						Conclusion
1						
	Consum	ption and la	abor supply	decisions	s in a neoc	lassical
		wth model v				

Ryoji Hiraguchi ¹

Meiji University

Sep 27, 2018

 1 hiraguchi@meiji.ac.jp

Ryoji Hiraguchi (Meiji University)

hyperbolic discounting and leisure

Sep 27, 2018 1 / 25

			Conclusion
Outline			

- Theoretical and experimental literature on non-constant discounting
- Ontivation
- Model
 - two-period
 - infinite horizons.
- Results on tax policy

Introduction				Conclusion
Criticism o	n geometrie	c discount	ing	

- Constant discounting function δ^t is popular in macroeconomics.
- Some experimental evidence (Benzion et al. (1989)) suggests that discounting of future rewards is not constant.
- Quasi-hyperbolic discounting (Laibson (1997))

$$U_0 = u(c_0) + \beta \sum_{t=1}^{\infty} \delta^t u(c_t).$$
 (1)

• **Time-inconsistency :** the trade-off between date 1 and date 2 at date 0, is different from the one at date 1.

	Motivation				Conclusion
Ramsey m	odel with a	quasi-hyper	bolic disc	ounting	

- Krusell, Kuruşçu and Smith (2002, henceforth KKS) incorporate quasi-hyperbolic discounting into the neoclassical growth model.
- Findings of KKS
 - Competitive economy (CE) performs better than the planning economy (PE).
 - The time-consistent tax policy including positive capital tax replicates the PE and then reduces welfare.
- Their message: The market mechanism is good! Leave it as it is.
- **My questions**: Is the mechanism always good? Is the optimal capital tax always positive?

	Motivation		Conclusion
Model of	KKS		

• Resource constraint and budget constraint:

$$k_{t+1} = f(k_t) - c_t,$$
 (2)

$$k_{t+1} = r_t k_t + w_t - c_t.$$
 (3)

- First best. Consume a lot today, and save a lot after tomorrow. The allocation is time-inconsistent.
- KKS assume that planner and consumer adopt a time consistent consumption-saving strategy. They have to save today more than the First best.
 - Consumer: The marginal gain from saving, r is constant.
 - Planner: The marginal gain from saving, f'(k) is diminishing.
 - Planner suffers more from the self-control problem.

	Motivation			Conclusion
Litoratura	on hyperh	olic discour	ating	

Partial equilibrium:

- Laibson (2001) studies undersavings.
- 2 Diamond and Köszegi (2003) investigate early retirement.

Government policy:

- Schwarz and Sheshinski (2007) study social security in OG model.
- Paserman (2008) shows that labor market policies that encourage workers with hyperbolic discounting to search job improve welfare.
- Sisin et al. (2014) study a model with time inconsistent voters .
- Pavoni and Yaziki (2017) assume that agents' ability to self-control increases with age and show that savings should be subsidized.
- In Graham and Snower (2008) study inflation.

	Motivation			Conclusion
Recent e>	perimental	results		

- Abdellaoui et al. (2010)
 - Find that the discounting on monetary rewards is constant.
 - Their experiments focus on money, not consumption, but they argue that the distinction is not relevant for the experiments.
- Augenbrick et al. (2015) estimate

$$\begin{array}{lll} \mathsf{Money} & : & \max[c_t^{\alpha} + \beta_m \delta^k c_{t+k}^{\alpha}] \; \mathsf{s.t.} \; c_t + Rc_{t+k} = \bar{I}, \\ \mathsf{Effort} & : & \min[e_t^{\gamma} + \beta_e \delta^k e_{t+k}^{\gamma}] \; \mathsf{s.t.} \; e_t + Re_{t+k} = \bar{E}. \end{array}$$

and find that $\beta_m\cong 1$, $\beta_e\cong 0.90.$ Choices over effort is more present biased than the one over monetary rewards.

• My guess: Time inconsistency on consumption may be different from the one on effort.

	Motivation		Conclusion
Motivation			

- We construct Ramsey model with quasi-hyperbolic discounting and endogenous labor supply.
- Assume that the degree of time-inconsistency over work may be different from the one over consumption.
- Check whether the result of KKS continue to hold.
- Study two period model and the infinite horizons model.

	Motivation			Conclusion
Good-spe	ecific discou	nting		

- Experimental result on good-specific discounting.
 - **(**) Ubfal (2016): Higher discount rates for sugar or meat than for money.
 - Attema et al. (2018): Higher discount rates for health than for money.

