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Abstract

An agent tries to maximize output by searching for the best technology.

Each period the ideal technogical decision has an unknown permanent com-

ponent and unknown tansitory components. The agent searches for the best

policy and learns from experience, ultimately approaching material bliss and

infinite output. Surprisingly, the long-run growth rate rises with agents’ risk

aversion. Information has only level effects, but long-run growth is endoge-

nous. Quantitatively the model matches the growth facts only the periods are

decades, not years — the fluctuations are low-frequency events in which case

the industrial revolution is a plausible right-tail event. Indeed, the growth dis-

tribution has a thick right tail. Then a second agent is added to the economy

and a free riding problem arises, but thanks to a scale effect in the effects of

knowledge, growth is nevertheless faster.

1 Introduction

Many studies find that policies of various kinds affect growth, be they the policies of

a country’s own government, or those of its colonizing country governments — e.g.,

Easterly et al. (1994).

We shall model a single agent, with an infinite horizon who must choose produc-

tion and investment and whose beliefs will evolve as a result of his informational

investments and his experience. The model yields a long-run growth rate that de-

pends on the speed at which the agent can learn. That speed depends on the agent’s

investment in costly signals.

We then model several agents that can share information. Each learns about a

parameter that is correlated with those that other agents and therefore benefits from

seeing signals of others. A free riding problem then arises and investment is below
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McGrattan, P. Pintus, N. Qian Y. Nyarko and J. Rappaport for helpful discussion, and the NSF for

support.
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its efficient level. The model has a scale effect, i.e., the total information generated

grows with the scale of the economy so that two identical countries can, with the same

sacrifice of resources per capita, generate twice the information that one country can

generate. This is familiar to growth theorists at least since Arrow (1962). We show

that equilibrium investment grows with the number of agents, i.e., that the free-riding

effect mitigates but does not overturn the scale effect.

In its current form the model can fit the basic growth facts only at low frequencies

— growth surprises occur over decades rather than years. All investment in the model

is informational investment that helps agents adapt better to technological shocks. A

large growth surprise occurs when the technological signal is highly accurate which

allows the agents to take better decisions. That such surprises occur over low fre-

quencies gets support from David (1991) who argued that the 1920s and 1990s were

the result of developments that took place decades earlier. One can argue similarly

about institutional developments or other policy decisions — they probably take years

if not decades to make themselves felt fully.

An unusual result is that the growth rate rises along the transition to long-run

growth, opposite to Solow (1956), but in accord with evidence shown, e.g., in Tables

1 and 2 of Romer (1986), and in Jones and Romer (2010). A rising growth rate also

implies that if countries begin the process at different times, there will for a while be

divergence, and Pritchett (1999) argues that this has been the case historically.

Another unusual result is that risk aversion raises growth — opposite to Romer

(1986) and Lucas (1988). The difference in the implied relation arises because invest-

ing in information plays a dual role: It raises expected output but it also lowers its

variance — these two features go hand in hand for a large subset of the parameters.
1 A related result arises in the Aiyagari-Bewley class of models with limited asset

structure, risk aversion raises savings for precautionary reasons. In GE models that

have a finite steady state this raises steady state capital and lowers the interest rate.

In partial equilibrium, however, such as a small open economy facing a fixed world

interest rate, Bouccekine, Fabbri and Pintus (2014) show that if there are constant

returns to capita, i.e., an Ak technology, risk aversion raises the savings and long-run

growth.

The model is solved exactly in the limit — the long-run growth rate is random and

i.i.d., so that Gibrat’s Law holds in the limit. When we extend the model to more

than one country, Gibrat’s law continues to hold at the world level, but it fails at

the level of the individual country — in the solved example there is then a negative

autocorrelation in a country’s growth rate. Moreover, the distribution of growth rates

has a thick right tail — the growth factor has a distribution resembling the inverse

Gaussian but with a thicker tail — and expected output is infinite. This is true in the

transition as well.

1The opposite was true in Jovanovic and Nyarko (1996) and Jovanovic (2006) where the adoption

of a better of technology was the cause of aggregate risk; the bigger the technological leap, the higher

the risk.
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Closely related is Buera, Monge and Primiceri (2011, henceforth BMP) who as-

sume, as I do, that a country’s growth depends on policies that it adopts, and that

the ideal policy is not known — it has to be learned through experience. BMP analyze

market-oriented policies when their own and their neighbors’ past experience can in-

form policy makers’ beliefs over state intervention vs. market orientation strategies.

Similarly to what is done here, BMP do not use a production function with the usual

inputs and focus instead on the policy decision and its influence on output through

a channel not precisely specified. Unlike BMP, however, we shall feature investment

in information and endogenous long-run growth.

More generally, other papers on adaptive learning share the same general ap-

proach in which a policy maker adjusts his actions to information about an unknown

parameter: Prescott (1972), and Easley and Kiefer (1988).

Section 2 outlines the model in which a single agent learns from his own experience

and from his own research. Section 3 solves for policies, value and for the distribution

of the growth rate in the long-run limiting case which has an Ak form. Section 4 deals

with the transitional dynamics, and calibrates the parameters to some facts on long-

run growth and investment-shares. Section 5 deals with information sharing and the

resulting free riding problem in generating information.2 Section 6 concludes

2 Model

Consider a single agent, with an infinite horizon who must choose production and

investment and whose beliefs evolve as a result of his informational investments and

his experience.

Utility function.–Let  ∈ + be the consumption = output of a single consump-

tion good, and let lifetime expected utility be

0

∞X
=0

 () , where  () =
1

1− 
1− (1)

where  denotes the agent’s consumption at date .

Production.–Let  ∈  be a parameter, let  be i.i.d., and let  ∈  be a

“decision” like the setting of a dial. Output is3

 = ( +  − )
−
. (2)

where   0 is an even integer. This production function is unbounded, and the

agent could attain infinite output if he happened to set  =  + , but since he

2Nelson and Phelps (1968) may have been the first to model information sharing in a multi-

country environment. Kremer (1993) and BMP (2011) have shown that information sharing matters.

A world equilibrium with information sharing is modeled in Eeckhout and Jovanovic (2002).
3This combines the essence of BMP’s (2.1) and (2.2).
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Figure 1: Output as a function of decisions and shocks

knows neither  nor  this can happen only by chance and is, in fact, a measure

zero event at each . The larger is , the bigger is the penalty to being wrong about

+  and the higher the reward to being right, so that  is an index of the thickness

of the right tail of the distribution of output. The production function leaves out the

traditional inputs and focuses instead on policy, which is a real-valued variable, as

is the unknown policy target  + .With the possibility of infinite output, we need

to ensure that expected utility exists. We therefore assume that   1; in this case

 ≤ 0. I.e.,  is bounded above, and the agent’s problem will be well defined.

