastically smallest, when the distribution of sn is Qn1 = ⊗ni=1Q1,i.

(c) Λn is stochastically larger when the distribution of s is Qn1 than when it is Qn0 .

These statements are summarized by

Qn,′0 (Λn > t)
(a)

≤ Qn0 (Λn > t)
(c)

≤ Qn1 (Λn > t)
(b)

≤ Qn,′1 (Λn > t), (115)

for all t, Qn,′0 ∈ Pnθ0 , and Qn,′1 ∈ Pnθ1 .
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Below, we invoke Lemma B.1. For this, let fi(·) = ln Λi(·), where Λi ∈ dQ1,i/dQ0,i. Let (Q∗n, Qn) be

the product measures in Lemma B.1 with fi = ln Λi for i = 1, . . . , n. Note that Λn > t is equivalent to
∑n

i=1 fi(si) > ln t. By Lemma B.1 with t′ = ln t, it then follows that

ν∗nθ0 (Λn > t) = ν∗nθ0
( n∑

i=1

fi(si) > t′
)

= Q∗n
( n∑

i=1

fi(si) > t′
)

= Q∗n(Λn > t), (116)

where Q∗n = Qn0 . Recall that ν∗nθ0 (Λn > t) = supQn,′0 ∈Pnθ0
Qn,′0 (Λn > t). This therefore means Qn0 makes Λn

stochastically largest among all distributions in Pnθ0 and hence ensures inequality (a) in (115).

Similarly, again by Lemma B.1,

νnθ (Λn > t) = νnθ
( n∑

i=1

fi(si) > t′
)

= Qn
( n∑

i=1

fi(si) > t′
)

= Qn(Λn > t), . (117)

where Qn = Qn1 . Therefore, Qn makes Λn stochastically smallest and hence ensures inequality (c) in (115).

The middle inequality in (115) follows from Corollary 3.2.1 in Lehmann and Romano (2006) and the

Neyman-Pearson lemma.

Let E = Pnθ0 , E′ = Pnθ1 . Let µ, µ′ ∈ ∆(E) be distributions, each assigning probability 1 to a single

distribution, µ to Qn0 ∈ Pnθ0 and µ′ to Qn1 ∈ Pnθ0 . Let (Cn, γn) be chosen so that EQn0 [φn(sn)] = α, where

φn is the likelihood-ratio test defined as in (31). The argument above shows that µ, µ′ satisfy (99)-(100).

The conclusion of the theorem then follows from applying Theorem B.1 to the present setting.

Proof of Corollary 3.1. By Theorem 3.1, the LFP (Qn0 , Q
n
i ) exists, and they are product measures. Note

that, in the application of Lemma B.1, Qi (and Q∗i ) is identical across i because νθ (and ν∗θ ) is identical

across i. The conclusion of the Corollary then follows by arguing as in the proof of Theorem 3.1.

B.3 Proof of Proposition 3.1 and Theorems 3.2-3.3

Proof of Proposition 3.1. Note that

sup
P∈Pnθ0

EP [φ∗n(sn)] = sup
P∈Pnθ0

P (Λn(sn) > C∗n)

= ν∗nθ0 (Λn(sn) > C∗n)

= Qn0
(
Λn(sn) > C∗n

)

= Qn0

( 1√
n

n∑

i=1

ln
dQ1

dQ0
(si)− EQ0 [ln

dQ1

dQ0
(si)] > σQ0zα

)
, (118)

where the second equality follows from ν∗n being the upper probability of Pnθ0 , and the third equality

follows from Qn0 being the least favorable null distribution by Theorem 3.1. For each i, let Zi ≡ ln dQ1

dQ0
(si).

Under Qn0 , {Zi}ni=1 is an i.i.d. sequence with a finite variance due to σ2
Q0

<∞. Hence, if σQ0 > 0, by the
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CLT for i.i.d. random variables, one obtains

lim
n→∞

Qn0

( 1√
n

n∑

i=1

ln dQ1

dQ0
(si)− EQ0 [ln dQ1

dQ0
(si)]

σQ0

> zα

)
= Pr

(
Z > zα

)
= α, (119)

where Z ∼ N(0, 1). If σQ0 = 0, the summand in (118) is identically 0 and hence the probability of the

event is zero and hence lim supn→∞ supP∈Pnθ0
EP [φ∗n(sn)] ≤ α.

Proof of Theorem 3.2. Let φn be a level-α test for H0 : ϕ(θ) ≤ 0 against H1 : ϕ(θ) > 0. Since ϕ(θ0) ≤ 0,

φn is necessarily a level-α test for testing θ = θ0 against θ1 = θ0 +h/
√
n. For any n, the lower power of φn

is then bounded from above by that of the minimax test in Theorem 3.1, which we denote by φ∗n below.

Thus,

πn,θn,h(φn) = inf
Pn∈Pnθn,h

EPn [φn] ≤ inf
Pn∈Pnθn,h

EPn [φ∗n] = πθn,h(φ∗n). (120)

Let j ∈ J and let h ∈ Tj(θ0). By Assumption 3.2, the LFP (Q0,j,τh, Q1,j,τh) ∈ Pθ0 × Pθ0+τh satisfies

Q0,j,τh = Qj,θ0 , and Q1,j,τh = Qj,θ0+τh, for all 0 < τ ≤ τ̄ . (121)

This and Theorem 3.1 imply, for each j ∈ J and h ∈ Tj(θ0),

πn,θ0+h/
√
n(φ∗n) =

∫
φ∗ndν

n
θ0+h/

√
n =

∫
φ∗ndQ

n
j,θ0+h/

√
n, (122)

for n sufficiently large. Hence, it suffices to analyze the asymptotic power under {Qn
j,θ0+h/

√
n
}.

The underlying model θ 7→ Qj,θ is L2 differentiable tangentially to Tj(θ0). By Lemma 25.14 in Van der

Vaart (2000), the log-likelihood ratio of the LFP can be expanded as

Ln = ln
dQn

j,θ0+h/
√
n

dQnj,θ0
= h′∆j,n −

1

2
h′Cjh+ oQnj,θ0

(1), (123)

where ∆j,n = n−1/2
∑n

i=1
˙̀
j,θ0(si) and hence Ln

Qnj,θ0 N(−σ2

2 , σ
2) with σ2 = h′Cjh. By Theorem 9.4 of

Van der Vaart (2000), the sequence Ej,n of localized experiments in (41) then converges to the Gaussian

limit experiment Ej in (42). This ensures that, for any j ∈ J and h ∈ Tj(θ0), there is a subsequence along

which πn,θ0+h/
√
n(φ∗n)→ πh, where πh is a power function in the Gaussian limit experiment (see the proof

of Theorem 15.1 in Van der Vaart, 2000). For any h ∈ Tj(θ0) with ϕ̇θ0h < 0, we have ϕ(θ0 + h/
√
n) < 0

for all n sufficiently large. Hence, by θ0 + h/
√
n satisfying the null for all n sufficiently large and φ∗n being

level-α,

πh ≤ lim sup
n→∞

πn,θ0+h/
√
n(φ∗n) ≤ α. (124)

By continuity, πh ≤ α for all h such that ϕ̇θ0h ≤ 0. This, in turn, implies that πh is a power function of a

level-α test for testing H0 : ϕ̇θ0h ≤ 0 against H1 : ϕ̇θ0h > 0 in Ej , and hence it is bounded by the power

of the uniformly most powerful test. The rest of the proof parallels the proof of Theorem 15.4 in Van der

Vaart (2000) if Cj is non-singular and the tangent set is a linear subspace. The first claim of the theorem
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then holds with %̃j = ϕ̇θ0C
−1
j

˙̀
j,θ0 .

In case Cj is singular or the tangent set is a convex cone (not a linear subspace), we follow the argument

in the proof of Theorem 2.1 in Rieder (2014). Let h ∈ Tj(θ0) be a vector such that ϕ̇θ0h = c > 0. We

rewrite it as h = τa, where τ > 0 and a is a unit vector. We then let g = a′ ˙̀j,θ0 ∈ Gj,θ0 . Note that, by the

definition of %j ,

ϕ̇θ0a = 〈%j , g〉L2
Qj,θ0

, (125)

and hence τ = c/〈%j , g〉L2
Qj,θ0

. One may now rewrite (123) as

Ln = ln
dQn

j,θ0+h/
√
n

dQnj,θ0
= τ

1√
n

n∑

i=1

g(si)−
τ2

2
‖g‖L2

Qj,θ0

+ oQnj,θ0
(1). (126)

By Corollary 3.4.2 in Rieder (1994), the asymptotic power of any test satisfying (124) is then dominated

by 1− Φ(zα − τ‖g‖L2
Qj,θ0

). Now let g → %̃j in L2
Qj,θ0

(S). Then,

τ‖g‖L2
Qj,θ0

=

c‖g‖L2
Qj,θ0

〈%j , g〉L2
Qj,θ0

→
c‖%̃j‖L2

Qj,θ0

〈%j , %̃j〉L2
Qj,θ0

=
c

‖%̃j‖L2
Qj,θ0

, (127)

where the last equality follows from 〈%j , %̃j〉L2
Qj,θ0

= ‖%̃j‖2L2
Qj,θ0

due to %̃j being the projection of %j to

cl(Gj,θ0). Therefore, the power bound is obtained as the following limit

lim
g→%̃j

1− Φ
(
zα − τ‖g‖L2

Qj,θ0

)
= 1− Φ

(
zα −

c

‖%̃j‖L2
Qj,θ0

)
. (128)

The first claim of the theorem then follows from noting that c = ϕ̇θ0h = 〈%j , h′ ˙̀j,θ0〉L2
Qj,θ0

.

For the second claim, let h ∈ Tj(θ0). Then, by Le Cam’s third lemma,

1√
n

n∑

i=1

%̃j(si)
Qnj,θn,h
 N

(
〈%̃j , h′ ˙̀j,θ0〉L2

Qj,θ0

, ‖%̃j‖2L2
Qj,θ0

)
. (129)

Therefore,

lim
n→∞

πn,θ0+h/
√
n(φ∗j,n) = 1− Φ

(
zα −

〈%̃j , h′ ˙̀θ0〉L2
Qj,θ0

‖%̃j‖L2
Qj,θ0

)
≥ 1− Φ

(
zα −

〈%j , h′ ˙̀θ0〉L2
Qj,θ0

‖%̃j‖L2
Qj,θ0

)
, (130)

where the inequality follows from 〈%̃j , h′ ˙̀θ0〉L2
Qj,θ0

≥ 〈%j , h′ ˙̀θ0〉L2
Qj,θ0

by 〈%̃j , g〉L2
Qj,θ0

≥ 〈%j , g〉L2
Qj,θ0

for any

g ∈ Gj,θ0 due to %̃j being the projection of %j to cl(Gj,θ0). This establishes the claim of the theorem.

