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Abstract

This paper studies the optimal joint design of disability insurance and unemployment

insurance in an environment with moral hazard, when health status is private infor-

mation, and cyclical fluctuations. I show how disability benefits and unemployment

benefits vary with aggregate economic conditions in an optimal contract. In a special

case of the model, I first show the optimal contract can be solved explicitly up to a

system of non-linear equations. I then demonstrate that the optimal joint insurance

system can be implemented by allowing workers to save or borrow using a bond and

by providing flow payments and lump-sum transfers (or payments), where the interest

rates and the amounts paid (transferred) depend on the employment or health status

of the agent and the state of the economy. Finally, I consider a calibrated version

of the full model and study the quantitative implications of both the current system

and the optimal system. In the optimal system, disability benefits are designed such

that the system punishes workers who stay unemployed for a long time. I consider

the welfare impact of changing from the current system to the optimal one when both

systems provide the same ex-ante utility to the worker. The cost savings incurred

from incentive problems are substantial, and the unemployment rate will be reduced

by roughly 40 percent.

1 Introduction

Disability insurance (DI) and unemployment insurance (UI) are two important social insurance

programs that provide relief when people suffer from income fluctuations. As of December 2013,
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8.9 million disabled individuals received DI benefits, which corresponds to 5.7% of the population

of workers in the labor force.1 The unemployment rate was at 6.2%, which is higher than the pre-

recession period, leaving 827 thousand workers who had exhausted their UI by the first quarter of

2014. While DI and UI both play significant roles in helping individuals to smooth consumption,

both programs are subject to incentive problems. In fact, job search efforts on the part of

applicants are hardly monitored, and, in 2001, approximately half of awards went to applicants

with difficult- to-verify disabilities, such as mental disorders and diseases of the musculoskeletal

system (Golosov and Tsyvisnski [2006]). In addition, both of these incentive problems respond

differently to business cycles. In fact, both DI and UI applications and awards are reported to be

countercyclical (Mueller et al, 2013). As in Figure 1, the cyclicality of SSDI applications and the

unemployment rates are shown, and SSDI applications surge a year or two after unemployment

peaks after the reform of SSDI in 1984. Although I do not show this information in the figure, it

has been reported that SSDI awards have a similar pattern (Black, Daniel, and Sanders [2002];

Autor and Duggan [2003]; Duggan and Imberman [2009]; Coe et al. [2012]). If we think the health

shocks are a-cyclical, why are the observed patterns of DI applications and awards countercyclical?

Figure 1: Disability Insurance Applications and the U.S. Unemployment Rate, 1965-2010

What is more, the design of unemployment insurance and disability insurance does not consider

the incentive problems and cyclicality issues seriously, not to mention the interactions between

these two insurance programs. In the United States, a typical unemployment insurance program

1Source: Annual report Supplemental Security Income program, the Social Security Administration. US Bureau

of Labor Statistics.
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provides 26 weeks of benefits, but extended unemployment insurance programs would be adopted

subsequently in recessions, providing some groups of people with different extended periods when

their insurance benefits are exhausted. In the most recent recession, benefits were provided for a

maximum of 99 weeks. In terms of disability insurance, the benefits are calculated with Primary

Insurance Amount (PIA) formula, using the inflation-adjusted averaged monthly income and

are progressive in the sense that low-income people receive higher benefits, but the amounts of

benefits do not vary with aggregate economic state. From discussions above, we can observe that

the patterns of disability insurance and unemployment insurance seem arbitrary and independent

from each other. This paper will analyze the joint design problem with cyclical fluctuations.

To address the incentive problem associated with UI and DI and business cycles, this paper

studies the optimal policy design of disability insurance and unemployment insurance in an en-

vironment where job finding and separation rates fluctuate with aggregate economic states. The

objective of this paper is three-fold. First, I build a model of UI and DI to characterize optimal

contract design. Second, I consider a special case of the model that can be solved explicitly and

this allows me to demonstrate the implementation of the optimal contract via simple instruments.

Last, I calibrate the model to the U.S. data and calculate the inefficiency in the current social

insurance system. I then consider the potential cost savings from switching to the optimal system

and conduct counterfactual analysis by presenting the impact of extended UI benefits. Thus, this

paper suggests that the potential benefits for policy makers can be substantial if they adjust social

insurance policies according to aggregate economic state changes and the joint design of the DI

and UI.

In this paper, I build a tractable model that incorporates disability insurance into previous

work by Hopenhayn and Nicolini [1997] and Li and Williams [2014]. Hopenhayn and Nicolini

[1997] study the optimal unemployment insurance with moral hazard, which is extended by Li

and Williams [2014], whose model takes business cycles into consideration. In our model, similarly

to Li and Williams [2014], a risk-averse worker exerts costly job search efforts that increase job

arrival rates, and job finding and separation rates depend on the aggregate economic climate.

This paper diverts from the preceding literature by adding a health shock that makes a worker

incapable of working, similar to Golosov and Tsyvisnski [2006]. The agency provides two kinds of

insurance: unemployment insurance and disability insurance, and aims at minimizing the cost of

providing insurance that satisfies a disabled workers participation constraint. The work incentive

problem arises due to the fact that workers health conditions are unobservable to the agency

in addition to their unobservable job search efforts, job finding and separation rates depend on

aggregate economic conditions. By modeling DI and UI together with business cycles, our model

enables us to develop the optimal design for when moral hazard and misreporting problems co-
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exist and to compare the optimal social insurance schemes with the current programs through

different aggregate economic states. While there are many studies of UI and, to a lesser extent,

DI with respect to their independent effects on labor supply, few papers have studied how DI and

UI jointly affect labor supply decisions with business cycles. To the best of my knowledge, no

previous papers have developed an optimal policy design that considers the interaction between

UI and DI with business cycles.

After laying out the model, I consider a special case with CARA utility functions and zero job

separation rates. This special case allows me to derive the explicit solutions. I can then demon-

strate simply and clearly how information frictions affect the optimal contract design. I find that

the results are similar to the ones in Hopenhayn and Nicolini [1997] and Li and Williams [2014],

where consumption decreases over the unemployment spell in the asymmetric information case in

order to provide incentives. I then turn to consider the implementation of the contracts through a

workers consumption-saving-effort problem. I find that the optimal contracts can be implemented

by constant payments in each state through taxes while employed and subsidies while unemployed,

and lump-sum transfers when state (employed/unemployed/disabled, boom/recession) switches.

The implementation of the model allows me to understand the optimal pattern of the contract

and analyze the comparative statistics as to how the optimal contract responds to changes in

parameters, as well as how the agent would respond equivalently through borrowing and saving

activities.

Third, I consider the quantitative implications of the model and study the impacts of DI on

the unemployment insurance system. I first calibrate the model to obtain some key parameters.

Then I study the following questions. First, I ask what is the amount of the cost reductions when

the worker switches from the current system to the optimal one. Second, I consider the potential

impact when the extended unemployment insurance benefits are adopted. I found that the cost

reductions could be substantial and switching to the optimal system reduces unemployment rates

by around 40%.

One thing that worths mentioning is that my cost-saving results differ in some fundamental

ways from those in the literature. The substantial cost reduction implies that the government

can actually generate positive revenue, if the optimal system is implemented. However, this

also implies that healthy workers are willing to give up a lot of consumption in order to get

compensated when the healthy shock arrives. The implied tax rate in the optimal system is

huge in my quantitative section. Moreover, the huge implied tax rate is closely related to the

“immiseration” result of Thomas and Worrall [1990] and Atkeson and Lucas [1992], which tells

that the agent’s promised utility tends to minus infinity under the optimal contract. Hence,

computing the average consumption over a long period generates this large reduction.
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Finally, I consider the impact of optimal systems on low-income workers and the impact

of different policy reforms. First, as discussed in Autor and Duggan [2003, 2006], the rising

replacement ratio of the DI is one of the reasons that causes the cyclicality. I first consider how

effective the optimal system would be on the low-income workers because they are the group of

workers with the highest replacement ratio of DI and have more incentive to apply for DI after

a long unemployment spell. I found that the unemployment rate will be reduced around 60%.

Second, I consider the impact of two policy reforms: (1) extending the maximum UI duration

to 99 weeks in recessions, and (2) designing of the optimal DI but taking the current UI system

as given. The first policy reform is motivated by the actions taken in the great recession where

unemployed workers may receive UI up to 99 weeks. I found that there is not much difference

in cost savings and unemployment rate between the system with standard extended UI duration

and the extended one. The second experiment is intended to show the interdependence between

the UI and DI. I found that even though the government can only change the DI system but not

the UI system, there will be big differences in cost savings and unemployment rate.

The papers that are most closely related to this paper are Hopenhayn and Nicolini [1997], Li

and Williams [2014], and Golosov and Tsyvisnski [2006]. Hopenhayn and Nicolini [1997] and Li

and Williams [2014] focus on the optimal design of the unemployment insurance, while Li and

Williams [2014] add business cycles on top of Hopenhayn and Nicolinis [1997] model. In Golosov

and Tsyvisnski [2006], they study the optimal design of the disability insurance and focus on the

asset-testing implementation mechanism. The solvable case and implementation of the optimal

contract follow closely as the ones in Li and Williams [2014], but adding the disability state

allows me to show the impact of UI on DI. My paper differs from those papers by considering

the optimal joint design of disability and unemployment insurance with business cycles. The

implications of this papers model are in line with the empirical literature. Among the papers that

study the cyclicality property of DI are Autor and Duggan [2003], Rutledge [2012], and Mueller

et al. [2013]. Autor and Duggan [2003] attribute the labor force exit propensity of displaced high

school dropouts after 1984 to three major factors: reduced screening stringency of DI, declining

demand for less skilled workers, and an unforeseen increase in the earnings replacement rate.

They find that the sum of these forces can account for a decrease by one-half a percentage point

in measured U.S. unemployment. Mueller et al. [2013] incorporate unemployment insurance to

Autor and Duggans [2003] model by drawing on Rothsteins [2011] model of UI and job search.

Given that the cyclicality of DI applications and awards is consistently found as a stylized fact,

the findings of Mueller et al [2013] imply that there should be other channels to explain how a

surge of DI applications and awards closely follows business cycles. In this paper, I am able to

structurally analyze the cyclicality patterns of DI and UI in an optimal design framework as well
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as explore the effects of earnings replacement rates on workers from different income groups.

The rest of the paper is organized as follows. In section 2, I lay out the model. Then I

study the optimal contract design in section 3. Section 4 studies the solvable case and section 5

studies the implementation of the contract. The quantitative implications of the optimal design

are demonstrated in section 6.

2 The Model

In this section, I lay out the model. The model is the continuous time version of the model

that combines the UI model by Hopenhayn and Nicolini [1997] and the DI model by Golosov and

Tsyvinski [2006], adding cyclical fluctuations seen in Li and Williams [2014]. In short, this model

is based on the UI and business cycle model in Li and Williams [2014] and adds disability to this

UI similar to Golosov and Tsyvinski [2006].

2.1 The Setup

I consider an infinitely lived agent (worker) who transitions between being employed and

unemployed when healthy and could also become disabled. If employed, the agent receives a

constant wage ω. If unemployed, the agent earns no income, but he may exert effort to find a job,

with effort being costly to him but increasing the arrival rate of a job. When the agent becomes

disabled, I assume that the job arrival rate and the wage is zero and disability is assumed to be

an absorbing state: the disabled worker will not become healthy again. In addition, I assume that

the economy switches between booms and recessions. In a boom, the job finding rate is higher,

while the separation rate is lower. I will use st ∈ {B,R} to denote the good and bad states.