Model with good-specific discounting

- Hori and Futagami (2018): Assume that discounting on consumption differs from the one on labor supply. Saving subsidy improves welfare.
- Ohdoi et al. (2015): Ramsey model based on Hori and Futagami (2018). Find that PE is better than the CE.
- Cheng and Chu (2018): Two period model in which the discounting on health differs from the one on sin good, and is also different from planner's discount rate. Study optimal saving and consumption tax.
- Our model focus on the difference in the time inconsistency.

		Example		Conclusion
Two-period	example			

- There is a continuum of individuals with a unit measure.
- The utility functions are (u'>0,u''<0,g'>0,g''>0.)

date 0 :
$$U_0(c_0, l_0, c_1, l_1) = u(c_0) - g(l_0) + u(c_1) - \beta g(l_1)$$
, (4)

date 1 :
$$U_1(c_1, l_1) = u(c_1) - g(l_1).$$
 (5)

where c is consumption, l is labor, and $\beta < 1$ is the discount rate on labor. The discount rate on consumption is equal to one.

- The production function F(k, l) (k : capital, l : labor) has constant returns to scale. Capital is fully depreciated.
- The resource constraint (RC) is

RC0 :
$$k_1 = F(k_0, l_0) - c_0$$
, (6)
RC1 : $c_1 = F(k_1, l_1)$. (7)

		Example		Conclusion
Competit	ive economy	y at date 1		

• The budget constraint in the CE is

$$k' = rk + wl - c. \tag{8}$$

- The factor market is competitive: $r = F_k(k, l)$ and $w = F_l(k, l)$.
- At date 1, given the initial state k₁, the individual solves

$$V_1(k_1) = \max_{c_1, l_1} [u(c_1) - g(l_1)],$$

s.t. $c_1 = r_1 k_1 + w_1 l_1.$ (9)

The FOCs are

$$w_1 u'(c_1) = g'(l_1).$$
 (10)

• The decision rules are given by $c_1(k_1)$ and $l_1(k_1)$.

Introduction Motivation Example Model Policy Conclusion Competitive economy at date 0

• At date 0, the individual takes his initial state $k_0 = k$ and the future rules $(c_1(k), l_1(k))$ as given, and maximizes his utility U_0 :

$$V_0(k_0) = \max_{c_0, l_0} \left[u(c_0) - g(l_0) + u(c_1(k_1)) - \beta g(l_1(k_1)) \right], (11)$$

s.t. $k_1 = r_0 k_0 + w_0 l_0 - c_0.$ (12)

• CE satisfies RC0, RC1, and the FOC at date 1:

$$w_1 u'(c_1) = F_l(k_1, l_1) u'(c_1) = g'(l_1).$$
 (13)

• Eq (13) binds because unconditional optimization implies $w_1u'(c_1) = \beta g'(l_1) < g'(l_1)$.

		Example		Conclusion
The plan	ning econom	ıy		

• At date 1, given the state k_1 , the planner solves

$$V_1^*(k_1) = \max_{c_1, l_1} \left[u(c_1) - g(l_1) \right], \text{ s.t. RC1.}$$
(14)

• The planner's rule $(c_1^*(k_1), l_1^*(k_1))$ satisfy RC1 and

$$F_l(k_1, l_1)u'(c_1) = g'(l_1).$$
 (15)

• At date 0, the planner solves

$$\begin{split} V_0^*(k) &= \max_{c_0, l_0, k_1} \left[u(c_0) - g(l_0) + u(c_1^*(k_1)) - \beta g(l_1^*(k_1)) \right] \\ &= \max_{c_0, l_0, k_1} U_0 \text{ s.t. RC0, RC1 and } (15) \,. \end{split}$$

		Example		Conclusion
Welfare o	comparison			

Theorem

The PE performs (weakly) better than the CE in terms of welfare.

Proof.

Both the PE and the CE satisfy

RC0 :
$$k_1 = F(k_0, l_0) - c_0$$
, (16)

RC1 :
$$c_1 = F(k_1, l_1),$$
 (17)

FOC1 :
$$F_L(k_1, l_1)u'(c_1) = g'(l_1).$$
 (18)

Although the planner is maximizing the date-0 utility subject to the three constraints, the individual in the CE is not.

		Example		Conclusion
Log utility	y function			

- Case with $u(c) = \ln c$, $g(l) = -\theta \ln(1-l)$ and $F(k,l) = Ak^{\alpha}l^{1-\alpha}$
 - PE is strictly better than CE.
 - At date 0, the savings rate is lower in CE than in PE.
- The constraint: $F_L(k_1, l_1)u'(c_1) \ge g'(l_1)$.
 - The planner knows that if he accumulates capital k_1 , the marginal product of labor (MPL) increases, and the constraint is relaxed.
 - For the consumer, MPL is equal to the fixed wage rate. The equilibrium capital level is insufficiently low.
- Time consistent government policy
 - At date 1, the government does not have an incentive to use tax.
 - At date 0, the government has an incentive to use capital subsidy.