Proof of Theorem 3.3. Let j ∈ J. Consider h ∈ Tj(θ0, ξ). By Assumption 3.3, for any τ ∈ (0, τ̄ ], the LFP

(Q0,j,τh, Q1,j,τh) ∈ Pθ0 × Pθ0+ξ+τh satisfies

Q0,j,τh = Qj,0, and Q1,j,τh = Qj,τh, (131)
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where ϑ 7→ Qj,ϑ is L2 differentiable tangentially to Tj(θ0, ξ). The rest of the argument then parallels that

of Proof of Theorem 3.2.

B.4 Proof of Theorems in Section 5

In what follows, we repeatedly use the fact that, for any nonnegative measurable function g on S, belief

function ν and its conjugate ν∗, one has

∫
g(s)dν∗(s) =

∫
max
s∈K

g(s)dMν (132)
∫
g(s)dν(s) =

∫
min
s∈K

g(s)dMν , (133)

where Mν is the probability measure on K(S) associated with ν (see Lemma A.1).

Proof of Lemma 5.1. We first start with showing (84) and (85). For this, observe that

R(θ, φ) = max
P∈Pθ

∫
φ(s)IΘ0(θ) + ζ(1− φ(s))IΘ1(θ)dP (s)

= max
P∈Pθ

(IΘ0(θ)− ζIΘ1(θ))

∫
φ(s)dP (s) + ζIΘ1(θ)

= IΘ0(θ) max
P∈Pθ

∫
φ(s)dP (s)− ζIΘ1(θ) min

P∈Pθ

∫
φ(s)dP (s) + ζIΘ1(θ)

=

∫
φ(s)dν∗θ (s)IΘ0(θ) + ζ(1−

∫
φ(s)dνθ(s))IΘ1(θ), (134)

where the third equality follows from the fact that IΘ0(θ) − ζIΘ1(θ) > 0 if and only if IΘ0(θ) = 1 (and

IΘ0(θ)− ζIΘ1(θ) ≤ 0 if and only if IΘ1(θ) = 1). The last equality follows from core(νθ) = Pθ by Theorem

3 in Philippe, Debs, and Jaffray (1999) and the fact that, for any nonnegative bounded function g on S,∫
gdν ≤

∫
gdP ≤

∫
gdν∗ for all P ∈ core(ν). Using this, write

r(µ, φ) ≡
∫

Θ
R(θ, φ)dµ(θ)

= τ

∫ ∫
φ(s)IΘ0(θ)dν∗θ (s)dµ0(θ) + ζ(1− τ)(1−

∫ ∫
φ(s)IΘ1(θ)dνθ(s)dµ1(θ)). (135)

By Lemma A.1, for each νθ, there is a unique Borel probability measure Mθ on K(S) such that

νθ(A) = Mθ(K ⊂ A), ∀A ⊂ S. (136)

Let q be a σ-finite measure on K(S) such that Mθ � q. Let Mκ1 be a Borel probability measure on K(S)
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such that dMκ1/dq =
∫

Θ1

dMθ
dq dµ1(θ). For any A ⊂ S, it then follows that

∫

Θ1

νθ(A)dµ1(θ) =

∫

Θ1

Mθ(K ⊂ A)dµ1(θ)

=

∫

Θ1

∫

K(S)
1{K ⊂ A}dMθdµ1(θ)

=

∫

K(S)
1{K ⊂ A}

∫

Θ1

dMθ

dq
dµ1(θ)dq(K)

=

∫

K(S)
1{K ⊂ A}dMκ1(K)

=

∫

S
1{s ∈ A}dκ1(s)

= κ1(A), (137)

where the third equality follows from Fubini’s theorem. The existence and uniqueness of κ1 follows again

from Choquet’s theorem (Lemma A.1). Note that by φ ≥ 0 and the definition of the Choquet integral, one

can show by the same argument

∫ ∫
φ(s)IΘ1(θ)dνθ(s)dµ1(θ) =

∫

Θ1

∫
inf
s∈K

φ(s)dMθ(K)dµ1(θ)

=

∫
inf
s∈K

φ(s)

∫

Θ1

dMθ

dq
dµ1(θ)dq(K)

=

∫
φ(s)dκ1(s), (138)

where the second equality follows from Fubini’s theorem. Similarly, it follows that

∫ ∫
φ(s)IΘ0(θ)dν∗θ (s)dµ0(θ) =

∫
φ(s)dκ∗0(s). (139)

By (135), (138), and (139), we have

r(µ, φ) = τ

∫
φ(s)dκ∗0(s) + ζ(1− τ)(1−

∫
φ(s)dκ1(s)). (140)

Therefore, (85) holds. Minimizing the BDS risk is then equivalent to minimizing

r̃t(µ, φ) = t

∫
φ(s)dκ∗0(s)−

∫
φ(s)dκ1(s), (141)

where t = τ/ζ(1− τ) > 0. Let A ≡ {s : φ(s) > 0}. Minimizing the risk function above with respect to φ is

then equivalent to minimizing the 2-alternating function wt(A) ≡ tκ∗0(A) − κ1(A) with respect to A ⊂ S.

By Lemmas 3.1 and 3.2 in HS, for each t ∈ [0,∞], there exists a set At ⊂ S such that

wt(At) = inf
A⊂S

wt(A), (142)

and {At, t ≥ 0} forms an increasing family of sets. Now define Λ(s) ≡ inf{t|s ∈ At}. By Theorem 4.1 in

HS, the conclusion of the theorem then follows.

Proof of Theorem 5.1. Note that µ1 is fixed throughout andM = {µ : µ = τµ0+(1−τ)µ1, µ0 ∈ ∆(Θ0), τ ∈
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[0, 1]}. In what follows, we therefore redefine R in (84) as

R(θ, φ) =

∫
φ(s)dν∗θ (s)IΘ0(θ) + ζ(1−

∫
φ(s)dκ1(s))IΘ1(θ)

= R0(θ, φ)IΘ0(θ) +R1(φ)IΘ1(θ), (143)

where κ1 =
∫

Θ1
νθdµ1(θ). First, we show supµ∈M infφ∈Φ

∫
R(θ, φ)dµ ≤ infφ∈Φ supθ∈ΘR(θ, φ). This follows

because for any (θ, φ), one has infφ′ R(θ, φ′) ≤ R(θ, φ) ≤ supθ′ R(θ′, φ), and hence

sup
θ

inf
φ′
R(θ, φ′) ≤ inf

φ
sup
θ′
R(θ′, φ).

Note that supθ infφ′ R(θ, φ′) ≥ infφ∈Φ

∫
R(θ, φ)dµ for any µ, and hence, the first claim follows.

The other direction follows from Lemma C.1. To see this, let

β ≡ sup
µ∈M

inf
φ∈Φ

∫
R(θ, φ)dµ. (144)

If β = ∞, the result is trivial. If β < ∞, set f(θ) = β for all θ ∈ Θ. By construction, f(θ) ≥
infφ∈Φ

∫
R(θ, φ)dµ for every µ. By Lemma C.1, this is equivalent to the existence of φ† ∈ Φ such that

β ≥ R(θ, φ†), ∀θ ∈ Θ. This implies

β ≥ sup
θ∈Θ

R(θ, φ†) ≥ inf
φ∈Φ

sup
θ∈Θ

R(θ, φ). (145)

Finally, observe that by (143), supθ∈ΘR(θ, φ) = supθ∈Θ0
R0(θ, φ) ∨R1(φ). This completes the proof.

C Auxiliary Lemmas

Below, we identify each decision function (randomized test) φ with a Markov kernel φ : S ×B{0,1} → [0, 1]

and let Φ be the set of all decision functions. We then equip Φ with the weak topology (see Häusler

and Luschgy, 2015, Definition 2.2). The following lemma is an analog of Lemma 46.1 in Strasser (1985)

for the BDS risk. We state it as a lemma because the BDS risk R is defined through Choquet integrals

with respect to capacities (instead of measures) and hence Lemma 46.1 in Strasser (1985) is not directly

applicable.46

Lemma C.1. Suppose S is finite and Θ is compact. Let R be defined as in (84). For every f : Θ → R,

the following assertions are equivalent.

(i) There exists φ ∈ Φ such that f(θ) ≥ R(θ, φ) for every θ ∈ Θ.

(ii)
∫
fdµ ≥ infφ∈Φ

∫
R(θ, φ)dµ(θ) for every µ ∈ ∆(Θ).

Proof. The implication (i) ⇒ (ii) is obvious. We therefore prove the other implication. Consider the

46They also show their results to generalized decision functions, which we do not pursue here.
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following sets of functions:

M1 = {f}, M2 = {h ∈ C(Θ) : h(·) = R(·, φ), φ ∈ Φ}.

We mimic the proof of Lemma 46.1 in Strasser (1985) while replacing M2 with the set above. For this, let

M ⊆ C(Θ) be an arbitrary set. For any m ∈ ∆(Θ), the lower envelope of M is defined as

ψM (m) ≡ inf{
∫
fdm, f ∈M}. (146)

Also define α(M) ≡ ⋃f∈M{g ∈ C(Θ) : f ≤ g}. This is the set of continuous functions that dominate some

function in M . Since M2 is compact by Lemma C.3, α(M2) is closed and hence coincides with its closure

α(M2) (Strasser, 1985, Remark 45.4).

By (ii), ψM2(m) ≤ ψM1(m) for all m ∈ ∆(Θ). By Lemma C.2, M2 is subconvex. Then, by Theorem

45.6 in Strasser (1985), for every f ∈M1, there is g ∈ α(M2) = α(M2) such that g ≤ f . By the construction

of α(M2), this means there exists φ ∈ Φ such that

R(·, φ) ≤ g(·) ≤ f(·). (147)

This completes the proof.

Below, a set M is said to be subconvex, if for any α ∈ (0, 1) and h1, h2 ∈M, there exists h3 ∈M such

that h3 ≤ αh1 + (1− α)h2.

Lemma C.2. M2 is subconvex.

Proof. Let h1, h2 ∈ M2. Then, there exist φ1, φ2 ∈ Φ such that hj(·) = R(·, φj), j = 1, 2. Therefore, for

any α ∈ (0, 1),

αh1(θ) + (1− α)h2(θ) =αR(θ, φ1) + (1− α)R(θ, φ2)

=ζ
(
α

∫
φ1(s)dν∗θ (s) + (1− α)

∫
φ2(s)dν∗θ (s)

)
IΘ0(θ)

+
(
α(1−

∫
φ1(s)dνθ(s)) + (1− α)(1−

∫
φ2(s)dνθ(s))

)
IΘ1(θ). (148)

Note that ν∗θ is 2-alternating. Therefore, the Choquet integral with respect to ν∗θ is subadditive. The

Choquet integral is also positively homogeneous. Therefore,

α

∫
φ1(s)dν∗θ (s) + (1− α)

∫
φ2(s)dν∗θ (s) =

∫
αφ1(s)dν∗θ (s) +

∫
(1− α)φ2(s)dν∗θ (s)

≥
∫
αφ1(s) + (1− α)φ2(s)dν∗θ (s). (149)

Similarly, by the 2-monotonicity of νθ, the Choquet integral with respect to it is superadditive and positively

homogeneous. Therefore,

α(1−
∫
φ1(s)dνθ(s)) + (1− α)(1−

∫
φ2(s)dνθ(s)) ≥ 1−

∫
αφ1(s) + (1− α)φ2(s)dνθ(s). (150)
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Combining (148)-(150), we obtain αh1(·) + (1 − α)h2(·) ≥ h3(·), where h3(·) = R(·, φ3) with φ3 = αφ1 +

(1− α)φ2. Hence, h3 ∈M2. Conclude that M2 is subconvex.

