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Abstract

What structure of income taxation maximizes the social benefits of redistribution while

minimizing the social harm associated with distorting the allocation of labor input?

Many authors have advocated scrapping the current tax system, which redistributes

primarily via marginal tax rates that rise with income, and replacing it with a flat

tax system, in which marginal tax rates are constant and redistribution is achieved

via non-means-tested transfers. In this paper we compare alternative tax systems

in an environment with distinct roles for public and private insurance. We evaluate

alternative policies using a social welfare function designed to capture the taste for

redistribution reflected in the current tax system. In our preferred specification, moving

to the optimal flat tax policy reduces welfare, whereas moving to the optimal fully

nonlinear Mirrlees policy generates only tiny welfare gains. These findings suggest

that proposals for dramatic tax reform should be viewed with caution.
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1 Introduction

In this paper we revisit a classic question in public finance: what structure of income taxation

can maximize the social benefits of redistribution while minimizing the social harm associated

with distorting the allocation of labor input?

The tax and transfer systems currently in place in many countries, including the United

States, achieve a measure of redistribution through a combination of tax rates that increase

with income, coupled with means-tested transfers. However, many authors have argued that

a more efficient way to redistribute would be to move to a flat tax system, in which marginal

tax rates are constant across the income distribution, and redistribution is achieved via

universal transfers. For example, Friedman (1962) advocated “negative income tax,” which

effectively combines a lump-sum transfer with a constant marginal tax rate. Mirrlees (1971)

pioneered the study of optimal tax design in environments with unobservable heterogeneity.

He did not impose any constraints on the shape of the tax schedule, but still found that the

optimal schedule is in fact close to linear, a finding that extends to many other papers in

the subsequent literature; see Mankiw, Weinzierl, and Yagan (2009) for a recent survey.

In this paper we explore the welfare consequences of replacing the current U.S. income

tax system – which redistributes primarily via increasing marginal tax rates – with two

alternatives tax schemes: the optimal one and the best policy in the affine class. In our

preferred model specification, we find that moving to the best affine policy is welfare reducing,

whereas moving to the optimal fully nonlinear Mirrlees policy generates only tiny welfare

gains. These findings suggest that proposals for dramatic tax reform should be viewed with

caution.

A natural starting point for characterizing the optimal structure of taxation is the Mirr-

leesian approach, which seeks to characterize the optimal tax system subject only to the

constraint that taxes must be a function of individual earnings. Taxes cannot be explicitly

conditioned on individual productivity or individual labor input because these are assumed

to be unobserved by the tax authority. The Mirrleesian approach is to first formulate a

planner’s problem that features incentive constraints such that individuals are willing to

choose the allocations intended for their unobserved productivity types. Given a solution to

this problem, an earnings tax schedule can be inferred, such that the same allocations are

decentralized as a competitive equilibrium given those taxes. This approach is attractive

because it places no constraints on the shape of the tax schedule, and because the implied

allocations are constrained efficient.

The alternative Ramsey approach to tax design is to restrict the planner to choose a

tax schedule within a parametric class. Although there are no theoretical foundations for
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imposing ad hoc restrictions on the design of the tax schedule, the practical advantage of

doing so is that one can then consider tax design in richer models. We will contrast the

optimal Mirrlees policy with two particular parametric functional forms for the income tax

schedule, T, that maps income, y, into taxes net of transfers, T (y). The first is an affine tax:

T (y) = τ0 + τ1y, where τ0 is a lump-sum tax or transfer, and τ1 is a constant marginal tax

rate. Under this specification, a higher marginal tax rate τ1 translates into larger lump-sum

transfers and thus more redistribution. The second specification is borrowed from Heathcote,

Storesletten, and Violante (2014b), who show that the following parametric function for

taxes net of transfers closely approximates the current U.S. tax and transfer system: T (y) =

y − λy1−τ . In this HSV specification the parameter τ controls the progressivity of the tax

and transfer system: for τ = 0 taxes are proportional to income, whereas for τ > 0 the

marginal tax rate increases with income. Note that the HSV specification rules out pure

lump-sum transfers, since T (0) = 0. By comparing welfare in the two cases, we will learn

whether it is more important to allow for lump-sum transfers (as in the affine case) or to

allow for marginal tax rates to increase with income (as in the HSV case). We will also

be interested in whether either affine or HSV tax systems can come close to decentralizing

constrained efficient allocations.

We want to provide quantitative guidance on the welfare-maximizing shape of the tax

function. With this goal in mind, we emphasize three dimensions of our analysis. First,

rather than simply imposing a utilitarian welfare criterion, we evaluate alternative tax sys-

tems using a social welfare function that is designed to be consistent with the amount of

redistribution embedded in the U.S. tax code. Second, we assume that agents are able to

privately insure a share of idiosyncratic labor productivity risk and emphasize the role of the

tax system in addressing risks that are not privately insurable. Third, we use the observed

distribution for labor earnings to calibrate the model distribution for labor productivity,

which we approximate for computational purposes using a very fine grid. We now discuss

these three issues in more detail.

The shape of the optimal tax schedule in any social insurance problem is sensitive to the

social welfare function that the planner is assumed to be maximizing.1 We will consider a

class of social welfare functions in which the weight on an agent with uninsurable idiosyncratic

productivity component α takes the form exp(−θα). Here the parameter θ determines the

taste for redistribution: θ = 0 corresponds to the utilitarian case. What is the taste for

redistribution in the United States? We argue that the degree of progressivity built into the

1For example, in the simplest static Mirrlees problem, one can construct a social welfare function in which
Pareto weights increase with productivity at a rate such that the planner has no desire to redistribute and
thus (absent public expenditure) no desire to tax. Alternatively, a Rawlsian welfare objective that puts
weight only on the least well-off agent in the economy will typically call for a highly progressive tax schedule.
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actual U.S. tax and transfer system is informative about the preferences of U.S. voters and

policymakers. We are able to characterize in closed form the mapping between the taste

for redistribution parameter θ in our class of social welfare functions and the progressivity

parameter τ that maximizes welfare within the HSV class of tax / transfer systems. This

mapping can be inverted to infer the U.S. taste for redistribution θ∗ that would lead a planner

to choose precisely the observed degree of tax progressivity τ ∗. This empirically motivated

social welfare function will serve as our baseline objective function.

Private insurance in the model operates as follows. Idiosyncratic labor productivity has

two orthogonal components: log(w) = α + ε. The first component α cannot be privately

insured and is unobservable by the planner – the standard Mirrlees assumptions. The second

component ε is also unobserved by the planner, but can be perfectly privately insured by

agents. What we have in mind is that agents face shocks that the tax authority does not

directly observe, but which agents can smooth in a variety of ways. One important source of

private insurance, which will be the focus of our exposition, is insurance within the family,

where it is reasonable to assume that family members have much better information about

each other’s productivity than does the tax authority. For the purposes of practical tax

design, the more risk agents are able to insure privately, the smaller is the role of the

government in providing social insurance, and the less redistributive will be the resulting tax

schedule.

The form of the distribution of uninsurable risk is known to be critical for the shape of the

optimal tax function. Saez (2001) has forcefully argued that the heavy Pareto-like right tail

for the distribution of labor earnings suggests that marginal tax rates should be increasing,

at least over some portion of the earnings distribution. In our calibration we are careful to

replicate observed dispersion in U.S. wages. We assume that log labor productivity follows

an exponentially modified Gaussian (EMG) distribution, and we estimate the exponential

parameter defining the weight of the right tail using cross-sectional data on the distribution

of household earnings from the Survey of Consumer Finances. We decompose the overall

variance of wages into the uninsurable and insurable components described above by adapting

estimates from Heathcote, Storesletten, and Violante (2014a) on the fraction of idiosyncratic

wage variation that is privately insured.

Our key findings are as follows.

First, in our baseline model, the welfare gains of moving from the current tax system –

which we approximate using the HSV functional form – to the tax system that decentralizes

the Mirrlees solution are very small: 0.1 percentage points of consumption. Moving to the

optimal policy in the affine class would reduce welfare by around 0.6 percentage points.

Second, our baseline empirically motivated social welfare function underweights low pro-
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ductivity workers, and a utilitarian planner would want to make the tax system more pro-

gressive. However, the utilitarian welfare gain from optimally increasing progressivity within

the HSV class of tax functions still exceeds the gain from moving to the optimal policy in

the affine class.

Third, similar results extend to a specification in which there is no private insurance

against idiosyncratic wage risk. Assuming away private insurance while retaining our baseline

social welfare function leads to a larger role for government redistribution and thus more

progressive taxation. But the optimal policy in the HSV class again delivers higher welfare

than the optimal policy in the affine class.

We conclude from these experiments that the presence of lump-sum transfers is not

a critical component of optimal fiscal policy, but that it is very important that marginal

tax rates increase with income. This finding should give pause to proponents of affine tax

schedules.

Why is it important to have marginal tax rates that increase with income? Saez (2001)

emphasized that the distribution for labor productivity is a critical determinant of the shape

of the optimal tax schedule. With a heavy right tail to the wage distribution, there is a strong

incentive to set high marginal tax rates at high income levels because the associated extra

revenue from all higher-income individuals is large. When we counterfactually assume a

log-normal distribution for wages, we find that an affine tax very nearly implements efficient

allocations, whereas the best policy in the HSV class does less well.

Other elements also play a role in explaining why the efficient tax system involves rela-

tively small transfers in our baseline model. First, our social welfare function puts relatively

low weight on the utility of low productivity agents. Second, a portion of low wage draws

reflect shocks that are privately insured and do not transmit to consumption. This reduces

the role for public transfers in establishing a consumption floor.

In an extension to our baseline model, we introduce a third component of idiosyncratic

productivity, κ, which is privately uninsurable but observed by the planner. This component

is designed to capture differences in wages related to observable characteristics such as age

and education. Because wages vary systematically by these characteristics, a constrained

efficient tax system should explicitly index taxes to these observables (see, e.g., Weinzierl

(2011)). In our model we assume that κ is drawn before the agent can trade in financial

markets and therefore cannot be insured privately. We set the variance of this observable

fixed effect to reflect the amount of wage dispersion that can be accounted for by standard

observables in a Mincer regression. We find that if the planner can condition taxes on

the observable component of labor productivity, it can generate large welfare gains, in part

because it translates into lower marginal rates on average.
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Related Literature Seminal papers in the literature on taxation in the Mirrlees tradition

include Mirrlees (1971), Diamond (1998), and Saez (2001). More recent work has focused on

extending the approach to dynamic environments: Farhi and Werning (2013) and Golosov,

Troshkin, and Tsyvinski (2013) are prominent examples. There are also many papers on

tax design in the Ramsey tradition in economies with heterogeneity and incomplete private

insurance markets. Recent examples include Conesa and Krueger (2006), who explore the

Gouveia and Strauss (1994) functional form for the tax schedule, and Heathcote, Storesletten,

and Violante (2014b), who explore the function used by Feldstein (1969), Persson (1983),

and Benabou (2000).

Our interest in constructing social welfare functions that are broadly consistent with

observed tax progressivity is related to Werning (2007). Werning’s goal is to characterize

the Pareto efficiency or inefficiency of any given tax schedule, given an underlying skill

distribution. In contrast, our focus will be on quantifying the extent of inefficiency in the

current system, rather than on a zero-one classification of efficiency.2

Recent papers by Bourguignon and Spadaro (2012), Saez and Stantcheva (2013), Bren-

don (2013), and Lockwood and Weinzierl (2014) address the inverse of the optimal taxation

problem, which is to characterize the profile for marginal social welfare weights that rational-

ize a particular observed tax system: given these weights, the observed tax system is optimal

by construction. Our approach is similar in spirit, in that it uses the progressivity built into

the observed tax system to infer a single parameter in the planner’s social welfare function

that summarizes the planner’s taste for redistribution. In contrast to the inverse-optimum

approach, however, this one-parameter function only allows for a simple tilt in social pref-

erences toward relatively high or low productivity workers and requires that Pareto weights

vary smoothly with productivity. We find this parametric assumption attractive because

it is flexible enough to nest most of the standard social welfare functions used in the liter-

ature, but not so flexible that it can rationalize any observed tax system, so that we can

still ask how the current tax system could be improved. In addition, our specification al-

lows for a closed-form mapping between structural model parameters, including the observed

progressivity of the tax system, and the planner’s taste for redistribution.

Chetty and Saez (2010) is one of the few papers to explore the interaction between

public and private insurance in environments with private information. They consider a

range of alternative environments, in most of which agents face a single idiosyncratic shock

that can be insured privately or publicly. Section III of their paper explores a more similar

environment to ours, in which there are two components of productivity and differential

2In our model environment, the distribution of productivity will be bounded above. It follows immediately
that the current tax system is not Pareto efficient, since it violates the familiar zero-tax-at-the-top result.
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roles for public versus private insurance with respect to the two components. Like us, they

conclude that the government should focus on insuring the source of risk that cannot be

insured privately. Relative to Chetty and Saez (2010), our contributions are twofold: (i)

we consider optimal Mirrleesian tax policy in addition to affine tax systems, and (ii) our

analysis is more quantitative in nature.

2 Environment

Labor Productivity There is a unit mass of agents. Agents differ only with respect to

labor productivity w, which has two orthogonal components:

logw = α + ε.

These two idiosyncratic components differ with respect to whether or not they can be ob-

served and insured privately. The first component α ∈ A ⊂ R represents shocks that cannot

be insured privately. The second component ε ∈ E ⊂ R represents shocks that can be

privately observed and perfectly privately insured. Neither α nor ε is observed by the tax

authority.

A natural motivation for the informational advantage of the private sector relative to

the government with respect to ε shocks is that these are shocks that can be observed and

pooled within a family (or other risk-sharing group), whereas the α shocks are shared by all

members of the family but differ across families.