Investment.–There is no physical capital, and output cannot be stored. Out-

put can, however, be invested in information relevant for next period’s production

decisions. The income identity is

 =  +  (3)

where  is the number of independent signals on +1 call these signals, (1  ),

where I drop the  subscript for the remainder of this paragraph to avoid clutter.

Each  is an independent signal on next period’s  as follows:

 = +  (4)

where  ∼  (0 2) are i.i.d. random variables.

Since the cost per signal is normalized to unity, we may think of 12 as the

efficiency with which the information sector generates information that raises next-

period’s productivity of the final-goods sector.4

4That interpretation would be in the spirit of Greenwood, Hercowicz and Krusell (1997). If we

assumed that the cost of each signal is , then the income identity would read  =  + , but

because of the normality of the signals and of the learning, the model’s implications for observables

would depend only on the product 2.
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Figure 2: Output and mistakes:  = − for  = 2 (red), 5 (blue), 10
(green)

2.1 Learning

Investment in  signals at date  has a short run effect by improving information on

+1 and thereby raising the quality of next period’s decision +1. But and a long

run effect because  is fixed and unknown: by having a better measure of , the agent

will learn about  more quickly. Learning within the period occurs in two steps. The

first is to get a sharper idea of  given the signals ()


=1 generated at the end of the

previous period, and the second is to learn about  given the output observed at date

 distribution of  generated in step 1.

Step 1.–Form the mean of the sample of  signals:

̄n =
1



X
=1

 = +1 +
1



X
=1

 (5)

Since each period  is independent of its past draws, ̄n ∼  ( 2) is a sufficient

statistic for forecasting  And since the prior over  is diffuse, conditional on ̄n,  is

distributed normally 
¡
̄n 

2
¢
. More formally,

lim
→∞

Pr
¡
 | ̄n

¢
= Φ

µ
− ̄n
2

¶
 (6)

where Φ is the standard normal integral.

Step 2.–The agent observes  and, additionally, the sign of + He then forms

the statistic  = −+− ̄n = +− ̄n which is distributed  ( 2)  The agent
then uses  to update his beliefs over  Let  denote the beginning-of-period prior

variance over  The one-step ahead Bayes map says that by the end of the period 

becomes

 0 =

µ
1


+



2

¶−1
≡  (  )  (7)
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Therefore a higher investment today, , raises expected output in the next period

because it improves the forecast of , but since  is i.i.d., this effect ends with the

next period. However, a higher  raises expected output in all subsequent periods by

providing a signal on information about .

Now, the following result will help with the Bellman equation.

Lemma 1 Let   0 be an even integer. Then

argmin


Z
( − )


Φ

µ
 − 



¶
= 

Proof. The FOC is



Z
( − )

−1
Φ

µ
 − 

z

¶
= 0 (8)

The objective is strictly convex in , so that (8) has exactly one solution for  which

is the globally optimal action. For the normal distribution, all odd moments around

the mean are zero and (8) therefore holds at  = . Therefore, (12) is the unique

solution to (8).

2.2 Choice of 

There are no adjustment costs to changing . Therefore the history of  is irrelevant

once beliefs are specified. Since the choice of  does not affect the information about

 or , the agent chooses it so as to maximize his current period expected utility

conditional on the beginning-of-period priors over , which is  ( ), and over 

which is 
¡
̄n 

2
¢
. Here is where we shall use Lemma 1. All that follows requires

that  ∈ {2 3 } be a positive integer and that  ∈ {2 4 } be a positive even
integer. Under these assumptions  ( − 1) is an even, positive integer.
Strictly concave “reduced form” utility.–Since maximization of  () is dynam-

ically optimal, (12) via Lemma 1 gives the optimal action for a forward looking agent

as long as the objective is concave in . Substitute from (2) into (1) to get

 =
1

1− 
( −  + )

(−1)
 (9)

Then if

 ( − 1)  2 (10)

 is strictly concave in  with




=  ( − + )

(−1)−1
and

2

2
= −2 [( − 1)− 1] ( − + )

(−1)−2
 0

(11)

The inequality in (11) holds because  ( − 1)− 2 is an even integer.
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Since  maximizes a strictly concave function and, in light of the independence of

 and  since +  ∼ 
¡
+ ̄n  + 2

¢
, we can set  = +  and apply Lemma

1 to conclude that

 = +
¡
 | ̄n

¢
 (12)

Then,

 + −  ∼ 

µ
0  +

2



¶


so that

 =

µ
 +

2



¶−12
( + − ) ∼  (0 1)  (13)

Combining (13) and (2), we can express next-period output as a function of    and

 alone:

0 =

µ
 +

2



¶−2
− (14)

where  is a standard normal variate.

Bellman equation

Via (12) we have eliminated  from the choice set, and  and  are beginning-of-

period state variables. The only remaining choice variable is . Let us evaluate the

agent’s lifetime utility just after the realization of the current output, , but before

he has chosen investment, The agent’s belief over  is normal  ( ), but  is

not a state because, in light of (12), the agent offsets it by . Moreover,  is i.i.d..

The state, then, is the pair ( ) ; the first component tells us his resources that

he can consume or invest in forecasting , the second the precision with which he

can forecast . Investment in information, , is forward looking, of course. Lifetime

expected utility,  ( ) satisfies the Bellman equation

 ( ) = max
≥0

(
( − )

1−

1− 
+ 

Z
 (0  (  ))  (0 |   )

)
 (15)

with  (·) defined in (7). Using (14), this becomes

 ( ) = max


(
( − )

1−

1− 
+ 

Z


Ãµ
 +

2



¶−2
−  (  )

!
1√
2

−
22

)


(16)

The operator on the RHS is a contraction in the sup norm but, since utility is un-

bounded from below, the space of continuous functions is not complete so we cannot

use standard arguments to show that a unique fixed point for  exists. We shall,

however, solve for  explicitly for some special cases.
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3 Long-run growth with one agent

We wish to impose an Ak property on the model as  → 0. Such a property is needed

if the model is to have long-run growth in output at a constant rate.

3.1 Information capital and the “Ak” property

An  model features two linear processes:

() Production of the final good is linear in capital, and

() Additions to the capital stock are linear in output invested.

The present model inherits both () and () if an only if  = 2 and  = 0 All this

is independent of the values of the utility parameters ( ) and the value of the

information cost 2. We do, however, need a diffuse prior over , i.e., in the formula

for the posterior distribution of  conditional on the signals we shall assume that

2 →∞.
Let information capital, , be the precision of the agent’s beliefs over the target

that  aims to hit, i.e., the inverse of the variance over  +  pertaining to the next

period. In other words, we measure information at the end of a period, after beliefs

have been updated, and after the signals about next period’s  have come in:

 ≡ 1

 + 2
 (17)

Property ().–Substituting from (17) into (14), the latter becomes

0 = −2 (18)

Linearity of output in  then follows if and only if when  = 2. This linearity then

holds for any  .