Lemma C.3. Suppose that S is finite and Θ is compact. Then, M2 is weakly compact.

Proof. Equip M2 with the weak topology. Let % be the counting measure. We let Φ = K1(%) denote

the set of Markov kernels equipped with the weak topology. It is the coarsest topology that makes any

functional of the following form continuous:

T (φ) =

∫

S

∫

{0,1}
h(a)φ(s, da)f(s)d%(s), f ∈ L1

%(S), h ∈ Cb({0, 1}). (151)

By Theorem 2.7 in Häusler and Luschgy (2015), Φ is compact if the set %Φ ≡ {%φ : %φ(·) =
∫
S φ(s, ·)d%(s), φ ∈

Φ} is relatively compact in ∆({0, 1}). Note that {0, 1} is compact. Hence, %Φ is uniformly tight, which

implies that %Φ is relatively compact by Prohorov’s theorem (van der Vaart and Wellner, 1996, Problem

1.12.1). This ensures the compactness of Φ.

Below, let K(S) the set of all nonempty (and necessarily closed) subsets of S. By Choquet’s theorem,

a belief function νθ can be expressed by its canonical representation (K(S),K, m̂θ), where K is a random

set following a probability measure m̂θ on K(S) such that νθ(A) = m̂θ(K ⊂ A) for all A ∈ K(S). Below,

we adopt this canonical representation and also denote the measure on K(S) by mθ rather than m̂θ. We

also note that we write φ(s) =
∫
{0,1} φ(s, da) in what follows.

Define g : Φ→ C(Θ) pointwise by φ 7→ R(·, φ). We argue that this map is continuous, where we equip

Φ and C(Θ) with weak topologies. Let φn, n = 1, 2, · · · be a sequence such that φn → φ ∈ Φ weakly.

∫

S

∫

{0,1}
φn(s, da)dν∗θ (s) =

∫

S
φn(s)dν∗θ (s) =

∫

S
max
s∈K

φn(s)dmθ(K) (152)

Since S is finite and 1{s = s′} ∈ L1
%(S) for any s′ ∈ S, φn converging weakly implies

φn(s′) =
∑

s∈S
φn(s)1{s = s′} →

∑

s∈S
φ(s)1{s = s′} = φ(s′), ∀s′ ∈ S. (153)

Therefore, φn converges pointwise to φ.

Fix K ∈ K(S). Note that (s, n) 7→ φn(s) is continuous with respect to the discrete topology. By Berge’s

maximum theorem, maxs∈K φn(s)→ maxs∈K φ(s). Hence,

lim
n→∞

∫

S

∫

{0,1}
φn(s, da)dν∗θ (s) = lim

n→∞

∫

S
max
s∈K

φn(s)dmθ(K)

=

∫

S
lim
n→∞

max
s∈K

φn(s)dmθ(K)

=

∫

S
max
s∈K

φ(s)dmθ(K)

=

∫

S
φ(s)dν∗θ (s)

=

∫

S

∫

{0,1}
φ(s, a)dν∗θ (s). (154)
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where the second equality follows from the convergence of maxs∈K φn(s) and the dominated convergence

theorem.

Consider any finite Borel measure µ on Θ. The result above and the dominated convergence theorem

imply

lim
n→∞

∫

Θ

∫

S

∫

{0,1}
φn(s, da)dν∗θ (s)IΘ0(θ)dµ(θ) =

∫

Θ
lim
n→∞

∫

S

∫

{0,1}
φn(s, da)dν∗θ (s)IΘ0(θ)dµ(θ) (155)

=

∫

Θ

∫

S

∫

{0,1}
φ(s, da)dν∗θ IΘ0(θ)dµ(θ). (156)

By a similar argument, one can also show

lim
n→∞

∫

Θ

∫

S

∫

{0,1}
φn(s, da)dνθ(s)IΘ1(θ)dµ(θ) =

∫

Θ
lim
n→∞

∫

S

∫

{0,1}
φn(s, da)dνθ(s)IΘ1(θ)dµ(θ) (157)

=

∫

Θ

∫

S

∫

{0,1}
φ(s, da)dνθIΘ1(θ)dµ(θ). (158)

Note that Θ is a compact set in a metric space. Corollary 14.15 in Aliprantis and Border (2006) then

ensures that the dual space of C(Θ) is the set of finite Borel measures on Θ. Combining these results

and noting that R(θ, φ) = ζ
∫
S

∫
{0,1} φ(s, da)dν∗θ IΘ0(θ) + (1 −

∫
S

∫
{0,1} φ(s, da)dνθ)IΘ1(θ), it follows that

R(·, φn)→ R(·, φ) in C(Θ) with respect to the weak topology. This establishes that g is continuous. Hence,

M2 is the continuous image of a compact set. Conclude that M2 is weakly compact.

D Examples

D.1 Example 1: Binary response game

In this section, we provide details on Example 1 including the computation of the belief function, least

favorable pair, and minimax test. Recall that S = {(0, 0), (1, 1), (1, 0), (0, 1)}. There exist 14 subsets to

be considered (without considering the empty set and S). One can then compute the the lower and upper

bounds of the probability of each event by mimicking the calculation in (20). The results are summarized

in Table 2.

D.1.1 LFP

The following proposition characterizes the LFP and minimax tests.

Proposition D.1. Let (S,U,Θ, G) be as defined in Example 1. Suppose that u follows the bivariate

standard normal distribution. Let α ∈ (0, 1/4), θ0 = (0, 0)′, and θ1 < 0. Then, for any j ∈ J = {I, II, III},
the density of Q0 is (q0(0, 0), q0(1, 1), q0(1, 0), q0(0, 1)) = (1

4 ,
1
4 ,

1
4 ,

1
4). The densities of Q1 for θ1 ∈ Θj , j ∈ J

and minimax tests are as in Table 1.

Proof of Proposition D.1. First, observe that the upper and lower probabilities of A1, · · · , A4 fully charac-
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Table 2: The lower and upper probability bounds

A νθ(A) = minP (A) ν∗θ = maxP (A)

A1 = {(0, 0)} 1
4

1
4

A2 = {(1, 1)} Φ(θ(1))Φ(θ(2)) Φ(θ(1))Φ(θ(2))

A3 = {(0, 1)} 1
4 − Φ(θ(1))Φ(θ(2)) + Φ(θ(2))

2
1
2(1− Φ(θ(1)))

A4 = {(1, 0)} 1
4 − Φ(θ(1))Φ(θ(2)) + Φ(θ(1))

2
1
2(1− Φ(θ(2)))

A5 = {(0, 0), (1, 1)} 1
4 + Φ(θ(1))Φ(θ(2)) 1

4 + Φ(θ(1))Φ(θ(2))

A6 = {(0, 0), (0, 1)} 1
2 − Φ(θ(1))Φ(θ(2)) + Φ(θ(2))

2
3
4 −

Φ(θ(1))
2

A7 = {(0, 0), (1, 0)} 1
2 − Φ(θ(1))Φ(θ(2)) + Φ(θ(1))

2
3
4 −

Φ(θ(2))
2

A8 = Ac6 = {(1, 1), (1, 0)} 1
4 + Φ(θ(1))

2
1
2(1− Φ(θ(2))) + Φ(θ(1))Φ(θ(2))

A9 = Ac7 = {(1, 1), (0, 1)} 1
4 + Φ(θ(2))

2
1
2(1− Φ(θ(1))) + Φ(θ(1))Φ(θ(2))

A10 = Ac5 = {(1, 0), (0, 1)} 3
4 − Φ(θ(1))Φ(θ(2)) 3

4 − Φ(θ(1))Φ(θ(2))
A11 = Ac1 = {(1, 1), (1, 0), (0, 1)} 3

4
3
4

A12 = Ac2 = {(0, 0), (1, 0), (0, 1)} 1− Φ(θ(1))Φ(θ(2)) 1− Φ(θ(1))Φ(θ(2))

A13 = Ac3 = {(0, 0), (1, 1), (1, 0)} 1
2 + Φ(θ(1))

2
3
4 −

Φ(θ(2))
2 + Φ(θ(1))Φ(θ(2))

A14 = Ac4 = {(0, 0), (1, 1), (0, 1)} 1
2 + Φ(θ(2))

2
3
4 −

Φ(θ(1))
2 + Φ(θ(1))Φ(θ(2))

S = {(0, 0), (1, 1), (1, 0), (0, 1)} 1 1

terize the constraints in the convex program. To see this, observe that, for example,

νθ(A5) = mθ(G(u|θ) ⊂ {(0, 0), (1, 1)})

= mθ(G(u|θ) = {(0, 0)}) +mθ(G(u|θ) = {(1, 1)}) = νθ(A1) + νθ(A2) =
1

4
+ Φ(θ(1))Φ(θ(2)), (159)

where we note that the additivity of νθ for this event is due to the form of the correspondence in (2) and

does not hold in general. One can compute νθ(A6) and νθ(A7) similarly. The upper bounds ν∗θ (Aj) for

j = 8, · · · , 14 can then be computed using the conjugacy of νθ and ν∗θ . Similarly, the upper bounds ν∗θ (Aj)

for j = 1, · · · , 7 imply the lower bounds νθ(Aj) for j = 8, · · · , 14.

In sum, it suffices to impose the constraints that arise from the upper and lower probabilities of

A1, · · · , A4. Further, q0(0, 0) = q1(0, 0) = 1/4 regardless of the parameter value. This allows to simplify

the convex program as

min
(q0,q1)

− ln(
q0(1, 1)

q0(1, 1) + q1(1, 1)
)(q0(1, 1) + q1(1, 1))− ln(

q0(1, 0)

q0(1, 0) + q1(1, 0)
)(q0(1, 0) + q1(1, 0))

− ln(
q0(0, 1)

q0(0, 1) + q1(0, 1)
)(q0(0, 1) + q1(0, 1))

s.t.
1

4
− Φ(θ

(1)
1 )Φ(θ

(2)
1 ) +

Φ(θ
(2)
1 )

2
≤ q1(0, 1) ≤ 1

2
(1− Φ(θ

(1)
1 )) (160)

1

4
− Φ(θ

(1)
1 )Φ(θ

(2)
1 ) +

Φ(θ
(1)
1 )

2
≤ q1(1, 0) ≤ 1

2
(1− Φ(θ

(2)
1 )) (161)

q1(1, 1) = Φ(θ
(1)
1 )Φ(θ

(2)
1 ) (162)

q1(1, 1) + q1(1, 0) + q1(0, 1) =
3

4
(163)

q0(1, 1) = q0(1, 0) = q0(0, 1) =
1

4
. (164)
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Note that (162)-(164) imply that the values of q0(1, 1), q0(1, 0), q0(0, 1), and q1(1, 1) are determined uniquely.