When unemployed and in a state st, let at ∈ [0, ā] be the search effort for the unemployed

agent at time t. Then the job arrival rate is qs(at) with q′s(a) > 0, q′′s (a) ≤ 0. To simplify the

computations, I assume the qs(at) is linear in effort:

qs(at) = qs0 + qs1at,

with qs0 ≥ 0, qs1 > 0. In addition, qs(at) is assumed to have the following property:

qR(at) ≥ qR(at), ∀at ∈ [0, ā],

which is intended to capture the assumption that the job finding rate is higher in booms than in

recessions. Last, I assume that an employed worker loses his job with an exogenous separation

rate ps with pB < pR, that a healthy agent would become disabled with the rate λd, and that the

rate that state s would transit to state s′ is λs, s ∈ {B,R}.
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2.2 Preferences and Incentive Compatible Contracts

I assume that an insurance agency (“the principal”) provides unemployment and disability

insurance to help the worker smooth his consumption. The workers employment status is publicly

observable. However, the search effort taken by the unemployed worker and the health status of

the disabled worker are not observable to the insurance agency. In other words, when a worker

reports as disabled, the agency cannot tell if the agent is disabled or able to work or search for a

job but shirking. By assuming health status is the private information for the agent, the agency

cannot distinguish healthy workers from disabled workers. Hence, moral hazard and private

information problem arise as the agency needs to offer insurance that induces the unemployed

workers to exert effort and healthy workers not to misreport as disabled. In addition, I assume

that the insurance agency cannot distinguish quitting from being laid off. Hence, the contract

needs to induce the workers to take a job once it arrives and not to voluntarily quit.

I will define j ∈ {E,U} being the employed and unemployed status with E = 0 and U = 1.

Also, let d ∈ {H,D} stand for healthy and disabled with H = 0 and D = 1. Let the worker’s

instantaneous utility be u(c, a; j, d) if the consumption is c and effort taken is a in the state j and

d, with u is strictly increasing and concave in c and decreasing and convex in a. I also assume

the worker dies stochastically with rate κ. Let the subjective discount rate be ρ̂ and thus the

effective discount rate becomes ρ = ρ̂+ κ.

Next I will describe the contracts. A contract consists of a quadruple of processes (c, a, j, d) =

({ct}
∞
t=0, {at}

∞
t=0, {jt}

∞
t=0, {dt}

∞
t=0), where c is the consumption process with ct being the amount of

consumption of the worker promised by the agency at time t, a is the process of effort level, j is the

process of employment status, and d is the process of the reported health status, with at, jt and dt

defined in a similar way. I assume ct ∈ [0, c̄], at ∈ [0, ā]. The contract is history dependent in the

sense that ct and at depend on the entire history of the worker’s employment status ({jt}
∞
t=0) and

worker’s health status ({dt}
∞
t=0). Invoking the revelation principle, I will focus on the truthfully

reporting contracts, where the agent reports the true health status, would not voluntarily quit the

job, and takes the recommended effort. Now I will describe the worker’s maximization problem.

Given (c, a, j, d), the worker chooses effort to maximize his lifetime expected utility:

max
â∈A

E[ρ

∫ ∞

0
e−ρtu(c, â)dt], (1)

where E is the expectation operation, and A = [0, ā]. A contract is incentive compatible if and

only if the worker (i) exerts the recommended search effort, (ii) truthfully reports health status,

and (iii) would not quit the job that solves the problem (1).

Let v(.) be the utility for the insurance agency. The objective of the agency is to design the
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contract as follows.

max
(c,a,j,d)

E[−ρ

∫ ∞

0
r−ρtv(ct − 1({if the worker is employed})ω)dt]

such that

(c, a, j, d) is incentive compatible

and

E[ρ

∫ ∞

0
e−ρtu(c, a)dt] ≥ W0,

where W0 is the reservation utility of the worker, 1(.) is the indicator function.

3 Optimal Contract

In this section, I will show that optimal contracts can be derived by using the promised utility

of the agent as states and controls. Then I will lay out the corresponding Hamiltonian-Jacobi-

Bellman equations describing the optimal contracts.

3.1 Incentives and Promised Utility

In order to solve the optimal contracts, it is useful to first define the compensated martingales.

I already defined the aggregate state st ∈ {B,R}, and now I will assign the numerical values as

R = 1 being the recessions and B = 0 being the booms. Also, recalling that j ∈ {E,U} are

the employed and unemployed statuses, with E = 0 and U = 1, and d ∈ {H,D} standing for

healthy and disabled with H = 0 and D = 1. Let the associated compensated jump martingales

be m
j
t , m

s
t , and md

t governing the jumps between 0 and 1, with m
j
t and ms

t being observable to

the agency while md
t is the reported process. The evolution for the processes of the compensated

martingales can be written as

dm
j
t = (1− dt)(−(1 − jt)[((1 − st)pG + stpB)] + jt[(1− st)qR(at) + stqR(at)])dt+∆jt

dms
t = [−(1− st)λR + stλR]dt+∆st

dmd
t = (−(1− dt)λd)dt+∆dt,

where ∆ governs when the worker switches states. For example, for a healthy worker (d = 0) who

is in his unemployment spell (j = 1) while the economy is in a boom (s = 0), the compensated

jump processes are:

dm
j
t = qR(at)dt+∆jt

dms
t = −λRdt+∆st

dmd
t = −λddt+∆dt,
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where the negative term compensates the positive jumps, and it makes the process mean zero

martingales.

Now I am ready to consider the incentive compatible contracts. Given a contract (c, a, j, d)

and the arbitrary effort process â, ĵ, and d̂, I define the promised utility of the worker as

Wt ≡ E[ρ

∫ ∞

t

e−ρtu(c, â)dt],∀t ∈ [0,∞],

which stands for the expected utility of a worker at time t given the contract (c, a, j, d) but exerting

effort â, reporting the employment status ĵ, and health status d̂. I will first show the result using

the martingale representation theorem.

Proposition 1. Under a contract (c, a, j, d) and the chosen effort level â, the chosen employment

status ĵ, and the reported health status d̂. Then there exists three F-predictable2 processes g
ĵ
t , g

s
t ,

and gd̂t such that

E[

∫ ∞

0
e−ρtg

ĵ
t dt] < ∞, E[

∫ ∞

0
e−ρtgst dt] < ∞, and E[

∫ ∞

0
e−ρtgd̂t dt] < ∞,

and

dWt = ρ(Wt − u(ct, ât)))dt+ ρg
ĵ
t dm

j
t + ρgst dm

s
t + ρgd̂t dm

d
t .

Proof. See Appendix A.1.

Next, I consider the conditions that guarantee the incentive compatible contracts.

Proposition 2. Given the results in proposition 1, the contract is incentive compatible if and

only if the following holds for all t:

at ∈ argmax
ãt

g
ĵ
t qst(ãt) + u(ct, ãt)

g
ĵ
t ≤ 0

gd̂t ≤ 0.

Proof. See Appendix A.2.

Proposition 1 is the standard method used in continuous time dynamic contracting literature,

which is demonstrated in Sannikov [2008], Williams [2011], and Li [2012]. To solve the dynamic

programming problem, I first use the appropriate martingales so that the objective function can

be rewritten recursively. In proposition 2, I then show how to use the martingales derived from

proposition 1 to express incentive compatible constraints. This way, we are able to write the

problem recursively and impose the constraints on the incentive problems.

For the rest of this section, I will show how to derive the Hamilton-Jacobi-Bellman equations

governing the optimal contracts using the propositions above.

2
F-predictable stands for the sigma-algebra that is generated by the process of dm

j
t , dm

s
t , and dm

d
t .
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3.2 Value functions and Optimal Contracts

In this section, I will derive the conditions of the value functions for the insurance agency.

Defining V (W, j, s) as the value functions for the agency with state j and s with promised utility

W delivered to the worker when healthy and V (W,d) as the value function with W delivered to

the disabled worker. I first consider the boundary values of the value functions and promised

utility and then the Hamilton-Jacobi-Bellman equations.

Before deriving the Hamilton-Jacobi-Bellman equations, let me consider the boundary points

of value functions. Those boundary points will serve as the choice set for the HJB equations.

Since I will use the promised utility as choices, I will first consider the possible sets given the

boundaries of the parameter values such as consumption and effort. Since the ideas and arguments

are similar to the ones in Li and Williams (2014), I explain the details in Appendix A.3.

3.2.1 The Hamilton-Jacobi-Bellman Equations

After deriving the boundary points, I am ready to specify the HJB equations that determine

the optimal contracts. First, it is convenient to change the control variables using the promised

utilities as variables. Considering the unemployed worker in the state s, if W j
t is used as the

worker’s promised utility immediately after the change of the job status, and W d
t as the worker’s

promised utility immediately after the change of the health status, the incentive compatible

constraints become:

g
j
t∆jt =

W
j
t −Wt

ρ
, gdt∆dt =

W d
t −Wt

ρ

Then I can rewrite the constraints as

a∗ ∈ argmax
â

u(c, â) +
W

j
t −Wt

ρ
qs(â), Wt ≥ W d

t .

Similarly, considering the workers in state s, the constraints become

Wt ≥ W d
t , W

j
t ≤ Wt when employed, W

j
t ≥ Wt when unemployed.

Hence, the HJB equations can be specified as follows:

Proposition 3. Suppose the value functions (V (W, j, s), V (W,d)) exist and the left and right
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boundaries are derived in proposition 4, then the value functions satisfy a system of HJB equations:

ρV (W,u, s) = max
ĉ∈[0,c̄],

W j∈[W es
l

,W es
r ],

W s∈[Wus
l

,Wus
r ],

W d∈[W d
l
,W d

r ],

W j≥W,W d≤W

−ρv(ĉ)

+ ρVW (W,u, s)[W − u(ĉ, a∗(W j ,W ))− qs(a
∗(W j,W ))

W j −W

ρ
− λs

W s −W

ρ
− λd

W d −W

ρ
]

+ qs(a
∗(W j,W ))[V (W j , e, s)− V (W,u, s)]

+ λs[V (W s, u, s′)− V (W,u, s)]

+ λd[V (W d, d)− V (W,u, s)],

for W ∈ [W us
l ,W us

r ] and s = B,R;

ρV (W, e, s) = max
ĉ∈[0,c̄],

W j∈[Wus
l

,Wus
r ],

W s∈[W es
l

,W es
r ],

W d∈[W d
l
,W d

r ],

W j≤W,W d≤W

−ρv(ĉ− ω) + ρVW (W, e, s)[W − u(ĉ)− ps
W j −W

ρ
− λs

W s −W

ρ
− λd

W d −W

ρ
]

+ ps[V (W j, u, s) − V (W, e, s)] + λs[V (W s, e, s′)− V (W, e, s)] + λd[V (W d, d)− V (W, e, s)],

for W ∈ [W es
l ,W es

r ] and s = B,R;

ρV (W,d) = max
c∈[0,c̄]

−ρv(ĉ) + ρVW (W,d)[W − u(ĉ)]

for W ∈ [W d
l ,W

d
r ].

Proof. See Appendix A.4.