We let the vector (α, ε) denote an individual’s type and Fα and Fε denote the distributions

for the two components. We assume Fα and Fε are differentiable.

Although the model we describe here is static, it will become clear that it has an iso-

morphic dynamic interpretation in which agents draw new values for the insurable shock

ε in each period. In that case the differential insurance assumption could be reinterpreted

as assuming that α represents fixed effects that are drawn before agents enter the econ-

omy, whereas ε captures life-cycle productivity shocks against which agents can purchase

insurance.3 A more challenging extension to the framework would be to allow for persistent

shocks to the unobservable noninsurable component of productivity α. However, Heathcote,

Storesletten, and Violante (2014a) estimate that life-cycle uninsurable shocks account for

only 17% of the observed cross-sectional variance of log wages.

Preferences Agents have identical preferences over consumption, c, and work effort, h.

3Although explicit insurance against life-cycle shocks may not exist, households can almost perfectly
smooth transitory shocks to income by borrowing and lending.
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The utility function is separable between consumption and work effort and takes the form

u(c, h) =
c1−γ

1− γ
− h1+σ

1 + σ
,

where γ > 0 and σ > 0. Given this functional form, the Frisch elasticity of labor supply is

1/σ. We denote by c(α, ε) and h(α, ε) consumption and hours worked for an individual of

type (α, ε).

Technology Aggregate output in the economy is simply aggregate effective labor supply

Y =

∫ ∫
exp(α + ε)h(α, ε)dFα(α)dFε(ε).

Aggregate output is divided between private consumption and a publicly provided good

G that is nonvalued:

Y =

∫ ∫
c(α, ε)dFα(α)dFε(ε) +G.

The resource constraint of the economy is thus given by∫ ∫
c(α, ε)dFα(α)dFε(ε) +G =

∫ ∫
exp(α + ε)h(α, ε)dFα(α)dFε(ε). (1)

Insurance We imagine insurance against ε shocks as occurring via a family planner who

dictates hours worked and private within-family transfers for a continuum of agents who share

a common uninsurable component α and whose insurable shocks ε are distributed according

to Fε. As will become clear, by modeling private insurance as occurring within the family,

it will be very clear that there is no way for the government to monopolize all provision of

insurance in the economy. In Appendix 8.1, we consider an alternative model for insurance

in which there is no family and individual agents buy insurance against ε on decentralized

financial markets. For the purposes of optimal tax design, the details of how private insurance

is delivered do not matter as long as the set of risks that is privately insurable remains

independent of the choice of tax system, which is our maintained assumption.

Government The planner / tax authority observes only end-of-period family income,

which we denote y(α) for a family of type α, where

y(α) =

∫
exp(α + ε)h(α, ε)dFε(ε) for all α. (2)

The tax authority does not directly observe α or ε, does not observe individual wages or

hours worked, and does not observe the within-family transfers associated with within-family
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private insurance against ε. In Section 3.4, we argue that allowing the planner to observe

and tax income (after within-family transfers) at the individual level would not change the

solution to the tax authority’s problem.

Let T (·) denote the income tax schedule. Given that it observes income and taxes col-

lected, the authority also effectively observes family consumption, since∫
c(α, ε)dFε(ε) = y(α)− T (y(α)) for all α. (3)

Family Head’s Problem The timing of events is as follows. The family first draws a

single α ∈ A. The family head then solves

max
{c(α,ε),h(α,ε)}

∫ {
c(α, ε)1−γ

1− γ
− h(α, ε)1+σ

1 + σ

}
dFε(ε) (4)

subject to (2) and the family budget constraint (3).

Equilibrium Given the income tax schedule T , a competitive equilibrium for this economy

is a set of decision rules {c, h} such that

1. The decision rules {c, h} solve the family’s maximization problem (4).

2. The resource feasibility constraint (1) is satisfied.

3. The government budget constraint is satisfied:∫
T (y(α))dFα(α) = G. (5)

3 Planner’s Problems

The planner maximizes a social welfare function characterized by weights W (α) that po-

tentially vary with α.4 In Section 4, we develop a methodology for using the degree of

progressivity built into the actual tax system to reverse engineer the nature of this variation.

3.1 Ramsey Problem

The Ramsey planner chooses the optimal tax function in a given parametric class T . For

example, for the class of affine functions, T = {T : R+ → R|T (y) = τ0 + τ1y for y ∈ R+,

4We assume symmetric weights with respect to ε to focus attention on the government’s role in providing
public insurance against privately uninsurable differences in α. In addition, we will show that constrained
efficient allocations cannot be conditioned on ε.
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τ0 ∈ R, τ1 ∈ R}. For the HSV tax functions described in the introduction, T = {T : R+ →
R|T (y) = y − λy1−τ for y ∈ R+, λ ∈ R, τ ∈ R}.

The Ramsey problem is to maximize social welfare by choosing an income tax schedule

in T subject to allocations being a competitive equilibrium:

max
T∈T

∫
W (α)

∫
u(c(α, ε), h(α, ε))dFε(ε)dFα(α) (6)

subject to (1) and to c(α, ε) and h(α, ε) being solutions to the family maximization problem

(4).

The first-order conditions (FOCs) to the family head’s problem are

c(α, ε) = c(α) = y(α)− T (y(α)), (7)

h(α, ε)σ = [y(α)− T (y(α))]−γ exp(α + ε) [1− T ′(y(α))] . (8)

The first FOC indicates that the family head wants to equate consumption within the

family. The second indicates that the family equates – for each member – the marginal

disutility of labor supply to the marginal utility of consumption times individual productivity

times one minus the marginal tax rate on family income.

If the tax function satisfies

T ′′(y) > −γ [1− T ′(y)]2

y − T (y)
(9)

for all feasible y, then the second derivative of family welfare with respect to hours for

any type (α, ε) is strictly negative, and the first-order conditions (7) and (8) are therefore

sufficient for optimality.

We now characterize the efficient allocation of labor supply within the family more sharply

for the tax functions in which we are particularly interested.

Affine Taxes Suppose taxes are an affine function of income, T (y) = τ0 + τ1y.
5 Then we

have the following explicit solution for hours worked as a function of productivity exp(α+ε)

and family income y(α):

h(α, ε) =
[
(y(a)(1− τ1)− τ0)−γ exp(α + ε) (1− τ1)

] 1
σ .

5Note that in this case, condition (9) is satisfied because

T ′′(y) + γ
[1− T ′(y)]

2

y − T (y)
= γ

(1− τ1)
2

y − T (y)
> 0.
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HSV Taxes Suppose income taxes are in the HSV class, T (y) = y − λy1−τ .6 Then hours

worked are given by

h(α, ε) =
[
exp(α + ε) (1− τ)λ1−γy(α)−(1−τ)γ−τ] 1

σ . (10)

3.2 Mirrlees Problem: Constrained Efficient Allocations

In the Mirrlees formulation of the program that determines constrained efficient allocations,

we envision the Mirrlees planner interacting with family heads for each α type, where each

family contains a continuum of members whose insurable component is distributed according

to the common density Fε. Thus, each family is effectively a single agent from the perspective

of the planner. The planner chooses both aggregate family consumption c(α) and income

y(α) as functions of the family type α. It is clear that, by choosing taxes, the tax authority

can choose the difference between income and consumption. It is less obvious that the

planner can also dictate income levels as a function of type. To achieve this, the Mirrlees

formulation of the planner’s problem includes incentive constraints that guarantee that for

each and every type α, a family of that type weakly prefers to deliver to the planner the

value for income y(α) the planner intends for that type, thereby receiving c(α) rather than

delivering any alternative level of income.

The timing within the period is as follows. Families first decide on a reporting strategy

α̂ : A → A. Each family draws α ∈ A and makes a report α̃ = α̂(α) ∈ A to the planner. In

a second stage, given the values for c(α̃) and y(α̃), the family head decides how to allocate

consumption and labor supply across family members.

Family Problem As a first step toward characterizing efficient allocations, we start with

the family problem in the second stage, taking as given a report α̃ = α̂(α) and a draw α.

The family head solves

max
{c(α,α̃,ε),h(α,α̃,ε)}

∫ {
c(α, α̃, ε)1−γ

1− γ
− h(α, α̃, ε)1+σ

1 + σ

}
dFε(ε),

6Then condition (9) becomes

T ′′(y) + γ
[1− T ′(y)]

2

y − T (y)
= λ (1− τ) τy(−τ−1) + γ

(λ (1− τ) y−τ )
2

λy1−τ

= λy(−τ−1) (1− τ) [τ + γ (1− τ)] > 0.

This is satisfied for any progressive tax, τ ∈ [0, 1), because τ + γ (1− τ) > 0. It is also satisfied for any
regressive tax, τ < 0, if γ ≥ 1, because γ ≥ 1 > −τ

1−τ . Therefore, for all relevant parameterizations, condition
(9) is also satisfied for this class of tax functions.
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subject to ∫
c(α, α̃, ε)dFε(ε) = c(α̃),∫

exp(α + ε)h(α, α̃, ε)dFε(ε) = y(α̃).

The first-order conditions to this problem give

c(α, α̃, ε) = c(α̃),

h(α, α̃, ε) =
y(α̃)

exp(α)

exp(ε)
1
σ∫

exp
(

1+σ
σ
ε
)
dFε(ε)

. (11)

Let U(α, α̃) denote expected family utility conditional on a draw α and a report α̃ = α̂(α).

Substituting in the allocations above, we get

U(α, α̃) =

∫ {
c(α, α̃, ε)1−γ

1− γ
− h(α, α̃, ε)1+σ

1 + σ

}
dFε(ε)

=
c(α̃)1−γ

1− γ
− Ω

1 + σ

(
y(α̃)

exp(α)

)1+σ

,

where Ω =
(∫

exp(ε)
1+σ
σ dFε(ε)

)−σ
.

First Stage Planner’s Problem The planner maximizes social welfare, evaluated ac-

cording to W (α), subject to the resource constraint, and subject to incentive constraints

that ensure that family utility from reporting α truthfully and receiving the associated al-

location is weakly larger than expected welfare from any alternative report and associated

allocation:

max
{c(α),y(α)}

∫
W (α)U(α, α)dFα(α) (12)

subject to ∫
c(α)dFα(α) +G =

∫
y(α)dFα(α) for all α, (13)

and

U(α, α) ≥ U(α, α̃) for all α and α̃. (14)

Note that ε does not appear anywhere in this problem (the distribution Fε is buried in the

constant Ω). The problem is therefore identical to a standard static Mirrlees type problem,

where the planner faces a distribution of agents with heterogeneous unobserved productivity

α.7 We will solve this problem numerically.

7Note, however, that the period utility function for each agent in this problem is not identical to the
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Decentralization with Income Taxes We have formulated the Mirrlees problem with

the planner inviting families to report their unobservable characteristic α and then assigning

the family an allocation for income y(α̃) and consumption c(α̃) on the basis of the report

α̃. But since the planner is offering agents a choice between a menu of alternative pairs

for income and consumption, it is clear that an alternative way to think about what the

planner does is that it offers a mapping from any possible value for family income to family

consumption. Such a schedule can be decentralized via a tax schedule on family income y of

the form T (y) that defines how rapidly consumption grows with income.8

Suppose the family head maximizes family welfare, taking as given a tax on family income.

We have already discussed the first-order conditions to this problem, equations (7) and (8).

Substituting in the first-order condition for hours from the Mirrlees problem (11) and letting

c∗(α) and y∗(α) denote the values for family income and solution that solve the Mirrlees

problem, we can describe how optimal marginal tax rates vary with income:

1− T ′ (y∗(α)) =
h(α, ε)σ

c∗(α)−γ exp(α + ε)
(15)

=
Ω

c∗(α)−γ exp(α)

(
y∗(α)

exp(α)

)σ
.

3.3 First Best

If the planner can observe α directly, the welfare maximization problem is identical to the one

described above, except that there are no incentive compatibility constraints (14). Formally,

the planner’s problem is to maximize (12) subject to (13).

3.4 Individual- versus Family-Level Taxation

To this point, we have assumed that the planner only observes – and thus can only tax –

total family income. However, taxing income at the individual level would have no impact on

allocations. In Appendix 8.2 we prove that if the tax function for individual income satisfies

condition (9), then optimal consumption and income are independent of ε, as in the version

when taxes apply to total family income.

There is no benefit to the Mirrlees planner from being able to observe individual-level

income (after within-family transfers) because for the family head it is equally costly for any

utility function we started with in the underlying problem, since the weight on hours worked is now Ω rather
than 1.

8Note that some values for income might not feature in the menu offered by the Mirrlees planner. Those
values will not be chosen in the decentralization with income taxes as long as income at those values is taxed
sufficiently heavily.
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family member to deliver income to the planner and equally valuable for any family member

to receive additional consumption. Thus, there is no way for the planner to tailor allocations

to actual values for ε and therefore no reason for the planner to ask agents to report ε.

4 Estimating Social Preferences

In this section we describe our methodology for using the degree of progressivity built into

the actual tax system to infer social preferences.

What social welfare function is the government trying to maximize? Absent knowledge of

the government’s objective function, it is difficult to compare alternative tax systems unless

one Pareto dominates the other. One approach is to argue that a particular objective, such

as a utilitarian criterion, should be preferred a priori on theoretical grounds. In contrast,

our approach will be to assume that the U.S. government has a specific but unknown social

welfare function and to use the degree of progressivity built into the actual tax and transfer

system to shed light on the nature of that function.

More precisely, we will characterize in closed form the mapping between the taste for

redistribution parameter in a one-parameter class of social welfare functions and the pro-

gressivity parameter that maximizes welfare within the HSV class of tax and transfer systems.