Property ().–As a function of investment,  evolves as
¡
1

+ 

2

¢−1 ≡  (  ) 

0 =
1

 (  ) + 2
→ 

2
=

 − 

2
as  → 0 (19)

where we used the income identity (3) updated by a period. In other words, property

() holds as  → 0, regardless of the values of the parameters. Thus we have proved

the following:

Proposition 1 Let  = 2. As  → 0, the model becomes analogous to an  model

with full depreciation of physical capital.
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Because  is serially uncorrelated, information about lagged ’s is irrelevant, which

means that past investments in information are of no value in raising future output.

This is why the parallel is to the Ak model with full depreciation of capital.5

The operator on the RHS of (16) maps continuous functions into other continuous

functions, and so as  → 0 the solution to 16) converges pointwise to the function

 () that is the fixed point to the Bellman equation

 () = max


½
1

1− 
( − )

1−
+ 

Z

¡
2−−

¢ 1√
2

−
22

¾
(20)

which, when  = 2, reduces to

 () = max


½
1

1− 
( − )

1−
+ 

Z


µ


22

¶
 () 

¾
where  is the standard normal density. Since preferences are homothetic and since

the model has the Ak property, we may guess, following logic similar to that described

in Alvarez and Stokey (1998), that the value function and policy function are

 =  and (21)

 () = 1− (22)

for some scalars  and . Feasibility requires that   1.

Recall that strict concavity of expected utility in  required that condition (10)

should hold. When  = 2, (10) requires that   2, and we shall maintain this in

what follows

Let  denote the 2 ( − 1)’th moment of the standard normal distribution, i.e.,
 =

R
2(−1) () . Then6

 = (2 − 3)!! (23)

Proposition 2 When  = 2 and  = 0, (21) and (22) hold, with

 =
¡
2(−1)

¢ 1
  and (24)

 =
1

1− 
(1−)

−
 (25)

The proof is in the Appendix.

The case  = 2.–In this case  = 1 and (24) and (25) reduce to

 =
p
2 and  = −

³
1−

p
2

´−2
 (26)

5Less than full depreciation would obtain if   0. Also if the ’s were autocorrelated, but

obtaining explicit solutions may prove impossible, at least given the methods used below. An

obstacle would be that fact that conditional on past ’s, the prior over +1 could no longer be

diffuse, and optimal investment,  would no longer be proportional to .
6Here !! denotes the double factorial, that is, the product of every number from n to 1 that has

the same parity as . In this case 2 ( − 1) is even.
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Figure 3: Convergence as  → 0 of the solutions to (16) to those in (21)
and (22)

3.2 Convergence of the policy and value functions as  → 0.

The first panel of Fig. 3 in which the rate of growth is rising during the transition,

and this will be supported by the data in Fig 8 below. For   0 no explicit solution

is available to the problem in eq. (16); i.e., we cannot explicitly solve the value and

the policy in the transition. In particular, when   0,  does not factor out of the

expression for  ( ) in (16). An attempt at a guess and verify for solutions of the

form  ( ) =  () 1− and  ( ) =  ()  failed because  has an effect on

production that is independent of . We can, however, check the numerical solution

to (16) for convergence to the solutions in (21) and (22). The latter is referred to as

the “no learning” case.

A plot of the convergence of the policy and value functions as  → 0 is in Fig.

3. Two facts emerge. First, the investment rate is falling on the transition path

to its long-run value of  given in eq. (24). In the long run,  = 0, so that

informational investment only helps predict the transitory variable , which leads to

a one-period gain in expected utility. During the transition, however,   0, and

a better signal on  speeds up the inference of  which is an additional benefit that

spreads into the future.

Second, median growth is negative for a large portion of the transitional dynamics,

eventually rising to its long-run value in (28). Plotted on time, as we shall see below,
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Figure 4: Convergence in real time at the calibrated parameter values

median growth will be positive for a long time as  gradually approaches zero, i.e., as

1− gradually approaches unity on the two horizontal axes in Fig 3. The convergence
of  to zero is arithmetic, and this makes the relevant transitional dynamics more

protracted. This is Panel 1 of Fig 4. The plot assumes that  = 053, and with 

around 15 (Panel 2), the effective signal variance, per period is 2 ≈ 532

15
≈ 02.

Panel 3 shows that income growth starts out slightly below zero, and takes 400

years to reach two percent. Panel 4 plots log income which has median growth

∆ ln  = ln 
med
 ; initial 0 = 405

3.3 The limiting distribution of 

Denote the growth factor by

 =
0



using (14) evaluated at  = 0 and  = 2 and using (21) and then (24) yields  =

2
−2 1


= 

2
−2 where  =

¡
2(−1)

¢ 1
 . Substituting for  we have the following

result:

Proposition 3 The limiting growth factor is i.i.d., and equal to

 = 1
µ


2

¶1
−2  (27)

where  ∼  (0 1) is i.i.d..
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Therefore the growth factor is increasing in the ratio 2. The effect of  is

standard in Ak models, and the positive effect of more accurate signals, i.e. of a fall

in 2 is intuitive — a perfect signal would yield infinite output. Since the median of a

2(1) variable is 0.47, we have the corollary

Corollary 1 The median growth factor is

median
0


= 2.131

µ


2

¶1
 (28)

Proof. A 2(1) r.v. has a median of 0.47, and (047)
−1
= 213. Using (27),

median
0


= 2.13



2
 (29)

Substituting for  from (24), and noting that
¡
2(−1)

¢ 1
 2 =

¡
2(−1)−2

¢ 1
 =

−2

We shall refer to the expression in (28) as med. Since  =
R
2(−1) () 

depends only on  and not on any other parameter, med is increasing in the ratio

2, and independent of .

3.4 The effect of  on investment and growth

The effect of  on growth is ambiguous in general. In (27), the term 1 is increasing

in . Turning to (23) note that since 2 − 3 is always an odd integer, (2 − 3)!! is
a product of all the odd integers between 2 − 3 and one. Thus in terms of some
integer-valued , we may summarize the relation in the following table:

 2 3 4 5 6 7 10

 1 3 15 105 1095 10395 34× 107
1 1 1.4 1.9 2.5 32 37 57



Table 1 : The relation between  and 1

Returning to eq. (27), the term (2)
1
is increasing in  if   2. In this case

a rise in  raises growth. This opposite from deterministic growth models of Romer

(1990) and Lucas (1988), but in accord with an Ak version Bewley-Aiyagari type of

model in Boucekkine, Fabbri and Pintus (2014). On the one hand, investment in

information, i.e. a higher , raises expected output and a higher  means that the

additional output is worth less — the standard effect of . On the other hand, a higher

12
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Figure 5: The effect of 

 also lowers the variance of output, and this effect is especially welcome when the

agent is risk averse. In other words, growth is tied to reductions in risk, risk aversion

rises with , and for a large set of parameters this effect dominates. At the parameter

values used in the calibration and listed in eq. (33), investment and growth both rise

with 

As eq. (28) will show, the median of the economy’s growth factor is proportional

to , and therefore these plots also apply to growth. In contrast to the deterministic

model in which investment is in capital, this model produces growth that rises with

.