In Proposition 3, the contracting problems are reduced to solving a system of HJB equations.

For the rest of the paper, I will discuss the implications from this system of HJB equations.

4 A Solvable Special Case

In this section, I will consider a special case that allows me to demonstrate the theoretical

implications. By assuming the utility functions to be exponential, the solutions of the optimal

contracts can be reduced to a system of non-linear algebraic equations. The purposes of making

this simplification are two fold. First, solving a system of non-linear equations is easier, compared

to the general HJB equations where I need to solve a system of partial differential equations.

This simplification allows me to demonstrate the theoretical properties of the optimal contracts,

and I am able to show the comparative statistics. Second, I can show that the optimal contracts
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under exponential utilities can be implemented by a workers consumption-saving-effort model,

which helps us to understand the properties of the optimal contracts by observing the workers

self-insured behavior.

The arguments in this section follow closely the ones demonstrated in Li and Williams [2014].

In Li and Williams [2014], they show that using the exponential utilities and shutting down the

channel of job separation yield solvable solutions and the optimal contracts can be implemented

by allowing workers to save or borrow via different interest rates plus flow payments and lump-sum

transfers. In this paper, I extend their work by showing that the methodology can be extended

without shutting down the possibility of getting separated from jobs, and optimal contracts are

implementable by a similar workers consumption-saving-effort model. The only difficulty comes

from the indeterminacy of the flow payments; I will illustrate how to tackle this issue in the

Appendix B.

In particular, I assume the workers’ preferences are given by:

u(c, a) = exp(−θA(c− h(a))),

where h is increasing and convex with h(0) = 0, and θA > 0 is the risk aversion coefficient. The

agent’s cost function is given by:

v(c) = exp(θP c),

where θP > 0 is the risk aversion coefficient.

Although we do not specify the HJB equations for full information case, it is quite straightfor-

ward to extend from the HJBs for private information case. Denote Vf (W, j, s), and let Vf (W,d)

be the value function for full information case. In the Appendix B, I show that solutions to the

full information case take the following forms:

Vf (W, e, s) = −Ve(s)(−W )
−

θP
θA , cf (W, e, s) =

log Ve(s)

θP + θA
−

1

θA
log(−W ) +

θP

θP + θA
ω

Vf (W,u, s) = −Vu(s)(−W )
−

θP
θA , cf (W,u, s) =

log Vu(s)

θP + θA
−

1

θA
log(−W ) +

θA

θP + θA
h(a(s))

V (W,d) = −(−W )
−

θP
θA , cf (W,d) = −

1

θA
log(−W ),

where effort a(s) depends only on the aggregate economic state, and cf (.) denotes the consumption

in full formation case. Similarly, solutions to the private information case are:

V (W, e, s) = −V ∗
e (s)(−W )

−
θP
θA , c(W, e, s) =

log V ∗
e (s)

θP + θA
−

1

θA
log(−W ) +

θP

θP + θA
ω

V (W,u, s) = −V ∗
u (s)(−W )

−
θP
θA , c(W,u, s) =

log V ∗
u (s)

θP + θA
−

1

θA
log(−W ) +

θA

θP + θA
h(a∗(s))

V (W,d) = −(−W )
−

θP
θA , c(W,d) = −

1

θA
log(−W ),
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where a∗(s) is the effort level in private information case, and c(.) is the consumption.

For the next section, I will demonstrate how the results would change with respect to the

changes in parameter values.

4.1 Analysis

In this section, I will illustrate the dynamics of the optimal contracts under different informa-

tion structures, aggregate economic conditions, and responses to changes in parameter values. In

Figures 2 and 3, I will use the parameter values from the calibration results in the later section:

qB = 0.0037, qR = 0.0032, λB = 0.0058, λR = 0.0078, ρ = 0.001, and ω = 495. In addition,

I choose θA = 0.0015, θP = 0.0005, and h(a) = ν a1+φ

1+φ
with ν = 0.01 and φ = 1.7 for illustra-

tion purposes. In Figure 4, I will show how the effort and the consumption constant changes in

response to the changes in parameter values.
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Figure 2: Responses of Selected Variables to Weeks Unemployed with Full information, Private Informa-

tion, and Private Information without Disability

In Figure 2, I illustrate the differences between the contracts under full information and pri-

vate information (at least for this set of parameter values). All variables are constant under full

information case over the employed/unemployed spell, as the optimal contract effectively insures

the workers since there is no information asymmetry. Under private information, consumption

when unemployed decreases over the unemployment spell, and consumption upon finding a job

or being disabled decreases over the spell. This intuition is transparent, as emphasized in Hopen-
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Figure 3: Responses of Selected Variables to Weeks Unemployed with Private Information in Booms and

Recessions.

hayn and Nicolini [1997]. In order to induce the workers to search for jobs, consumption when

unemployed decreases over the unemployment spell because the agency does not want to punish

the unlucky workers at the beginning period of the unemployment spell. The same intuition works

for the other property: in order to give incentives to the workers to leave unemployment status

sooner, the agency would decrease the consumption when finding a job or becoming disabled when

the worker stays in unemployment status for longer periods of time. Interestingly, effort level is

higher under private information case than under full information case. By inducing workers to

search for jobs harder under private information case, the cost from asymmetric information can

be reduced since workers leave the unemployment pool faster.

In Figure 3, I plot the same variables, but I focus on the cyclical properties. As job search

is more productive in booms, the agency would design the contract so that it induces the worker

to exert higher effort, as higher consumption is provided during the unemployment spell. At the

same time, the consumption upon finding a job or becoming disabled decreases at a faster rate

over the unemployment spell in booms than in recessions for the same reason as search is more

productive in booms. In addition, effort level is higher in booms than recessions, reflecting the

situation that job finding rate is higher in booms and the optimal design would induce the workers

to put forth higher search effort.

In Figure 4, I analyze how the effort a∗(s) and consumption constant c∗(s)+h(a∗(s)) changes
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Figure 4: Comparative Statistics of Effort a∗(s) and Consumption Constant c∗(s).

with respect to parameter changes. Recalling that the consumption takes the form of

c(W,u, s) = c∗(s) + h(a∗(s))−
1

θA
log(−W ).

The consumption constant captures the change in consumption independent of wealth. From the

figures, effort and consumption constant are decreasing when the agency becomes more risk averse,

as it is costly for the agency to provide incentives. However, the effect of risk coefficient parameter

for the worker on effort is non-monotonic. In addition, the consumption constant increases when

the worker is more risk averse, as consumption should be higher when the worker is more sensitive

to risk. In the case when the worker is more likely to become employed in recessions (higher qR),

the information friction is less severe as both effort and the consumption constant become closer

between the recessions and booms. Next, when it is easier to get out of the recession state (higher

λR), the effects on effort and consumption are small. Last, when it is more likely for the worker

to be hit by health shock, the effects are similar in booms and recessions, as health shock could

affect the workers both in booms and in recessions.

5 Implementation of the Optimal Contract

In this section, I will show how the optimal contracts under exponential utilities can be imple-

mented via some simple instruments – workers consumption-savings-effort model. In particular,

the instruments are (1) allowing workers to save or borrow using a bond, (2) providing flow
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payments and lump-sum transfers (or payments), where the interest rates and the amounts paid

(transferred) depend on the employment or health status of the agent and the state of the economy.

This allows me to gain insights on the properties of the optimal contracts, where the behavior of

promised utility can be explained by a workers self-insured actions. As explained in the previous

section, the ideas come from Li-Williams [2014], where they consider the implementation of opti-

mal UI with business cycles. The main difference and difficulty come from the indeterminacy of

the flow payments. Since the arguments are similar as the ones in Li-Williams [2014], I explain

the details in the Appendix C. For the rest of this section, I first layout the model and then

demonstrate the comparative analysis.

5.1 A Worker’s Consumption-Savings-Effort Problem

I consider an environment where a worker has wealth xt and has access to a bond with an

instantaneous rate of return rd when disabled, re(st) when employed, and ru(st) when unemployed.

In addition, this worker will receive a constant bd when disabled, be(st) when employed, and bu(st)

when unemployed. Third, an employed worker receives a lump-sum transfer Be
d(st) if he becomes

disabled, Be
u(st) if he becomes unemployed, and Ae(st, xt) when the aggregate economy state

switches. An unemployed worker receives Bu
d (st) when he becomes disabled, Bu

e (st) when he

finds a job, and Au(st, xt) when the aggregate economy state switches.

The idea of implementation is that we allow the workers to self-insure, and the flow payments

plus lump-sum transfers induce the correct incentives for the worker to search for the job and not

apply for disability if healthy. Hence, the worker needs to decide how much to save (borrow) and

consume and the effort level in each period.

In Appendix C, I will show the conditions when consumption-savings-effort model implements

the optimal contracts. For the rest of this section, I will focus on demonstrating the implications

from this implementation.

5.2 Illustrations

In this section, I will demonstrate the changes of interest rate and lump-sum transfers in

response to changes in model parameters. The same parameter values will be used as in the

previous section.

In Figure 5, I plot the effective interest rate when unemployed and employed. The effective

interest rate is greater than the subjective discount rate (ru(s) > ρ) when unemployed, but greater

than the subjective discount rate re(s) < ρ when employed, so the contract provides an interest

rate subsidy to the unemployed workers and taxes the employed workers. The subsidy or tax

increase when the workers are more risk averse, but the subsidy increases while tax decreases
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Figure 5: Comparative Statistics of Effective Interest Rate when Unemployed r(s) and the Unemployed

Benefits Bu(s).

when the agency is more risk averse. The subsidy increases when it is easier to find the job, and

the tax increases when it is easier to get separated from the job. Not surprisingly, subsidy and

tax increase when it is easier for the workers to get hit by the health shock.
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Figure 6: Comparative Statistics of Lump-Sum Transfers of Bu
e
(s) and Be

u
(s) when a Worker’s Employ-

ment Status Changes.

In Figure 6, I plot the lump sum payments Bu
e (s) when the worker finds a job, and the lump
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sum payment Be
u(s) when the worker gets separated from the job. The lump sum payments of

Bu
e (s) are positive and larger in recessions than in booms so as to provide incentives. The number

also does not drop a lot as the probability of people who become disabled increases. In addition,

the lump sum transfer Be
u(s) when the worker loses his job is negative, reflecting that worker is

punished when separated from the job. Also, the transfers when the worker finds the job is higher

than when the worker loses his job. This fact induces the worker to search for a job harder as he

can then accumulate more of the wealth. This observation also explains the fact that workers with

smaller average unemployment duration receive higher disability insurance benefits, as disability

insurance provides extra incentives for the workers to search for jobs harder.
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Figure 7: Comparative Statics of Lump-Sum Transfers Bu

d
(s), Be

d
(s) when Became Disabled.

In Figure 7, I plot the lump-sum transfers when the worker becomes disabled from unemployed

Bu
d (s) and employed Be

d(s). The lump sum transfers when a worker becomes disabled are negative,

meaning that the optimal contracts induce people to truthfully report is to lower the promised

utility by a large amount. This negative amount is substantially larger when the probability of

becoming disabled is lower. Also, a worker has to pay more when he transitions from employed

to disabled, reflecting the fact that this transition is unfavorable to the agency in the optimal

system.

6 A Quantitative Example

Although previous sections provide useful insights on the dynamics of the model and how

it can be implemented, the assumptions in the previous example are significantly different from
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what is generally used in the empirical literature. In this section, I will study the quantitative

implications under a more complete and standard model, which allows for job separation.

