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Abstract

This paper studies identi�cation and estimation of discrete games in large networks,

with an application to peer e¤ects on smoking in friend networks. Due to the presence of

multiple equilibria, the model is not point identi�ed. We adopt the partial identi�cation

approach by constructing moment inequalities on choice probabilities of subnetworks.

Doing so not only signi�cantly reduces the computational cost, but also enables us to

�We are grateful to Dan Ackerberg, Richard Blundell, Andrew Chesher, Aureo de Paula, Sergio Firpo,

Yoshi Nishiyama, Peter Phillips, Vladimir Ponczek, and participants at various seminars and conferences for

their comments that have greatly improved the paper. This research uses data from Add Health, a program

project directed by Kathleen Mullan Harris and designed by J. Richard Udry, Peter S. Bearman, and Kathleen

Mullan Harris at the University of North Carolina at Chapel Hill, and funded by grant P01-HD31921 from

the Eunice Kennedy Shriver National Institute of Child Health and Human Development, with cooperative

funding from 23 other federal agencies and foundations. Special acknowledgment is due Ronald R. Rindfuss

and Barbara Entwisle for assistance in the original design. Information on how to obtain the Add Health

data �les is available on the Add Health website (http://www.cpc.unc.edu/addhealth). No direct support

was received from grant P01-HD31921 for this analysis.
yDepartment of Economics, Vanderbilt University, tong.li@vanderbilt.edu.
zAntai College of Economics and Management, Shanghai Jiao Tong University, li_zhao@sjtu.edu.cn.

1



�nd consistent estimator of the moment conditions even when the network is large and

the friendship relationship structure varies signi�cantly among networks. Monte Carlo

studies are conducted to evaluate the performance of the subnetwork approach. In the

application using the Add Health data, we �nd signi�cant and positive peer e¤ects on

smoking.



1 Introduction

Peer e¤ects play a central role in in�uencing individual behavior. In recent years, there

is an exploding interest in studying interactions in social networks. For example, there is

empirical evidence of peer e¤ects on educational achievements (Zimmerman 2003, Calvó-

Armengol, Patacchini and Zenou 2009), employment (Calvo-Armengol and Jackson 2004),

health outcomes (Cohen-Cole and Fletcher 2008, Krauth 2006, Nakajima 2007, Badev 2013),

risky behavior taking (Gaviria and Raphael 2001, Clark and Loheac 2007), adoption of new

technology (Conley and Udry 2010), among others. Social interaction can be modeled as a

system of equations where each equation is a regression of one person�s action on the actions

of his or her peers. This framework is widely used in studying peer e¤ects on a continuous

outcome. Whereas the identi�cation of peer e¤ects model with continuous outcomes has

been studied by Manski (1993) and Bramoullé, Djebbari and Fortin (2009), identi�cation

and estimation issues of the model with discrete outcomes are not well addressed.

This paper develops an empirical method to study peer e¤ects on discrete choices in large

social networks. Our framework extends the linear network model in Bramoullé, Djebbari

and Fortin (2009) to the case of binary outcomes. Our model belongs to a large and growing

literature on discrete games of complete information, which includes entry game as a special

case. It has been well known in the entry literature that due to the presence of multiple equi-

libria, estimating strategic interaction of discrete outcomes requires either strong assumptions

or special econometric tools (Bjorn and Vuong 1984, Bresnahan and Reiss 1991a, Berry 1992,

Tamer 2003, Ciliberto and Tamer 2009, Andrews, Berry and Jia 2004).1 While both peer ef-

fects model and entry model study strategic interaction of discrete choices, existing methods

for entry games is not suitable to estimate games in networks because the peer e¤ects model

is di¤erent from the entry model in a number of ways.

One empirical challenge that is new to games in networks is due to the large number

of agents in a network. To the best of our knowledge, all applications in discrete games of

complete information study strategic interaction among a handful of agents (Bjorn and Vuong

1For a survey on econometric approaches to games with multiple equilibria, see de Paula (2013).
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1984, Bajari, Hong and Ryan 2010, Jia 2008, Krauth 2006, Soetevent and Kooreman 2007).