The left panel of Fig 5 shows that for   69, the constraint on non-negativity

of consumption is violated. That is, the constraint  ≤  fails, and the solutions

are not valid beyond that point. Large risk aversion induces too much investment in

information. We shall return to this in the calibration.

3.5 The shape of the growth distribution in the long run

Since ˜ (0 1), 2 has a chi squared distribution with one degree of freedom, and a

density
1√
2

−12−2

Therefore

Ψ () ≡ Pr (̃ ≤ ) =

Z ∞

2

1√
2

−12−2
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Figure 6:  () for 2 = 15 (blue), 085 (red) and 0.6 (green)

and therefore the density of  is the derivative w.r.t. :

 () =


2
−2

1√
2

µ


2
−1
¶−12

exp

µ
− 

22

¶
=

1√
2

µ


2

¶ 1
2

−32 exp

µ
− 

22

¶
This has exactly the same functional form as the density for the first passage of a

Brownian motion through a flat boundary. In that context the variable  would be a

waiting time variable.7

This distribution has just one parameter, namely 2. The middle, red line plots

 at 
2
= 024

(53)2
= 085 This is at the parameters for the calibrated parameters in

eq. (33). When the parameter is lower at 0.6 we have the green line, and when it is

higher at 1.5, we get the blue line

3.6 The right tail of the distribution of growth

A fat tail in the growth distribution implies there will occasionally be growth real-

izations significantly higher than average. This may help explain episodes such as

the industrial revolution which was a period of rapid growth and technological im-

provement. Technically, we ask if asymptotically the tail is Pareto and, if so, of what

7Presumably this relates to the normality of the Brownian motion incrfements. On first-passage

distributions see, e.g., http://en.wikipedia.org/wiki/First-hitting-time_model
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thickness. The right-tail thickness is the value  for which the following statement is

true:

lim
→∞

 (1−Ψ ()) = lim
→∞

1−Ψ ()

−
→ constant  0.

By l’Hôpital’s rule, this is the same as lim→∞
()

−−1

lim
→∞

 ()

−−1
= lim

→∞

1√
2

¡

2

¢ 1
2 −32 exp

³
− 
22

´
−−1

which implies that

 = 12

I.e., it has a thick right tail and  therefore has an infinite mean.

3.7 Gibrat’s Law without information sharing

As  → 0 this becomes a stochastic Ak model. Growth rates are identically and

independently distributed over periods. Eventually, then, output obeys Gibrat’s law.

The distribution of growth rates is identical from period to period.

That holds for a single agent. In a world composed of agents who were informa-

tionally isolated this would match experience to the extent that there is little overall

tendency for followers to catch up with leaders or fall further behind

In would, however, imply a steadily rising dispersion in the world income dis-

tribution and this is counterfactual (Sala-i-Martin 2006). To hold the distribution

together we add another agent and information sharing — Kremer (1993) and BMP

have stressed its importance. We shall add information sharing in Sec. 5. There we

shall find that country growth rates are negatively autocorrelated, even though the

world as a whole obeys Gibrat’s Law.

4 Transition dynamics

The experiment here is to set the parameters to fit long-run growth facts and then,

using those parameters, to simulate the transition and check for a resemblance be-

tween model and data. The data show an essentially zero rate of growth 260 years ago

and reaching a seemingly long-run growth rate of two percent per year. The world’s

experience over the past three centuries is summarized, in terms of levels, in Fig. 7.

It appears to show that growth rates have risen and, as Pritchett (1999) argues, that

there has been much divergence at various points in history.

Log income plots show that growth rates gave risen slightly, as shown by the

overall convexity of the eight lines plotted in Fig. 8, with an overall slope of 0.02 per
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Figure 7: GDP per capita since 1750, Five regions

year.8 The secular rise in growth rates is also supported by data from Madison. This

secular rise in the rate of growth at the world level supports the model’s implication

in the first panel of Fig. 3 in which the rate of growth is rising during the transition.

Rappaport (2006) finds non-monotonic or declining rates of growth post 1945, but

one would expect that the war led to destruction of physical capital, but less so of

human capital, i.e., a lower production share of the capital that needed rebuilding.

4.1 Estimation

For 166 countries and regions in a sample that has data for 1990-2008, and 149

countries in a the sample starting 1979 -1989,9 to calculate 30, 27, 20, and 10 year

growth factors  over the period immediately preceding 2008.
10

We shall estimate  () via maximum likelihood the distribution of growth factors

 treating the observations as independent. That is, we calculate

̂ML ≡ argmax


Y
=1

 (; ) 

8The convergence of the series is, however, driven in part by selection bias because the eight

countries in the graph the world’s leaders in 2000. De Long made this point in a similar context.
9Seventeen countries became independent of the USSR in 1990, so their data are included for 10

year growth factors, whereas the USSR data for 30, 27, 20 year growth rate. The source of the data is

the Maddison Project Database, from http://www.ggdc.net/maddison/maddison-project/data.htm)
10More precisely, we use the sample from 1979-2008 for 30 years, 1982-2008 for 27, 1989-2008 for

20 years, and 1999 - 2008 for 10 years. This ensures that no country in the sample has missing data.
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Figure 8: Log income, eight countries

where  ( ) = 1√
2

1
2−32 exp

³
− 
2

´
, where  = 2.

Thus  is a one-parameter distribution which, according to (29), has a median

med = 213We treat the countries’ growth rates as i.i.d. variables, which supposes

that they share the same parameters, but that they do not share information.

Fig. 9 reports the fit for four alternative time units. The scale in the plots is

different on the right-hand and left-0hand axes for  and for the actual frequencies.

For the frequencies the bin size is ten percentage points. The distributions all add

up to unity, but not the entire support of  is shown on the horizontal axis.11

̂ML

years 10 20 27 30

med annualized 1027 1016 1012 1011

med not annualized 1255 1251 1210 1169

Table 1 : ML estimate for different time units

Fitted to the 30-year growth-factor distribution, the ML estimate implies a median

growth rate of just 1.1 percent. As the period is shortened, median growth rises. This

is probably because the shorter-period frequency distributions are less skewed so that

median growth is closer to mean growth.

11The outlier with a growth factor of around15 over 27 and 30 years in GDP per capita is Equatorial

Guinnea.
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Figure 9: Maximum likelihood fit (not annualized)

4.2 Calibration

We set  = 2 so that we have constant growth in the limit. We set  = 2, i.e., at

the smallest value for which the objective is strictly concave w.r.t.  This allows

the model to achieve a level of informational investment well below unity (see the

discussion of the left panel of Fig 5).