This mapping can be inverted to infer the taste for redistribution that would lead a planner

to choose precisely the observed degree of tax progressivity, if the planner were restricted to

choosing a policy within the HSV class. Holding the social welfare function fixed, we will

then assess the welfare gains or losses from replacing the HSV policy (which by construction

is the best in the HSV class) with a best-in-class affine policy or with the best fully nonlinear

Mirrlees policy.

4.1 An Empirically Motivated Social Welfare Function

We assume the social welfare function takes the form

W (α; θ) =
exp(−θα)∫

exp(−θα)dFα(α)
. (16)

The parameter θ controls the extent to which the planner puts relatively more or less weight

on low relative to high productivity workers. With a negative θ, the planner puts relatively

high weight on the more productive agents, whereas with a positive θ the planner overweights

the less productive agents. This one-parameter specification is flexible enough to nest several

standard social preference specifications in the literature.
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• The case θ →∞ corresponds to the maximal desire for redistribution. We label this the

Rawlsian case, because in the environments we will consider (with elastic labor supply

and unobservable uninsurable productivity) a planner with this objective function will

seek to maximize the minimum level of welfare in the economy.9

• The case θ = 0 corresponds to the utilitarian case, with equal Pareto weights on all

agents. Given θ = 0 and our assumption of separable preferences, a planner that

could observe α and apply α−specific lump-sum taxes would give all agents equal

consumption.

• The case θ = −1 corresponds to a laissez-faire planner. The logic is that given pref-

erences that are logarithmic in consumption (our baseline assumption), these planner

weights are the inverse of equilibrium marginal utility absent any taxation.10

An alternative way to motivate an objective function of the form (16) is to appeal to a

positive political economic model of electoral competition. In the probabilistic voting model,

two candidates for political office (who care only about getting elected) offer platforms that

appeal to voters with different preferences over tax policy and over some orthogonal char-

acteristic of the candidates. If the amount of preference dispersion over this orthogonal

characteristic is systematically declining in labor productivity, then by tilting their tax plat-

forms in a less progressive direction, candidates can expect to attract more marginal voters

than they lose. Thus, in equilibrium both candidates offer tax policies that maximize a

weighted social welfare function of the form described by eq. (16), with higher weights on

more productive (and more tax sensitive) households.11

Tax System Heathcote, Storesletten, and Violante (2014b) argue that the following in-

come tax function closely approximates the actual U.S. tax and transfer system (see Section

5 for more details):

T (y) = y − λy1−τ . (17)

Thus, we adopt this specification as our baseline tax function. The marginal tax rate on

individual income is given by T ′(y) = 1− λ(1− τ)y−τ .

9With elastic labor supply and unobservable shocks, the rankings of productivity and welfare will always
be aligned. So maximizing minimum welfare is equivalent to maximizing welfare for the least productive
household. With inelastic labor supply or observable shocks, a planner with θ > 0 could and would deliver
higher utility for low α households relative to high α households, so in such cases it would be wrong to label
the case θ → θ Rawlsian.

10If the government needs to levy taxes to finance expenditure G > 0, then given θ = −1, a planner
that could observe α and apply α−specific lump-sum taxes would choose: (i) consumption proportional to
productivity, c(α) ∝ exp(α), and (ii) hours worked independent of α.

11Persson and Tabellini (2000) offer a detailed explanation of the probabilistic voting model.
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For τ > 0, the tax system embeds the following properties: (i) marginal tax rates are

increasing in income, with T ′(y)→ −∞ as y → 0, and T ′(y)→ 1 as y →∞, (ii) taxes net of

transfers are negative for y ∈
(

0, λ
1
τ

)
, and (iii) marginal and average tax rates are related

as follows:
1− T ′(y)

1− T (y)
y

= 1− τ ∀y.

Planner’s Problem Consider a Ramsey problem of the form (6) where the planner uses

a social welfare function characterized by (16) and is restricted to choosing a tax-transfer

policy within the parametric class described by (17). Although in principle the planner

chooses two tax parameters, λ and τ, it has to respect the government budget constraint and

therefore effectively has a single choice variable, τ . Let τ̂(θ) denote the welfare-maximizing

choice for τ given a social welfare function indexed by θ.

Empirically Motivated Social Welfare Function Although we do not directly observe

θ, we do observe the degree of progressivity chosen by the U.S. political system. Denote this

degree by τ
∗
. Our baseline empirically motivated social welfare function will be W (α; θ

∗
)

where the social preference for redistribution θ
∗

satisfies τ̂(θ
∗
) = τ

∗
. In our view this social

welfare function is an attractive benchmark for the purposes of comparing alternative tax

policies because it rules out the possibility of generating welfare gains simply by increasing

or reducing the degree of progressivity embedded in the current functional form for taxes

(17). In this sense, any alternative policy that delivers higher welfare than the current policy

must feature a more efficient shape for the income tax function.

The next subsection describes the operational details of how we reverse engineer θ
∗

given

the observed value τ
∗
.

4.2 Closed-Form Implementation in Baseline Model

The methodology for constructing a mapping between θ and τ is as follows. First, combining

the budget constraint, c(α) = λy(α)1−τ , and the expression for hours, eq. (10), gives the

following expression for equilibrium household income for a family of type α under the HSV

tax scheme:

y(α) =
[
λ1−γ(1− τ) exp ((1 + σ)α) Ω−1

] 1
σ+τ+γ(1−τ) . (18)

Given a value for G, eq. (18) can be substituted into the government budget constraint

(5) to solve for λ for any possible value for τ. Individual utility, for any pair (α, ε), can then

be evaluated as a function of τ (note that these utilities are independent of θ). The last step

is to evaluate social welfare for all combinations of θ and τ and to ask for what value(s) for
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θ the social-welfare-maximizing value for τ is equal to the value for progressivity estimated

from tax data.

In our baseline calibration, utility is assumed to be logarithmic in consumption, so γ = 1.

We also assume that Fα is exponentially modified Gaussian, EMG(µα, σ
2
α, λα), and that Fε

is Gaussian, N(−vε/2, vε). Given these functional form assumptions (which we discuss in

the next section), we can derive closed-form expressions for λ and for social welfare and an

implicit closed-form expression mapping from τ to θ∗.12 In particular, we have the following.

Proposition 1 The social preference parameter θ
∗

is a solution to the following quadratic

equation:

σ2
αθ

∗ − 1

λα + θ∗ = −σ2
α(1− τ)− 1

λα − 1 + τ
+

1

1 + σ

[
1

(1− g) (1− τ)
− 1

]
, (19)

where g is the ratio of government purchases to output.

Proof. See Appendix 8.3.

Equation (19) is novel and very useful. Given observed choices for g and τ, and estimates

for the uninsurable productivity distribution parameters σ2
α and λα and for the labor elas-

ticity parameter σ, we can immediately infer θ∗. This is especially simple in the special case

in which Fα is normal, since taking the limit as λα →∞ in (19) gives the following explicit

solution for θ∗13

θ
∗

= −(1− τ) +
1

σ2
α

1

(1 + σ)

[
1

(1− g) (1− τ)
− 1

]
. (20)

In eqs. (19) and (20), g denotes the observed value for the ratio G/Y where Y denotes

aggregate output. For the purpose of inferring θ∗, we can treat g as exogenous. If we were to

contemplate the welfare effects of varying τ (holding fixed θ∗ and G), it would be important

to recognize that output and thus the ratio G/Y (τ) would change with different values for

τ .14

12With logarithmic consumption, we can solve in closed form for λ as a function of G and other structural
parameters. For γ > 1, we must solve for λ numerically.

13This special case provides numerical guidance about which is the relevant root among the two solutions
to the quadratic equation (19). One could also consider the case in which α is exponentially distributed
(σ2
α = 0), in which case θ∗ solves

− 1

λα + θ∗ = − 1

λα − (1− τ)
+

1

1 + σ

[
1

(1− g) (1− τ)
− 1

]
.

14Given eq. (10), we have

Y (τ) =

∫ ∫
exp(α+ ε)h(ε; τ)dFαdFε = (1− τ)

1
1+σ exp

(
1

σ

vε
2

)
.
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4.3 Comparative Statics

From eqs. (19) or (20), it is straightforward to derive comparative statics on the mapping

from structural policy and distributional parameters to θ∗.

Comparative statics with respect to τ : First, θ
∗

is increasing in τ , as expected. Thus

if we observe more progressive taxation, all else constant, we can infer that the policymaker

puts less weight on higher wage individuals.

The values for τ that signal a laissez-faire or a utilitarian planner, which we denote τLF

and τU , can be derived from (19) by substituting in, respectively, θ∗ = −1 and θ∗ = 0

and solving for the relevant root. Equation (19) is a cubic equation in τ, and the closed-

form expressions for τ that correspond to these two baseline welfare functions are somewhat

involved. The normal distribution case (λα →∞) is simpler, since (20) is quadratic in τ . In

that case, τLF and τU are, respectively,

τLF = 1 +
1− (1 + σ)σ2

α −
√

1 + (1 + σ)2 (σ2
α)2 − 2(1 + σ)σ2

α + 41+σ
1−gσ

2
α

2(1 + σ)σ2
α

, (21)

τU = 1 +
1−

√
1 + 41+σ

1−gσ
2
α

2 (1 + σ)σ2
α

. (22)

Note that τU > τLF , as expected.15

The clearest signal of a Rawlsian welfare objective (θ∗ → ∞) is a ratio of expenditure

to output g = G/Y (τ) approaching one.16 This signals that the planner has pushed τ to

the maximum value that still allows the economy to finance required expenditure G. This

limiting value for τ is

τR = 1−G1+σ exp

(
−1 + σ

σ

vε
2

)
. (23)

Note that with G = 0, τR = 1, but for G > 0, τR < 1. Indeed, if G ≥ exp
(
vε
2σ

)
, then τR ≤ 0,

since only a regressive scheme induces sufficient labor effort to finance expenditure. The

Rawlsian planner pushes progressivity toward the maximum feasible level because under any

less progressive system, households with sufficiently low uninsurable productivity α would

gain from increasing progressivity.17

15It is straightforward to verify that when g = 0, τLF = 0. The same result also extends to the general
EMG distribution for α, as can be readily verified from eq. (19).

16This implies that aggregate consumption and thus consumption of every agent must also converge to
zero.

17This result hinges on the distribution for α being unbounded below. The only component of welfare that
varies with α (given utility that is logarithmic in consumption and the HSV tax schedule) is log consumption,
which contains a term (1− τ)α (see eq. (29) in Appendix 8.3). A Rawlsian planner’s desire to minimize the
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Figure 1: Mapping from τ to θ. This figure is plotted from the closed-form expression in
Proposition 1 for the economy with a continuous unbounded EMG distribution for α. We use
the version of the expression involving G (eq. (33)).

Figure 1 plots the mapping from progressivity τ to the taste for redistribution θ∗, hold-

ing fixed our baseline values for the structural parameters (σ2
α, λα, σ) and for the level of

government purchases G (see Section 5 for more details). The value for progressivity that

would signal a utilitarian (θ = 0) social planner is τU = 0.3, implying an average effective

marginal tax rate of 43%. A laissez-faire social planner (θ = −1) would choose a regressive

scheme, with τLF = −0.06. As we will see, the actual tax and transfer system in the United

States lies in between these two values: τ = 0.151 and the average marginal tax rate is 31%.

Thus, observed policy appears inconsistent with the existence of either a utilitarian planner

or a laissez-faire planner in the United States.

Comparative statics with respect to g : Now consider the comparative statics with

respect to the observed ratio g. The implied taste for redistribution θ∗ is increasing in g.

Thus, if we saw two economies that shared the same progressivity parameter τ (and the same

wage distribution), but one economy devoted a larger share of output to public expenditure,

we would infer that the planner in the high spending country must have a stronger taste

for redistribution. The logic is that tax progressivity reduces labor supply, making it more

difficult to finance public spending. Thus, governments with high revenue requirements will

negative welfare contribution of this term for unboundedly low α households leads it to choose the maximum
feasible value for τ.

If instead there was a lower bound α1 in the productivity distribution (as in the numerical example we
shall consider later), the Rawlsian planner would stop short of pushing progressivity to the maximum feasible
level. The same would be true for any planner with a finite value for θ.
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tend to choose a less progressive system – unless they have a strong desire to redistribute.

A corollary of this comparative static is that the larger is g, the smaller are the values τLF

and τU consistent with a planner being either laissez-faire or utilitarian (see (21) and (22)).

Similarly, the larger is G, the smaller is the value τR consistent with a Rawlsian objective

(see (23)).

Comparative statics with respect to σ2
α : Comparative statics with respect to the

variance of uninsurable shocks σ2
α are straightforward. The parameter θ

∗
is decreasing in σ2

α.

Thus, more uninsurable risk (holding fixed tax progressivity) means we can infer the planner

has less desire to redistribute.

Comparative statics with respect to σ : The implied redistribution preference pa-

rameter θ
∗

is decreasing in σ, meaning that the less elastic is labor supply (and thus the

smaller the distortions associated with progressive taxation), the less desire to redistribute

we should attribute to the planner. Consider the limit in which labor supply is inelastic

σ → ∞. Then output is independent of τ , and we get θ∗ = τ − 1. Thus, in this case a

utilitarian planner (θ∗ = 0) would set τ = 1, thereby ensuring that all households receive the

same after-tax income. A planner with a higher θ∗ would actually choose τ > 1, implying

an inverse relationship between income before taxes and income after taxes.

With elastic labor supply, one would never observe τ ≥ 1, since in the limit as τ → 1,

labor supply drops to zero (given that, at τ = 1, all households receive after-tax income

equal to λ, irrespective of pre-tax income).

Comparative statics with respect to λα : Finally, θ∗ is increasing in λα, holding fixed

the total variance of the uninsurable component (namely, σ2
α +λ−2

α ). Thus, if two economies

were identical except that one had a more right-skewed distribution for α (a smaller λα), one

would infer that the heavier right tail economy must have a weaker taste for redistribution.