			Model	Conclusion
Infinite h	orizon mode	I		

- There is a continuum of agent with unit measure who lives forever.
- Preference :

$$U_0 = \ln c_0 + \theta \ln(1 - l_0) + \sum_{t=1}^{\infty} \delta^t \{\beta_c \ln c_t + \beta_l \theta \ln(1 - l_t)\}, \quad (19)$$

where $\theta > 0$, δ is the discount factor, β_c (β_l) is the time inconsistency parameter on the consumption (labor supply).

• The resource constraint is

$$RC: k' = F(k, l) - c.$$
 (20)

• Cobb-Douglas production function: $F(k, l) = Ak^{\alpha}l^{1-\alpha}$.

		Model	Conclusion
Planner's	problem		

• The planner chooses his current labor supply l and future state k', given his future decisions on capital $g^*(k)$ and on labor $l^*(k)$:

$$V_0^*(k) = \max_{c,l,k'} [\ln c + \theta \ln(1-l) + \delta V^*(k')], \text{ s.t. RC.}$$
(21)

• The value function V^* satisfies the functional equation

$$V^{*}(k) = \beta_{c} \ln[c^{*}(k)] + \beta_{l} \theta \ln(1 - l^{*}(k)) + \delta V^{*}(g^{*}(k)), \qquad (22)$$

where $c^{*}(k) = F(k, l^{*}(k)) - g^{*}(k)$.

• The solution to the planner's problem (g^*, l^*, V^*)

given
$$V^*$$
, the rules g^* and l^* solves Eq. (21), and given g^* and l^* , V^* satisfies Eq. (22).

		Model	Conclusion
Competiti	ve economy		

- In the CE, the consumer chooses l and k', given
 - the process of the aggregate capital and labor, $\bar{k}' = G(\bar{k})$ and $\bar{l} = L(\bar{k})$ • the factor prices $\bar{r} = r(\bar{k})$ and $\bar{w} = w(\bar{k})$,
 - ${f 0}$ his future decision on capital k'=g(k,ar k) and on labor l=l(k,ar k)
- The rules g and l solve

$$V_0^e(k,\bar{k}) = \max_{c,l} [\ln c + \theta \ln(1-l) + \delta V^e(k',\bar{k}')], \quad (23)$$

s.t.
$$k' = \overline{r}k + \overline{w}l - c.$$
 (24)

• The function V^e satisfies $(c = \bar{r}k + \bar{w}l(k,\bar{k}) - g(k,\bar{k}))$

$$V^{e}(k,\bar{k}) = \beta_{c} \ln c + \beta_{l} \theta \ln[1 - l(k,\bar{k})] + \delta V^{e}(g(k,\bar{k}), G(\bar{k})).$$
(25)

			Model	Conclusion
A solutio	n to the pla	nner's nroh	lem	

• Planning economy (PE): $g^*(k) = s^* A k^{\alpha} (l^*)^{1-\alpha}$ and $l^*(k) = l^*$

$$s^{*} = \frac{\alpha \delta \beta_{c}}{1 - \alpha \delta (1 - \beta_{c})}, l^{*} = \frac{1 - \alpha}{\frac{\theta (1 - \alpha \delta)}{1 - \alpha \delta (1 - \beta_{c})} + 1 - \alpha}.$$
 (26)

• Competitive economy (CE):

$$\begin{array}{l} \bullet \quad G(\bar{k}) = s^e A \bar{k}^{\alpha} (\bar{l}^e)^{1-\alpha} \text{ and } L(\bar{k}) = \bar{l}^e; \\ \bullet \quad g(k,\bar{k}) = \alpha^{-1} s^e \bar{r} k \text{ and } l(k,\bar{k}) = \frac{1}{1+\theta} \{ 1 - \theta \frac{(\alpha-s^e)\bar{r}k}{\alpha \bar{w}} \}. \\ \bullet \quad \bar{r} = \alpha s^e A \bar{k}^{\alpha-1} (\bar{l}^e)^{1-\alpha}, \text{ and } \bar{w} = (1-\alpha) s^e A \bar{k}^{\alpha} (\bar{l}^e)^{-\alpha}, \end{array}$$

$$s^{e} = \frac{\alpha \delta \frac{\beta_{c} + \theta_{\beta_{l}}}{1+\theta}}{1 - (1 - \frac{\beta_{c} + \theta_{\beta_{l}}}{1+\theta})\delta}, \bar{l}^{e} = \frac{1 - \alpha}{\theta(1 - s^{e}) + 1 - \alpha}$$
(27)

- ∢ ∃ ▶

			Policy	Conclusion
Welfare o	comparison			

Theorem

If $\beta_l < 1$ and β_c is close to one, the PE performs better than the CE. If $\beta_c = \beta_l < 1$, the PE performs worse than the CE.