Hence, it remains to optimize the problem with respect to q1(1, 0) and q1(0, 1). For this, let y = q1(1, 0).

Then, one may write q1(0, 1) = 3/4−Φ(θ
(1)
1 )Φ(θ

(2)
1 )−y due to (163) and (164). Hence, the problem reduces

to an optimization problem with a single control variable. Using this, define the Lagrangian by

L(y, λ) ≡ − ln

(
1/4

1/4 + y

)
(
1

4
+ y)− ln

(
1/4

1
4 + 3

4 − Φ(θ
(1)
1 )Φ(θ

(2)
1 )− y

)
(
1

4
+

3

4
− Φ(θ

(1)
1 )Φ(θ

(2)
1 )− y)

− λ1

(1

2
− Φ(θ

(2)
1 )

2
− y
)
− λ2

(
y − 1

4
− Φ(θ

(1)
1 )

2
+ Φ(θ

(1)
1 )Φ(θ

(2)
1 )
)
. (165)

By Theorem 28.3 in Rockafellar (1972), the saddle point of the Lagrangian characterizes the optimal

solution of the original problem. The Karush-Kuhn-Tucker (KKT) conditions are as follows:

1− ln

(
1/4

1/4 + y

)
− 1 + ln

(
1/4

1− Φ(θ
(1)
1 )Φ(θ

(2)
1 )− y

)
+ λ1 − λ2 = 0 (166)

λ1

(1

2
− Φ(θ

(2)
1 )

2
− y
)

= 0 (167)

λ2

(
y − 1

4
− Φ(θ

(1)
1 )

2
+ Φ(θ

(1)
1 )Φ(θ

(2)
1 )
)

= 0 (168)

λ1, λ2 ≥ 0. (169)

Below, we consider three cases based on the value of the Lagrange multipliers.

Case 1 (λ1 = λ2 = 0): Suppose that λ1 = 0 and λ2 = 0. Then, the solution from (166) is

y =
3

8
− Φ(θ

(1)
1 )Φ(θ

(2)
1 )

2
. (170)

Substituting this into the complementary slackness conditions (167) and (168) yields

1

2
− Φ(θ

(2)
1 )

2
− 3

8
+

Φ(θ
(1)
1 )Φ(θ

(2)
1 )

2
≥ 0,

3

8
− Φ(θ

(1)
1 )Φ(θ

(2)
1 )

2
− 1

4
− Φ(θ

(1)
1 )

2
+ Φ(θ

(1)
1 )Φ(θ

(2)
1 ) ≥ 0, (171)

which can be simplified as

Φ(θ
(2)
1 )(1− Φ(θ

(1)
1 )) ≤ 1

4
, Φ(θ

(1)
1 )(1− Φ(θ

(2)
1 )) ≤ 1

4
. (172)

By y = q1(1, 0), q1(0, 1) = 3/4− Φ(θ
(1)
1 )Φ(θ

(2)
1 )− y, and (170), the LFP is

(q0(0, 0), q0(1, 1), q0(1, 0), q0(0, 1)) =
(1

4
,
1

4
,
1

4
,
1

4

)
(173)

(q1(0, 0), q1(1, 1), q1(1, 0), q1(0, 1)) =
(1

4
,Φ(θ

(1)
1 )Φ(θ

(2)
1 ),

3− 4Φ(θ
(1)
1 )Φ(θ

(2)
1 )

8
,
3− 4Φ(θ

(1)
1 )Φ(θ

(2)
1 )

8

)
. (174)

15



Hence, the likelihood-ratio statistic is given by

Λ(s) =





1 s = (0, 0)

4Φ(θ
(1)
1 )Φ(θ

(2)
1 ) s = (1, 1)

3−4Φ(θ
(1)
1 )Φ(θ

(2)
1 )

2 s = (1, 0)

3−4Φ(θ
(1)
1 )Φ(θ

(2)
1 )

2 s = (0, 1).

(175)

UnderQ0, Λ(s) is supported on {4Φ(θ
(1)
1 )Φ(θ

(2)
1 ), 1, (3−4Φ(θ

(1)
1 )Φ(θ

(2)
1 ))/2} with probabilities (1/4, 1/4, 1/2).

For θ(j) < 0, j = 1, 2, one has 4Φ(θ
(1)
1 )Φ(θ

(2)
1 ) < 1 < (3−4Φ(θ

(1)
1 )Φ(θ

(2)
1 ))/2. The largest value of the support

is therefore (3− 4Φ(θ
(1)
1 )Φ(θ

(2)
1 ))/2. Setting C to this value and solving

α = EQ0 [φ(s)] = γQ0(π(s) ≥ C) = γQ0

(
s = (1, 0) ∪ s = (0, 1)

)
=
γ

2
, (176)

one obtains γ = 2α. This gives the level-α minimax test.

Case 2 (λ1 = 0 and λ2 > 0): Suppose that λ1 = 0 and λ2 > 0. By the complementary slackness condition

(168), the solution is obtained at the lower bound y = 1
4 − Φ(θ

(1)
1 )Φ(θ

(2)
1 ) +

Φ(θ
(1)
1 )
2 . Substituting this into

(166) and noting that λ1 = 0, we have

λ2 = ln

( 1
2 − Φ(θ

(1)
1 )Φ(θ

(2)
1 ) +

Φ(θ
(1)
1 )
2

3
4 −

Φ(θ
(1)
1 )
2

)
. (177)

The difference between the numerator and denominator in the logarithm above is

1

2
− Φ(θ

(1)
1 )Φ(θ

(2)
1 ) +

Φ(θ
(1)
1 )

2
− (

3

4
− Φ(θ

(1)
1 )

2
) = Φ(θ

(1)
1 )(1− Φ(θ

(2)
1 )− 1

4
. (178)

Therefore, λ2 > 0 if and only if Φ(θ
(1)
1 )(1−Φ(θ

(2)
1 ) > 1/4. Similarly, the complementary slackness condition

(167) is satisfied with λ1 = 0 and y = 1
4−Φ(θ

(1)
1 )Φ(θ

(2)
1 )+

Φ(θ
(1)
1 )
2 . Note that the constraint 1

2−
Φ(θ

(2)
1 )
2 −y ≥ 0

is trivially satisfied because

1

2
− Φ(θ

(2)
1 )

2
− y =

1

2
− Φ(θ

(2)
1 )

2
−
(

1

4
− Φ(θ

(1)
1 )Φ(θ

(2)
1 ) +

Φ(θ
(1)
1 )

2

)
(179)

= (
1

2
− Φ(θ

(1)
1 ))(

1

2
− Φ(θ

(2)
1 )) ≥ 0, (180)

where the last inequality follows from θ
(j)
1 ≤ 0 for j = 1, 2. Hence, if Φ(θ

(1)
1 )(1 − Φ(θ

(2)
1 )) > 1

4 , the least

favorable pair is

(q0(0, 0), q0(1, 1), q0(1, 0), q0(0, 1)) =
(1

4
,
1

4
,
1

4
,
1

4

)
(181)

(q1(0, 0), q1(1, 1), q1(1, 0), q1(0, 1)) =
(1

4
,Φ(θ

(1)
1 )Φ(θ

(2)
1 ),

1

4
− Φ(θ

(1)
1 )(Φ(θ

(2)
1 )− 1

2
),

1

2
(1− Φ(θ

(1)
1 ))

)
, (182)

where we used y = q1(1, 0), q1(0, 1) = 3/4− Φ(θ
(1)
1 )Φ(θ

(2)
1 )− y, and y = 1

4 − Φ(θ
(1)
1 )Φ(θ

(2)
1 ) +

Φ(θ
(1)
1 )
2 . The

rest of the analysis is similar to Case 1.
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Case 3 (λ1 > 0 and λ2 = 0): The argument is similar to the one for Case 2. Hence, we omit the proof.

D.1.2 Efficient influence function and optimal tests

Proposition D.2. Suppose that the conditions of Proposition D.1 hold. Let p = (p(1), p(2))′ with p(j) < 0

for j = 1, 2 and let ϕ(θ) = p′θ. Then, Assumption 3.2 holds.

Proof of Proposition D.2. (i) Observe that {ξ ∈ Θ − θ0 : ϕ(θ0 + ξ) > 0} = {ξ ∈ (−∞, 0]2 : ξ(1) <

0, or ξ(2) < 0}, which is indeed a convex cone; (ii) Let J = {I, II, III} and let {Tj(θ0), j ∈ J} be defined as

in (51)-(53). These cones satisfy the requirements in Assumption 3.2 (ii); (iii) Based on Table 1, let QI,θ

be a model with the following density

(qI,θ(0, 0), qI,θ(1, 1), qI,θ(1, 0), qI,θ(0, 1))

=
(1

4
,Φ(θ(1))Φ(θ(2)),

3− 4Φ(θ(1))Φ(θ(2))

8
,
3− 4Φ(θ(1))Φ(θ(2))

8

)
. (183)

Similarly, for j = II and III, let qj be defined accordingly based on Table 1. By Proposition D.1, for each

j ∈ J, the LFP (Q0,j,τh, Q1,j,τh) ∈ Pθ0 × Pθ0+τh satisfies

Q0,j,τh = Qj,θ0 , and Q1,j,τh = Qj,θ0+τh, (184)

for all τ ∈ (0, τ̄ ] for some τ̄ > 0. Furthermore, θ 7→ Qj,θ is L2 differentiable at θ0 tangentially to Tj(θ0) by

Proposition D.3.

Proposition D.3. Suppose that the conditions of Proposition D.1 hold. Let p = (p(1), p(2))′ with p(j) < 0

for j = 1, 2 and let ϕ(θ) = p′θ. Then, for each j ∈ {I, II, III}, the model θ 7→ Qj,θ is L2 differentiable at θ0

tangentially to Tj(θ0). Furthermore, the efficient influence functions are

%̃I(s) =
2
√

2π

3
(p(1) + p(2))1{s = (1, 1)} −

√
2π

3
(p(1) + p(2))(1{s = (1, 0)}+ 1{s = (0, 1)} (185)

%̃II(s) = (b
(1)
II (p) + b

(2)
II (p))1{s = (1, 1)} − b(2)

II (p)1{s = (1, 0)} − b(1)
II (p)1{s = (0, 1)} (186)

%̃III(s) = (b
(1)
III (p) + b

(2)
III (p))1{s = (1, 1)} − b(1)

III (p)1{s = (1, 0)} − b(2)
III (p)1{s = (0, 1)}, (187)

where

bII(p) = arg min
b(2)≤b(1)≤0

1

4
[(
√

2πp− b)′1]2 +
1

4
(
√

2πp(2) − b(2))2 +
1

4
(
√

2πp(1) − b(1))2 (188)

bIII(p) = arg min
b(1)≤b(2)≤0

1

4
[(
√

2πp− b)′1]2 +
1

4
(
√

2πp(1) − b(1))2 +
1

4
(
√

2πp(2) − b(2))2. (189)

Proof of Proposition D.3. Case I: First, we consider the case in which h ∈ TI(θ0). Let

˙̀
I,θ0 ≡ 1{si = (1, 1)}

(
2√
2π
2√
2π

)
+ (1{si = (1, 0)}+ 1{si = (0, 1)})