The mirror image of this finding, which we will revisit later, is that a heavier right tail in

the distribution for α implies higher optimal progressivity (holding fixed θ).

5 Calibration

Preferences We assume preferences are separable between consumption and labor effort

and logarithmic in consumption:

u(c, h) = log c− h1+σ

1 + σ
.

This specification is the same one adopted by Heathcote, Storesletten, and Violante
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(2014b). We choose σ = 2 so that the Frisch elasticity (1/σ) is 0.5. This value is broadly

consistent with the microeconomic evidence (see, e.g., Keane (2011)) and is also very close

to the value estimated by Heathcote, Storesletten, and Violante (2014a). The compensated

(Hicks) elasticity of hours with respect to the marginal net-of-tax wage is approximately

equal to 1/(1 + σ) (see Keane, 2011, eq. 11) which, given σ = 2, is equal to 1/3. Again

this value is consistent with empirical estimates: Keane reports an average estimate across

22 studies of 0.31. Given our model for taxation, the elasticity of average income (footnote

14) with respect to one minus the average income-weighted marginal tax rate is also equal

to 1/(1 + σ).18 According to Saez, Slemrod, and Giertz (2012) the best available estimates

for the long run version of this elasticity range from 0.12 to 0.40, so again our calibration is

consistent with existing empirical estimates. Note that because our logarithmic consumption

preference specification is consistent with balanced growth, high and low wage workers will

work equally hard in the absence of private insurance or public redistribution.

Tax and Transfer System The class of tax functions described by eq. (17) and that

we label “HSV” was perhaps first used by Feldstein (1969) and introduced into dynamic

heterogeneous agent models by Persson (1983) and Benabou (2000).

Heathcote, Storesletten, and Violante (2014b) show that this functional form closely

mimics actual effective tax rates in the United States. They begin by noting that the

functional form in (17) implies a linear relationship between log y and log (y − T (y)), with a

slope equal to (1−τ). Thus, given micro data on household income before taxes and transfers

and income net of taxes and transfers, it is straightforward to estimate τ by ordinary least

squares. Using micro data from the Panel Study of Income Dynamics (PSID) for working-

age households over the period 2000 to 2006, Heathcote, Storesletten, and Violante (2014b)

estimate τ = 0.151. Figure 2, borrowed from that paper, shows the relationship between

income before and after taxes and transfers for fifty equal-size bins of the distribution of

household income, ranked from lowest to highest pre-government income. The x -axis shows

log of average pre-government income for each bin, while the y-axis shows log of average

income after taxes and transfers. The red line shows the least squares best fit through the

underlying PSID micro data, with estimated slope (1− 0.151).

The remaining fiscal policy parameter, λ, is set such that aggregate revenue net of trans-

fers is equal to 18.8% of GDP, which was the ratio of government purchases to output in the

United States in 2005 (g = 0.188).

Wage Variances We need to characterize individual productivity dispersion, and to de-

compose this dispersion into an uninsurable component α, and an orthogonal insurable com-

18The average income-weighted marginal tax rate is 1− (1−g)(1− τ) (see eq. 4 in Heathcote et al., 2014).
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Figure 2: Fit of HSV Tax Function. The figure, from Heathcote, Storesletten, and Violante
(2014b), shows the relationship between log household income before and after taxes and
transfers for working age households in the PSID. The red line shows the least squares best
fit through the underlying micro data, with estimated slope (1-0.151).

ponent ε. For the variances of the two wage components, we adapt estimates from Heathcote,

Storesletten, and Violante (2014a). They estimate a richer version of the model considered

in this paper using micro data from the PSID and the Consumer Expenditure Survey (CEX),

assuming that an individual’s labor productivity is equal to their reported earnings per hour.

They are able to identify the relative variances of the two wage components by exploiting

two key implications of the theory: a larger variance for insurable shocks will imply a smaller

cross-sectional variance for consumption, and a larger covariance between wages and hours

worked. They find a variance for insurable shocks of v∗ε = 0.193 in 2004 (adding the two

solid lines in panels B and C of their Figure 3), which we adopt directly.19 Our target for

variance of the uninsurable component is v∗α = 0.273, implying a total cross-sectional wage

variance of v∗α + v∗ε = 0.466 (the variance of log hourly wages for men in 2005 reported in

Heathcote, Perri, and Violante (2010)).20 Given these estimates, 41% of the variance of log

19As in this paper, the model in Heathcote, Storesletten, and Violante (2014a) features two independent
sources of wage risk – one that is explicitly insurable and one that remains uninsured in equilibrium. In
the background the government runs the same type of tax-transfer system considered in this paper. The
environment in Heathcote, Storesletten, and Violante (2014a) features explicit dynamics from which the
present paper abstracts. In addition, individuals in that model differ with respect to preferences as well as
labor productivity.

20Heathcote, Storesletten, and Violante (2014a) report a slightly lower total wage variance of 0.419 for
2004 (Figure 3). However, their estimate is net of wage variation reflecting differences in age. Rather than
excluding this wage variation, we treat it as part of the uninsurable component of wages. In Section 6.4.2,
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earnings is directly privately insurable.

Wage Distribution We now have estimates for the variances of the two wage components,

but it is well known that higher moments of the shape of the productivity distribution have

a large impact on the shape of the optimal tax schedule (see, e.g. Saez (2001)). In fact,

the importance of the shape of the right tail of the productivity distribution is explicit in

the mapping we have derived between social preferences and desired progressivity: see eq.

(19). Saez (2001) argued that there is more mass in the right tail than would be implied

by a log-normal wage distribution and that the right tail of the log wage distribution is well

approximated by an exponential distribution (so the right tail of the level wage distribution

is Pareto). Unfortunately, as Mankiw, Weinzierl, and Yagan (2009) emphasize, it is difficult

to sharply estimate the shape of the distribution given typical household surveys, such as

the Current Population Survey, in part because high income households tend to be under-

represented in these samples. We therefore turn to the Survey of Consumer Finances (SCF)

which uses data from the Internal Revenue Service (IRS) Statistics of Income program to

ensure that wealthy households are appropriately represented.21

Recall that we need distributions for both the insurable and uninsurable components

of the wage. We will assume that the insurable component ε is normally distributed,

ε ∼ N(−v∗ε/2, v∗ε), and that the uninsurable component α follows an exponentially mod-

ified Gaussian (EMG) distribution: α = αN +αE where αN ∼ N(µα, σ
2
α) and αE ∼ Exp(λα)

so that α ∼ EMG(µα, σ
2
α, λα). This distributional assumption allows for a heavy right tail in

the distribution for the uninsurable component of the log wage, which is heavier the smaller

is the value for λα. It is natural to attribute the heavy right tail in the log wage distribution

to the uninsurable component for wages, since it is unlikely that people are insured against

the risk of becoming extremely rich.22 Note that given these assumptions on the distribu-

tions for α and ε, the distribution of the log wage (α + ε) is itself EMG (the sum of the

independent normally distributed random variables αN and ε is normal) so the level wage

distribution is Pareto log-normal.

We will use the SCF data to estimate λα. We do this by maximum likelihood, searching

for the values of the three parameters in the EMG distribution that maximize the likelihood

of drawing the observed distribution of log earnings. The resulting estimate is λα = 2.2.

Figure 3 plots the empirical density against a normal distribution with the same mean and

we will explicitly consider allowing the planner to condition taxes and transfers on observables such as age.
21The SCF has some advantages over the IRS data used by Saez (2001). First, the unit of observation is

the household, rather than the tax unit. Second, the IRS data exclude those who do not file tax returns or
who file late. Third, people in principle have no incentive to underreport income to SCF interviewers.

22For example, many individuals far in the right tail of the earnings distribution are entrepreneurs, and it
is notoriously difficult to diversify entrepreneurial risk.
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Figure 3: Fit of EMG Distribution. The figure plots the empirical density from the SCF
against the estimated EMG distribution and against a normal distribution.

variance and against the estimated EMG distribution. The density is plotted on a log scale

to magnify the tails. It is clear that the heavier right tail that the additional parameter in

the EMG specification introduces delivers an excellent fit, substantially improving on the

normal specification.23

One might be concerned that we are estimating λα using an empirical distribution for

earnings rather than wages (the SCF does not contain data on hours worked, so we cannot

construct a wage measure in the usual way as earnings divided by hours worked). Fortunately,

given our specification for the tax system and the fact that preferences in the model have the

balanced growth property, we know that hours worked are independent of the uninsurable

shock α, and thus the distributions for earnings and wages will both be EMG, with the same

exponential (right tail) parameter.24

Discretization For computational purposes, as noted above, in solving the Mirrlees prob-

lem to characterize efficient allocations, the incentive constraints only apply to the uninsur-

able component of the wage α, and the distribution for ε appears only in the constant Ω.

23The empirical distribution for labor income in 2007 is constructed as follows. We define labor income
as wage income plus two-thirds of income from business, sole proprietorship, and farm. We then restrict
our sample to households with at least one member aged 25-60 and with household labor income of at least
$10,000 (mean household labor income is $77,325).

24Hours in our model do respond (positively) to insurable shocks. This implies that the variance of
model earnings is larger than the variance of wages. But the distribution of the insurable component
of log earnings remains normal, so the total distribution of earnings remains EMG. Similarly, one could
introduce normally distributed heterogeneity in preferences, as in Heathcote, Storesletten, and Violante
(2014a), without changing the form of the earnings distribution.
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Thus, there is no need to approximate the distribution for ε, and we can assume these shocks

are drawn from a continuous unbounded normal distribution with mean −v∗ε/2 and variance

v∗ε .

We take a discrete approximation to the continuous EMG distribution for α that we

have discussed thus far. We construct a grid of I evenly spaced values: α1, α2, ..., αI with

corresponding probabilities π1, π2, ..., πI as follows. First, we make the endpoints of the grid,

α1 and αI , sufficiently widely spaced that only a tiny fraction of individuals lie outside these

bounds in the true continuous distribution. In particular we set α1 such that exp(α1) = 0.12.

This is the ratio of the lower bound on labor income we imposed in constructing our sample

($10, 000) to average labor income in our sample.25 We set αI such that exp(αI) = 74, which

corresponds to household labor income at the 99.99th percentile of the SCF labor income

distribution relative to average income ($6.17 million). We read corresponding probabilities

πi directly from the continuous EMG distribution, rescaling to ensure that
∑

i πi = 1. In

doing so, we use exponential parameter λα = 2.2 (the SCF estimate) and calibrate the other

two parameters in the EMG distribution – the normal variance σ2
α and the normal mean µα

– so that (i) the variance of α (which in the continuous distribution case is exactly σ2
α +λ−2

α )

is equal to v∗α (the HSV-based estimate) and (ii) E [exp(α)] = 1. For our baseline set of

numerical results we set I = 10, 000. In Section 6.3.3 we repo rt how the results change

when we increase or reduce I.

The resulting model wage distribution exp(α+ε) is plotted in Figure 4. The distribution

appears continuous, even though it is not, because our discretization is very fine.

Social Welfare Given our fiscal policy parameter estimates and the productivity distri-

bution parameters just described, we apply the procedure described in Section 4.2 to infer

the taste for redistribution parameter θ∗. The implied estimate is θ∗ = −0.547, indicating

that the U.S. social planner wants more redistribution than a laissez-faire planner (θ = −1)

but less than a utilitarian one (θ = 0). The relative Pareto weights implied by θ∗ = −0.547

are illustrated in Figure 5. Pareto weights are increasing in the uninsurable shock α.

Why does the model interpret the existing tax system as signaling a weak taste for

redistribution, relative to the utilitarian case? The logic is that the U.S. tax and transfer

system is not particularly progressive, even though U.S. households face a lot of uninsurable

wage risk. At the same time, the theory implies quantitatively relatively minor roles for

the factors that would cut against high progressivity: elastic labor supply and the need to

25Assuming 2, 000 household hours worked, this in turn corresponds to $5, which is less than the federal
minimum wage in 2007 ($5.85). Reducing the bound further would not materially affect any of our results,
since given the parameters for the EMG distribution, the probability of drawing α < log(0.12) is vanishingly
small.
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Figure 4: Model Wage Distribution. The average wage is normalized to one. The plot is
truncated at eight times the average wage.

finance public expenditure. Thus, the model interprets the absence of a more progressive

tax system as reflecting the absence of a strong desire to redistribute on the part of U.S.

policymakers. As mentioned previously, a possible political economic interpretation for this

weak taste for redistribution is that politicians view high wage workers as more pivotal in

elections and put more weight on their preferences in crafting tax policy.

6 Quantitative Analysis

We now explore the structure of the optimal tax and transfer system, given the model

specification described above, and given our baseline empirically motivated social welfare

function. Specifically, we compute the optimal tax and transfer systems in the affine class

and in the fully nonlinear Mirrlees framework and compare allocations and welfare in those

cases with their counterparts under our baseline HSV tax and transfer system.26 Our key

findings are (i) moving from the baseline HSV tax system to the best affine policy is welfare

reducing, and (ii) moving from the baseline system to the optimal Mirrlees policy generates

only tiny welfare gains.

We then explore how sensitive these conclusions are to the choice of taste for redistribution

parameter θ. We find that a utilitarian planner (θ = 0) still prefers the best policy in the

HSV class to the best affine tax function.

26In Appendix 8.4 we explain how we numerically solve the Mirrlees optimal tax problem.
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Figure 5: Social Welfare Functions. The figure plots our empirically motivated social welfare
function (red solid line) and the utilitarian and laissez-faire alternatives (blue dashed lines).

Next, we explore the implications of assuming away all private insurance. The planner

then favors more progressive taxation, but still prefers the best policy in the HSV class to

the best affine tax function.