There are various reasons why identi�cation and inference of large games are di¢ cult. First,

point identi�cation relies on the knowledge of all the equilibria of a game. In practice the

set of equilibria is usually calculated by enumerating all outcomes of the game and checking

whether each of them is an equilibrium. The number of outcomes grows at an exponential

rate of the number of agents. Therefore, obtaining the set of equilibrium for games in

networks is computationally demanding. Second, when a game is played by many agents,

the sets of equilibria vary signi�cantly across games, making it harder to �nd a reasonable

assumption of equilibrium selection mechanism that is needed for point identi�cation. Also

with a large number of agents, if the individual shocks are dependent, the computation of the

joint likelihood becomes intractable if not impossible. Third, existing partial identi�cation

approaches could not handle large games as they check moment conditions of all outcomes

of the game. Each moment condition needs to be consistently estimated by a large number

of networks of the same outcome. Since the number of outcomes is large, the number of

networks needed for constructing moment conditions is enormous. In practice we may not

have enough number of networks of the same outcome to construct moment conditions for

all outcomes of the game.

The variation in the network structure adds further challenges in estimating peer e¤ects.

An individual�s action depends on whom he or she connects with. This is in contrast to entry

games, in which the �network�is �xed in the sense that every �rm interacts with all others

�rms in a market. The peer e¤ects model has an additional variation in friend relationship.

The moment conditions, in the partial identi�cation approach, need to be constructed for

each network structure. For the same reason as above, there may not be enough observations

of the same friend relation to calculate empirical probabilities, therefore partial identi�cation

approaches based on moment conditions of full networks are not feasible in practice.

The novelty of this paper is to address computational and consistency issues by partially

identifying peer e¤ects via subnetworks. Though the number of outcomes of a full network is

enormous, the number of outcomes in subnetworks can be tractable. There is one additional
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issue we need to address. Because people in a subnetwork interact with people outside the

subnetwork, moment conditions of subnetworks need to consider these potential interactions.

We seek conditions that will hold regardless of what actions people outside networks choose.

Since moment conditions do not rely on the information outside the subnetwork, the number

of moments needed to check depends on the features of the subnetwork only.

In the Monte Carlo study, we demonstrate that moment conditions of subnetworks are

not only tractable, but also informative. The subnetwork approach successfully excludes

parameter values that are far from the true parameters of the data generating process. By

using the Monte Carlo examples, we also illustrate the factors that in�uence the performance

of our subnetwork approach. Generally, the subnetwork approach performs better if the

number of links connected to individuals inside and outside networks is small. This is because

our approach cuts the dependence between agents inside and outside the subnetwork in

exchange for computation tractability. Since many of the real world applications have sparse

networks, our approach will be well suited for these applications.

The �nal part of this paper studies peer e¤ects on smoking using data from the National

Longitudinal Study of Adolescent to Adult Health (Add Health). Add Health is a nation-

wide survey of health related questions. This data set also contains information on friend

nomination, from which we could form friend networks. The friend network revealed in Add

Health data is very sparse. Using our econometric method, we �nd signi�cant and positive

peer e¤ects of smoking.

This paper contributes to the peer e¤ects literature by proposing a computationally fea-

sible way of estimating peer e¤ects on discrete outcomes. Our framework is closely related

to Manski (1993) and Bramoullé, Djebbari and Fortin (2009) except that we consider dis-

crete actions, and is also related to Krauth (2006) and Soetevent and Kooreman (2007),

which both consider discrete choice models with social interactions assuming that the ob-

served choices represent an equilibrium of the game played by all the interacting agents to

get around the multiple equilibria problem.2 Multiple equilibria is not an issue if individuals

2de Paula (2009) considers inference in a synchronization game with social interactions, where the model
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choose continuous actions. As described in Bramoullé, Djebbari and Fortin (2009), the char-

acteristics of friends�friend could be served as an instrumental variable for the peer e¤ect

in the linear model. However, the instrumental variable approach could not be extended to

the case of discrete choices. In the peer e¤ects literature, most of the empirical studies on

discrete choices follow Brock and Durlauf (2001) and Brock and Durlauf (2007), who model

individual behavior as a best response to the expected behavior of peer group and study

aggregate behavioral outcomes with social interactions imbedded in individual decisions.