Throughout this section, I will assume that the utility function of the worker takes the following

form:

u(c, a) =
c1−γ

1− γ
−

a1+φ

1 + φ
.

In addition, I will assume risk neutral agency where v(c) = c.

6.1 The Benchmark Contract and Cost of the Current System

I first consider a stylized version of the current system, which can be used to calibrate the

model and measure the effects of switching to the optimal insurance system. I will call this stylized

version, “the benchmark contract”, where a worker receives constant unemployment benefits cB

for a fixed length of time and constant disability benefits cd. Furthermore, I assume that the

duration of the unemployment benefits is state dependent, wherein the worker can receive TR

periods in recessions and TB periods in booms, where TB < TR.

The actual DI application process consists of several steps. First, the worker cannot earn more

than a so-called “substantial gainful amount” and has a medical disability preventing him from

working. Second , the worker has to apply for disability insurance and it takes at least three to

five months before the awards are granted. In order to capture the complexities of the disability

insurance screening process, I make the following assumptions. First, the worker has made the

choice to apply for DI. Second, a worker with disability will be awarded the benefits, but a healthy

worker will be accepted with probability πd. Last, once being rejected, the worker cannot receive

unemployment insurance or apply for DI with the same reason again unless being hit by the

health shock or being employed. The last assumption is intended to capture the opportunity cost

in reality when workers decide whether to apply for DI or not.

The detail derivations on solutions to the benchmark contract will be discussed in Appendix

D. In the appendix, I will show that the utility level of a worker under the benchmark contract by

solving the differential equations, and then replace the differential terms on those utilities that fall

below the utility when workers become disabled. In addition, based on the status and choices of

the workers, I will show how to calculate the corresponding cost to the agency of the benchmark

contract.

6.2 Data and Calibration

The model period is one week. First, I will fix a few parameters following the literature.

Following Hyponhayn and Nicolini [1997], the risk aversion is set to be γ = 0.5, and the weekly
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Figure 8: Cyclical job finding and unemployment rates, with estimated recession indicator.

discount rate is set to be ρ = 0.001, which corresponds an annual discount rate of 5%. Next, I

will set the weekly wage to be ω = 495, which corresponds to the median annual wage $25,737

in 2007. In addition, I set the constant in the job finding rate to be qs0 = 10−5, which prevents

some singularity problems but has no impact on the main results. Also, I will set the maximum

consumption that can be allocated to a worker as equal to wage: c̄ = ω. This means that the

choice set of the consumption is [0, 2ω]. As for the health shock, I will set it as λd = 0.0008, which

is taken from Low and Pistaferri (2014), and the acceptance rate for the healthy worker is 0.5,

which is taken from Kitao (2014).

For the benchmark contract, I will set TB = 26 weeks in booms, which is the average duration

across U.S. states, and TR = 39 in recessions, which corresponds to the regular federal extended

unemployment benefits program. The replacement ratios for unemployed workers will be set to be

cb = 0.47ω, which is consistent with the 47% average replacement ratio in U.S. in 2009. And the

replacement ratio for workers with disability is set to be 33%, which is the average replacement

ratio for a 40-year old worker in 2007 with median wage.

As for the Markov process for aggregate states and the corresponding job finding and sep-

aration rates, I will estimate a two-state Markov-switching process using the data from Shimer

[2012]. This data set contains the quarterly averages of monthly job findings and separation

rates from 1948Q1 to 2007Q1. I will focus on the job finding rates, as Shimer emphasized that
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the cyclicality in the data comes primarily from the job finding rates. In order to focus on

the cyclicality components, I will first use the Hodrick-Prescott filter to remove the low-frequency

trend from the job finding rate data. Then, I will estimate the two-state Markov-switching model,

following the approach of Hamilton (1989). That is, the H-P filtered job finding rates (ft) are

estimated by

ft = mst + ǫt.

From the estimation, I find that the mean job finding rates in booms and recessions are mB =

0.4875 and mR = 0.4107, with the transition rates 0.9332 and 0.9107. This gives the aggregate

economic switching rates as λB = 0.0058 and λR = 0.0078. In addition, the estimated recession

indicator, which is when the smoothed probability of a recession is greater than 0.5, is shown in

Figure 8. I read the mean job separation rates in booms and recessions from the H-P filtered

data, and this gives pB = 0.0086 and pR = 0.0089.

Last, I calibrate the rest of the parameters by simulating a population of 50,000 workers and

computing the average job finding rates as well as the elasticities of unemployment duration with

respect to an increase in the unemployment benefits. In this simulation, I assume workers start

at age 40 and will work 25 years until they retire at age 65. For the elasticities, the typical range

of estimates is between 0.5 and 1 (Landais et al. [2012], Chetty [2008]), and I will target the value

at the middle of the rate at 0.7. This gives qB1 = 0.0037, qR1 = 0.0032, and effort cost function

parameter φ = 0.145.

6.3 Quantitative Implications

In this section, I demonstrate the quantitative implications of the optimal contracts. First,

I will show the properties of the optimal contract. Then, I compare the differences between

the benchmark system and the optimal contract, focusing especially on the cost reductions from

adopting the optimal contracts. Last, I consider impacts of optimal contract on low-income

workers and impacts of different policy reforms.

6.3.1 Characterizations of the Optimal Contracts

I will first demonstrate the properties of the optimal contract. Most of the results in the

solvable special case are the same when I consider the full model with CRRA utility functions.

This implies that the intuition from the solvable case can be applied in this quantitative example.

The selected figures confirm this statement.

In Figure 9, I plot consumption when unemployed and upon finding a job or becoming dis-

abled over an unemployment spell, in the full information case and the private information case.
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Figure 9: Consumption over an Unemployment Spell in a Recession under Full Information and Private

Information.

Consumption is constant in all states under full information, but consumption when unemployed

decreases over the unemployment spell under private information. Consumption upon finding a

job or becoming disabled decreases over the unemployment spell. The intuition is transparent:

in order to provide enough incentives, the consumption decreases over the unemployment spell

as the unemployment state is the unfavorable state to the agency. At the same time, the agency

does not want to punish the workers who are unlucky even though they put forth a lot of effort to

search for a job. In addition, the agency will decrease consumption upon finding a job or becom-

ing disabled over the unemployment spell because it does not want to give workers an incentive

to stay in the unemployment status.
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Figure 10: The Job Finding Rate over an Unemployment Spell.

Next, I show how the efforts differ between the benchmark model and the optimal contract.

In Figure 10, I plot the job finding rates over an unemployment spell for the benchmark model
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and optimal contracts under different information structures, as well as the job finding rates in

booms and in recessions. Under full information, the job finding rate is constant over time, but

the finding rate increases over the unemployment spell under the private information case. This

reflects the impact of the incentives in the optimal contract. In addition, I can see that job finding

rates are higher in booms than in recessions, but the patterns are parallel. The intuition behind

these results is that it is more efficient to search for a job in booms and a higher periodicity of

search gives a higher rate for the same search effort. Hence, it is easier for the agency to give

incentives to workers in booms. As a result, the workers search harder when the economy is

better. On the other hand, the graph shows that the incentive impact in booms and recessions

functions in a similar way, even given these differences.

Last, I would like to discuss how DI affects workers search incentives. As shown in the

implementation section, DI benefits increase upon finding a job and decrease upon losing a job.

Also, DI benefits decrease over the unemployment spells. This indicates that workers with smaller

average unemployment duration receive higher disability insurance benefits. In other words, the

existence of DI gives workers more incentive to search for a job harder in order to obtain potential

higher disability insurance benefits in the future.

6.3.2 Cost Reductions from the Optimal System

In this section, I will show the cost reductions and the potential gains of switching from the

current system to the optimal system. Since I assume that only the agency has the techniques to

transfer resources across time and that the worker cannot save or borrow, the potential cost savings

may be considered as an upper bound on savings. In addition, switching and the comparisons

are calculated when the benchmark contract and the optimal contract give the workers the same

ex-ante utility. It means that the workers are indifferent between choosing the current system

and the optimal system, and we can compare the difference in the government expenditure by

implementing a different system.

First, I will show the summary statistics from simulations. In Table 1, I list the unemployment

rates, unemployment durations, finding rates, and separation rates. Although I do not match the

unemployment rate, the simulations from the benchmark contract match the data quite well, but

the unemployment durations are different between the simulations and the data. The main reason

is that I match the moments of job finding rates in booms and recessions, and it pins down the

unemployment durations because there is not heterogeneity between workers. This problem can

be fixed if we simulate different cohorts of workers. As in the optimal system, the unemployment

rate drops around 40% and unemployed durations drop more than 50% as workers search harder

in the optimal system.
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Benchmark Optimal Data

Boom Recess Boom Recess Boom Recess

Unemp. Rates (%) 4.8 6.5 3.0 4.1 4.8 6.4

Unemp. Duration (weeks) 5.8 7.8 2.3 3.3 12.3 14.9

Finding Rate (months) 0.60 0.51 0.82 0.71 0.60 0.51

Sep. Rate (months) 0.033 0.035 0.033 0.035 0.033 0.035

Table 1: Summary Statistics from Simulations of the Benchmark Contract, the Optimal

Contract and Data.

Government Expenditure (per week per worker)

Benchmark Optimal

Avg Workers 73.3 -29.9

Savings (Cost Reductions) – 140 %

By State

Unemp (B) 231.8 154.4

Unemp (R) 232.4 234.3

Emp (B) 0 -282.7

Emp (R) 0 -228.7

Disabled 173.4 288.2

Table 2: Cost Comparisons between the Benchmark Contract and the Optimal Contract, Wage = 495/

week.

Next, I will show the potential gains of switching from the current system to the optimal

system. As explained above, I consider that both the benchmark contract and the optimal contract

will give the workers the same ex-ante utility, which means that the worker is indifferent between

choosing the benchmark model and the optimal contract. Then, I compare the costs to the

insurance agency. As in Table 2, the potential gains for the agency are substantial, around 140%.

The agency actually collects benefits from the high-income workers.

In order to better understand where the cost savings come from, I break down the cost

reductions by states. As in the optimal case, the workers pay big taxes when employed and

receive higher disability benefits while receiving lower unemployment benefits in the optimal

contracts than they do under the benchmark contract. This implies that the incentive problems

in the benchmark contract can be handled in a different way without making the workers worse

off, but cost reductions to the agency are still substantial. In addition, cost savings come mainly
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from taxing the employed workers and there are more people working in the optimal system.

As mentioned earlier, the substantial cost reduction implies that the workers are willing to

endure a big tax rate under the optimal system. As we can observe from the table 2, the healthy

worker gives up around 250 dollars when employed and 100 dollars when unemployed so that he

gets a compensation of 100 dollars when he is disabled. Although it seems less likely, one of the

property of the optimal contract is the “immiseration” result shown in Thomas and Worrall [1990]

and Atkeson and Lucas [1992], which implies that the agent’s promised utility tends to minus

infinity under the optimal contract. When the government considers the average consumption

over a long period of time, a big reduction occurs because the promised utility tends towards the

region where the incentive is less costly to provide.