We then replace our baseline EMG distribution for the uninsurable shock α with a normal

distribution. This counterfactual changes policy prescriptions significantly, and an affine tax

schedule is now close to optimal.

Finally, we introduce a new component to individual labor productivity that cannot be

insured privately, but which is observed by the planner. This allows us to quantify the

potential welfare gains from tagging: indexing taxes and transfers to characteristics such as

age, education, gender, and marital status that are observable and correlated with wages.

6.1 Optimal Taxation in the Baseline Model

Table 1 presents outcomes for each tax function. The best tax system in the HSV class is

precisely the function estimated for the United States, by virtue of the way our empirically

motivated social welfare function was constructed. In particular, the progressivity parameter

is the U.S. estimate (τ = 0.151). The outcomes reported for each tax system, relative to the

baseline (HSVUS), are (i) the change in welfare, ω (%), (ii) the change in aggregate output,

∆Y (%), (iii) the average income-weighted marginal tax rate, T ′, and (iv) the size of the

transfer (income after taxes and transfers minus pre-government income) received by the
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Table 1: Optimal Tax and Transfer System in the Baseline Model

Tax System Tax Parameters Outcomes

ω (%) ∆Y (%) T ′ Tr/Y

HSVUS λ : 0.836 τ : 0.151 − − 0.311 0.018

Affine τ0 : −0.116 τ1 : 0.303 −0.58 0.41 0.303 0.089

Mirrlees 0.11 0.82 0.287 0.003

lowest α type household, relative to average income, Tr/Y .27

The best system in the affine class combines lump-sum transfers (i.e., τ0 < 0) with

a proportional tax rate of 30.3%. A first key finding is that moving to the best affine tax

system is welfare reducing. This indicates that for welfare it is more important that marginal

tax rates increase with income – which the HSV functional form accommodates but which

the affine scheme rules out – than that the government provides universal lump-sum transfers

– which only the affine scheme allows for. The best affine policy reduces welfare – by 0.6%

of consumption – even though it is associated with a lower average marginal tax rate and

0.4 percent higher output.

A second key finding is that moving to the fully optimal Mirrlees system generates welfare

gains equal to only 0.1% of consumption. This indicates that the current tax system – more

precisely, our HSV approximation to it – is close to efficient and that proposals for tax reform

should therefore be treated with caution. The small size of the maximum welfare gain from

tax reform is perhaps surprising given that the HSV schedule violates some established

theoretical properties of optimal tax schedules, in particular the prescriptions that marginal

rates should be zero at the top and bottom ends of the productivity distribution.28

Note that the average marginal tax rate under the optimal policy is 2.4 percentage points

27We define the welfare gain of moving from policy T to policy T̂ as the percentage increase in consumption
for all agents under policy T needed to leave the planner indifferent between policy T and policy T̂ . Given
logarithmic utility in consumption, this gain, which we denote ω(T, T̂ ), is given by

1 + ω(T, T̂ ) = V (T̂ , θ)− V (T, θ),

where V (T, θ) denotes the planner’s realized value under a policy T given a taste for redistribution θ :

V (T, θ) =

∫
W (α; θ)

∫ {
log c(α, ε;T )− h(α, ε;T )1+σ

1 + σ

}
dFε(ε)dFα(α).

For the welfare numbers in Table 1, the baseline policy T is the current HSV tax system, and allocations
are valued using the empirically motivated value for θ.

28Our specification satisfies the conditions provided by Seade (1977), and hence the optimal marginal tax
rate at the bottom is zero, in contrast to Saez (2001). Also the familiar no-distortion-at-the-top result applies
because the productivity distribution is bounded above.
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Figure 6: HSV Tax Function. The figure contrasts allocations under the HSV and Mirrlees
tax systems. The top panels plot decision rules for consumption and hours worked, and the
bottom panels plot marginal and average tax schedules. The plot for hours worked is for an
agent with average ε.

lower than under the current system, and the optimal policy generates output gains as well

as welfare gains. Interestingly, net transfers received by the least productive agent under the

optimal policy are very small.

To develop intuition for these results, Figures 6 and 7 plot decision rules for consumption

and hours (top panels) and marginal and average tax schedules (bottom panels) for each best-

in-class tax and transfer scheme.29 Each figure compares a particular third-best Ramsey-style

tax function (HSV in Figure 6, affine in Figure 7) to the second-best Mirrlees case.

Allocations under the HSV policy are very similar to those in the constrained efficient

Mirrlees case, except for those at the very top of the productivity distribution. Allocations

are similar because the HSV marginal and average tax schedules are broadly similar to those

29Note that under each tax function, consumption, marginal tax rates, and average tax rates are inde-
pendent of ε. Hours worked does depend on ε. We plot hours for an individual with the average value for
ε.
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Figure 7: Affine Tax Function. The figure contrasts allocations under the best-in-class affine
and Mirrlees tax systems. The top panels plot decision rules for consumption and hours
worked, and the bottom panels plot marginal and average tax schedules. The plot for hours
worked is for an agent with average ε.

under the optimal policy. In particular, the profile for marginal tax rates that decentralizes

the constrained efficient allocation is generally increasing in productivity, and the HSV sched-

ule captures this. However, although marginal tax rates increase smoothly under the HSV

specification, the optimal schedule has a more complicated shape. The optimal marginal

rate starts at zero for the least productive households and is fairly flat and low (between 13

and 15%) up to half of average productivity. The optimal marginal rate then rises rapidly

to peak at 56.8% at 21 times average productivity before dropping to zero at the very top.

The fact that the HSV function does not replicate the decline to zero at the top accounts

for the observed differences in allocations at the top. These differences are not very costly

in welfare terms because the density of households in this range is very small.

Figure 7 offers a straightforward visualization of why switching to an affine tax is welfare

reducing. Because the best affine tax function necessarily features a constant marginal rate,
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it cannot come close to replicating the optimal schedule. Under the affine scheme, low wage

households face marginal tax rates that are too high relative to the optimal tax schedule, and

in addition they receive relatively large lump-sum transfers. Thus, low productivity workers

end up working too little relative to the constrained efficient allocation. At the same time,

because marginal tax rates are too low at high income levels, high productivity workers end

up consuming too much.

The bottom right panels of Figures 6 and 7 plot average equilibrium tax rates by house-

hold productivity. The difference between the average tax rates a household of a particular

type faces under alternative tax schemes is closely tied to the difference in conditional welfare

the household can expect: a higher average tax rate under one scheme translates into lower

welfare. Thus, we can use the distribution of average tax rate differences across alternative

tax schemes as a proxy for the distribution of relative welfare differences. Figure 6 shows

that moving from the HSV schedule to the optimal one generates lower average tax rates

and thus welfare gains for middle wage earners; the red solid line lies above the blue dashed

line from around α = −0.2 to α = 0.8. Figure 7 shows a similar but more extreme pattern

for affine taxes: the optimal scheme implies welfare gains in the middle of the distribution,

but much higher average taxes – and lower welfare – for households at both tails of the

distribution.

Figure 8 offers another perspective on the properties of optimal allocations at the bottom

end of the income distribution. Here we plot the level of household consumption against the

level of household income: net transfers is the difference between the two. We truncate the

plot at 30% of average income to highlight how the different tax systems treat the poor.

The line labeled “Mirrlees” traces out the budget set associated with constrained efficient

allocations. The line stops at the red dot, which corresponds to the level of household income

that the planner asks the least productive household to produce, y∗(α1). As reported in Table

1, this household receives a very small net transfer. What does the Mirrlees tax schedule look

like for lower income levels? An upper bound on net transfers is given by the indifference

curve for the α1 type that is tangent to the Mirrlees budget set at the point (y∗(α1), c∗(α1)).

If net transfers at any income value below y∗(α1) were to lie above this curve, the α1 type

would reject this intended allocation (y∗(α1), c∗(α1)) in favor of this lower income alternative.

Note, however, that any consumption schedule (and associated net tax schedule) that lies

everywhere below this indifference curve will also decentralize the Mirrlees solution; the set

of possible such schedules is shaded light grey in the figure.30

30Recall that the marginal tax rate is zero at (y∗(α1), c∗(α1)), and thus to the left of y∗(α1) the indifference
curve for the α1 type is flatter than a 45◦ line. Thus, one example of a tax schedule that ensures the α1 type
will not choose y < y∗(α1) is a zero marginal tax rate between y = 0 and y = y∗(α1).
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Figure 8: Allocations for Low Income Households. The figure plots household consumption
against household income at the bottom of the income distribution under the Mirrlees (red),
HSV (dark blue), and best-in-class affine (light blue) tax systems.

Figure 8 also plots the best income tax schedules in the affine and HSV classes. It is

clear from the plot that the HSV schedule is much closer than the affine one to the optimal

Mirrlees schedule. The affine schedule implies net transfers that are much too generous at the

bottom of the distribution. In fact, the pure lump-sum transfer τ0 under the affine scheme

is larger than the upper bound on net transfers implied by the indifference curve for the α1

type. Why does the affine schedule impose lump-sum transfers that appear to be too large?

The explanation is that the optimal Mirrlees allocation dictates high marginal tax rates at

higher income levels, but under an affine scheme, imposing high marginal rates on the rich

necessitates high marginal rates across the distribution – and thus large lump-sum transfers.

One might have anticipated that the HSV tax function would generate suboptimally

small net transfers for the least productive households, given that the function rules out

pure lump-sum transfers. Instead, however, the HSV scheme actually implies slightly too

much redistribution at the bottom of the income distribution.31 One reason transfers to the

least productive households are small under the optimal Mirrlees policy is that our planner

31Recall that the HSV scheme generates net transfers at low income levels with τ > 0 because marginal
tax rates are negative at low income levels.
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puts relatively low weight on such households. A second reason transfers are small is that

there are relatively few very low income households in the baseline parameterization, in part

because our calibration implies that a portion of wage dispersion is privately insurable.

6.2 Alternative Social Welfare Functions

Recall the two key findings from our baseline parameterization: the welfare gain from adopt-

ing the best affine tax schedule is negative, and the welfare gain from moving to the fully

optimal policy is very small. What is the role of our baseline social welfare function in

delivering these results?

To address this question, we now experiment with alternative values for the taste for

redistribution θ. We start with the utilitarian case (θ = 0), since that is a benchmark in the

literature. We then consider the laissez-faire (θ = −1), and Rawlsian (θ →∞) cases.32

Welfare Decomposition To better understand the sensitivity of our welfare results to

θ, we will decompose our welfare numbers in two different ways. First, we follow a standard

approach to decompose total welfare gains into an aggregate efficiency gain component and

a change in inequality component (see, e.g. Heathcote, Storesletten, and Violante (2008)).

Recall that the welfare gain of moving from a generic policy T to an alternative policy T̂ ,

expressed as an equivalent percentage change in consumption, is equal to ω(T, T̂ ) = V (T̂ , θ)−
V (T, θ)− 1, where V (T, θ) denotes the planner’s realized value under policy T given a taste

for redistribution θ (see footnote 27). Let C(T ) and H(T ) denote per capita consumption

and per capita hours worked under policy T , and let V RA(T ) denote utility for a hypothetical

agent enjoying per capita consumption and hours: V RA(T ) = logC(T )−H(T )1+σ/(1 + σ).

Define the aggregate efficiency gain of moving from policy T to T̂ , ωE(T, T̂ ), as the per-

centage increase in consumption under policy T that makes the hypothetical representative

agent indifferent about switching to T̂ :

ωE(T, T̂ ) = V RA(T̂ )− V RA(T )− 1.

Define the cost of inequality under policy T , ωI(T ), as the percentage increase in con-

sumption of all agents required to deliver equal value to the planner as an allocation with

zero inequality:

ωI(T ) = V RA(T )− V (T, θ)− 1.

32When we compute the Rawlsian case, we simply maximize welfare for the lowest α type in the economy,
subject to the usual feasibility and incentive constraints. A numerical value for θ is not required for this
program.
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Table 2: Optimal Tax and Transfer System with Utilitarian Social Welfare

Tax System Tax Parameters Outcomes

ω (%) ωE (%) ∆Y (%) T ′ Tr/Y

HSVUS λ : 0.836 τ : 0.151 − − − 0.311 0.018

HSV∗ λ : 0.821 τ : 0.295 1.38 −3.76 −6.02 0.436 0.068

Affine τ0 : −0.233 τ1 : 0.303 0.45 −2.02 −6.43 0.452 0.220

Mirrlees 1.53 −3.72 −6.15 0.440 0.122

From these two definitions, it follows that the welfare gain of moving from policy T

to policy T̂ can be expressed as the sum of the efficiency gain plus the gain from reduced

inequality :

ω(T, T̂ ) = ωE(T, T̂ ) +
[
ωI(T )− ωI(T̂ )

]
.

Our second welfare decomposition divides the welfare gains of moving from the U.S.

tax system to the optimal tax system, ω(HSVUS, Mirrlees), into (i) the maximum welfare

gains achievable from changing progressivity τ while retaining the same HSV functional

form ω(HSVUS,HSV∗), and (ii) the additional gains from introducing a more flexible non-

parametric tax system. We label the first component the gain from changing progressivity

and the second the gain from increasing flexibility.

Utilitarian Social Welfare Table 2 presents results when we compare alternative tax

systems using a utilitarian social welfare function (θ = 0) instead of our baseline empirically

motivated one. Note that the HSV tax function with the empirical estimate for τ = 0.151

is no longer optimal within the HSV class, and the table therefore has a new row labeled

“HSV∗” corresponding to the optimal policy within the HSV tax class given θ = 0.

The utilitarian social welfare function features a stronger taste for redistribution than

the baseline. It therefore delivers more progressive tax policies. For example, the best policy

in the HSV class tax function has higher progressivity (τ = 0.295). The average effective

marginal tax rate under the optimal policy is now 44%, compared with 31% under the

baseline welfare function. The maximal welfare gain from tax reform is now large: 1.53%

of consumption. This welfare gain arises even though higher marginal tax rates under the

optimal policy discourage labor supply, reducing output by 6.15% and efficiency by 3.72%.