( −1√
2π
−1√
2π

)
. (190)
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Let qI,θ denote the density of QI,θ. Then, by Proposition D.1 (Case I), for h = (h̄, h̄)′ ∈ TI(θ0),

q
1/2
I,θ0+τh − q

1/2
I,θ0

=
(1

2
1{s = (0, 0)}+ Φ(τ h̄)1{s = (1, 1)}+

(3− 4Φ(τ h̄)2

8

) 1
2
(1{s = (1, 0)}+ 1{s = (0, 1)})

)

− 1

2

(
1{s = (0, 0)}+ 1{s = (1, 1)}+ 1{s = (1, 0)}+ 1{s = (0, 1)}

)

= (Φ(τ h̄)− 1/2)1{s = (1, 1)}+
((3− 4Φ(τ h̄)2

8

) 1
2 − 1

2

)(
1{s = (1, 0)}+ 1{s = (0, 1)}

)

= (Φ(0) + Φ′(0)τ h̄+ o(τ)− 1/2)1{s = (1, 1)}

+
((3− 4Φ(0)2

8

) 1
2 − 1

2

(3− 4Φ(0)2

8

)− 1
2
Φ(0)Φ′(0)τ h̄+ o(τ)− 1

2

)(
1{s = (1, 0)}+ 1{s = (0, 1)}

)

= (
1√
2π
τh̄+ o(τ))1{s = (1, 1)} − (

1

2
√

2π
τh̄+ o(τ))

(
1{s = (1, 0)}+ 1{s = (0, 1)}

)
, (191)

where the third equality follows from taking a Taylor expansion of q
1/2
I,θ0+τh with respect to τ at 0.

Note that, by (190), h = (h̄, h̄)′, and q
1/2
I,θ0

= 1
2(1{s = (0, 0)} + 1{s = (1, 1)} + 1{s = (1, 0)} + 1{s =

(0, 1)}) by Proposition D.1, it follows that

1

2
τh′ ˙̀I,θ0q

1/2
I,θ0

=
1√
2π
τh̄1{s = (1, 1)} − 1

2
√

2π
τh̄
(

1{s = (1, 0)}+ 1{s = (0, 1)}
)

(192)

By (191), (192), and the triangle and Cauchy-Schwarz inequalities, for any given h ∈ TI(θ0),

∥∥∥q1/2
I,θ0+τh − q

1/2
I,θ0

(1 +
1

2
τh′ ˙̀I,θ0)

∥∥∥
L2
µ

= o(τ). (193)

This establishes that ˙̀
I,θ0 in (190) is the L2 derivative for h ∈ TI(θ0). Therefore, the tangent cone is

GI,θ0 =
{
g ∈ L2

Qθ0
: g =

4h̄√
2π

1{s = (1, 1)} − 2h̄√
2π

(1{s = (1, 0)}+ 1{s = (0, 1)}), h̄ ≤ 0
}

=
{
g ∈ L2

Qθ0
: g = 2b1{s = (1, 1)} − b(1{s = (1, 0)}+ 1{s = (0, 1)}), b ≤ 0

}
. (194)

Let p = (p(1), p(2))′ with p(j) < 0 for j = 1, 2. The influence curve %I must satisfy

p′h = EQI,θ0

[
%Ih
′`θ0
]
. (195)

Let b < 0 and let %I = 2b1{s = (1, 1)} − b(1{s = (1, 0)}+ 1{s = (0, 1)}. Then,

EQI,θ0

[
%Ih
′`θ0
]

=
8bh̄√

2π
EQI,θ0

[1{s = (1, 1)}] +
2bh̄√

2π
(EQI,θ0

[1{s = (1, 0)}] + EQI,θ0
[1{s = (0, 1)}]) (196)

=
2bh̄√

2π
+

bh̄√
2π

=
3bh̄√

2π
. (197)

Note that p′h = (p(1) + p(2))h̄, and hence setting b =
√

2π
3 (p(1) + p(2)) gives the following efficient influence

function as a projection of the influence curve on the closure of GI,θ0 :

%̃I =
2
√

2π

3
(p(1) + p(2))1{s = (1, 1)} −

√
2π

3
(p(1) + p(2))(1{s = (1, 0)}+ 1{s = (0, 1)}.
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Case II: Suppose h ∈ TII(θ0). Arguing as in Case I, it can be shown that

˙̀
II,θ0(s) = 1{s = (1, 1)}

(
2√
2π
2√
2π

)
+ 1{s = (1, 0)}

(
0
−2√
2π

)
+ 1{s = (0, 1)}

( −2√
2π

0

)
(198)

is the L2 derivative when h ∈ TII(θ0). Therefore, the tangent cone can be written

GII,θ0 =
{
g ∈ L2

Qθ0
: g = (b(1) + b(2))1{s = (1, 1)} − b(2)1{s = (1, 0)} − b(1)1{s = (0, 1)},

−∞ < b(2) < b(1) ≤ 0
}
. (199)

Let %II(s) ≡ (
√

2πp(1) +
√

2πp(2))1{s = (1, 1)} −
√

2πp(2)1{s = (1, 0)} −
√

2πp(1)1{s = (0, 1)}. It is

straightforward to show %II is an influence curve for ϕ. The efficient influence function is then given by

the projection of %II onto cl(GII,θ0), which is %̃II = arg ming∈cl(GII,θ0 ) ‖%II − g‖2L2
QII,θ0

. Note that b 7→ b′ ˙̀II,θ0

is a continuous map from TII(θ0) to GII,θ0 by ˙̀
II,θ0 being square integrable. Hence, the efficient influence

function %̃II is as given in (186) with

bII(p) = arg min
b∈cl(TII(θ0))

EQθ0

[
(%II − ((b(1) + b(2))1{s = (1, 1)} − b(2)1{s = (1, 0)} − b(1)1{s = (0, 1)}))2

]

= arg min
b(2)≤b(1)≤0

1

4
[(
√

2πp− b)′1]2 +
1

4
(
√

2πp(2) − b(2))2 +
1

4
(
√

2πp(1) − b(1))2.

The analysis of Case III (h ∈ TIII(θ0)) is similar to the one above. Therefore, we omit its proof.

D.2 Example 2: Roy model

In this section, we provide details on Example 2. Recall that S = {(0, 0), (0, 1), (1, 0), (1, 1)}, and the sharp

identifying restrictions are given as (59)-(61).

D.2.1 LFP

We start with the following characterization of the LFP for the hypotheses considered in the text. For

this, let c̄ > 0 be a known constant.

Proposition D.4. Let (S,U,G,Θ) be defined as in Example 2. Let mθ be a discrete distribution on S

whose distribution is uniquely determined by θ = (θ(0,0), θ(0,1), θ(1,0))′. Suppose (i) θ
(0,0)
0 = θ

(0,0)
1 = c̄ > 0

and θ
(1,0)
0 < 1− c̄− θ(0,1)

0 ; and (ii) θ
(1,0)
1 > 1− c̄− θ(0,1)

0 .

Case 1: If θ
(1,0)
1 < 1− c̄− θ(0,1)

1 , the densities of the LFP (Q0, Q1) ∈ Pθ0 × Pθ1 are:

(q0(0, 0), q0(0, 1), q0(1, 0), q0(1, 1)) = (
c̄

2
,
c̄

2
, 1− c̄− θ(0,1)

0 , θ
(0,1)
0 ) (200)

(q1(0, 0), q1(0, 1), q1(1, 0), q1(1, 1)) = (
c̄

2
,
c̄

2
, θ

(1,0)
1 , 1− c̄− θ(1,0)

1 ). (201)
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Case 2: If θ
(1,0)
1 = 1− c̄− θ(0,1)

1 , the densities of the LFP (Q0, Q1) ∈ Pθ0 × Pθ1 are:

(q0(0, 0), q0(0, 1), q0(1, 0), q0(1, 1)) = (
c̄

2
,
c̄

2
, 1− c̄− θ(0,1)

0 , θ
(0,1)
0 ) (202)

(q1(0, 0), q1(0, 1), q1(1, 0), q1(1, 1)) = (
c̄

2
,
c̄

2
, θ

(1,0)
1 , θ

(0,1)
1 ). (203)

Before giving the proof of the claim above, a few remarks are in order. To simplify the analysis, we

assume that θ
(0,0)
0 = θ

(0,0)
1 are known. Recall that the sharp identifying restrictions in (59)-(61) imply

θ
(1,0)
0 ≤ P0({(1, 0)}) ≤ 1− c̄− θ(0,1)

0 . (204)

The assumption θ
(1,0)
0 < 1− c̄− θ(0,1)

0 therefore makes the model incomplete at θ0. Finally, the assumption

θ
(1,0)
1 > 1− c̄− θ(0,1)

0 is equivalent to νθ1({(1, 0)}) > νθ0({(1, 0)}), which ensures that Pθ0 ∩ Pθ1 6= ∅.

Proof of Proposition D.4. The following convex program characterizes the LFP:

min
(p0,p1)∈∆3×∆3

∑

s∈{(0,0),(0,1),(1,0),(1,1)}
− ln

( p0(s)

p0(s) + p1(s)

)
(p0(s) + p1(s)) (205)

s.t. θ
(1,0)
j ≤ pj(1, 0), j = 0, 1, (206)

θ
(0,1)
j ≤ pj(1, 1), j = 0, 1, (207)

c̄ = pj(0, 0) + pj(0, 1), j = 0, 1. (208)

First, we concentrate out p0(0, 0), p1(0, 0), p0(0, 1), p1(0, 1) from the problem. The subset of the KKT

conditions that involves these components are, for s ∈ {(0, 0), (0, 1)}

− p0(s) + p1(s)

p0(s)

p0(s) + p1(s)− p0(s)

(p0(s) + p1(s))2
(p0(s) + p1(s))− ln

( p0(s)

p0(s) + p1(s)

)
− λ1 = 0 (209)

− p0(s) + p1(s)

p0(s)

−p0(s)

(p0(s) + p1(s))2
(p0(s) + p1(s))− ln

( p0(s)

p0(s) + p1(s)

)
− λ2 = 0 (210)

pj(0, 0) + pj(0, 1) = c̄, j = 0, 1. (211)

for some λ1 6= 0 and λ2 6= 0. The first two conditions can be simplified as

p1(s)

p0(s)
= 1 + λ2 − λ1, s ∈ {(0, 0), (0, 1)}, (212)

which implies p1(0,0)
p0(0,0) = p1(0,1)

p0(0,1) , and hence, if p0(0, 0) ∈ (0, c̄), p1(0,0)
p1(0,1) = p0(0,0)

p0(0,1) = β for some 0 < β < ∞.