This paper also adds to the growing literature of identi�cation and inference of discrete

games of complete information. For the best of our knowledge, all discussions of discrete

games focus on small number of agents. For tractable number of players, point identi�ca-

tion could be achieved in symmetric entry games (Berry 1992), by assuming or estimating

equilibrium selection mechanism (Bjorn and Vuong 1984, Bajari, Hong and Ryan 2010), or

by a large support condition (Tamer 2003). Partial identi�cation approaches are discussed

in Andrews, Berry and Jia (2004), Ciliberto and Tamer (2009), Galichon and Henry (2011),

Beresteanu, Molchanov and Molinari (2011) and Henry, Meango and Queyranne (2015). We

contribute to this literature by considering games in large but sparse networks. Though sharp

identi�cation is achievable in Galichon and Henry (2011), Beresteanu, Molchanov and Moli-

nari (2011) and Henry, Meango and Queyranne (2015), because of the variation in network

structure and the large size of the network, sharp identi�cation is extremely di¢ cult in the

case we consider. Therefore, this paper exploits necessary but not su¢ cient conditions of the

model as in Ciliberto and Tamer (2009).

Last but not the least, our work contributes to the new literature on the econometrics of

networks. One topic in this area focuses on network formation; some studies model network

formation as a complete information game (Sheng 2012, Uetake 2012) and others model net-

work as an incomplete information game (Leung 2015).3 Badev (2013) studies both network

formation and interactions in networks. This paper contributes to the literature by studying

can be viewed as a simultaneous duration model with multiple decision makers and interdependent durations.
3Graham (2014) formalizes an empirical model of network formation that allows for detecting homophily

when agents are heterogeneous.
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interactions in networks. Our work is related to Sheng (2012) in the sense that both papers

explore information from subnetworks to conduct inference. The objectives of our paper

and Sheng (2012) are di¤erent because her work considers network formation while we study

interactions in networks. While our approach does not attempt to model explicitly network

formulation as in Sheng (2012), since our approach allows the individual shocks to be depen-

dent, it provides a way to take into account network formulation as the dependence among

individual shocks could capture the possibility that individuals with the same attributes are

more likely to be friends.

The rest of paper is organized as follows. Section 2 describes our econometric framework

and discusses the empirical challenges caused by the network features. Section 3 starts with

an example of constructing moment conditions for a 2-person subnetwork game when the full

network is of size 4. Then we discuss identi�cation and inference in general cases. Section 4

is devoted to studying the performance of the subnetwork approach. Section 5 conducts an

empirical exercise of peer e¤ects on smoking. Section 6 concludes.

2 Model

2.1 Model Setup

Network A network can be described as a graph of nodes and edges. Each node represents

an agent, which can be a person or a �rm. Each edge connects one pairs of nodes and

represents a relationship, such as friendship.

Let V = f1; 2; ::Ng be the set of agents in the network. Links are non-directional.4 Let

gij = gji = 1 if i and j are connected, gij = gji = 0 otherwise. The collection of links forms

an n � n matrix called G, �lled with zeros and ones. We study interaction between agents,

taking the formation of network as given.5

4Our model can easily extend to a directional network. Because our focus is to study peer e¤ects in a

network, the assumptions of non-directional friend relationship is more appropriate.
5Estimating network formation is computationally intensive and often relies on partial identi�cation ap-

proach. See Sheng (2012) and Uetake (2012). In this paper, we assume network is exogeneouly determined.
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Figure 1: A Graph of 4-Person Network

Figure 1 illustrates a friend network of 4 individuals. Each link denotes a friend relation-

ship. In this example g12 = g21 = 1 because person 1 and 2 are connected. g13 = g31 = 0

because person 1 and 3 are not connected.

In the discussion later, we will develop our identi�cation strategy using the information

about subnetworks. A subnetwork consists of a subset of agents and the links associated with

these agents. The subnetwork A contains three types of information: 1) a set of players A; 2)

the links between agents in A: GA = fgijg, (i; j) 2 A; and 3) the number of links connecting

to agents outside the subnetwork nA = fnA;ig for 8i 2 A, where nA;i =
P
gij � 1(j 6=2 A).