However, some key results from our baseline specification survive here: the best policy

in the HSV class is still preferred to the best affine tax system, and the best HSV class

policy still closely approximates – in welfare terms – the constrained efficient Mirrlees policy,

capturing more than 90% of the maximum feasible welfare gains (1.38% out of 1.53%). Thus,
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Table 3: Alternative Social Welfare Functions

SWF Mirrlees Allocations ω and ωE (in parentheses) (%) Prog. Share

θ T ′ Tr/Y ∆Y HSV∗ Affine Mirrlees ω(HSVUS,HSV∗)
ω(HSVUS,Mirrlees)

Laissez-Faire −1 0.070 −0.116 9.78
2.65

(3.48)
2.85

(2.82)
2.86

(2.60)
93%

Baseline −0.547 0.287 0.003 0.82
−
−

−0.58
(1.38)

0.11
(−0.26)

0%

Utilitarian 0 0.440 0.122 −6.15
1.38

(−3.76)
0.45

(−2.02)
1.53

(−3.72)
90%

Rawlsian ∞ 0.697 0.535 −21.87
160.24

(−36.39)
268.99

(−21.77)
301.30

(−14.65)
53%

our baseline procedure for inferring the taste for redistribution is not an essential ingredient

for finding that it is preferable to redistribute via increasing marginal tax rates rather than

via lump-sum transfers.

Alternative Social Welfare Functions Table 3 shows results for a wider range of social

welfare functions. The first takeaway from the table is that the optimal policy prescription

is enormously sensitive to the choice for θ. This is worth emphasizing given the explosion of

policy research in heterogeneous agent environments. Here, the stronger the planner’s desire

to redistribute, the higher the marginal tax rates the planner chooses. A second takeaway

is that the choice of social welfare function has a huge impact on the potential welfare gains

from policy reform. Had we chosen a Rawlsian welfare function as our baseline, we would

have concluded that tax reform could raise welfare by 300% rather than by 0.11%!

The efficiency gain associated with tax reforms, ωE, is reported in parentheses underneath

the baseline welfare number. The welfare gains from tax reform in the laissez-faire case are

mostly due to increased efficiency. For the social welfare functions that embed a stronger

taste for redistribution than the baseline, in contrast, the welfare gains from more progressive

tax schemes entirely reflect the value the planner attaches to reducing inequality, which

dominate large efficiency losses in the overall welfare calculus.

The last column of Table 3 reports the fraction of the maximum possible welfare gains

that can be achieved merely by changing progressivity within the HSV functional form. This

fraction is very large in most cases: in the utilitarian case (θ = 0), increased progressivity

accounts for 90% of the total gain, whereas in the laissez-faire case (θ = −1), it captures

93%.

We conclude that the sizable total welfare gains that emerge once we deviate from our
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baseline empirically motivated value for θ are almost entirely due to the fact that the planner

wants a more or less redistributive system than the one currently in place – and not because

the current system redistributes in a very inefficient way. In our view, a similar decomposition

should be part of any Mirrleesian policy analysis, as a way to elucidate the extent to which

welfare numbers are driven by the choice of objective function versus all the other model

elements.

Although an HSV-class tax function is better than an affine one under our baseline welfare

function and in the utilitarian case, Table 3 indicates that this result does not extend to all

possible social welfare functions. The laissez-faire planner prefers an affine tax because

he wants to use lump-sum taxes to raise revenue; in fact, this planner chooses negative

marginal tax rates. The Rawlsian planners prefer an affine tax because they overweight the

least productive agents and value a high consumption floor. However, as we argued earlier,

it is difficult to reconcile the tax and transfer system currently in place in the United States

with either a very low or a very high taste for redistribution.

An Alternative Strategy for Estimating θ We have claimed that the maximal welfare

gain from tax reform in our baseline specification is small because the HSV functional form

is already close to optimal and much closer to optimal than the best-in-class affine system.

We have been asked whether these results are baked in the cake as a result of having ap-

proximated the actual U.S. tax and transfer system using the HSV functional form and then

having searched for a taste for redistribution parameter θ that rationalizes the observed de-

gree of progressivity. To answer this question, we have experimented with taking an affine

approximation to the U.S. tax and transfer system and then recomputing the value for θ

that rationalizes the estimated (constant) marginal tax rate.

The best fit affine system has a marginal tax rate of 37.7%, coupled with a lump-sum

transfer equal to 18.9% of GDP.33 The implied taste for redistribution is θ = −0.314. Given

this value for θ, and taking the estimated affine schedule as the baseline, the welfare gains

of moving to the best policy in the HSV class and the best unconstrained policy are 0.86%

and 0.95%. Thus, the maximum possible welfare gains from tax reform are quite large here

– even though we chose θ so that the baseline tax system is the best possible one in the

affine class. We conclude that restricting the tax and transfer schedule to be affine is a

costly restriction from a welfare standpoint, whereas restricting the schedule to be in the

HSV class is not.

33We impose the same ratio of government purchases G to output in the affine case as in the baseline.
Thus, with affine taxation, tax revenue is split equally between G and lump-sum transfers. More details
about these estimates are available upon request.
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Table 4: Optimal Tax and Transfer System with No Insurable Shocks

Tax System Tax Parameters Outcomes

ω (%) ∆Y (%) T ′ Tr/Y

HSVUS λ : 0.836 τ : 0.151 − − 0.311 0.018

HSV∗ λ : 0.839 τ : 0.192 0.12 −1.64 0.346 0.033

Affine τ0 : −0.156 τ1 : 0.360 −0.21 −1.97 0.360 0.139

Mirrlees 0.23 −2.11 0.361 0.081

6.3 Sensitivity Analysis

We now conduct a sensitivity analysis to better understand why the HSV approximation

to the current tax and transfer scheme is close to optimal and preferable to an affine tax

scheme. First, we explore the role of the existence of private insurance against a subset of

idiosyncratic shocks. Second, we explore the role of the shape of the distribution for the

uninsurable component of productivity.34

To preview our findings, assuming zero private insurance against idiosyncratic wage risk

implies a larger role for public insurance – and thus a more progressive tax system – but does

not change the conclusion that the best policy in the HSV class is preferred to the best affine

tax function. In contrast, if the earnings distribution in the United States was log-normal,

it would be welfare improving to replace the current tax system with an affine schedule.

6.3.1 No Private Insurance

Table 4 presents results when we shut down private insurance by setting vε = 0 and increasing

the variance of αN , the normally distributed uninsurable component, so as to leave the

total variance of log wages unchanged. All other parameter values including the taste for

redistribution θ are set to their values in the baseline calibration.35

Since the dispersion of uninsurable shocks is larger, there is now a larger role for public

redistribution. Thus, the best tax policy in the HSV class is now more progressive than the

U.S. policy: τ = 0.192. The second-best policy now features an average marginal tax rate

of 36% and larger transfers. The maximal welfare gains from tax reform, though still small,

are now twice as large as in the baseline model and are associated with an output decline of

34We have also conducted a sensitivity analysis with respect to preference parameters: the risk aversion
coefficient, γ, and the labor supply elasticity parameter, σ. Holding fixed the taste for redistribution θ, a
higher value for risk aversion and a lower labor supply elasticity (higher σ) both translate into greater optimal
redistribution. Results are available upon request.

35We could have reapplied our procedure to infer a new empirically motivated value for θ, but we chose
to hold θ fixed so as to isolate the impact of the insurability of shocks for optimal taxation.
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Table 5: Optimal Tax and Transfer System with Log-Normal Wage Distribution

Tax System Tax Parameters Outcomes

ω (%) ∆Y (%) T ′ Tr/Y

HSVUS λ : 0.836 τ : 0.151 − − 0.311 0.018

HSV∗ λ : 0.826 τ : 0.070 0.27 3.10 0.239 −0.005

Affine τ0 : −0.068 τ1 : 0.250 0.34 2.67 0.250 0.042

Mirrlees 0.35 2.71 0.249 0.042

2%. The best affine tax and transfer system is dominated not only by the best HSV system

but also by the current (HSV-approximated) U.S. system.

Recall that imposing a utilitarian social welfare function also implied larger optimal

transfers. If we simultaneously assume a utilitarian social welfare and also assume zero

private insurance, then the best policy in the HSV class delivers slightly lower welfare than

the best affine class policy.36

6.3.2 Log-Normal Wage Distribution

Table 5 presents results when we counterfactually assume a log-normal wage distribution.

Specifically, we assume α ∼ N(−v∗α/2, v∗α), holding fixed all other parameter values including

θ. Relative to the baseline (Pareto log-normal) case, the distribution for the uninsurable

component of wages now has a much thinner right tail and a heavier left tail.

The best HSV-class tax function now features less progressivity than that in the U.S.

(τ = 0.070). The second-best policy implies a lower average marginal tax rate of 25%

(compared with 29% in the baseline calibration), but also features larger net transfers for

the least productive households. A key result is that the best affine tax and transfer system

now dominates the best system in the HSV class and moreover very closely approximates

the second-best allocation. Thus, assuming a log-normal distribution for wages resurrects

the original conclusion of Mirrlees (1971), namely, that the optimal nonlinear income tax is

approximately linear.

Our finding that the shape of the empirical wage distribution is an important driver of

the shape of the optimal tax function is not new. Saez (2001) notes that the government

should apply high marginal rates at income levels where the density of taxpayers is low – so

that the marginal labor supply choices of relatively few households are distorted – but where

the fraction of income earned by higher income taxpayers is high – so that higher marginal

36Detailed results are available upon request.
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Figure 9: Log-Normal versus Pareto Log-Normal Wage Distribution. The left panel plots
the ratios of the complementary CDF for household income relative to the income-weighted
density. The right panel plots the profiles of optimal marginal tax rates. The plots are
truncated at eight times average income.

rates generate significant additional revenue.

The left panel of Figure 9 plots the ratio of the complementary CDF for household income

relative to the income-weighted density for (i) the baseline model (in which the α distribution

is EMG) and (ii) the log-normal alternative. The ratio declines monotonically with income

in the log-normal case, since the mass of income earned by higher income households declines

rapidly with income. This weakens the planner’s incentive to impose high marginal tax rates

at high income levels. In the Pareto log-normal case, in contrast, the same ratio stabilizes

as the Pareto tail kicks in. Thus, the temptation to impose high marginal tax rates to raise

revenue at high income levels remains strong relative to the associated distortion.

This discussion illuminates the profiles of optimal marginal tax rates for the same two

distributional assumptions, shown in the right panel of Figure 9. The baseline specifica-

tion exhibits a general upward-sloping profile for marginal rates that obviously cannot be

replicated by an affine tax system.37 With a normal distribution for α (given the baseline

value for θ), the optimal tax schedule is much flatter, and not surprisingly, an affine schedule

can now deliver nearly the same value to the planner. We conclude, like Saez (2001), that

it is essential to carefully model the empirical productivity distribution for the purposes of

providing quantitative guidance on the design of the tax and transfer system.

37Imposing a utilitarian social welfare function shifts the entire marginal tax rate profile upward, but does
not change its basic shape.
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Table 6: Grid points

# of grid points I ω (%, relative to HSV)

Affine Mirrlees First Best

25 −0.58 3.82 8.80

100 −0.58 1.17 8.79

1,000 −0.58 0.21 8.80

10,000 −0.58 0.11 8.80

100,000 −0.58 0.10 8.80

6.3.3 Coarser Grids

In the baseline model, we set the number of grid points for α to I = 10, 000. This is a

very large number relative to grid sizes used the literature. However, assuming the true

distribution for α is continuous, a very fine grid is required to accurately approximate the

second-best allocation.

To make this point, in Table 6 we report welfare gains from tax reform (relative to the

HSV baseline) as we increase the number of grid points from I = 25 to I = 100, 000.38

Reassuringly, the number of grid points does not affect the results for the affine case or for

the first best. However, as the number of grid points decreases, welfare gains for the Mirrlees

planner increase substantially. For I = 25 these gains are 3.8% of consumption, compared

with 0.11% with I = 10, 000.

The intuition behind this result is that with a coarse grid, ensuring truthful reporting

becomes easier for the Mirrlees planner. Consider a grid of size I. A familiar result is that

only local downward incentive constraints bind at the solution to the planner’s problem. Now

suppose that we remove every other point from the grid, leaving all else unchanged. At the

original conjectured solution, none of the incentive constraints are now binding. Thus, the

planner can adjust allocations to compress the distribution of consumption or to strengthen

the correlation between productivity and hours worked.

In our static model, using a very fine grid is not too costly from a computational stand-

point. In dynamic Mirrleesian settings, however, the presence of additional state variables

typically necessitates a very coarse discretization of types, often using fewer than 10 points.

The findings in Table 6 cast some doubt on the quantitative robustness of such analyses if

the true underlying productivity distribution is continuous.

38It is difficult to reduce I much below 25 while still retaining a realistic shape for the wage distribution.
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6.4 Extensions to Richer Tax Structures

We now explore richer tax structures. First we consider polynomial tax functions that

add quadratic and cubic terms to the affine functional form. This additional nonlinearity

gives the Ramsey planner more flexibility, allowing it to more nearly replicate the Mirrlees

policy. Next we consider an economy in which there is a third component of idiosyncratic

productivity, κ, that is privately uninsurable but observed by the planner. We find that the

potential welfare gains from indexing taxes to κ are as large as 1.5% of consumption.39

6.4.1 Polynomial Tax Functions

In the baseline model we have learned that for welfare it is more important that marginal tax

rates increase with income - which the affine scheme rules out – than that the government

provides universal lump-sum transfers. Relative to the affine case, we now ask how much

better the Ramsey planner can do if we introduce quadratic and cubic terms in the net tax

function, thereby allowing marginal tax rates to increase with income.