6.4 Impact of the Optimal Contracts on Low-Income Workers

In this section, the impact of the optimal contracts on low-income workers will be shown. The

motivation of this exercise comes from the discussions in Autor and Duggan [2003, 2006]. One

reason for the increase in the DI applications is the rising replacement ratio of DI benefits, as

workers have financial incentives to apply for DI if the replacement rate is high. I will show the

results if the government implements the optimal system.

First, I will calculate the replacement ratios for disabled workers with different incomes. The

benefits that a disabled worker can receive are calculated based on the Primary Insurance Amount

formula (PIA), which uses the Average Indexed Monthly Earnings (AIME) and is progressive.

The PIA formula is as follows:

PIA =















0.9×AIME if AIME ∈ [0, b1]

0.9× b1 + 0.32 × (AIME− b1) if AIME ∈ [b1, b2]

0.9 × b1 + 0.32 × (b2 − b1) + 0.15 × (AIME− b2) if AIME > b2,

where Bend points (b1, b2) are rescaled each year by average growth in the economy.

In order to show and derive the replacement ratios for different disabled workers, I use data

from all 40-year old workers in 2007 and divide them into five groups according to their wages

and calculate the ratios using the formula above. The ratios for workers in different quintiles of

wages are:

Earnings Percentile 0-20 20-40 40-60 60-80 80-100

Replacement Ratio 0.62 0.43 0.33 0.27 0.21

Table 3: Potential DI Income as % of Current Earnings for a 40-

year Old Worker in 2007.
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In Table 3, the replacement ratios range from 62% to 21% for low-income workers to highp-

income workers. In this exercise, I will simulate the workers when the replacement ratio for DI

is 62% and weekly wage equals $233. In addition, since it is more likely for the low income

workers to apply for disability insurance, I will use the intensity of health shock as λd = 0.004 as

estimated in Kitao (2014). Then I will compare the difference between the benchmark contract

and the optimal contract.
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Figure 11: Cyclicality Property of the Benchmark Contract

Before showing the results, I will show the cyclicality property of the benchmark contract, as

healthy workers have incentives to apply for DI in recessions after a long unemployment spell. In

Figure 11, I demonstrate that cyclicality property can be observed. This cyclicality comes from

the following two reasons: (1) workers on average are unemployed longer in recessions, and (2)

utility when disabled is relatively higher when workers almost exhaust their UI benefits. Although

I do not plot the results from the optimal contracts, it can be easily inferred that DI applications

would look like a flat line since an optimal system induces healthy workers not to apply for DI.

In Table 4, I show the results of low-income workers in the benchmark system and the optimal

system. First, unemployment rate is higher for low-income workers in the benchmark system,

and the unemployment rate drops larger when the government implements the optimal system.

In recessions, the unemployment rate drops from 9.6% in the benchmark system to 3.8% in the

optimal system, reflecting that not only do workers search harder in the optimal system but

healthy workers would not apply for disability.

As for the government expenditure, we can observe that the cost savings are smaller compared

to the representative agents case and are around 3.6%. As we can observe in Table 4, low-income

workers receive higher unemployment benefits and higher disability benefits. At the same time,
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Benchmark Optimal

Boom Recess Boom Recess

Unemp. Rates (%) 7.2 9.6 3.2 3.8

Unemp. Duration (week) 9.2 11.7 4.7 5.5

Government Expenditure (per week per worker)

Benchmark Optimal

Avg Workers 122.9 118.46

Savings – 3.6%

Unemp (B) 108.8 158.5

Unemp (R) 108.0 135.9

Emp (B) 0 -80.0

Emp (R) 0 -103.9

Disabled 140.4 155.9

Table 4: Results for Lowest Quintile, Wage = 233/week.

there are more low-income workers as the shocks arrive at a higher intensity.

6.5 Impact of Different Policy Reforms

Last, let me consider the impacts of different policy reforms. The first exercise is motivated

by the extended UI benefits during the Great Recession, when workers could receive up to 99

weeks of unemployment insurance. The second exercise is intended to show understand the

interdependence of the unemployment insurance and disability insurance. As explained above,

the existence of disability insurance provides the workers with extra search incentives, and I would

like to show how much the search intensity can be provided by using the disability insurance alone.

For the first exercise, I will simulate the benchmark model with TR = 99. This means that

workers in recessions can receive the unemployment insurance up to 99 weeks, and I will compare

the results to the case where TR = 39, as workers can receive up to 39 weeks of unemployment

insurance benefits in recessions. The results are shown in Table 5, where we can observe that

differences are small in terms of unemployment rate and government expenditure between the

system with 39 weeks of unemployment insurance benefits in recessions to the system and between

the system with 99 weeks of UI in recessions. Although workers search slightly harder in recessions

under the system of 39 weeks, most workers find a job before they exhaust their unemployment

insurance. This result is similar to Rothstein [2011], and I further show that the government
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Benchmark (TR = 39 ) TR = 99

Boom Recess Boom Recess

Unemp. Rates (%) 4.8 6.5 4.7 6.7

Unemp. Duration (week) 5.8 7.8 5.7 8.1

Government Expenditure (per week per worker)

Benchmark (TR = 39 ) TR = 99

Avg Workers 73.3 73.5

Savings – 0.3%

Unemp (B) 231.8 231.4

Unemp (R) 231.5 232.7

Emp (B) 0 0

Emp (R) 0 0

Disabled 163.4 163.4

Table 5: Results for Extending UI benefits to 99 Weeks during Recessions.

expenditure is similar between the two systems.

Benchmark Fix UI, Optimal DI

Boom Recess Boom Recess

Unemp. Rates (%) 4.8 6.5 2.3 3.4

Unemp. Duration (week) 5.8 7.8 2.6 3.9

Government Expenditure (per week per worker)

Benchmark Fix UI, Optimal DI

Avg Workers 73.3 43.4

Savings – 40.8%

Unemp (B) 231.8 219.7

Unemp (R) 232.4 224.6

Emp (B) 0 -165.9

Emp (R) 0 -169.0

Disabled 163.4 324.7

Table 6: Results for Taking UI as Given, Optimal DI.

Last, I will consider the second exercise: government takes the current unemployment in-
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surance system as a given but considers the design of the optimal disability insurance. In this

exercise, I assume that the government cannot change the unemployment insurance benefits cb,

and the maximum unemployment insurance durations TB = 26, TR = 39. However, the govern-

ment can consider the design of optimal disability insurance. By doing this exercise, we can show

the interdependence of the two insurance programs as well as how much search efforts can be

motivated by the potential future disability insurance benefits.

In Table 6, the unemployment rate drops around 40% and the cost reductions are around

40%. This means that a big proportion of the search effort problem due to the incentives in the

current system can be solved even if only the optimal disability insurance is implemented.

7 Conclusion

In this paper, I consider the optimal joint insurance system against unemployment and dis-

ability shocks, and I include business cycles. In order to understand the properties of the optimal

contract, I consider a solvable special case and demonstrate how the optimal system can be

implemented through saving and borrowing behavior with state-switching payments. Last, I

consider a stylized version of the current system and evaluate the cost reductions when switching

from the current system to the optimal system. I find that the cost reductions from the incentive

problems are substantial, while extended UI benefits do not make the incentive problem serious.

My results indicate that adjusting the system would have a bigger impact on the unemployment

rate, and I would suggest the following policy reform: benefits should be contingent on the history

of unemployment, average unemployment duration.
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Appendix

Appendix A Proofs

Appendix A.1 Proof for Proposition 1

Proof. Define

φt(c, a) = Et[ρ

∫ ∞

0
e−ρsu(cs, as)ds

∣

∣Ft] = ρ

∫ t

0
e−ρsu(cs, as)ds+ e−ρtWt.

Since u(c, a) is bounded for the bounded sets of c and a. Also, φt(c, a) is uniform integrable. By

the martingale representation theorem, there exist three Ft-predictable square integrable processes

g
j
t , g

s
t , g

d
t such that

dφt(c, a) = ρe−ρtg
j
t dm

j
t + ρe−ρtgst dm

s
t + ρe−ρtgdt dm

d
t .

Combining the equations gives the result.

Appendix A.2 Proof for Proposition 2

Proof. The incentive problems come from three parts: the workers effort is unobservable, em-

ployed workers can voluntarily quit their jobs, and healthy people can misreport as disabled.

Since the incentive problems are state-contingent, i.e. unemployed workers cannot quit their jobs

since they are not employed, I will prove this proposition state by state. I will start by showing

the necessity first and then the sufficiency.

Let us first consider the case when the worker is unemployed. Given a contract (c, a, j = 1, d =

0), I define φt(c, a
′) for some feasible a′ and health status d′ as

φt(c, a
′) = ρ

∫ t

0
e−ρsu(cs, a

′
s)ds + e−ρtWt, ∀t ∈ [0,∞]

It is clear that for any alternative (a′, d′), φ0(c, a
′) = W0. Differentiating the previous equation

with respect to t gives:

dφt(c, a
′) = ρe−ρtu(ct, a

′
t)dt− ρe−ρtWtdt+ e−ρtdWt

= ρe−ρt[(u(ct, a
′
t)− c(ct, at))dt+ g

j′

t dm
j′

t + gst dm
s
t + gd

′

t dmd
t ].

Let dm
j′

t be the compensated jump martingale with a′ and dmd′

t be the martingale associated

with d′. Then

dm
j
t = ([(1 − st)qB(a

′
t) + stqR(a

′
t)]− [(1− st)qB(at) + stqR(at)])dt+ dm

j′

t

dmd
t = λddt+ dmd′

t .
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Hence,

dφt(c, a
′) = ρe−ρt[(u(ct, a

′
t)− c(ct, at) + g

j
t ([(1 − st)qB(a

′
t) + stqR(a

′
t)]

− [(1 − st)qB(at) + stqR(at)])dt + gdt λt)dt+ g
j
t dm

j′

t + gst dm
s
t + gdt dm

d′

t ].

Under a′, d′, dmj′

t , dm
d′

t are martingales. Then, the drift term of φt(c, a
′) has the same sign as

[(u(ct, a
′
t)− c(ct, at) + g

j
t ([(1− st)qB(a

′
t) + stqR(a

′
t)]− [(1− st)qB(at) + stqR(at)]).

Thus, if

at ∈ argmax
ãt

g
j
t qst(ãt) + u(ct, ãt)

gdt ≤ 0,

φt(c, a
′) is a sub-martingale, so I have

Ea′,d′ [φt(c, a
′)] > φ0(c, a

′) = W0,

which implies that (a′, d′) dominates (a, d), hence it is not optimal. The case when the worker is

employed can be proved in the similar way. Hence I prove the necessity.

For sufficiency, suppose (c, a, j, d) satisfies the conditions. Then, φt(c, a
′) is a super-martingale

for any other alternative feasible choices. Since ct, at, dt, jt are all bounded, I have

W0 = φt(c, a
′) ≥ E[φ∞(c, a′)].

Hence (c, a, j, d) dominate all other feasible choices.

Appendix A.3 The Boundary Points of the Value Functions

Appendix A.3.1

I will show how the left and right boundaries are derived in this appendix. The arguments

follow closely those in Li and Williams [2014].