For example, we may be interested in the subnetwork that consists of agents 2 and 3. Let

A = f2; 3g denote the set of agents inside the subnetwork. GA =

24 0 1

1 0

35 reveals that agents
2 and 3 are connected. nA = [1; 1] because both agents 2 and 3 have one link connecting

to agents outside the subnetwork. In inference, we will use (A;GA; nA) to construct moment

inequalities.

Utility Function Agents play a simultaneous game of complete information. Each indi-

vidual i chooses a binary action yi 2 f0; 1g. Normalize the utility of action 0 to 0. The utility

of the alternative action is a¤ected by person i�s characteristics xi, individual shock �i, and
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the average actions taken by individuals that are connected with i:

u(yi;xi; y�i;�; 
) = �xi + 


P
j2V gijyjP
j2V gij

+ �i; (1)

where 
 represents the endogenous (or peer) e¤ect (Manski 1993, Soetvent and Kooreman

2007). Assume 
 > 0, in which case 
 is also called a social multiplier. Under the framework

of games of complete information, � = (�1; �2; :::�N) is observed by all game players, and

is assumed to follow a joint normal distribution with zero mean and variance-covariance

matrix V that has unit diagonal terms and possibly nonzero o¤-diagonal terms allowing for

correlation among the individual shocks/types.6

Agent i chooses the action that has a higher utility, hence

yi = 1(u(yi;xi; y�i;�; 
) > 0):

In this paper, we adopt the standard form of utility function that assumes a linear func-

tional form and homogeneous e¤ects. This is the model used in early studies, e.g. Bresnahan

and Reiss (1991a) and Berry (1992). Our identi�cation result can extend to non-linear utility

functions and cases where the interaction e¤ects are heterogeneous. For example, we can let


 vary across i or j as in Ciliberto and Tamer (2009). In addition, our framework could be

extended to the case of negative strategic interactions, only by a minor change in moment

conditions. It is also feasible to allow for a correlation between shocks, if we consider the

correlation as one additional parameter to be estimated. For the illustrative purpose, in

what follows, we keep the simple form of utility function with a positive and homogeneous

interaction e¤ect 
.

Throughout the paper, we consider the benchmark model that has the utility function

given in (1). Our approach can be readily extended to the following general form of the

6Such a correlation, if positive, represents the homophily principle, as discussed in Easley and Kleinberg

(2010), McPherson, Smith-Lovin and Cook (2001) and Liu and Xu (2015). Assuming that agents know

which equilibrium solution is selected to play and that the equilibrium selection mechanism is a deterministic

function of x, Liu and Xu (2015) consider the Brock and Durlauf (2001) model with homophily and proposes

semiparametric estimation. Our approach can be extended to the model in Liu and Xu (2015) when multiple

equilibria are allowed.
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utility function

u(yi;xi; y�i;�; 
) = �xi + 
 

 P
j2V gijyjP
j2V gij

!
+ �

P
j2V gijxjP
j2V gij

+ �i;

where  (�) is an increasing function, and � represents the contextual or exogenous e¤ect

(Manski 1993).

It should also be noted that we focus on games of complete information. Actions are

made in response to actual actions of others rather than to the belief of actions derived from

the distribution of other players�types. Complete information is a reasonable assumption in

applications such as the peer e¤ects model, because an individual plays best response to the

realized action of his or her peers. The second reason why we focus on complete information

is because the equilibrium solutions to complete and incomplete games di¤er from each other

signi�cantly. To the best of our knowledge, the bound estimation approach has not yet be

fully developed to estimate games of incomplete information.

Equilibrium We focus on pure strategy Nash equilibrium. An outcome is a Nash equi-

librium if all players play best response to each other. Let x be the matrix of observed

characteristics of all agents and let � be the vector of unobserved characteristics. The possi-

ble Nash equilibrium of a game is determined by the utility function, which is a function of

individual characteristics (x; �) and the set of parameters � = f�; 
g. Let E(�;x;�) denote

the set of Nash equilibria, E(�;x;�) is de�ned as

E(�;x;�) = fy 2 f0; 1gN : yi = 1(�xi + 


P
j2V gijyjP
j2V gij

+ �i > 0); 8i 2 V g;