Let Tn(y) denote an n-th order polynomial tax function: Tn(y) = τ0 + τ1y + · · · + τny
n.

We assume that the marginal tax rate becomes constant above an income threshold ȳ equal

to 10 times average income in the baseline HSV-tax economy.40 Thus,

T (y) =

{
Tn(y) for y ≤ ȳ,

Tn(ȳ) + T ′n(ȳ)(y − ȳ) for y > ȳ.

We focus on the cases n = 2 and n = 3 (i.e., quadratic and cubic tax functions).41 Table 7

and Figure 10 in Appendix 8.5 contain detailed results, which we summarize here.

As we give the Ramsey planner access to increasingly flexible tax functions, outcomes

and welfare converge to the Mirrlees solution, which is reassuring.42 With the best quadratic

function, marginal tax rates are increasing in income (τ2 > 0) – the key property of the

optimal tax schedule – whereas lump-sum transfers are smaller than under the best affine

scheme. Under the best cubic system, lump-sum transfers are reduced still further, whereas

the cubic coefficient τ3 is negative, which ensures that marginal rates flatten out before

39One interpretation of our previous analysis is that the κ component has always been present, but we
have up to now imposed a restriction on tax functions such that net taxes must be independent of κ.

40Thus, ȳ ≡ 10×
∫ ∫

exp(α+ε)h(α, ε)dFα(α)dFε(ε) = 10×(1−τ)
1

1+σ exp
(
1
σ
vε
2

)
where the second equality

follows from the expression for h(α, ε) in eq. (10).
41The agents’ first-order conditions are now not sufficient in general. However, it is possible to prove that

the marginal utility is decreasing in income at sufficiently high income levels. Hence, the solution must exist
and can be found numerically if we evaluate all the roots of the first-order necessary conditions in the range
[0, y] with y sufficiently large.

42By the Weierstrass Approximation theorem, a sufficiently high order polynomial tax function could
approximate the Mirrlees solution to any desired accuracy.
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income reaches the threshold ȳ. Because marginal and average tax rates under the best

cubic policy are generally very similar to those implied by the Mirrlees solution, allocations

are close to being constrained efficient. Thus, moving to the best cubic policy generates

about half of the (small) maximum potential welfare gains from tax reform.

6.4.2 Type-Contingent Taxes

In the baseline model, idiosyncratic productivity was divided into a privately uninsurable

component, α, and a privately insurable component, ε. Now we introduce a third component,

κ, which is privately uninsurable but observed by the planner. This component is designed

to capture differences in wages related to observable characteristics such as gender, age, and

education. We assume that κ is drawn before family insurance comes into play and therefore

cannot be insured privately.

We set the variance of this observable fixed effect, vκ, equal to the variance of wage

dispersion that can be accounted for by standard observables in a Mincer regression. Heath-

cote, Perri, and Violante (2010) estimate the variance of cross-sectional wage dispersion

attributable to observables to be 0.108. For the sake of simplicity, we assume a two-point

equal-weight distribution for κ. This gives exp(κHigh)/ exp(κLow) = 1.93.

The total variance of the privately uninsurable component of wages is unchanged relative

to the baseline model, but we now attribute part of this variance to κ and therefore reduce

the variance of α to v∗α−vκ = 0.165. The three parameters µα, σ
2
α, and λα characterizing the

EMG distribution for α are now recalibrated so that (i) the variance of α is equal to 0.165,

(ii) E [exp(α)] = 1, and (iii) the value of the shape parameter σαλα is the same as that in

the baseline model (1.129).43

When the planner can observe a component of productivity, the optimal tax system

explicitly indexes taxes to that component (see, e.g., Weinzierl (2011)). In the extreme

case in which productivity is entirely observable, so that logw = κ, the optimal system

simply imposes a κ−specific lump-sum tax for each different value for κ. More generally,

each different κ type faces a type-specific income tax schedule T (y;κ).

Table 8 in Appendix 8.5 describes optimal type-contingent tax functions and the associ-

ated outcomes. We find that if the planner can condition taxes on the observable component

of labor productivity, it can generate large welfare gains relative to the current tax system,

which does not discriminate by type. The maximum welfare gain is now 1.46% of consump-

tion, compared with only 0.11% in the baseline analysis. This large welfare gain arises in

part because the average effective marginal tax rate drops to only 20%, which translates into

43The shape parameter controls the relative importance of the normal and exponential components of the
distribution.
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a 5.2% output gain. Recall that if productivity were entirely observable, the planner could

implement the first best, with a zero marginal rate for all households.

If the Ramsey planner is allowed to impose a different tax schedule on each κ type, he

can achieve welfare gains that nearly match those for the Mirrlees planner. Under the best

affine system, the high κ type faces a double whammy, paying higher marginal tax rates

than the low type and paying lump-sum taxes rather than receiving transfers.

One important caveat to this analysis is that we have treated all the variation in κ

as exogenous and have therefore ignored potential feedback from the tax system to the

distribution for κ. However, an education-dependent tax system would likely affect agents’

educational decisions (see, e.g., Heathcote, Storesletten, and Violante (2014b)). In particular,

relatively high taxation of high κ households would discourage education investment. Thus,

we regard our 1.46% welfare gain as an upper bound on the feasible welfare gains from

tagging.

7 Conclusions

All governments must decide how taxes and transfers should vary with income. The character

of the optimal policy depends on the answers to two questions. First, how important is

income redistribution as a public policy objective? Second, holding fixed the desire to

redistribute, what is the most efficient way to do so?

In this paper we answered the first question by using the progressivity of the current

tax and transfer system, interpreted through the lens of a structural model, to impute a

taste for redistribution to the U.S. government. Given this taste for redistribution, we then

characterized the optimal tax schedule and explored how closely it can be approximated by

similar parametric functions.

Our key findings are, first, that it is difficult to improve substantially on the current

system and, second, that moving to the best affine tax and transfer scheme would be welfare

reducing. Optimal marginal rates are rising in income at high income levels because the

estimated underlying distribution for wages has a Pareto right tail. Large lump-sum transfers

are not desirable, in part because the estimated taste for redistribution is modest and in part

because a portion of wage dispersion is privately insured.

We now highlight four lessons from our analysis that should be useful for future work

geared toward providing practical quantitative advice on tax and transfer design.

First, in any heterogeneous agent environment, careful thought should be given to the

specification of the planner’s social welfare function, since this has an enormous impact on

policy prescriptions. We have proposed a functional form for social welfare indexed by a
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single taste for redistribution parameter and have argued that a natural baseline value for

this parameter is the value that rationalizes the progressivity embedded in the current tax

and transfer system.

Second, for the purposes of practical policy advice, the role of the tax and transfer system

should be limited to offering a degree of public insurance against risks that cannot be insured

privately. Thus, for quantitative policy guidance, it is important to model both public and

private insurance.

Third, optimal policy is sensitive to the shape of the underlying productivity distribution.

This finding is not new, but we have shown that a three-parameter exponentially modified

Gaussian distribution fits the empirical earnings distribution remarkably well.

Fourth, although the fully optimal profile for marginal rates is quite complicated, it can

be very well approximated by a simple two-parameter power function of the form used by

Benabou (2000) and Heathcote, Storesletten, and Violante (2014b) among others. Thus, in

terms of welfare, a simple parametric Ramsey-style policy that can be easily communicated

to policymakers comes very close to replicating the constrained efficient Mirrlees allocation.

Our model environment could be enriched along various dimensions. First, the only

decision margin that taxes distort in our model is labor supply. Although this has been

the focus of the optimal tax literature, skill investment and entrepreneurial activity are

additional decision margins that are likely sensitive to the tax system. Second, our model

is static. In dynamic environments, the Mirrlees planner can do better by making taxes

history dependent, rewarding higher current income and tax payments with lower future

taxes. However, the welfare gains from this added sophistication may be modest, given

that uninsurable life-cycle shocks to productivity are small relative to permanent differences

at the time of labor market entry. Third, a sharper characterization of the bottom of the

distribution for productivity would be desirable. The challenge is that wages are not observed

for nonparticipants, who are likely less productive, on average, than workers.
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8 Appendices

8.1 Insurance via Family versus Insurance via Financial Markets

We show that, with one caveat, all the analysis of the paper remains unchanged if we consider

an alternative model of insurance against ε shocks. In particular, we put aside the model

of the family and suppose instead that each agent is autonomous, buys private insurance in

decentralized financial markets against ε shocks, and is taxed at the individual level.

Decentralized Economy Suppose agents first observe their idiosyncratic uninsurable

component α and then trade in insurance markets to purchase private insurance at actuarially

fair prices against ε. The budget constraint for an agent with α is now given by∫
B(α, ε)Q(ε)dε = 0, (24)

where B(α, ε) denotes the quantity (positive or negative) of insurance claims purchased that

pay a unit of consumption if and only if the draw for the insurable shock is ε ∈ E and

where Q(E) is the price of a bundle of claims that pay one unit of consumption if and only

if ε ∈ E ⊂ E for any Borel set E in E . In equilibrium, these insurance prices must be

actuarially fair, which implies Q(E) =
∫
E
dF (ε).

In this decentralization, taxation occurs at the individual level and applies to earnings

plus insurance payments. Thus, the individual’s budget constraints are

c(α, ε) = y(α, ε)− T (y(α, ε)) for all ε, (25)

where individual income before taxes and transfers is given by

y(α, ε) = exp(α + ε)h(α, ε) +B(α, ε) for all ε. (26)

The individual agent’s problem is then to choose c(α, ·), h(α, ·), and B(α, ·) to maximize

expected utility (4) subject to equations (24), (25), and (26). The equilibrium definition in

this case is similar to that for the specification in which insurance takes place within the

family.

It is straightforward to establish that the FOCs for this problem are exactly the same as

those for the family model of insurance with taxation at the individual level. Thus, given

the same tax function T, allocations with the two models of insurance are the same. Part

of the reason for this result is that each family is small relative to the entire economy and

takes the tax function as parametric. Moreover, taxes on income after private insurance /
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family transfers do not crowd out risk sharing with respect to ε shocks.

Planner’s Problem Now consider the Mirrlees planner’s problem in the environment with

decentralized insurance against ε shocks. We first establish that if the planner is restricted

to only ask agents to report α, the solution is the same as the one described previously for

the family model. We then speculate about what might change if the planner can also ask

agents to report ε.

Suppose that the planner asks individuals to report α before they draw ε. Then, given

their true type α and a report α̃ and associated contract (c(α̃), y(α̃)), agents shop for insur-

ance. Consider the agent’s problem at this stage:

max
{h(α,α̃,ε),B(α,α̃,ε)}

∫ {
c(α̃)1−γ

1− γ
− h(α, α̃, ε)1+σ

1 + σ

}
dFε(ε),

subject to ∫
B(α, α̃, ε)Q(ε)dε = 0,

exp(α + ε)h(α, α̃, ε) +B(α, α̃, ε) = y(α̃).

Substituting the second constraint into the first, and assuming actuarially fair insurance

prices, we have ∫
[y(α̃)− exp(α + ε)h(α, α̃, ε)] dFε(ε) = 0.

The first-order condition for hours is

h(α, α̃, ε)σ = µ(α, α̃) exp(α + ε),

where the budget constraint can be used to solve out for the multiplier µ(α, α̃) :

h(α, α̃, ε) =
y(α̃)

exp(α)

exp(ε)
1
σ∫

exp(ε)
1+σ
σ dFε(ε)

.

Now note that this expression is exactly the same as the one for the family planner

decentralization (eq. (11)). Moreover, in both cases c(α, ε) = c(α̃). It follows that for

any values for (α, α̃), expected utility for the agent in this decentralization with private

insurance markets is identical to welfare for the family head in the decentralization with

insurance within the family. Thus, the set of allocations that are incentive compatible when

the social planner interacts with the family head are the same as those that are incentive

compatible when the planner interacts agent by agent. It follows that the solution to the

social planner’s problem is the same under both models of ε insurance. Similarly, the income
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tax schedule that decentralizes the Mirrlees solution is also the same under both models of ε

insurance, and marginal tax rates are given in both cases by eq. (15). Note that marginal tax

rates do not vary with ε under either insurance model because income (including insurance

payouts / family transfers) does not vary with ε.44

Finally, note that if insurance against ε is achieved via decentralized financial markets,

the planner could conceivably ask agents to report ε after the ε shock is drawn and offer

allocations for consumption c(α̃, ε̃) and income y(α̃, ε̃) indexed to reports of both α and ε.

With decentralized insurance, the planner might be able to offer contracts that separate

agents with different values for ε (recall that under the family model for insurance, this was

not possible). One might think there would be no possible welfare gain to doing so, since

private insurance already appears to deliver an efficient allocation of hours and consumption

within any group of agents sharing the same α. However, it is possible that by inducing

agents to sacrifice perfect insurance with respect to ε, the planner can potentially loosen

incentive constraints and thereby provide better insurance with respect to α.45 We plan to

explore this issue in future work. For now, we simply focus on the problem in which the

planner offers contracts contingent only on α, which is the natural benchmark under our

baseline interpretation that the family is the source of insurance against shocks to ε.

8.2 Individual versus Family Taxation

Proposition 2 If the tax schedule satisfies condition (9), then the solution to the family

head’s problem is the same irrespective of whether taxes apply at the family level or the

individual level.

Proof. We will show that given condition (9), the FOCs for the family head with individual-

level taxation are identical to those with family-level taxation, namely, equations (7) and

(8).

44It is clear that the Mirrlees solution could equivalently be decentralized using consumption taxes. In
that case we would get

1 + T ′(c∗(α)) =
c∗(α)−γ exp(α)1+σ

(∫
exp(ε)

1+σ
σ dFε(ε)

)σ
y∗(α)σ

.