First, the left boundaries are computed by considering the harshest contract that the principal

can offer to the agent: the contract will give the agent the minimum level of consumption while

forcing the agent to choose the highest effort level. The right boundaries are computed by solving

the most generous contract that the agency can offer: giving the highest level of consumption

to the agent. I will use (W js
r , V (W js

r , j, s)), (W d
r , V (W d

r , d)) for the right boundaries for the

worker and the agency with status j or d and state s. The left boundaries are denoted as

(W js
l , V (W js

l , j, s)), (W d
l , V (W d

l , d)). Then I will have the following proposition:
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Proposition 4. The bounds of the promised utility for a worker are W
js
l = W d

l = u, for j = E,U ,

and s = B,R. The corresponding value functions for the insurance agency V (W js
l , j, s), and

V (W d
l , d) are

ρV (W us
l , u, s) = λs(V (W us′

l , u, s′)− V (W us
l , u, s)) + qs0(V (W es

l , e, s)− V (W us
l , u, s))

+ λd(V (W d
l , d)− V (W us

l , u, s))

ρV (W es
l , e, s) = ρv(ω) + λs(V (W es′

l , e, s′)− V (W es
l , e, s)) + ps(V (W us

l , u, s)− V (W es
l , e, s))

+ λd(V (W d
l , d)− V (W es

l , e, s))

ρV (W d
l , d) = 0.

The upper bounds of the promised utility for the worker W
js
r , W d

r satisfy the following:

ρW us
r = max

a∈[0,ā]
ρu(c̄, a) + λs(W

us′

r −W us
r ) + qs(a)(W

es
r −W us

r ) + λd(W
d
r −W us

r )

ρW es
r = ρu(c̄ω) + λs(W

es′

r −W es
r ) + ps(W

us
r −W es

r ) + λd(W
d
r −W es

r )

ρW d
r = ρu(c̄),

with V (W js
r , j, s) = V (W d

r , d) = −ρv(c̄).

Proof. Let us start with left boundaries. Since all the proofs are similar, let us focus on the case

when the worker is unemployed and in state B. The other left boundaries can be proven in a

similar way.

Let τ = τ j ∧ τ s ∧ τd, where τ j is the time when the next job arrives, τ s is the time when

the next aggregate state changes, and τd is the next health shock hits. For any ∆ > 0, since

consumption is zero, I have

V (W us
l , u, s) = e−ρ(∆∧τ)Pr(τ > ∆)V (W us

l , u, s) + e−ρ(∆∧τ)[Pr(τ < ∆, τ = τ j)V (W es
l , e, s)

+ Pr(τ < ∆, τ = τ s)V (W us′

l , e, s′) + Pr(τ < ∆, τ = τd)V (W d
l , d)].

Subtracting V (W us
l , u, s) and dividing ∆ on both sides, I have

0 = e−ρ(∆∧τ)e−(λs+qs0+λd)∆[V (W us′

l , u, s′)− V (W us, u, s)]

+ e−ρ(∆∧τ)(1− e−(λs+qs0+λd))[
qs0

λs + qs0 + λd
V (W es

l , e, s)

+
λs

λs + qs0 + λd

V (W us′

l , e, s′) +
λd

λs + qs0 + λd

V (W d
l , d)].

Taking ∆ → 0, I have the result.

Next, I consider the right boundaries. Let us consider the case of the unemployed worker in

state s. All the other cases can be proven in a similar way.
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The unemployed worker in state s faces the following problem:

max
a∈A

E0[ρ

∫ τ∧∆

0
e−ρtu(c̄, a)dt] + e−ρ(∆∧τ)[e−(λs+qs(at)+λd)∆W us

r

+ (1− e−(λs+qs(at)+λd)∆)(
λs

λs + qs(at) + λd

W us′

r +
qs(aT )

λs + qs(at) + λd

W es
r +

λd

λs + qs(at) + λd

W d
r ].

The solution to the problem is W us
r . Hence for any a ∈ A, I have:

W us
r ≥ max

a∈A
E0[ρ

∫ τ∧∆

0
e−ρtu(c̄, a)dt] + e−ρ(∆∧τ)[e−(λs+qs(at)+λd)∆W us

r

+ (1− e−(λs+qs(at)+λd)∆)(
λs

λs + qs(at) + λd

W us′

r +
qs(aT )

λs + qs(at) + λd

W es
r +

λd

λs + qs(at) + λd

W d
r ].

Subtracting V (W us
l , u, s), dividing ∆ on both sides, and taking ∆ → 0, I have the result.

Appendix A.4 Proof for Proposition 3

Proof. I will show the HJB equation when the economy is in a boom period and the worker is

unemployed. Other HJB equations can be proven in a similar manner.

Assuming at time t, the promised utility of the worker is Wt = W . Let c be the consumption

process, W j be the adjusted utility when the employment status changes, W s be the adjusted

utility when the aggregate state changes, and W d be the adjusted utility when the health shock

hits. Let τ j, τ s, and τd be the stopping time when the next job, aggregate state changes, and

health shock arrive respectively. Defining τ = τ j ∧ τ s ∧ τd. At time t and for small interval of

time ∆, I have

V (Wt, u,B) ≥ Et[ρ

∫ (t+∆)∧τ

0
e−rhosv(cs)ds

∣

∣Ft−] + e−ρ((t+∆)∧τ)Pr(τ > t+∆|a)V (Wt+∆, u,B)

+ e−ρ((t+∆)∧τ)Pr(τ < t+∆, τ = τ j |a)V (W j
t+∆, e, B)

+ e−ρ((t+∆)∧τ)Pr(τ < t+∆, τ = τ s|a)V (W s
t+∆, u,R)

+ e−ρ((t+∆)∧τ)Pr(τ < t+∆, τ = τd|a)V (W d
t+∆, d).

Let ∆ be small enough such that everything is well-defined, and effort is constant in the interval.

Subtracting V (Wt, u,G) on both sides and dividing both sides by ∆, I have

0 ≥ −
1

∆
Et[ρ

∫ (t+∆)∧τ

0
e−rhosv(cs)ds

∣

∣Ft−] +
1

∆
e−ρ((t+∆)∧τ)e−(λB+qB(a∗(W J

t ,Wt))+λd)[V (Wt+∆, u,B)− V (Wt, u,B)]

+ e−ρ((t+∆)∧τ)(1− e−(λB+qB(a∗(W J
t ,Wt))+λd))

qB(a
∗(W j

t ,Wt))

λB + qB(a∗(W J
t ,Wt)) + λd

V (W j
t+∆, e, B)

+ e−ρ((t+∆)∧τ)(1− e−(λB+qB(a∗(W J
t ,Wt))+λd))

λB

λB + qB(a∗(W J
t ,Wt)) + λd

V (W s
t+∆, u,R)

+ e−ρ((t+∆)∧τ)(1− e−(λB+qB(a∗(W J
t ,Wt))+λd))

λd

λB + qB(a∗(W J
t ,Wt)) + λd

V (W d
t+∆, d).
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Let ∆ → 0, and I have

0 ≥ −ρ(v(ct)

+ V (Wt, u,B)) + VW (Wt, u,B)ρ[Wt − u(ct, at)− qB(a(W
j
t ,Wt))

W
j
t −Wt

ρ
− λB

W s
t −Wt

ρ
− λd

W d
t −Wt

ρ
]

+ qB(a(W
j
t ,Wt))[V (W, e,B) − V (W,u,B)] + λs[V (W s, u,R) − V (W,u,B)] + λd[V (W d, d)− V (W,u, s)].

Since ct, at, W
j
t , W

s
t , W

d
t are chosen optimally, the inequality holds with equality.

Appendix B Calculations for the Solvable Case

Appendix B.1 Disabled Worker

Let us guess that the form of the value function for the agency is:

V (W,d) = −(−W )
−

θP
θA .

The FOC for the consumption gives

−θP exp(θP ∗ c) = −
θP

θA
(−W )

−
θP+θA

θA θA exp(−θAc)

⇒ θP ∗ c = −θA ∗ c−
θP + θA

θA
log(−W )

⇒ c = −
1

θA
log(−W )

Plugging everything back into the HJB equation, I can see that all terms cancel out, which

verifies the guess is correct.

Appendix B.2 Full Information

Let me start with the employed workers. I conjecture that the form for the value function is:

V (W, e, s) = −Ve(s)(−W )
−

θP
θA .

Using the conjectured form, the slope matching conditions gives

W j =
(Ve(s)

Vu(s)

)−
−θA

θP+θA W

W s =
( Ve(s)

Ve(s′)

)−
−θA

θP +θA W

W d = Ve(s)
−

−θA
θP+θA W.
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Hence I have the following:

V (W j, u, s)− V (W, e, s) = [−Ve(s)
−θP

θP +θA Vu(s)
−θA

θP +θA + Ve(s)](−W )
−

θP
θA

V (W s, e, s′)− V (W, e, s) = [−Ve(s)
−θP

θP +θA Ve(s
′)

−θA
θP +θA + Ve(s)](−W )

−
θP
θA

V (W d, d)− V (W, e, s) = [−Ve(s)
−θP

θP +θA + Ve(s)](−W )
−

θP
θA .

Next, the optimality conditions for c gives:

c =
1

θP + θA
log(Ve(s))−

1

θA
log(−W ) +

θA

θP + θA
ω

Using the optimality condition for c and slope matching conditions, plugging them into the HJB

equation, and canceling the W term gives

Ve(s)
−

θA
θP +θA

[

ρ exp(
θP θA

θP + θA
ω) + psVu(s)

−
θA

θP+θA + λsVe(s
′)
−

θA
θP+θA + λd

]

= (ρ+ ps + λs + λd),

Then I turn to the problems for unemployed workers. I conjecture that the form for the value

function is:

V (W,u, s) = −Vu(s)(−W )
−

θP
θA .

Using the conjectured form, the slope matching conditions gives

W j =
(Vu(s)

Ve(s)

)−
−θA

θP+θA W

W s =
( Vu(s)

Vu(s′)

)−
−θA

θP +θA W

W d = Vu(s)
−

−θA
θP+θA W.

Hence I have the following:

V (W j, e, s) − V (W,u, s) = [−Vu(s)
−θP

θP+θA Ve(s)
−θA

θP+θA + Vu(s)](−W )
−

θP
θA

V (W s, u, s′)− V (W,u, s) = [−Vu(s)
−θP

θP+θA Vu(s
′)

−θA
θP +θA + Vu(s)](−W )

−
θP
θA

V (W d, d) − V (W,u, s) = [−Vu(s)
−θP

θP+θA + Vu(s)](−W )
−

θP
θA .

Next, the optimality conditions for c and a gives:

c =
1

θP + θA
log(Vu(s))−

1

θA
log(−W ) +

θA

θP + θA
h(a)

ρ(−
θP

θA
Vu(s)(−W )

−
θP+θA

θA )(−θAe
−θA(c−h(a))h′(a) +

qs

ρ
(W j −W )) = qs(V (W j , e, s)− V (W,u, s))

Using the optimality condition for c and slope matching conditions, plugging them into the HJB

equation, and canceling the W term gives

Vu(s)
−

θA
θP +θA

[

ρ exp(
θP θA

θP + θA
h(ā(s))) + qsā(s)Ve(s)

−
θA

θP +θA + λsVu(s
′)
−

θA
θP +θA + λd

]

= (ρ+ qsā(s) + λs + λd),
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In sum, {ā(s), Vu(s), Ve(s)} can be solved by the following three equations:

Vu(s)
−

θA
θP +θA

[

ρθP exp(
θP θA

θP + θA
h(ā(s)))h′(ā(s)) + (1 +

θP

θA
)qsV e

−
θA

θP+θA

]

= qs(1 +
θP

θA
),

Vu(s)
−

θA
θP +θA

[

ρ exp(
θP θA

θP + θA
h(ā(s))) + qsā(s)V e

−
θA

θP +θA + λsVu(s
′)
−

θA
θP+θA + λd

]

= (ρ+ qsā(s) + λs + λd),

Ve(s)
−

θA
θP +θA

[

ρ exp(
θP θA

θP + θA
ω) + psVu(s)

−
θA

θP +θA + λsVe(s
′)
−

θA
θP +θA + λd

]

= (ρ+ ps + λs + λd).