To fit the pattern shown in Fig. 8 we shall need an extra parameter, namely

the frequency at which learning takes place, i.e., the length of a period. Denote

this parameter by  . The model is not homogeneous of degree zero in  and −2;
i.e., implications depend on more than just the ratio 2 . In other words, having

signals with half the precision but twice as often changes the implications. The reasons

that are not entirely clear to me at this writing, but presumably this is similar to

lengthening the period of production of the capital good — information is the only

capital the model has. When there is discounting of the future, the longer is the

period of production of capital, the lower is the return to investment and the fraction

of income invested goes down.

With  =  = 2 already specified, this leaves three parameters to be chosen:  2

and  They must satisfy the following three restrictions on these parameters:

1. Relation between  and .–Since the growth rate of 2% is annualized, the

same must be true of the discount factor which we shall set at 0.95 per year. Then
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for a period of length  , discount factor should be

 = 095  (30)

2. Annualized growth of 2%.–Since  = 2, eq. (28) has  = 1 = 1. Then

median growth over the period of length  is 2.1312. We ask that median income

growth compounded over  periods be 102 , which implies that

102 = 213
12


(31)

3. The share of investment in output.–According to McGrattan and Prescott

(2010) and Corrado and Hulten (2009), businesses invest similar amounts in tangible

and intangible capital. Taking roughly 10 to 12 percent of GNP for each, the total

appears to be 20-24 percent of income. This does not include residential investment.

The limiting value is  which is given in (24). With  = 2 and the resulting  = 1

 =
p
2 = 024 (32)

This yields the parameter values

 = 021

 = 53 (33)

 = 307

Evidently this has to be a low-frequency model if we are to fit both the growth

rate and the investment share. David (1991) has argued that absorbing an important

new technology — a GPT — takes decades. He argues that the booms of the 1920’s

and 1990’s are traceable to inventions and developments that, in each case, took place

several decades earlier. Since  are technological signals, a particularly productive

time is when the ̄ signal is close to  itself. This then leads to high growth.

The results are in Fig. 10. Panel 1 starts economies off at the same initial income

of 75 but varies the precision of information on . i.e., it varies  0. Knowledge of 

implies  0 = 0, and such an economy would evolve along the dashed line. The higher

is the initial ignorance of , and the is lower the growth rate and the distribution of log

output diverges. In other words, differences in information cause long-run income-

level gaps. But all countries share the same long-run growth rate, and therefore

information differences have level effects only. All this is on the assumption that

countries do not share the same  and ’s or that they do not communicate.

Panel 2 is supposed to be the theoretical counterpart of Fig 8. It varies initial

income but keeps   0 the same for all three countries plotted. Also plotted is the

 0 = 0 line for reference — the top dashed line. Since the growth rate depends only

on  and not on , the three lines are parallel — all 3 countries grow at the same rate,

but that rate rises over time. Nevertheless, convergence takes hundreds of years, as

seen in Panels 3 and 4 of Fig 4.
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Figure 10: Panel 1: Equal 0. Panel 2: Equal  0

4.2.1 Calibration based on business sector output only

One interpretation of the model is that it really has two sectors: information and all

other goods/services. In the starkest case we may think of two identities:  = +

and 0 = 0 + 0, where  denotes the business sector and 0 denotes non-business

services. GDP is + 00. Utility is defined over both final goods. For an example

of this type of accounting, see pp. 101-2 of McGrattan and Prescott (2010).

The BLS (2015) reports that the business sector accounted for about 78 percent of

the value of gross domestic product (GDP) in 2000. if  is financed from final goods

only, whereas both business and non-business output is consumed, then we should

equate  not to 0.24, but to

 =


−0 =


(078)

=
24

78
= 31

With the same two percent target for growth, we now have

102 = 213
12


  =

p
2 = 031, and  = 095

This yields the parameter values

 = 025  = 062 and  = 271

The outcome is depicted in the Appendix Figures 13, 15, and 14. They are quite

similar compared to Figs 4, 5, and 10. Although  is smaller, there is little qualitative

difference between the model’s implications.
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5 Information sharing with two agents

Information sharing introduces a free-riding incentive in acquiring signals. Also,

the distribution of income becomes a state variable that determines each agent’s

investment in signals and, therefore, the distribution of growth rates.

Let’s assume that an agents’ s have a common component  and an idiosyncratic

component  so that for agent  at date 

 =  + 

Both components are i.i.d., mean-zero variates, and normally distributed, where 2u =

∞ and where ( 0) are independent of each other and have a common variance 2.
The  are nuisance parameters from the point of view of using signals of others.

As 2 → 0, the signals of different agents become perfect substitutes, whereas when

2 →∞ they are of no value to other agents.

We shall solve the two-agent case which will allow us to discuss inequality in the

income distribution and its effects. To ease notation we shall refer to the shocks of

the two agents as

 = +  and 0 = + 0

and to their incomes and investments as ( ) and (0 0) respectively. The agents
have the same technology for getting signals on  and 0 respectively, described in (4)
and (5).

The information externality.–We shall develop the Bellman equation for the first

agent who cares about . In terms of the parameter , , and 0, the Likelihood

functions of the two signal averages are ̄ ∼ 
³
 

2



´
and ̄

0
0 ∼ 

³
+ 0 −  

2

0

´


Then conditional on  alone, the information contained in the other player’s signals

is distributed

̄
0
 ∼ 

µ
 22 +

2

0

¶
 (34)

The aggregate state is ( 0). We look for a symmetric Nash equilibrium inMarkov
strategies

 =  ( 0) and 0 =  (0 ) 

Let a player’s lifetime utility be  ( 0)  To write the Bellman equation we need the
bivariate distribution of

¡
+1 

0
+1

¢
as a function of the decisions ( 0). First define

the standard deviations of the univariate distributions for  and 0 as

 =

µ


2
+

1

22 + 20

¶−12
and 0 =

µ
0

2
+

1

22 + 2

¶−12
(35)

Then the following claim is proved in the Appendix:
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Lemma 2 Conditional on ( 0), we can write

+1 = ()
−2

and 0+1 = (
0 0)−2 (36)

where  and  0 are distributed  (0 1) with a cross-correlation coefficient

 =
2

+ 2
2
2
+ 0

Ã
0

2
+

µ
22 +

2



¶−1!12Ã


2
+

µ
22 +

2

0

¶−1!12
 (37)

Their bivariate normal density is

 (  0) =
1

2
p
(1− 2)

exp

µ
−

2 − 2 0 +  02

2 (1− 2)

¶


Corollary 2 As 2 → 0, → 0 and → 1,

This corollary reflects the fact that since the agents share all the information they

have and about the same thing, their outputs will be perfectly correlated. Conversely,

as 2 →∞,  → 0, which reflects the fact that each agent’s information is irrelevant

for the other agent.