45When we introduce publicly observable (but privately uninsurable) differences in productivity, we see
that constrained efficient allocations typically have the property that agents with the same unobservable
component α but different observable components of productivity κ are allocated different consumption (see
Section 6.4.2).
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If income is taxed at the individual level, the family head’s problem becomes

max
{h(α,ε),y(α,ε)}

∫ {
[y(α, ε)− T (y(α, ε))]1−γ

1− γ
− h(α, ε)1+σ

1 + σ

}
dFε(ε)

subject to ∫
y(α, ε)dFε(ε) =

∫
exp(α + ε)h(α, ε)dFε(ε),

where y(α, ε) denotes pre-tax income allocated to an individual of type ε.

The FOCs are

[y(α, ε)− T (y(α, ε))]−γ [1− T ′ (y(α, ε))] = µ(α), (27)

h(α, ε)σ = µ(α) exp(α + ε), (28)

where µ(α) is the multiplier on the family budget constraint.

If the tax schedule satisfies condition (9) (the condition that guarantees first-order condi-

tions are sufficient for optimality) then we can show that optimal consumption and income

are independent of ε, as in the version when taxes apply to total family income.

In particular, differentiate both sides of FOC (27) with respect to ε. The right-hand side

is independent of the insurable shock ε, and hence its derivative with respect to ε is zero.

The derivative of the left-hand side of this equation with respect to ε is, by the chain rule,

∂

∂ε

{
[y(α, ε)− T (y(α, ε))]−γ [1− T ′(y(α, ε))]

}
=

{
−γ (y − T (y))−1 [1− T ′(y)]

2 − T ′′(y)
}

(y − T (y))−γ
∂y(α, ε)

∂ε
.

The first term is nonzero by condition (9), which immediately implies that ∂y
∂ε

= 0. Therefore,

pre-tax income is independent of ε, and hence consumption is also independent of ε. Thus,

the FOCs (27) and (28) combine to deliver exactly the original intratemporal FOC with

family-level taxation, namely, eq. (8). Q.E .D.

8.3 Proof of Proposition 1

We provide the proof of Proposition 1.
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Given the HSV tax function (17), decision rules as a function of τ are as follows:

c(α;λ, τ) = λ(1− τ)
1−τ
1+σ exp [(1− τ)α] exp

(
1− τ
σ

vε
2

)
, (29)

h(ε; τ) = (1− τ)
1

1+σ exp

(
−1

σ2

vε
2

)
exp

( ε
σ

)
. (30)

Plugging these into the resource constraint (1), we get

λ(τ) =
(1− τ)

1
1+σ exp

(
1
σ
vε
2

)
−G

(1− τ)
1−τ
1+σ exp

(
1−τ
σ

vε
2

) ∫
exp [(1− τ)α] dFα

.

We can substitute these expressions into the planner’s objective function in order to

get an unconstrained optimization problem with one choice variable, τ. Differentiating the

objective function with respect to τ then gives a first-order condition that maps θ and G

into the optimal choice for τ . Specifically, the planner’s objective function is∫
W (α)

(
log (c(α; τ))−

∫
h(ε; τ)1+σ

1 + σ
dFε(ε)

)
dFα(α),

and government expenditure is given by

G = g

∫ ∫
exp(α + ε)h(ε; τ)dFαdFε.

Substituting equations (29) and (30) into these expressions, the optimization problem can

be rewritten as

max
τ

(1− τ)
∫
W (α)αdFα − log(

∫
exp [(1− τ)α] dFα) + log

[
(1− τ)

1
1+σ exp

(
1
σ
vε
2

)
−G

]
− 1−τ

1+σ

where

G = g(1− τ)
1

1+σ exp

(
1

σ

vε
2

)
. (31)

Note that the level of the government expenditure G is fixed when the planner is solving the

problem, and hence it is not a function of τ .

Given the social welfare function (16), the unconstrained optimization problem becomes46

46The moment-generating function for the EMG distribution, EMG(µα, σ
2
α, λα), for t ∈ R is given by∫

α

exp (αt) dFα =
λα

λα − t
exp

[
µαt+

σ2
αt

2

2

]
.
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max
τ

(1−τ)

λα
λα+θ

exp

[
−µαθ+σ2αθ

2

2

] ∫ α exp(−θα)dFα − log
(

λα
λα−1+τ

)
− µα(1− τ)− σ2

α(1−τ)2

2

+ log
[
(1− τ)

1
1+σ exp

(
1
σ
vε
2

)
−G

]
− 1−τ

1+σ
.

(32)

Assume this problem is well-defined; that is,
∫
α exp(−θα)dFα < ∞. We want to further

simplify this term.

Define

V (α, θ) ≡ exp(−θα)fα(α),

where fα is the derivative of Fα. We have

∂V (α, θ)

∂θ
= −α exp(−θα)fα(α).

Lemma 3 Assume the support of θ is compact, [θ, θ̄]. Then the integral and the derivative

of V are interchangeable; that is,∫
∂

∂θ
V (α, θ)dα =

∂

∂θ

∫
V (α, θ)dα.

Proof. It suffices to show that (i) V : R × [θ, θ̄] → R is continuous and ∂V
∂θ

is well-defined

and continuous in R× [θ, θ̄], (ii)
∫
V (α, θ)dα is uniformly convergent, and (iii)

∫
∂
∂θ
V (α, θ)dα

is uniformly convergent.

(i) is obvious since fα is continuous.

To prove (ii), we rely on the Weierstrass M-test for uniform convergence. That is, if

there exists V̂ : R→ R such that V̂ (α) ≥ |V (α, θ)| for all θ and V̂ has an improper integral

on R, then
∫
V (α, θ)dα converges uniformly. Now define V̂ (α) ≡ sup

θ∈[θ,θ̄]

|V (α, θ)|. Then

V̂ (α) ≥ |V (α, θ)| by construction. Also V̂ has an improper integral on R because∫ ∞
−∞

V̂ (α)dα =

∫ 0

−∞
V (α, θ̄)dα +

∫ ∞
0

V (α, θ)dα

≤
∫ ∞
−∞

V (α, θ̄)dα +

∫ ∞
−∞

V (α, θ)dα

=
λα

λα + θ̄
exp

[
−µαθ̄ +

σ2
αθ̄

2

2

]
+

λα
λα + θ

exp

[
−µαθ +

σ2
αθ

2

2

]
<∞,

where the first inequality comes from V (α, θ) ≥ 0 for any α and θ ∈ [θ, θ̄]. Thus,
∫
V (α, θ)dα

is uniformly convergent.
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We apply a similar logic to prove (iii) and find Ṽ : R→ R such that Ṽ (α) ≥
∣∣∣∂V (α,θ)

∂θ

∣∣∣ for

all θ and Ṽ has an improper integral on R. Specifically, define Ṽ (α) ≡ sup
θ∈[θ,θ̄]

∣∣∣∂V (α,θ)
∂θ

∣∣∣ . Then

Ṽ (α) ≥
∣∣∣∂V (α,θ)

∂θ

∣∣∣ by construction and Ṽ has an improper integral on R, because the original

Ramsey problem is assumed to be well-defined, and hence
∫
α exp(−θα)dFα < ∞ for any

θ ∈ [θ, θ̄].

Applying this lemma, we get∫
α exp(−θα)dFα = − ∂

∂θ

∫
exp(−θα)dFα

= − ∂

∂θ

{
λα

λα + θ
exp

[
−µαθ +

σ2
αθ

2

2

]}
=

λα
λα + θ

exp

[
−µαθ +

σ2
αθ

2

2

](
1

λα + θ
+ µα − σ2

αθ

)
.

Substituting this expression into (32), the unconstrained optimization problem becomes

max
τ

(1− τ)
(

1
λα+θ

− σ2
αθ − 1

1+σ

)
+ log (λα − 1 + τ)− σ2

α(1−τ)2

2
+ log

[
(1− τ)

1
1+σ exp

(
1
σ
vε
2

)
−G

]
.

The first-order condition with respect to τ is

0 = − 1

λα + θ
+ σ2

αθ +
1

1 + σ
+

1

λα − 1 + τ
+ σ2

α(1− τ) +

∂
∂τ

{
(1− τ)

1
1+σ exp

(
1
σ
vε
2

)}
(1− τ)

1
1+σ exp

(
1
σ
vε
2

)
−G

= − 1

λα + θ
+ σ2

αθ +
1

1 + σ
+

1

λα − 1 + τ
+ σ2

α(1− τ)−

[
1− G

exp( 1
σ
vε
2 )(1−τ)

1
1+σ

]−1

(1− τ)(1 + σ)
(33)

Substituting (31) into this, we have

σ2
αθ −

1

λα + θ
= −σ2

α(1− τ)− 1

λα − 1 + τ
+

1

1 + σ

[
1

(1− g) (1− τ)
− 1

]
.

Therefore, the planner’s weight θ∗ must solve (19). Q.E .D.

8.4 Computational Method

In this section, we briefly describe how we compute the optimal allocation in the baseline

economy.

We numerically solve the Mirrlees planner’s problem (12) for our discretized economy. We
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Table 7: Polynomial Tax Functions

Tax System and Tax Parameters Outcomes

ω (%) ∆Y (%) T ′ Tr/Y

Baseline HSV

λ : 0.836 τ : 0.151 − − 0.311 0.018

Polynomial

τ0 τ1 τ2 τ3

Proportional − 0.178 − − −1.31 5.61 0.178 −0.021

Affine −0.116 0.303 − − −0.58 0.41 0.303 0.089

Quadratic −0.074 0.221 0.021 − −0.10 0.61 0.295 0.051

Cubic −0.032 0.126 0.064 −0.003 0.05 0.79 0.289 0.017

Mirrlees 0.11 0.82 0.287 0.003

first note that the local downward and local upward incentive compatibility constraints are

necessary and sufficient for the global incentive compatibility constraints (14) to be satisfied:

U(αi, αi) ≥ U(αi, αi−1) for all i = 2, · · · , I

U(αi−1, αi−1) ≥ U(αi−1, αi) for all i = 2, · · · , I.

We then solve for the allocation exactly at each grid point. Specifically, we use forward

iteration (forward from α1 to αI) to search for an allocation that satisfies all the first-order

conditions, the incentive constraints above, and the resource constraint (13).47 Finally, we

confirm that before-tax income is nondecreasing in wages, concluding that the resulting

allocation is optimal given that our utility function exhibits the single-crossing property.

This computational method contrasts with the typical approach in the literature that

looks for approximate marginal tax rate schedules that satisfy the Diamond-Saez formula

(the social planner’s first-order condition), which implicitly defines the optimal tax schedule

(see, e.g., the appendix to Mankiw, Weinzierl, and Yagan (2009)). Since we do not iterate

back and forth between candidate tax schedules and agents’ best responses to those schedules,

our method is much faster, especially when the grid is very fine.
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8.5 Results from Extensions to Richer Tax Structures

Table 7 presents outcomes for the best policies in the quadratic and cubic classes. With

the quadratic function, marginal tax rates are increasing in income (τ2 > 0) – the key

property of the optimal tax schedule. Relative to the affine case, the linear coefficient τ1 is

reduced, and lump-sum transfers τ0 are also smaller. Thus, the planner relies more heavily

on increasing marginal tax rates, rather than lump-sum transfers, as the primary tool for

redistribution. Under the cubic system, the linear coefficient and lump-sum transfers are

reduced still further, whereas the quadratic coefficient τ2 is larger, so that marginal tax rates

now rise more rapidly at low income levels. The cubic coefficient τ3 is negative.

Figure 10 is the analogue to Figure 6 for the cubic tax function. The top panels show that

allocations under the cubic policy are generally close to the constrained efficient Mirrlees

solution. In particular, for intermediate values for productivity (where the vast majority

of households are concentrated), marginal and average tax rates are very similar to those

implied by the Mirrlees solution. This explains why the cubic system comes very close, in

welfare terms, to the Mirrlees solution.

Table 8 describes optimal type-contingent tax functions and the associated outcomes.

The subscripts H and L correspond to tax schedule parameters for the κHigh and κLow types,

respectively. By implementing type-contingent tax systems, the Ramsey planner achieves

welfare gains that nearly match those under the Mirrlees planner. Under an affine system,

the high κ type faces a double whammy, paying higher marginal tax rates than the low

type (τH1 > τL1 ) and paying lump-sum taxes rather than receiving transfers (τH0 > 0 > τL0 ).

Higher marginal rates are an effective way for the planner to redistribute from the high to

the low type (recall that κ enters the level wage multiplicatively), whereas the wealth effect

associated with lump-sum taxes ensures that high κ households still work relatively hard.

47Note that we never assume that the upward incentive constraints are slack, because their slackness is
not guaranteed for any economy with I > 2. In our baseline economy, some upward incentive constraints are
indeed binding at the bottom of the α distribution, which results in bunching.
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Figure 10: Cubic Tax Function. The figure contrasts allocations under the best-in-class
cubic and Mirrlees tax systems. The top panels plot decision rules for consumption and hours
worked, and the bottom panels plot marginal and average tax schedules. The plot for hours
worked is for an agent with average ε.

Table 8: Type-Contingent Taxes

Tax System Outcomes

ω (%) ∆Y (%) T ′ Tr/Y

HSVUS λ : 0.827 τ : 0.151 − − 0.311
0.017

0.015

HSV∗
λL : 0.988

λH : 0.694

τL : 0.180

τH : −0.059
1.34 4.64 0.212

0.043

−0.061

Affine
τL0 : −0.140

τH0 : 0.095

τL1 : 0.151

τH1 : 0.224
1.39 5.20 0.199

0.126

−0.137

Mirrlees 1.46 5.20 0.200
0.103

−0.136
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