This, together with (211) yields

(pj(0, 0), pj(0, 1)) = (
βc̄

1 + β
,

c̄

1 + β
), j = 0, 1. (213)

For example, one can take the following as a solution (qj(0, 0), qj(0, 1)) = ( c̄2 ,
c̄
2). After concentrating out

p0(0, 0), p1(0, 0), p0(0, 1), p1(0, 1), the problem becomes maximizing

min
(p0,p1)∈∆3×∆3

∑

s∈{(1,0),(1,1)}
− ln

( p0(s)

p0(s) + p1(s)

)
(p0(s) + p1(s)) (214)
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subject to the constraints in (206)-(208). The KKT conditions are

− p1(1, 0)

p0(1, 0)
− ln

( p0(1, 0)

p0(1, 0) + p1(1, 0)

)
− χ1 − χ5 = 0 (215)

− p1(1, 1)

p0(1, 1)
− ln

( p0(1, 1)

p0(1, 1) + p1(1, 1)

)
− χ3 − χ5 = 0 (216)

1− ln
( p0(1, 0)

p0(1, 0) + p1(1, 0)

)
− χ2 − χ6 = 0 (217)

1− ln
( p0(1, 1)

p0(1, 1) + p1(1, 1)

)
− χ4 − χ6 = 0 (218)

χ1(p0(1, 0)− θ(1,0)
0 ) = 0 (219)

χ2(p1(1, 0)− θ(1,0)
1 ) = 0 (220)

χ3(p0(1, 1)− θ(0,1)
0 ) = 0 (221)

χ4(p1(1, 1)− θ(0,1)
1 ) = 0. (222)

where χj ≥ 0 for j = 1, . . . , 4, and the original inequality and equality constraints are also imposed.

Case 1: (χ1 = 0, χ2 > 0, χ3 > 0, χ4 = 0)

Suppose χ3 > 0. Then, p0(1, 1) = θ
(0,1)
0 by the complementary slackness condition (221). It also implies

p0(1, 0) = 1 − c̄ − θ(0,1)
0 by p0(1, 0) + p0(1, 1) = 1 − c̄. Further, χ1 = 0 because the constraints associated

with χ1 and χ3 cannot bind simultaneously due to the assumption that θ
(1,0)
0 < 1 − c̄ − θ(0,1)

0 . Suppose

further that χ2 > 0. Then, p1(1, 0) = θ
(1,0)
1 and p1(1, 1) = 1− c̄− θ(1,0)

1 . We also assume that χ4 = 0.

Now note that (215)-(220) reduce to

− θ
(1,0)
1

1− c̄− θ(0,1)
0

− ln
( 1− c̄− θ(0,1)

0

1− c̄− θ(0,1)
0 + θ

(1,0)
1

)
− χ5 = 0 (223)

− 1− c̄− θ(1,0)
1

θ
(0,1)
0

− ln
( θ

(0,1)
0

θ
(0,1)
0 + 1− c̄− θ(1,0)

1

)
− χ3 − χ5 = 0 (224)

1− ln
( 1− c̄− θ(0,1)

0

1− c̄− θ(0,1)
0 + θ

(1,0)
1

)
− χ2 − χ6 = 0 (225)

1− ln
( θ

(0,1)
0

θ
(0,1)
0 + 1− c̄− θ(1,0)

1

)
− χ6 = 0 (226)

It can be shown that, when θ
(1,0)
1 > 1− c̄− θ(0,1)

0 , the system can be solved for (χ2, χ3, χ5, χ6) that satisfies

χj > 0 for j = 2, 3, and hence the solution (the remaining components of LFP) is

(q0(1, 0), q0(1, 1)) = (1− c̄− θ(0,1)
0 , θ

(0,1)
0 ) (227)

(q1(1, 0), q1(1, 1)) = (θ
(1,0)
1 , 1− c̄− θ(1,0)

1 ). (228)

Case 2: (χ1 = 0, χ2 > 0, χ3 > 0, χ4 > 0)

The difference from Case 1 is that χ4 > 0 is assumed. By the complementary slackness condition, this

implies p1(1, 1) = θ
(0,1)
1 , which also equals 1 − c̄ − θ(1,0)

1 due to χ2 > 0 and p1(1, 0) + p1(1, 1) = 1 − c̄.
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Therefore, the solutions are

(q0(1, 0), q0(1, 1)) = (1− c̄− θ(0,1)
0 , θ

(0,1)
0 ) (229)

(q1(1, 0), q1(1, 1)) = (θ
(1,0)
1 , θ

(0,1)
1 ). (230)

Similar to Case 1, one may show that there exists (χ2, . . . , χ6) that solves the KKT conditions with χj > 0

for j = 2, 3, 4.

D.2.2 Efficient influence function, power envelope, and optimal tests

As in Section 3.4.2, we consider testing H0 : p′θ = θ(1,0) ≤ c against H1 : p′θ > c for some c ∈ (0, 1)

with p = (0, 0, 1)′. Consider the following three configurations analyzed in the text (see also Figure 4) with

c̄ = 1
6 . In each configuration, the null and alternative parameter values are

θ0 = (θ
(0,0)
0 , θ

(0,1)
0 , θ

(1,0)
0 ) = (

1

6
,
1

2
,
1

6
) (231)

θ1 = (θ
(0,0)
1 , θ

(0,1)
1 , θ

(1,0)
1 ) =

(1

6
,
1

2
+ ξ(0,1) +

h(0,1)

√
n
,
1

6
+ ξ(1,0) +

h(1,0)

√
n

)
, (232)

where ξ and h are taken from one of the following specifications:

Case A-I : ξA = (0, ξ(0,1), ξ(1,0)) = (0, −1
6 ,

1
6),

TI(θ0, ξA) = {h = (h(0,0), h(0,1), h(1,0)) : h(0,0) = 0, h(1,0) > 0};

Case B-I : ξB = (0, ξ(0,1), ξ(1,0)) = (0, 0, 1
6),

TI(θ0, ξB) = {h = (h(0,0), h(0,1), h(1,0)) : h(0,0) = 0, h(1,0) > 0, h(0,1) + h(1,0) < 0};

Case B-II : ξB = (0, ξ(0,1), ξ(1,0)) = (0, 0, 1
6),

TII(θ0, ξB) = {h = (h(0,0), h(0,1), h(1,0)) : h(0,0) = 0, h(1,0) > 0, h(0,1) + h(1,0) = 0}.

Proposition D.5. Suppose that the conditions of Proposition D.4 hold. Let p = (0, 0, 1)′ and let ϕ(θ) = p′θ.

Then, Assumption 3.3 holds for each of the cases above. Furthermore, for all cases, the efficient influence

function is

%̃(s) =
3

5
1{s = (1, 0)} − 2

5
{s = (1, 1)}), (233)

and the asymptotic power envelope 1 − Φ
(
zα −

√
5h(1,0)

)
is achieved by a test that rejects H0 when the

following statistic exceeds zα:

TI,n =
1√
n

n∑

i=1

[ 3√
5

1{si = (1, 0)} − 2√
5

1{si = (1, 1)}
]
. (234)

Proof of Proposition D.5. We analyze the three cases separately.

Case A-I: The alternative parameter configuration satisfies the assumptions of Case 1 in Proposition D.4.
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Therefore, the LFPs are

(q0(0, 0), q0(0, 1), q0(1, 0), q0(1, 1)) = (
c̄

2
,
c̄

2
, 1− c̄− θ(0,1)

0 , θ
(0,1)
0 ) = (

1

12
,

1

12
,
1

3
,
1

2
) (235)

(q1(0, 0), q1(1, 1), q1(1, 0), q1(1, 1)) = (
c̄

2
,
c̄

2
, θ

(1,0)
1 , 1− c̄− θ(1,0)

1 ) = (
1

12
,

1

12
,
1

3
+
h(1,0)

√
n
,
1

2
− h(1,0)

√
n

). (236)

Let ϑ 7→ QI,ϑ be a model defined on a neighborhood of ϑ = 0 for which the density qI,ϑ is given by

(qI,ϑ(0, 0), qI,ϑ(1, 1), qI,ϑ(1, 0), qI,ϑ(1, 1)) = (
1

12
,

1

12
,
1

3
+ ϑ(1,0),

1

2
− ϑ(1,0)). (237)

Due to the form of the LFP, Assumption 3.3 is satisfied with the underlying model ϑ 7→ QI,ϑ. Calculations

similar to the ones in (191) can ensure that the L2-derivative is

˙̀
I,0(s) = 1{s = (1, 0)}




0

0

3


− 1{s = (1, 1)}




0

0

2


 . (238)

Hence, the tangent cone of the model is

GI,0 =
{
g ∈ L2

QI,0
: g = 3h(1,0)1{s = (1, 0)} − 2h(1,0)1{s = (1, 1)}), h(1,0) > 0

}
. (239)

The influence curve of ϕ must satisfy p′h = 〈%I, g〉L2
QI,0

for g ∈ GI,θ0+ξ. Since p = (0, 0, 1)′, %I = 3
51{s =

(1, 0)} − 2
5{s = (1, 1)}) satisfies the requirement. Observe also that %I is in GI,0 and hence in its closure.

Therefore, it is the efficient influence function, i.e. %I = %̃I, which in turn implies ‖%̃I‖L2
QI,0

= 1/
√

5. By

Theorem 3.3, for any level-α test φn,

lim sup
n→∞

πn,θn,ξA,h(φn) ≤ 1− Φ
(
zα −

√
5h(1,0)

)
. (240)

Again, by Theorem 3.3, this bound can be achieved by a test that rejects the null when the statistic in

(234) exceeds zα.

Case B-I: The alternative parameter configuration again satisfies the assumptions of Case 1 in Proposition

D.4. Therefore, the LFPs are given as in (235)-(236). The rest of the analysis parallels Case A-I and is

omitted.

Case B-II: The alternative parameter configuration satisfies the assumptions of Case 2 in Proposition

D.4. Hence, the LFP is

(q0(0, 0), q0(0, 1), q0(1, 0), q0(1, 1)) = (
c̄

2
,
c̄

2
, 1− c̄− θ(0,1)

0 , θ
(0,1)
0 ) = (

1

12
,

1

12
,
1

3
,
1

2
), (241)

(q1(0, 0), q1(0, 1), q1(1, 0), q1(1, 1)) = (
c̄

2
,
c̄

2
, θ

(1,0)
1 , θ

(0,1)
1 ) = (

1

12
,

1

12
,
1

3
+
h(1,0)

√
n
,
1

2
+
h(0,1)

√
n

) (242)

Let ϑ 7→ QII,ϑ be a model defined on a neighborhood of ϑ = 0 for which the density QII,ϑ is given by

(qII,ϑ(0, 0), qII,ϑ(1, 1), qII,ϑ(1, 0), qII,ϑ(1, 1)) = (
1

12
,

1

12
,
1

3
+ ϑ(1,0),

1

2
+ ϑ(0,1)). (243)
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Assumption 3.3 is satisfied with the underlying model ϑ 7→ QII,ϑ. Calculations similar to the ones in (191)

can ensure that the L2-derivative is

˙̀
II,0(s) = 1{s = (1, 0)}




0

0

3


+ 1{s = (1, 1)}




0

2

0


 . (244)

Recall that the local parameter space is TII(θ0, ξB) = {h = (h(0,0), h(0,1), h(1,0)) : h(0,0) = 0, h(1,0) >

0, h(0,1) + h(1,0) = 0}. Hence, the tangent cone of the model is

GII,0 =
{
g ∈ L2

QI,0
: g = 3h(1,0)1{s = (1, 0)} − 2h(1,0)1{s = (1, 1)}), h(1,0) > 0

}
, (245)

where we used h(0,1) = −h(1,0). Observe that the tangent cone coincides with the one in (239). The rest of

the analysis parallels Case A-I and is omitted.