- Let \hat{s} and \hat{l} denote the level of constant savings rate and labor supply that maximizes U_0
- If $\beta_l < 1$ and β_c is sufficiently close to one,

$$s^e < s^* < \hat{s}$$
 and $l^e < l^* < \hat{l}$. (28)

• If
$$\beta_l = \beta_c < 1$$
, $s^* < s^e < \hat{s}$ and $l^* < l^e < \hat{l}$. (29)

			Policy	Conclusion
Time cor	sistent tax	policy		

Theorem

If $\beta_l < 1$ and β_c is close to one, the government policy is welfare-improving and the optimal capital tax rate is negative. If $\beta_c = \beta_l < 1$, then the policy reduces welfare.

• A time-consistent government policy $\tau = (\tau^k, \tau^l, \tau^c)$ which consists of capital income tax, labor income tax and consumption tax exists and is given by $(\tilde{\alpha} = 1 - \alpha)$

$$\tau^{k} = \frac{s^{e} - s^{*}}{s^{e}}, \tau^{l} = 1 - \frac{(1 - \tau^{k})\alpha - s^{*}}{1 - (1 + \theta)l^{*}} \frac{l^{*}\theta}{\tilde{\alpha}}, \tau^{c} = -\frac{\tau^{k}\alpha + \tau^{l}\tilde{\alpha}}{1 - s^{*}}.$$
 (30)

• Equilibrium allocation under the policy au coincides with the PE.

			Conclusion
Conclusion			

- Investigate a neoclassical growth model with quasi-hyperbolic discounting.
- Obtain the competitive equilibrium allocation and the social planner's allocation explicitly .
- Find that the results of KKS do hold if the time inconsistency in labor supply is differs from one in consumption.

			Conclusion
Literature			

- Abdellaoui.M., E. Attema., H. Bleichrodt, 2010. Intertemporal tradeoffs for gains and losses: an experimental measurement of discounted utility. EJ.
- Attema, A.E., Bleichrodt, H., L'Haridon, O. 2018. Discounting health and money: New evidence using a more robust method. J Risk Uncertain.
- Augenblick, N., Niederle, M., Sprenger, C., 2015. Working over time: dynamic inconsistency in real effort tasks. QJE.
- Barro, R., 1999. Ramsey meets Laibson in the neoclassical growth model. QJE.
- Benzion, U., Rapaport, A., Yagil, J., 1989. Discount rates inferred from decisions: an experimental study. Management Science.

			Conclusion
Literature			

- Bisin, A., Lizzeri, A., Yariv, L., 2014. Government policy with time inconsistent voters. AER.
- Cheng, C., Chu, H., 2018. Optimal policies for sin goods and health care: Tax or subsidy? International Tax Public Finance.
- Diamond, P., Kőszegi, B., 2003. Quasi-hyperbolic discounting and retirement. Journal of Public Economics.
- Graham, L., D. Snower. 2008. Hyperbolic discounting and the Phillips curve. JMCB.
- Hori, T., Futagami, K. 2017. A non-unitary discount model. Economica.
- Krusell, P., Kuruşçu, B., Smith, A., 2002. Equilibrium welfare and government policy with quasi-geometric discounting. JET.

	Motivation		Conclusion
Literature			

- Laibson, D., 1997. Ramsey meets Laibson in the neoclassical growth model. QJE.
- Laibson, D., 2001. Hyperbolic discounting functions, Undersaving and savings policy. NBER.
- Ohdoi, R., Hori, T., Futagami, K. 2015. Welfare and tax policies in a neoclassical growth model with non-unitary discounting.
- Pavoni, N., H. Yazici. 2017. Optimal life-cycle capital taxation under self-control problems, Economic Journal.
- Schwarz, M., Sheshinski, E., 2007. Quasi-hyperbolic discounting and social security systems. EER.
- Ubfal, D., 2016. How general are time preferences? Eliciting good-specific discount rates, Journal of Development Economics.