The Bellman equation.–It reads

 ( 0) = max


(
( − )

1−

1− 
+ 

Z

³
()

−2
 (0 0)−2

´
 (  0)  0

)
(38)

where ( 0) satisfy (35), and where the other player’s strategy 0 =  (0 ) is taken
as given

The aggregate law of motion.–Substituting the equilibrium strategies into (36),

we get the aggregate law of motion for ( 0) which is a first-order Markov process
in R2+: µ

+1
0+1

¶
=

⎛⎜⎝
³
(0)
2

+ 1
22+

2(0)

´−12
³

(0)
2

+ 1
22+

2(0)

´−12
 0

⎞⎟⎠
This may be used to run a regression of a general Nelson-Phelps type, to do with the

persistence of leadership using simulated data: Selecting date  leader and labeling

his output  and that of the follower 
0
, we regress their next-period’s differential on

today’s differential

ln +1 − ln 0+1 = 0 + 1 (ln  − ln 0)

We expect 1 to be less than one, increasing in 2, and as 
2
 →∞, we expect that

1 → 1.
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5.1 The case 2 = 0

This is the case when the two agents’ signals are perfect substitutes in the sense that

each agent finds the other agent’s signals as valuable as his own. In this case the

countries will converge to each other in one period, and thereafter will forever remain

the same. Of course that will not get rid of the free rider problem. Rather, the

opposite.

Since the agents will have the same information and the same target, they will

take the same decision, and will end up with 0+1 = +1. Using Corollary 1, the

Bellman equation (38) becomes

 ( 0) = max


(
( − )

1−

1− 
+ 

Z

¡
()

−2
 ()

−2¢ −22√
2



)
 (39)

subject to

 =

µ


2
+

 (0 )
2

¶−12
(40)

because 2 = 0

Let  = 2. The solution, proved in the Appendix, has the properties summarized

in the following claim:

Proposition 4 When  = 2, the solution to (39) has the following properties: Indi-

vidual investment is

 ( 0) =
(1 + )  − 0

1 + 2
(41)

total investment is

 ( 0) +  (0 ) =
1

1 + 2
( + 0) (42)

where

 =
1

4

r
1 +

16

2
− 3
4
 0 (43)

and where the inequality in (43) holds if 2  2. Finally,

 ( 0) = −1 + 2
2

µ
1

 + 0
+

1

 ( + 0)

¶
 (44)

A few comments about this proposition:

1. Free riding.–The free rider property is evident in (41) where, because   0,

the strategy is declining in the other player’s output 0. The strength of the effect
rises with 2

2. Eq. (42) states that aggregate investment is a constant fraction, 1/(1 + 2),

of aggregate output given in (42). Now, (36) implies that each country’s growth is
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proportional to total investment. Therefore Gibrat’s law holds at the aggregate level

even though it fails at the level of the individual country. That is, growth of each

country depends on total output  + 0, and not on its division between the players.
In other words, each country’s growth is a function of total aggregate output, and

inequality in is irrelevant. For an individual country, an unusually high growth rate

for one country raises total investment less than in proportion, and so growth rates

are negatively autocorrelated.

3. The properties described above hold only if 2  2, but in fact this is the

relevant region of the parameter space. In the calibration in eq. (32) this value was

set at 024 In any event, when  = 2 (which is the case here) the solution to the

one-agent problem requires that 2  1 — see (26).

4. Since 


≤ 1+

1+2
 1, consumption of both agents is always positive, but the

solution ceases to be valid when

0



1 + 



because the agent then wants negative investment which is not feasible.

5. Eq. (44) states that  is a function only of the sum  + 0. In other words,
a mean-preserving spread of the outputs leaves the lifetime utilities of both players

unchanged! This surprising conclusion arises because a player’s rise in  lowers the

other player’s 0 through the free riding effect by exactly the amount that leaves that
player’s utility unchanged. As expected, however,  is concave.

5.1.1 The scale effect in equilibrium

Since at least Arrow (1962) growth theory has recognized that technological informa-

tion is more valuable when used at a larger scale. Here, “scale” means the number of

production processes on which information is used to guide decisions, and we expect

the point to be valid here too. But could the free rider effect offsets this fact? It is

logically possible for equilibrium investment in the two-agent economy to fall short

of that in the one-agent economy.

We ask, then, whether two identical countries generate more signals than a single

agent would with the same income per head. That is, when  = 0, does total
investment exceed investment in a single economy with the same income per head?

The answer is yes

Proposition 5 When  = 2 and 2 = 0 a two-agent economy generates more signals

and higher income growth per head than a one-agent economy

Proof. According to (41) and (43),

+ 0


=

2 ( )


= 2

µ
1 + 2

µ
−3
4
+
1

4

r
1 +

16

2

¶¶−1
=

µ
1

2
+−3

4
+
1

4

r
1 +

16

2

¶−1
=

µr
1

16
+

1

2
− 1
4

¶−1
24
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Figure 11: Investment in a one-agent economy relative to total invest-
ment in a two-agent economy

whereas in the single agent case (26) says  =
p
2. The ratio of the one economy

divided by the two economies’ total investment is

p
2

µr
1

16
+

1

2
− 1
4

¶
=

r
2

16
+ 1−

p
2

4
 1

whenever 2  0 because
√
1 +   1 +

√
 for any   0.

Plotting the ratio in Fig. 11 we find it to be less than one and decreasing in 2;

the latter must be below 1 for the one-agent solution to be valid.The figure shows

that in a one agent economy investment is at least seventy eight percent of what it

would be in a two-agent economy.

5.1.2 Numerical simulation

We use the parameter values

 = 1, 2 = 4  = 095,  = 2
TABLE 2: Parameter values for Fig. 12

The free-riding effect derived in (41) for the case 2 = 0 is present even when 2
is positive — this is seen in Panel 1 of Fig. 12. Panel 2 shows that the concavity of 

in  shown in (44) for the case 2 = 0 is present even when 2 is positive, but the

concavity in 0 appears not to.

25



0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

y

φ(
y,

y’
)

Policy Function

 

 
y’ = 0.01
y’ = 2
y’= 4

5 10 15 20
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

y

v(
y,

y’
)

Value Function

 

 
y’ = 0.01
y’ = 2
y’= 4

Figure 12:  ( 0) and  ( 0) with two agents.

6 Conclusions

The present model focuses on beliefs over possible policies and decisions and their

effects on output and growth. As beliefs evolve, output rises. We assume that agents

use a model that nests the true model and that they learn from experience. It turns

out that information differences have level effects only. All countries share the same

long-run growth rate.