Appendix B.3 Private Information

The solution to the employed workers problem is the same for the full information case and the

private information case. Now I will turn to the problem for the unemployed worker. The goal is

to show a system of equations that jointly determine the parameters.

Let us guess that the value function has the form:

V (W,u, s) = −V ∗
u (s)(−W )

−
θP
θA ,

and the consumption takes the form of:

c(W,u, s) = c∗(s) + h(a∗(s))−
1

θA
log(−W ).

Using the conjectured forms, I have the following results:

v(c) = exp(θP (c
∗(s) + h(a∗(s))))(−W )

−
θP
θA

u(c, a∗(s)) = − exp(−θAc
∗(s))(−W )

uc(c, a
∗(s)) = θA exp(−θAc

∗(s))(−W )

ua(c, a
∗(s)) = −θAh

′(a∗(s)) exp(−θAc
∗(s))(−W )

uaa(c, a
∗(s)) = −[θ2Ah

′(a∗(s))2 + θAh
′′(a∗(s))] exp(−θAc

∗(s))(−W )

uac(c, a
∗(s)) = θ2Ah

′(a∗(s)) exp(−θAc
∗(s))(−W )

Next, the incentive compatible constraint for the effort gives:

−ua(c, a) = qs
W j −W

ρ
.

Using the above equation, it is easier to use the controls of W j. Straightforward but tedious

calculations show that using the optimality conditions for c and a as Ill as the HJB equation, I

can solve the eight unknowns {a∗(s), V ∗
u (s), c

∗(s), V ∗
e (s), s ∈ {B,R}} by the following system of
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eight equations:

exp((θP + θA)c
∗(s) + θPh(a

∗(s))) = V ∗
u (s)(1 − a∗(s)θAh

′(a∗(s)))

+ a∗(s)θAh
′(a∗(s))V ∗

e (s)
(

1−
ρ

qs
θAh

′(a∗(s)) exp(−θAc
∗(s))

)−
θP +θA

θA (2)

a∗(s)θP (θAh
′(a∗(s))2 + h′′(a∗(s)))(−V ∗

u (s) + V ∗
e (s)

(

1−
ρ

qs
θAh

′(a∗(s)) exp(−θAc
∗(s))

)−
θP +θA

θA )

= exp(θAc
∗(s))

qs

ρ
(V ∗

u (s)− V ∗
e (s)

(

1−
ρ

qs
θAh

′(a∗(s)) exp(−θAc
∗(s))

)−
θP
θA ) (3)

0 = (ρ+ qsa
∗(s) + λs + λd)V

∗
u (s)− ρ exp((θP + θA)c

∗(s)) + ρ
θP

θA
V ∗
u (s)

(

1− exp(−θAc
∗(s))

+ aθA exp(−θAc
∗(s))h′(a∗(s))−

λs

ρ
((

V ∗
u (s)

V ∗
u (s

′)
)
−

θA
θP+θA − 1)−

λd

ρ
((V ∗

u (s))
−

θA
θP+θA − 1)

)

− qsa
∗(s)V ∗

e (s)
(

1−
ρ

qs
θAh

′(a∗(s)) exp(−θAc
∗(s))

)−
θP
θA

− λsV
∗
u (s

′)
θA

θP +θA V ∗
u (s)

θP
θP +θA − λdV

∗
u (s)

θP
θP +θA , (4)

V ∗
e (s)

−
θA

θP +θA

[

ρ exp(
θP θA

θP + θA
ω) + psV

∗
u (s)

−
θA

θP+θA + λsV
∗
e (s

′)
−

θA
θP+θA + λd

]

= (ρ+ ps + λs + λd).

(5)

Appendix C Calculations for the Implementation

From the model setup, the problem for the worker’s consumption-savings-effort model is charac-

terized by the following three HJB equations:

ρJ(x, d) = max
c

ρu(c) + Jx(x, d)(r
dx− c+ bd)

ρJ(x, e, s) = max
c

ρu(c) + Jx(x, e, s)[r
e(st)xt − ct + be(st)] + ps[J(xt +Be

u(st), u, s)− J(x, e, s)]

+ λs[J(x+Ae(s, x), e, s′)− J(x, e, s)] + λd(J(x+Be
d(s), d) − J(x, e, s)),

ρJ(x, u, s) = max
c,a

ρu(c, a) + Jx(x, u, s)[r
u(st)xt − ct + bu(st)] + qsa[J(xt +Bu

e (st), e, s)− J(x, u, s)]

+ λs[J(x+Au(s, x), u, s′)− J(x, u, s)] + λd(J(x+Bu
d (s), d)− J(x, u, s)),

where J(x, d), J(x, e, s), J(x, u, s) are the value functions for disabled workers, employed workers

in state s and unemployed workers in state s respectively. In this section, I will show that the

solutions to the value functions take the following form:

J(x, d) = −e−θArdx

J(x, e, s) = −Je(s)e
−θAre(s)x

J(x, u, s) = −Ju(s)e
−θAru(s)x.

In addition, I will show the conditions when this consumption-savings-effort model implements

the optimal contracts. To be more specific, I show how the (1) deposit interest rate: rd, re(s),
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and ru(s), (2) flow payments: bd, be(s), and bu(s), (3) lump-sum transfers: Be
u(s), B

e
d(s), B

u
e (s),

Bu
d (s), A

e(s, x), and Au(s, x) are determined.

As explained in the main text, the ideas come from Li and Williams [2014]. The main difference

is that I will show how to pin down the indeterminacy of the flow payments, which depends on

the state where the workers transition from.

Appendix C.1 A Disabled Worker

Denoting the value for the disabled worker as J(x, d). The HJB equation then becomes

ρJ(x, d) = max
c

ρu(c) + Jx(x, d)[r
dxt − ct + bd].

The optimality condition for c is then

ρu′(c) = Jx(x, d).

Let me guess the form for the disabled worker as:

J(x, d) = −Jd exp(−θAr
dx).

From the optimality condition for c, I have

c(x, d) = −
1

θA
log(

rdJd

ρ
) + rdx.

Substituting everything back to the HJB equation gives:

Jd =
ρ

rd
exp(

rd − ρ− θAr
dbd

rd
).

Substituting everything back to consumption and value function gives the results as follows:

J(x, d) = −Jd exp(−rdθAx),

where

Jd =
ρ

rd
exp(

rd − ρ− rdθAxb
d

rd
).

Also, the consumption is

c(x, d) =
ρ− rd

θArd
+ bd + rdx.

For the implementation, I know that the promised utility must equal the value function. Hence,

W = J(x, d) =
ρ

rd
exp(

rd − ρ− rdθAxb
d

rd
).

Thus, the consumption in the solvable case then becomes

c(W (x), d) =
1

θA
log(Jd) + rdx.
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When this environment implements the optimal contracts, the consumption must equal: c(W (x), d) =

c(x, d). Thus, I obtain that

rd = ρ, c(x, d) = bd + ρx.

The value function for the disabled worker is then

J(x, d) = − exp(−θA(b
d + ρx)).

I can observe that there is indeterminacy in the implementation of the contracts, where bd and x

cannot be determined at this stage. I will resolve this problem when I solve the problem for the

employed and unemployed worker in the later subsections.

Appendix C.2 An Employed Worker

As explained above, the value function for employed workers in state s is assumed to have the

following form:

J(x, e, s) = −Je(s) exp(−θAr
e(s)x)

For the problem of an employed worker, I again first assume the constant amount bd that the

disabled worker can get if he transitions from the unemployed status depends on the wealth,

the current aggregate state, and the difference in the interest rate. Let bd = (re(st) − ρ)xT −

1
θA

log Je(s), where xT is the wealth of this unemployed worker at time T when disability shock

hits this worker. In addition, bu(s) will make the value function for the unemployed workers have

the following form:

J(x, u, s) = −Je(s) exp(−θAr
e(s)xT ).

Also, flow payment when transitioning from s to s′ makes the value function for unemployed

workers have the following form:

J(x, e, s′) = −Je(s) exp(−thetaAr
e(s)xT ).

Exact forms of bu(s) and be(s′) will be explained later in this section. Thus I obtain:

J(xT , d) = −Je(s) exp(−θAr
e(st)xT )

J(xT , u, s) = −Je(s) exp(−θAr
e(st)xT ).

The HJB equation for the unemployed workers is as follows:

ρJ(x, e, s) = max
c

ρu(c) + Jx(x, e, s)[r
e(st)xt − ct + be(st)] + ps[J(xt +Be

u(st), u, s) − J(x, e, s)]

+ λs[J(x+Ae(s, x), e, s′)− J(x, e, s)] + λd(J(x+Be
d(s), d) − J(x, e, s)).
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The optimality conditions for c is

ρuc(c) = Jx(x, e, s).

I assume the Ae(s, x) takes the form of

Ae(s, x) = (
re(s)

re(s′)
− 1)x+

re(s)

re(s′)
Âe(s)

Following the guess, the consumption then becomes

c(x, e, s) = −
1

θA
log(

re(s)

ρ
)−

1

θA
log(Je(s)) + re(s)x.

Using the guesses for the value function, I have

J(x+Be
u(s), u, s)− J(x, e, s) = (1− exp(−θAr

e(s)Be
u(s)))Je(s) exp(−θAr

e(s)x)

J(x+Be
d(s), d) − J(x, e, s) = (1− exp(−θAr

e(s)Be
d(s)))Je(s) exp(−θAr

e(s)x)

J(x+Ae(s, x), u, s′)− J(x, e, s) = [1− exp(−θAr
e(s)Âe(s))]Je(s) exp(−θAr

e(s)x).

To implement the contracts, I first set W = J(x, e, s). Thus, the consumption in the optimal

contracts becomes

c(W (x), e, s) =
logVe(s)

θA + θP
+

θP

θA + θP
ω −

1

θA
log(−W )

To make the consumption equal: c(x, e, s) = c(W (x), e, s), I must have

re(s)

ρ
= exp(−

θAθP

θA + θP
ω)Ve(s)

−
θA

θA+θP

which pins down re(s).

For the other variables, recalling that

xt = −
log(Wt) + log Je(s)

re(st)θA
=

Xt + log Je(s)

re(s)θA
.

By generalized Ito’s lemma, I can derive the evolution of the wealth:

dxt = −µe
W (st)dt− log(we

j (st))∆s
j
t − (

log(we
s(st))

re(s′)θA
+ (1−

re(s)

re(s′)
xt))∆sst − log(we

d)∆sdt

However, the evolution for this consumption-savings-effort problem is

dxt = (
1

θA
log(

re(st)

ρ
) +

1

θA
log(Je(s)) + be(st))dt+Be

u(st)∆s
j
t +Ae(s, x)∆sst +Be

d(s)∆sdt .