E Computing the L2-derivative

In practice, the L2 derivative, a key object for constructing the optimal tests, can be computed by an

analytical method or a quadratic-programming method.47 In what follows, let θ1 = θ0 + ξ+ τh with τ > 0

and assume that Pθ0 ∩ Pθ1 = ∅. A robustly testable alternative is a special case, and the argument below

can be applied with ξ = 0.

Analytical method

Among the two, the analytical method is more straightforward and is recommended whenever possible.

Let h be given and assume that Assumption 3.2 or 3.3 holds. For calculating the L2 derivative, one can

take the following steps.

Step 1: For τ > 0, derive the LFP (Q0,τh, Q1,τh) in closed form by solving (18). Find a collection of models

ϑ 7→ Qj,ϑ, j ∈ J such that (67) (or (39)) holds.

Step 2: For each j, calculate ˙̀
j,0 using the analytical form of Qj,ϑ.

This is the approach taken in the analysis of Examples 1 and 2 (see Appendix D.1.2 and D.2.2). Also,

in Step 1, one should check if (67) (or (39)) is satisfied for Q0,τh. In Example 1, it is satisfied because

Pθ0 = {Q0} is a singleton and by an inspection of the underlying model. In Example 2, the complementary

slackness condition determines Q0,τh uniquely for all τ sufficiently small, and again the condition can be

checked analytically.

47Another possibility is to use numerical differentiation, which is studied by Hong and Li (2018) in a related
context.
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Quadratic-Programming method

Under certain conditions, the L2-derivative of the model can also be calculated as a solution to an auxiliary

quadratic programming (QP) problem. Below, we discuss this alternative approach and provide primitive

conditions for this method to work.

This approach is based on the stability analysis of a solution to a parametric convex program. Toward

this end, we relate the problem in (18) to a parametric optimization problem studied in Shapiro (1988).

Let L be the cardinality of S and let K be the cardinality of 2S , the power set of S. Let p0, p1 ∈ [0, 1]L

denote vectors of probability mass functions on S. Let x = (p′0, p
′
1)′ ∈ [0, 1]2L denote a vector of control

variables, and let y = θ1 denote a parameter vector in the optimization problem (defined below).

Define

f(x, y) ≡
∑

s∈S
H(

p0(s)

p0(s) + p1(s)
)[p0(s) + p1(s)], (246)

and note that it does not depend on y. We impose constraints g̃`(x, y) ≤ 0 for ` = 1, · · · , 2(K + L) and

g̃`(x, y) = 0 for ` = 2(K + L) + 1, 2(K + L) + 2 with

g̃`(x, y) = νθ0(A`)−
∑

s∈A`
p0(s), ` = 1, . . . ,K (247)

g̃`(x, y) = νθ1(A`−K)−
∑

s∈A`−K
p1(s), ` = K + 1, . . . , 2K (248)

g̃`(x, y) = −p0(s`−2K), ` = 2K + 1, . . . 2K + L, (249)

g̃`(x, y) = −p1(s`−2K−L), ` = 2K + L+ 1, . . . 2K + 2L, (250)

g̃`(x, y) =
∑

s∈S
p0(s)− 1, ` = 2K + 2L+ 1 (251)

g̃`(x, y) =
∑

s∈S
p1(s)− 1, ` = 2K + 2L+ 2. (252)

These restrictions impose the sharp identifying restrictions together with the constraints that restrict

pj , j = 0, 1 in the probability simplex. Before proceeding, one can reduce the constraints by the following

procedures.48

First, reduce the first 2K inequality constraints to the ones that are generated by a core determining

class C ⊂ 2S (Galichon and Henry, 2006, 2011).49 Second, define

A ≡ {A ⊂ C : νθ0(A) = ν∗θ0(A) or νθ0+τh(A) = ν∗θ0+τh(A), ∀τ ∈ (0, τ̄ ]}, (253)

which collects events that remain complete both under the null and local alternatives. For any A ∈ C,
combine the two inequality constraints, νθj (A)− pj(A) ≤ 0 and νθj (A

c)− pj(Ac) ≤ 0, and impose them as

an equality constraint νθj (A) = pj(A). Finally, let B ≡ C \A, which collects the events associated with the

48This step is not strictly required, but it is recommended as the reduced system is more likely to satisfy Assumption
E.1.

49Galichon and Henry (2011) provide a tractable characterization of the core determining class for incomplete
models with G possessing a certain monotonicity property. Luo and Wang (2017a,b) provide algorithms to construct
the core determining class for general incomplete models.
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remaining inequality restrictions. We note that some of the inequality constraints associated with events in

this collection may still bind when τ = 0. Let M be the number constraints after reducing the restrictions

and let the first M1 ≤M of the restrictions collect equality constraints.

The resulting convex program can then be written as

min
x

f(x, y) (254)

s.t. g`(x, y) = 0, ` = 1, . . . ,M1 (255)

g`(x, y) ≤ 0, ` = M1 + 1, . . . ,M, (256)

for some g` : R2L ×Θ→ R, ` = 1, . . . ,M . This is the setting analyzed in Shapiro (1988).

Let xτ = (q′0,τ , q
′
1,τ )′ be a solution to the problem above when y is set to yτ = θ0 + ξ + τh. Let

x0 = (q′0,0, q
′
1,0)′ denote the solution when τ = 0. We then construct two sets A and B, which collect

gradient vectors of the equality and binding inequality constraints at x0 as follows.

1. Gradients associated with equality constraints (A): For each A ∈ A and j ∈ {0, 1}, write the equality

restriction νθj (A) −∑s∈A qj,0(s) = 0 as νθj (A) − a′x0 = 0 for a vector a ∈ {0, 1}2L. Let A collect

such vectors together with two additional vectors (1′L, 0
′
L)′ and (0′L, 1

′
L)′ that are associated with the

equality constraints
∑

s∈S qj,0(s)− 1 = 0 for j = 0, 1.

2. Gradients associated with inequality constraints (B): Let B0 ≡ {A ∈ B : νθ0(A) =
∑

s∈A q0,0(s) or νθ1(A) =
∑

s∈A q1,0(s)} be the collection of events for which an inequality constraint binds at τ = 0. For

each A ∈ B0 and j ∈ {0, 1}, write the active inequality restriction νθj (A) −∑s∈A qj,0(s) = 0 as

νθj (A)− b′x0 = 0 for a vector b ∈ {0, 1}2L. Let B collect all such vectors.

Recall that H is a twice continuously differentiable convex function. The following condition is sufficient

for the directional differentiability of the model.

Assumption E.1. (i) H is such that H(z) > 0, H ′(z) > 0 (or H ′(z) < 0), and H ′′(z) > 0 for all z ∈ [0, 1];

(ii) The solution xτ = (q′0,τ , q
′
1,τ )′ is unique at τ = 0; (iii) The vectors in A are linearly independent, and

there is a vector u ∈ R2L such that u′a = 0 for all a ∈ A and u′b < 0 for all b ∈ B.

Assumption E.1 (i) is a regularity condition on the objective function, which ensures that the solution

of the problem satisfies a weak second-order condition. One can choose H that satisfies these conditions.

Assumption E.1 (ii) requires that the solution, hence the LFP (not only its ratio), is unique when τ = 0.

This condition is satisfied in general when Pθ0 ∩ Pθ0+ξ is a singleton. A special case is that the local

alternatives are robustly testable and the model is complete at τ = 0, in which case Pθ0 and Pθ0+τh

coincide at τ = 0 and is a singleton. This occurs, for example, in Example 1. Assumption E.1 (iii)

imposes the Mangasarian-Fromovitz constraint qualification (MFCQ). This condition ensures that the set

of Lagrange multipliers is bounded for all τ ∈ (0, τ̄ ] (Gauvin, 1977; Shapiro, 1988), which is the key for

the stability of the solution to local perturbations. Note that the constraints are linear and the gradient

vectors in A ⊂ {0, 1}2L and B ⊂ {0, 1}2L do not need to be estimated. Hence, checking this condition is

relatively straightforward.
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Write the solution to (254)-(256) as x(y) and denote its directional derivative with direction h by

Dx(y)[h] ≡ lim
τ↓0

x(y + τh)− x(y)

τ
.

Let Xτ ⊂ RM be the set of Lagrange multipliers under τ in a neighborhood of 0, which is, under MFCQ,

bounded and the convex hull of a finite set Eτ of extreme points (Shapiro, 1988). For each χ ∈ RM ,

let J+(χ) = {` : χ(`) > 0, ` = M1 + 1, . . . ,M}, J0 = {` : χ(`) = 0, ` = M1 + 1, . . . ,M}, and J(χ) =

{1, . . . ,M1} ∪ J+(χ). Each element χ in E0 is such that the gradient vectors {∇xg`(x0, y0), ` ∈ J(χ)} are

linearly independent. For each ` = 1, . . . ,M , define

α`(u, h) = u′∇xg`(x0, y0) + h′∇yg`(x0, y0),

and note that α`(u, h) = u′a+h′∇yνy0(A) for some a ∈ {0, 1}2L if g` originated from one of the constraints

in (248) and α`(u, h) = u′a otherwise because the other constraints (in (247) and (249)-(252)) do not

involve θ1. We then have the following directional differentiability result.

Proposition E.1. Suppose Assumption E.1 holds. Then, x(y) is directionally differentiable at y = θ0 + ξ

with the directional derivative

Dx(θ0 + ξ)[h] = arg min
u∈Σ̄(h)

ζ̄(u), (257)

where

ζ̄(u) =
L∑

`=1

H ′′(
q0(s(`))

q0(s(`)) + q1(s(`))
)
(u

(`)
0 q1(s(`))− u(`)

1 q0(s(`)))2

(q0(s(`)) + q1(s(`)))3
(258)

Σ̄(h) =
{
u : α`(u, h) = 0, ` ∈ J(χ), α`(u, h) ≤ 0, ` ∈ J0(χ), χ ∈ E0

}
. (259)

Note that each α` is linear in u and the number of constraints is finite because E0 is finite. Hence,

Dx(θ0 + ξ)[h] is a solution to a finite-dimensional (convex) QP.

To satisfy Assumption 3.3 (or Assumption 3.2), we also need to ensure (67) (or (39)). For this, among

the inequality conditions in (256), let JH0 ⊂ {M1 + 1, . . . ,M} collect the indices associated with the

constraints that restrict q0,τ , i.e. those of the form: νθ0(A`) −
∑

s∈A` p0(s) ≤ 0. We then let J+,H0(χ) ≡
{χ(`) > 0, ` ∈ JH0}. The following condition is sufficient for (67) (or (39)).