The model has led to four conclusions. First, the process of informational invest-

ment and the use of the information to raise output makes sense quantitatively only

if the periods are decades, not years — the fluctuations are low-frequency events in

which case the industrial revolution is a plausible right-tail event. Indeed, the growth

distribution has a thick right tail. Second, the long-run growth rate depends on the

technology for accumulating signals and the degree of risk aversion — the latter in

a way that is counter to the standard model. Risk aversion raises growth because

growth is due to better information which also reduces aggregate risk. Third, an

informational advantage has a level effect, but no growth effect. Gibrat’s Law holds

in the limit which is not unlike world experience — there is little overall tendency for

followers to catch up with leaders or fall further behind.

26



References

[1] Arrow, K. “The Economic Implications of Learning by Doing.” Rev. Econ.
Stud. 1962.

[2] Alvarez, F. and N. Stokey. “Dynamic Programming with Homogeneous
Functions.” JET 82 (1998): 167-189.

[3] Boucekkine, R., G. Fabbri and P. Pintus. “Growth under Collateral con-
straints.” Econ. Letters 122 (2014) 303—307

[4] Buera, F., A. Monge, G. Primiceri. “Learning the Wealth of Nations.”
Econometrica, 79(1), January 2011, pp.1-46.

[5] Bureau of Labor Statistics. BLS Information: Glossary.

http://www.bls.gov/bls/glossary.htm downloaded April 27 2015.

[6] Corrado, C., C. Hulten, D Sichel. “Intangible Capital and US Economic
Growth.” Review of Income and Wealth 2009.

[7] David, P. A. “Computer and Dynamo: The Modern Productivity Paradox in
a Not-too-distant Mirror.” in Technology and Productivity. Paris: OECD 1991.

[8] Easley, D. and N. Kiefer. “Controlling a Stochastic Process with Unknown
Parameters.” Econometrica 1988.

[9] Easterly, W. M. Kremer, L. Pritchett, L. Summers. “Good Policy or
Good luck?” J. Monetary Econ. 1994.

[10] Eeckhout, J. and B. Jovanovic. “Inequality and Spillovers.” AER 2002

[11] Greenwood, J., Z. Hercowicz and P. Krusell. “” AER 1997

[12] Jones, C. I. and P. Romer. “The New Kaldor Facts.” A.E.J.: Macroeco-

nomics 2, no. 1 (2010): 224-245.

[13] Jovanovic, B. “Asymmetric Cycles.” Rev. Econ. Studies 2006.

[14] Jovanovic, B. and Y. Nyarko. “Learning by Doing and the Choice of Tech-
nology.” Econometrica 1996.

[15] Kremer, M. “Population Growth and Technological Change: One Million B.C.
to 1990.” Q.J.E. 1993.

[16] Lucas, R. E., “On the Mechanics of Economic Development.” J. Monetary
Econ. 1988.

27



[17] McGrattan, E. and E. C. Prescott. “Unmeasured Investment and the
Puzzling U.S. Boom in the 1990s.” A.E. J.: Macroeconomics 2 (October 2010):

88—123.

[18] Nelson, R. and E. Phelps. “Investment in Humans, Technological Diffusion,
and Economic Growth.” A. E. R. 56, No. 1/2 (1966): 69-75

[19] Prescott, E. C. “The Multiperiod Control Problem Under Uncertainty,"

Econometrica 1972.

[20] Pritchett, L. “Divergence Big Time,” J. Econ. Perspectives 11, No. 3. (Sum-
mer, 1997): 3-17.

[21] Rappaport, J. “A bottleneck capital model of development.” J. Monetary

Econ. 53 (2006) 2113—2129

[22] Romer, P. “Increasing Returns and Long-Run Growth.” J. Political Econ. 1986.

[23] Sala-i-Martin, X. “The World Distribution of Income: Falling Poverty and...
Convergence, Period.” Quarterly J. Econ. 2006.

Appendix: Proofs

6.1 Proof of Proposition 2

The Bellman equation reads

1− =
1

1− 
(1−)

1−
1− + 

Z µ
1√



¶−2(1−)
 () 

where  is the standard normal density. Then

1− =
1

1− 
(1−)

1−
1− + 

µ
1√




¶2(−1)
where  is given in (23).

Next, verify that  =  will satisfy the FOC.–The Bellman equation reads

1− =
1

1− 
( − )

1−
+ 2(−1)1−

The FOC then reads

− ( − )
−
+ (1− ) 2(−1)− = 0
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Substituting  = , it reads

(1−)
−

− = (1− ) 2(−1)−−

This leaves us with two equations

(1−)
−

= (1− ) 2(−1)−

 =
1

1− 
(1−)

1−
+ 2(−1)(1−)

From the second equation

 =
1

1− 
(1− )

1− ¡
1− 2(−1)(1−)

¢−1
 (45)

Then we can substitute to get a single equation in the unknown 

(1−)
−
= (1−)

1− ¡
1− 2(−1)(1−)

¢−1
2(−1)−

i.e.,

1 = (1−)
¡
1− 2(−1)1−

¢−1
2(−1)−

Evidently, since we can write

1

1−
=

−2(1−)−

1− −2(1−)1−

the equation holds if we set

1 = 2(−1)−

so that  satisfies (24). Substituting into (45), we get

 =
1

1− 
(1−)

1− ¡
1− 2(−1)1−

¢−1
=

1

1− 
(1−)

1−
(1−)

−1


i.e., (25).

6.2 Proof of Lemma 1

We first derive the bivariate distribution of − and 0−0. Conditional on
³
̄ ̄

0
0

´
,

the posterior mean of  is


³
 | ̄ ̄00

´
≡

³
2



´−1
̄ +

³
22 +

2

0

´−1
̄
0
0¡

2



¢−1
+
¡
22 +

2

0
¢−1 =

³
22 +

2

0

´
̄ +

2


̄
0
0

2


+ 22 +

2

0
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Then

−  = −
³
 | ̄ ̄00

´
= −

³
22 +

2

0

´³
+ 1



P

=1 

´
+ 2



³
0 + 1

0
P0

=1 
0


´
2


+ 22 +

2

0

= −

³
22 +

2

0

´³
+ 1



P

=1 

´
+ 2



³
+  − 0 + 1

0
P0

=1 
0


´
2


+ 22 +

2

0

= −

³
22 +

2

0

´
1


P

=1  +
2



³
 − 0 + 1

0
P0

=1 
0


´
2


+ 22 +

2

0

= −

³
22 +

2

0

´
̄ +

2


( − 0 + ̄0)

2


+ 22 +

2

0

Similarly,

0 − 0 = −

³
22 +

2



´
̄0 +

2

0 (
0 −  + ̄)

2

0 + 2
2
 +

2



The denominators are the same. Since they are zero mean, Cov(− ) (0 − 0) =
 (− ) (0 − 0). Since  (0) =  () = 0 and letting