Hence I can pin down be(s), Be
u(st),B

e
d(s), and Âe(st) as

be(st) = −
1

θA
log(

re(st)

ρ
)−

µe
W (st)

re(st)θA
−

1

θA
log Je(s)

Be
u(st) = −

log(we
j (st))

re(st)θA

Â(st) = −
log(we

s(st))

re(st)θA

Be
d(st) = −

log(we
d(st))

re(st)θA
.
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I can show that the guess of the value function solves the implementation problem.

Using the previous results, and canceling the terms in x, the HJB equation becomes:

0 = ρ− re(s) + θAr
e(s)(

1

θA
log(

re(s)

ρ
) +

1

θA
log Je(s) + be(s))

+ ps[1− exp(−θAr
e(s)Be

u(s))] + λs[1− exp(−θAr
e(s)Âe(s))] + λd(1− exp(−θAr

e(s)Be
d(s))).

Substituting back the policies for be(s) (up to a scale of Je(s)), B
e
d, B

e
u(s), Â

e(s) into the HJB

equation above allows me to verify that all terms cancel out, which verifies my guess and shows

that the policy implements the optimal contract.

For the indeterminacy of the flow payments, be(s′) and bu(s) can be determined by the fol-

lowing:

− θAb
e(s′)− log(

re(s′)

ρ
)−

µe
W (s′)

ru(s′)
= log Je(s)

θA((r
e(s)− ru(s))xT − bu(s))−

µu
W (s)

ru(s)
− log(

ru(s)

ρ
) = log Je(s).

Appendix C.3 An Unemployed Worker

As explained above, the value function for unemployed workers in state s is assumed to have

the following form:

J(x, u, s) = −Ju(s) exp(−θAr
u(s)x)

For the problem of an unemployed worker, I again first assume the constant amount bd that

the disabled worker can get if he transits from the unemployed status depends on the wealth,

the current aggregate state, and the difference in the interest rate. Let bd = (ru(st) − ρ)xT −

1
θA

log Ju(s), where xT is the wealth of this unemployed worker at time T when disability shock

hits this worker. In addition, be(s) will make the value function for the employed workers have

the following form:

J(x, e, s) = −Ju(s) exp(−θAr
u(s)xT ).

Also, flow payment when transitioning from s to s′ makes the value function for unemployed

workers have the following form:

J(x, u, s′) = −Ju(s) exp(−θAr
u(s)xT ).

Exact forms of be(s) and bu(s′) will be explained later in this section. Thus I obtain:

J(xT , d) = −Ju(s) exp(−θAr
u(st)xT )

J(xT , e, s) = −Ju(s) exp(−θAr
u(st)xT ).
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The HJB equation for the unemployed workers is as follows:

ρJ(x, u, s) = max
c,a

ρu(c, a) + Jx(x, u, s)[r
u(st)xt − ct + bu(st)] + qsa[J(xt +Bu

e (st), e, s)− J(x, u, s)]

+ λs[J(x+Au(s, x), u, s′)− J(x, u, s)] + λd(J(x+Bu
d (s), d)− J(x, u, s)).

The optimality conditions for c and a are

ρuc(c, a) = Jx(x, u, s),

−ρua(c, a) = qs[J(xt +Bu
e (st), e)− J(x, u, s)].

I assume the Au(s, x) takes the form of

Au(s, x) = (
ru(s)

ru(s′)
− 1)x+

ru(s)

ru(s′)
Âu(s)

Following the guess, the consumption then becomes

c(x, u, s) = −
1

θA
log(

ru(s)

ρ
)−

1

θA
log(Ju(s)) + ru(s)x+ h(a).

Using the guesses for the value function, I have

J(x+Bu
e (s), e, s) − J(x, u, s) = (1− exp(−θAr

u(s)Bu
e (s)))Ju(s) exp(−θAr

u(s)x)

J(x+Bu
d (s), d) − J(x, u, s) = (1− exp(−θAr

u(s)Bu
d (s)))Ju(s) exp(−θAr

u(s)x)

J(x+Au(s, x), u, s) − J(x, u, s) = [1− exp(−θAr
u(s)Âu(s))]Ju(s) exp(−θAr(s)x).

The optimality condition for a becomes

ρθAh
′(a) exp(−θA(c− h(a))) = qs(1− exp(−θAr

u(s)Bu
e (s)))Ju(s) exp(−θAr

u(s)x),

which the terms in x can be canceled. This verifies the optimal a = a∗(s) is independent of x.

To implement the contracts, I first set W = J(x, u, s). Thus, the consumption in the optimal

contracts becomes

c(W (x), u, s) = c∗(s) + h(a∗(s)) + ru(s)x.

To make the consumption equal: c(x, u, s) = c(W (x), u, s), I must have

c∗(s) = −
1

θA
log(

ru(s)

ρ
),

which pins down ru(s).

For the other variables, recalling that

xt = −
log(Wt) + log Ju(s)

ru(st)θA
=

Xt + log Ju(s)

ru(s)θA
.
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By generalized Ito’s lemma, I can derive the evolution of the wealth:

dxt = −µu
W (st)dt− log(wu

j (st))∆s
j
t − (

log(wu
s (st))

ru(s′)θA
+ (1−

ru(s)

ru(s′)
xt))∆sst − log(wu

d )∆sdt

However, the evolution for this consumption-savings-effort problem is

dxt = (
1

θA
log(

ru(st)

ρ
)+

1

θA
log(Ju(s))−h(a∗(s))+bu(st))dt+Bu

e (st)∆s
j
t+Au(s, x)∆sst+Bu

d (s)∆sdt .

Hence I can pin down bu(s), Bu
e (st),B

u
d (s), and Â(st) as

bu(st) = −
1

θA
log(

ru(st)

ρ
)−

µu
W (st)

ru(st)θA
−

1

θA
log Ju(s) + h(a∗(s))

Bu
e (st) = −

log(wu
j (st))

ru(st)θA

Â(st) = −
log(wu

s (st))

ru(st)θA

Bu
d (st) = −

log(wu
d (st))

ru(st)θA
.

I can show that the guess of the value function solves the implementation problem.

Using the previous results, and canceling the terms in x, the HJB equation becomes:

0 = ρ− ru(s) + θAr
u(s)(

1

θA
log(

ru(s)

ρ
) +

1

θA
log Ju(s)− h(a(s)) + bu(s))

+ qsa(s)[1− exp(−θAr
u(s)Bu

e (s))] + λs[1− exp(−θAr
u(s)Âu(s))] + λd(1− exp(−θAr

u(s)Bu
d (s))).

Substituting back the policies for bu(s) (up to a scale of Ju(s)), B
u
d , B(s), Â(s) into the HJB

equation above allows me to verify that all terms cancel out, which verifies our guess and shows

that the policy implements the optimal contract.

For the indeterminacy of the flow payments, bu(s′) and be(s) can be determined by the fol-

lowing:

− θAb
u(s′)− log(

ru(s′)

ρ
)−

µu
W (s′)

ru(s′)
+ θAh(a

∗(s′)) = log Ju(s)

θA((r
u(s)− re(s))xT − be(s))−

µe
W (s′)

re(s)
− log(

re(s)

ρ
) = log Ju(s).

Appendix D Benchmark Contract

I will now show how to calculate the promised utility for the worker under the benchmark

contract. Because of the assumption of the absorbing state, it is easier to consider the case without

misreporting and then add the choice of misreporting back into the calculations subsequently.

Let me begin by considering the case when misreporting is not allowed. First, I assume that

the expected utility for the worker in state s under the benchmark contract is W e
s , and that the
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expected utility for a disabled worker is W d. I will assume the utility is given, and I will show that

solving the benchmark model is equivalent to solving a system of ordinary differential equations.

Next, I consider the period after TR, in which the unemployed worker receives zero unemployment

benefits. Let τ = τ j ∧ τ s ∧ τd, where τ s is the first date of a switch in aggregate state, τ j is the

first time that this worker finds a job, and τd is the first time that the disability shock arrives. I

also denote the utility in this region by W u3
s . Following similar steps as I did in deriving the HJB

equation above, I can see that, for t > TR the values of W u3
s are

ρW u3
s = max

a∈[0,ā]
ρ(u(0) − h(a)) + qs(a)(W

e
s −W u3

s ) + λs(W
u3
s′ −W u3

s ) + λd(W
d −W u3

s ).

Then, let us consider time in [TB , TR], where the worker only receives benefits in a recession. I will

denote the utility of the worker in state s during this period as W u2
s (t). Similar to the previous

case, the pair of HJB equations is as follows:

ρW u2
R (t)−

d

dt
W u2

R (t) = max
a∈[0,ā]

ρ(u(cB)− h(a)) + qR(a)(W
e
s −W u2

R (t)) + λs(W
u2
B (t)−W u2

R (t))

+ λd(W
d −W u2

R (t))

ρW u2
B (t)−

d

dt
W u2

B (t) = max
a∈[0,ā]

ρ(u(0) − h(a)) + qB(a)(W
e
s −W u2

B (t)) + λs(W
u2
R (t)−W u2

B (t))

+ λd(W
d −W u2

B (t))

with boundary conditions W u2
B (TR) = W u3

B and W u2
R (TR) = W u3

R . Last, in the region of [0, TB ],

the promised utility which I denote by W u1
s (t) evolves as:

ρW u1
s (t)−

d

dt
W u1

s (t) = max
a∈[0,ā]

ρ(u(cB)− h(a)) + qs(a)(W
e
s −W u1

s (t)) + λs(W
u1
s′ (t)−W u1

s (t))

+ λd(W
d −W u1

s (t))

with boundary conditions W u1
s (TB) = W u2

s (TB).

Adding back in the choice of misreporting is straightforward, since I assume that disability is

an absorbing state. In the promised utility solved in the equations above, I know that the agent

would misreport if W i
s(t) < W d. As a consequence, d

dt
W i

s(t) = 0. In sum, the set of HJB and

ordinary differential equations are

ρW e
s =







ρu(ω) + ps(W
u
s (0)−W e

s ) + λs(W
e
s′ −W e

s ) + λd(W
d −W e

s ), if W e
s ≥ W d

report disabled, otherwise

ρW u3
s =



















max
a∈[0,ā]

ρ(u(0) − h(a)) + qs(a)(W
e
s −W u3

s ) + λs(W
u3
s′ −W u3

s )

+λd(W
d −W u3

s ), if W u3
s ≥ W d

report disabled, otherwise

W d = u(cd).
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ρW u2
R (t)−

d

dt
W u2

R (t) =



















max
a∈[0,ā]

ρ(u(cB)− h(a)) + qR(a)(W
e
R −W u2

R (t))

+λs(W
u2
B (t)−W u2

R (t)) + λd(W
d −W u2

R (t)), if W u3
s ≥ report disabled

report disabled, otherwise

ρW u2
B (t)−

d

dt
W u2

B (t) =



















max
a∈[0,ā]

ρ(u(0)− h(a)) + qB(a)(W
e
B −W u2

B (t))

+λs(W
u2
R (t)−W u2

B (t)) + λd(W
d −W u2

B (t)), if W u3
s ≥ report disabled

report disabled, otherwise

ρW u1
s (t)−

d

dt
W u1

s (t) =



















max
a∈[0,ā]

ρ(u(cB)− h(a)) + qs(a)(W
e
s −W u1

s (t))

+λs(W
u1
s′ (t)−W u1

s (t)) + λd(W
d −W u1

s (t)), if W u3
s ≥ report disabled

report disabled, otherwise
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