Assumption E.2. There is a path τ 7→ χτ and τ̄ > 0 such that (i) χτ ∈ Xτ ,∀τ ∈ (0, τ̄ ]; (ii) J+,H0(χτ ) =

J+,H0(χ0) for all τ ∈ (0, τ̄ ]; and (iii) the solution q0,0 ∈ ∆(S) is uniquely determined by

νθ0(A`)−
∑

s∈A`
q0,0(s) = 0, ` ∈ J+,H0(χ0). (260)

In other words, there is a configuration of the Lagrange multipliers, under which the binding constraints

under H0 uniquely determines Q0, which remains constant across τ ∈ (0, τ̄ ]. As τ varies, the remaining

components of the solution, q1,τ , χτ , are properly adjusted to satisfy the first order conditions (see (263)).

For each j ∈ J and h ∈ Tj(ξ, θ0), Dx(θ0 + ξ)[h] is a 2L-dimensional vector. Let us write it as
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(u
∗,(1)
0 , . . . , u

∗,(L)
0 , u

∗,(1)
1 , . . . , u

∗,(L)
1 )′. The following corollary gives a formula to calculate the L2-derivative

for h ∈ Tj(ξ, θ0).

Corollary E.1. Suppose the conditions of Proposition E.1 hold. Suppose Assumption E.2 holds. Then,

the L2-derivative ˙̀
j,0 satisfies

h′ ˙̀j,0(s) =
L∑

`=1

u
∗,(`)
1 1{s = s(`)}

qj,0(s)
. (261)

The proof of the results above are collected at the end of this appendix.

Proof of Proposition E.1 and Corollary E.1

Proof of Proposition E.1. The proof proceeds by showing the conditions of Theorem 5.1 in Shapiro (1988).

First, for any y ∈ Θ, the set of feasible solutions Ω(y) = {x = (p′0, p
′
1)′ : g`(x, y) = 0, ` = 1, . . . ,M1, g`(x, y) ≤

0, ` = M1+1, . . . ,M} is a subset of a compact set in R2L because pj is in the probability simplex for j = 0, 1.

This ensures Assumption 1 of Shapiro (1988). Assumption E.1 then ensures Assumption 2 in Shapiro

(1988). Similarly, Assumption E.1 (iii) ensures Assumption 3 of Shapiro (1988). Finally, Assumption 4 in

Shapiro (1988) is a second-order condition on the Lagrangian, which we show below.

Define

L(x, y, χ) =
∑

s∈S
H(

p0(s)

p0(s) + p1(s)
)[p0(s) + p1(s)] +

M∑

k=1

χ(k)gk(x, y) (262)

Note that gk(x, y) is affine in x for all k so that one may write a′kx − bk(y) for some ak ∈ {0, 1}2L and

bk : Θ→ R. Therefore, for ` = 1, . . . , L,

∂

∂x(`)
L(x, y, χ) = H ′(

p0(s(`))

p0(s(`)) + p1(s(`))
)

p1(s(`))

p0(s(`)) + p1(s(`))
+H(

p0(s(`))

p0(s(`)) + p1(s(`))
) +

M∑

k=1

χ(k)a
(`)
k , (263)

and for ` = L+ 1, . . . , 2L,

∂

∂x(`)
L(x, y, χ) = H ′(

p0(s(`))

p0(s(`)) + p1(s(`))
)

−p0(s(`))

p0(s(`)) + p1(s(`))
+H(

p0(s(`))

p0(s(`)) + p1(s(`))
) +

M∑

k=1

χ(k)a
(`)
k . (264)

Below, we derive the Hessian matrix of the Lagrangian. First, suppose ` ∈ {1, . . . , L} and m ∈ {1, . . . , L}
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and ` = m. Then,

∂2

∂x(`)∂x(m)
L(x, y, χ) = H ′′(

p0(s(`))

p0(s(`)) + p1(s(`))
)

p1(s(`))

p0(s(`)) + p1(s(`))
× p0(s(`)) + p1(s(`))− p0(s(`))

(p0(s(`)) + p1(s(`)))2

+H ′(
p0(s(`))

p0(s(`)) + p1(s(`))
)

−p1(s(`))

(p0(s(`)) + p1(s(`)))2

+H ′(
p0(s(`))

p0(s(`)) + p1(s(`))
)
p0(s(`)) + p1(s(`))− p0(s(`))

(p0(s(`)) + p1(s(`)))2

= H ′′(
p0(s(`))

p0(s(`)) + p1(s(`))
)

p1(s(`))2

(p0(s(`)) + p1(s(`)))3

Next, suppose ` ∈ {1, . . . , L} and m ∈ {L+ 1, . . . , 2L} and m = `+ L. Then, a similar calculation yields

∂2

∂x(`)∂x(m)
L(x, y, χ) = H ′′(

p0(s(`))

p0(s(`)) + p1(s(`))
)
−p0(s(`))p1(s(`))

(p0(s(`)) + p1(s(`)))3

Finally, suppose ` ∈ {L+ 1, . . . , 2L} and m ∈ {L+ 1, . . . , 2L} and ` = m. Then,

∂2

∂x(`)∂x(m)
L(x, y, χ) = H ′′(

p0(s(`))

p0(s(`)) + p1(s(`))
)

p0(s(`))2

(p0(s(`)) + p1(s(`)))3
.

All other cases (with ` 6= m) lead to 0 second order derivatives. Therefore,

u′∇2
xxL(x0, y0, χ)u =

L∑

`=1

H ′′(
p0(s(`))

p0(s(`)) + p1(s(`))
)
(u

(`)
0 p1(s(`))− u(`)

1 p0(s(`)))2

(p0(s(`)) + p1(s(`)))3
≥ 0. (265)

where u = (u′0, u
′
1)′. The object above is non-negative in general. For the second order condition in Shapiro

(1988), we need it to be strictly positive for any non-zero vector u in the following critical cone C

C = {u : u′∇xg`(x0, y0) = 0, ` = 1, . . . ,M1;u′∇xg`(x0, y0) ≤ 0, ` = M1 + 1, . . . ,M ;u′∇fx(x0, y0) ≤ 0}.
(266)

The restriction, u′∇fx(x0, y0) ≤ 0, can also be written as

L∑

`=1

H ′(
p0(s(`))

p0(s(`)) + p1(s(`))
)

u
(`)
0 p1(s(`))

p0(s(`)) + p1(s(`))
+ u

(`)
0 H(

p0(s(`))

p0(s(`)) + p1(s(`))
)

+
L∑

`=1

H ′(
p0(s(`))

p0(s(`)) + p1(s(`))
)
−u(`)

1 p0(s(`))

p0(s(`)) + p1(s(`))
+ u

(`)
1 H(

p0(s(`))

p0(s(`)) + p1(s(`))
) ≤ 0, (267)

and hence

L∑

`=1

H ′(
p0(s(`))

p0(s(`)) + p1(s(`))
)
u

(`)
0 p1(s(`))− u(`)

1 p0(s(`))

p0(s(`)) + p1(s(`))
≤ −

L∑

`=1

(u
(`)
0 + u

(`)
1 )H(

p0(s(`))

p0(s(`)) + p1(s(`))
). (268)

Now note that, by taking singleton events A = {s(`)}, ` = 1, . . . , L, part of the restrictions u′∇xg`(x0, y0) ≤
0, ` = M1 + 1, . . . ,M must include gradients of the form ∇xg`(x0, y0) = (−e′`, 0′L)′, ` = 1, . . . , L where e`

is a vector of zeros whose `-th component is 1. This therefore requires u
(`)
0 ≥ 0 for all `. Similarly, u

(`)
1 ≥ 0

for all `. Further, Shapiro’ second order condition requires u 6= 0, and hence, u
(`)
j > 0 for some ` and
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j ∈ {0, 1}. This implies that the RHS of (268) is strictly negative if we choose H to be strictly positive on

[0, 1] as assumed in Assumption E.1. This in turn implies u must satisfy

L∑

`=1

H ′(
p0(s(`))

p0(s(`)) + p1(s(`))
)
u

(`)
0 p1(s(`))− u(`)

1 p0(s(`))

p0(s(`)) + p1(s(`))
< 0. (269)

Since H ′ is strictly positive (or strictly negative) for all z ∈ [0, 1], for at least one `, one must have

u
(`)
0 p1(s(`))− u(`)

1 p0(s(`)) < 0 (or > 0) to satisfy the inequality above. Therefore, for any u ∈ C and u 6= 0,

one must have

u′∇2
xxL(x0, y0, χ)u > 0 (270)

This ensures Assumption 4 of Shapiro (1988). Note that ζ̄ in Proposition E.1 corresponds to ζv,w in Eq.

(4.10) in Shapiro (1988), where w = 0 in our setting. To see this, observe that one of the terms in this

function is ξλ defined in Eq. (3.3) in Shapiro (1988), which in our setting equals u′∇2
xxL(x0, y0, χ)u because

the components of ∇2
xyL(x0, y0, χ) and ∇2

yyL(x0, y0, χ) are 0 due to ∇yL(x, y, χ) being a constant as gk is

separable in (x, y). Therefore, by (265) and this function being independent of χ, we obtain

ζ̄(u) =

L∑

`=1

H ′′(
p0(s(`))

p0(s(`)) + p1(s(`))
)
(u

(`)
0 p1(s(`))− u(`)

1 p0(s(`)))2

(p0(s(`)) + p1(s(`)))3
. (271)

Also observe that Σ̄(h) in (259) corresponds to Σ̄(v) in Eq. (2.12) in Shapiro (1988). The claim of the

proposition now follows from Theorem 5.1 of Shapiro (1988).

Proof of Corollary E.1. Let (q0,j,τh, q1,j,τh) be the densities of the LFP between θ0 and θ0 + ξ + τh and

recall that they are the solutions of a parametric convex program. By Assumption E.2, there is a model

ϑ 7→ Qj,ϑ such that q0,j,τh = qj,0 and q1,j,τh = qj,τh for all τ ∈ (0, τ̄ ] for some τ̄ > 0, where qj,ϑ is the density

of Qj,ϑ. By Proposition E.1, the LFP density ϑ 7→ qj,ϑ is directionally differentiable with the directional

derivative u
∗,(`)
1 = limτ↓0

qj,τh(s(`))−qj,0(s(`))
τ . By the chain rule, this implies

lim
τ↓0

q
1/2
j,τh(s(`))− q

1/2
j,0 (s(`))

τ
=

u
∗,(`)
1

qj,0(s(`))
. (272)

Noting that u
∗,(`)
1 is finite, and interchanging limits and sum, we obtain

lim
τ↓0

∫

S
(q

1/2
j,τh(s)− q

1/2
j,0 (s)−τ

L∑

`=1

u
∗,(`)
1 1{s = s(`)}

qj,0(s)
)2qj,0dµ(s)

= lim
τ↓0

L∑

`=1

(q
1/2
j,τh(s(`))− q

1/2
j,0 (s(`))− τ u

∗,(`)
1

qj,0(s(`))
)2qj,0(s(`))

=
L∑

`=1

(
lim
τ↓0

[
q

1/2
j,τh(s(`))− q

1/2
j,0 (s(`))− τ u

∗,(`)
1

qj,0(s(`))

])2
qj,0(s(`)) = 0. (273)

This ensures (261).
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