 =

µ
2

0
+ 22 +

2



¶−2
= −4

µ
1

0
+ 2

2
2
+
1



¶−2


we have

 (− ) (0 − 0) = −
µ
2

0

¶µ
2



¶
22 +

∙µ
22 +

2



¶
+

µ
22 +

2

0

¶¸
2

0

µ
2



¶
= 

µ
2

0

¶µ
2



¶µ
22 +

2

0
+

2



¶
= 12 (46)

Then

12 =

µ
1

0
+ 2

2
2
+
1



¶−2µ
1

0

¶µ
1



¶µ
22 +

2

0
+

2



¶
=

µ
1

0
+ 2

2
2
+
1



¶−2µ
1

0

¶µ
2



¶µ
2
2
2
+
1

0
+
1



¶
=

µ
1

0
+ 2

2
2
+
1



¶−1µ
1

0

¶µ
2



¶
=

2

+ 2
2
2
+ 0


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so that

 =
2

+ 2
2
2
+ 0

Ãµ
2

0

¶−1
+

µ
22 +

2



¶−1!12Ãµ
2



¶−1
+

µ
22 +

2

0

¶−1!12


i.e., (37). As a check we let 2 → 0, we see that12 → 2 = 02 =

∙³
2

0

´−1
+
³
22 +

2



´−1¸−1
→∙³

2

0

´−1
+
³
2



´−1¸−1
= 1

(+0)2 = 12. I.e., the correlation coefficient of ( 
0) con-

verges to 1, and 0+1 = +1 w.p. 1. Now, since −  = , where  is defined in (35),

+1 =

"µ
2



¶−1
+

µ
22 +

2

0

¶−1#
−2 =

⎛⎝"µ2


¶−1
+

µ
22 +

2

0

¶−1#−12


⎞⎠−2
≡ ()

−2

and similarly 0+1 = (
0 0)−2, i.e., (36).

6.3 Proof of Proposition 4

Our task is to show that if  is given in (44) with  given in (43), then () the policy

maximizing the RHS of (39) is indeed as given in (41), and () if we substitute from

(44) and (41) into the RHS of (39), we obtain the expression in (44) on the LHS of

(39).

Since  ∼  (0 1)⇒ R
2 

−22√
2

 = 1, (39) reads



 + 0
+



 + 0
= max



½
− 1

 − 
+ 2 (+ )

¾
 (47)

where Matching coefficients, we obtain

 =
1 + 2

2
and  =





Let

 = 2 (+ )  0 (48)

Then (47) reads



 + 0
+



 + 0
= max



½
− 1

 − 
+



+  (0 )

¾
(49)

The FOC is

− 1

( − )
2
− 

(+  (0 ))2
= 0
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i.e.,
1

( − )
2
=

−
(+  (0 ))2

Then

 −  =
+  (0 )√− =  (+  (0 ))

where −  0 and where

 = (−)−12  0 (50)

This gives

 ( 0) =
1

1 + 
( −  (0 ))

Using symmetry of ,

 (0 ) =
1

1 + 
(0 −  ( 0))

This gives two equations in two unknowns. Eliminating  (0 ) leaves us with

 ( 0) =
1

1 + 

µ
 − 

1

1 + 
(0 −  ( 0))

¶
i.e.,

(1 + ) ( 0) =  − 

1 + 
(0 −  ( 0)) 

i.e., µ
1 + − 2

1 + 

¶
 ( 0) =  − 

1 + 
0

Now 1 + − 2

1+
= 1+2

1+
, and therefore

1 + 2

1 + 
 ( 0) =  − 

1 + 
0

i.e.,

(1 + 2) ( 0) = (1 + )  − 0

i.e., (41) which, since   0 shows the free-riding effect.12

It remains to be seen whether (49) holds, i.e., whether when we substitute the

policy  for  on the RHS of (47), the Bellman equation holds for all ( 0).



 + 0
+



 + 0
= − 1

 −  ( 0)
− −2

 ( 0) +  (0 )
 (51)

12Now Gibrat’s law no longer holds at the country level because a high realization of  that is not

accompanied by an equiproportional rise in 0 will cause  to rise, and so will (stochastically) the
growth rate
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The RHS of (51) reads



 + 0
+



 + 0
= − 1

 − (1+)−0
1+2

− 1 + 2

2 ( + 0)

= − (1 + 2)
µ

1

(1 + 2)  − (1 + )  + 0
+

1

2 ( + 0)

¶
= − (1 + 2)

µ
1

 ( + 0)
+

1

2 ( + 0)

¶
But  itself is defined in terms of ( ). From (48) and (50) we have

 = −2
µ
1 + 2

2
+
1 + 2

22

¶
=
−2
22

(1 + 2) (1 + )

But from (50),  = −−2. Substituting for , we have

−−2 = −2 (1 + 2) (1 + )

22

or

2 = 2 (1 + 2) (1 + )

or

222 + 32+
¡
2 − 2¢ = 0

or

 =
−32 ±

q
(32)

2 − 4 (22) (2 − 2)
2 (22)

=
−32 ±

q
9 (2)

2 − 82 (2 − 2)
42

=
−32 ±

q
(2)

2
+ 162

42

=
−3±

q
1 + 16

2

4

=
1

4

r
1 +

16

2
− 3
4

(52)

From (50) we know that   0 which means that only the larger root is a valid

solution and only when

1 +
16

2
 9⇐⇒ 2  2 (53)
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which is always met when the individual problem has an interior solution for which

(26) implies we need 2  1. If the signals are poor, 2 is large and the inequality

is violated. Investment is

 ( 0) =
(1 + )  − 0

1 + 2

i.e., (41).

Numerical Algorithm for Fig. 12

1. Guess function (using basis functions) for () ( 0) for each ( 0)
2. (a) For each guess of () ( 0), guess a function () ( 0) such that

(+1) ( 0) = argmax


(
( − )

1−

1− 
+ 

Z

³
()

−2
 (0 0)−2

´
 (  0)  0

)
 0 = () (0 )

2. (b) the loop stopped if

sup
°°°(+1) ( 0)− () ( 0)

°°°  

denote the stopped policy function as ()

3. Using () ( 0), solve the value function

(+1) ( 0) =

³
 − () ( 0)

´1−
1− 

+ 

Z
()

³
()

−2
 (0 0)−2

´
 (  0)  0

4. The algorithm stops if

sup
°°(+1) ( 0)− () ( 0)

°°  

if not, go back to step 1 with the new guess of (+1) ( 0)
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Figure 13: Convergence in real time in the alternative calibration

6.4 Figures for the calibration based on business sector out-

put only
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Figure 14: Second calibration: Panel 1: Equal 0. Panel 2: Equal  0
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Figure 15: The effect of  in the alternative calibration
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