E(�;x;�) may contain one or more outcomes, depending on the realization of � and x. In

the example above, both y1 = (0; 0; 0; 0) and y2 = (1; 1; 1; 1) are equilibria of games such that

�(�xi + 
) < �i < ��xi, 8i 2 V . There are many other combinations of multiple equilibria

for games with di¤erent utility pro�les.7

7For example, both y1 = (0; 0; 0; 0) and y3 = (0; 1; 1; 0) are equilibria of games such that �i < �(�xi+ 1
2 ),

8i 2 f1; 4g and �(�xi + 1
2 ) < �i < ��xi, 8i 2 f2; 3g.
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The presence of multiple equilibria is not a special feature of games in network, but

rather a common feature in discrete games. Various approaches have been proposed to

estimate discrete games (Bjorn and Vuong 1984, Bresnahan and Reiss 1991a, Berry 1992,

Tamer 2003, Andrews, Berry and Jia 2004, Ciliberto and Tamer 2009, Galichon and Henry

2011, and Beresteanu, Molchanov and Molinari 2011). An entry game can be thought of as a

special case of games in networks, where all agents connect to each other. When agents are

not necessarily linked to all other agents, the property of multiple equilibria is much harder

to describe, because the set of equilibria depends on the network structure as well. More

importantly, in applications, we usually deal with networks with a large number of nodes and

varying sizes. In the next subsection we elaborate on the reasons that make the estimation

of games in network more challenging.

2.2 Empirical Challenges of Estimating Discrete Games in Large

Networks

As discussed in Bresnahan and Reiss (1991a), Tamer (2003) and Ciliberto and Tamer (2009),

when a game has multiple equilibria, the probability of outcomes are not well-de�ned without

information on equilibrium selection. Traditional methods such as the likelihood approach

and the method of moments cannot be used. Games in networks have other features that

complicate identi�cation and estimation. The network we consider contains more than a few

agents. Data may contain networks of di¤erent sizes and structures. In this subsection we

will explain why existing approaches for estimating discrete games are not easily extendable

for games in networks.

In principle, point identi�cation could be achieved if equilibrium selection mechanism

is given (Bjorn and Vuong 1984, Jia 2008), or estimated (Bajari, Hong and Ryan 2010,

Narayanan 2013). Point identi�cation requires the calculation of all the equilibria of a game.

A standard way of obtaining the set of equilibria is to enumerate all the possible outcomes

of the game and check if each of them is an equilibrium. This method is not feasible in

practice if the number of agents is large, because the number of possible outcomes that need
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to be checked grows at an exponential rate. For example, in a binary game with 20 agents,

the number of possible outcomes is 220 � 106. In the data we consider, the majority of

friend networks have sizes range from 70 to 90. It will be computationally costly to check

such large number of outcomes for a network. Moreover, even if we are able to �nd ways

to calculate all the possible equilibria of all games, point identi�cation is still questionable

because the composition of multiple equilibria varies signi�cantly across games. It is hard

to justify that the assumed selection mechanism is the true selection mechanism of the data

generating process.

The partial identi�cation approach does not rely on assumptions on equilibrium selection

or calculation of all equilibria of the model. Thus it is more suitable for the model that

is considered in this paper. Following the idea of Ciliberto and Tamer (2009), moment

conditions could be constructed by imposing bounds on the probability of the game outcomes.

In the 4 person example, y = f0; 0; 0; 0g will be observed only if every players play best

response. The upper bound of observing y is the probability that ui < 0, 8i, therefore

Pr(y) � Pr(ui < 0;8i). In a game with N players, there are a total of 2N upper bounds that

could be used to construct moment conditions.

There are a number of concerns that can arise from constructing bounds like this. First,

because the number of possible outcomes increases exponentially, the number of moment

inequalities that we need to check grows at the exponential rate as well. In a network with 70

agents, the total number of outcomes of full network is more than 1021. It is computationally

infeasible to check so many number of moment conditions. More seriously, each individual

moment condition cannot be consistently estimated if the number of outcomes is enormous.

We consider the case where the number of agents is large in data, but we do not require the

number of networks to be large. There will not be enough networks of the same outcome

available in data to construct the empirical probability of each outcome, therefore moment

conditions cannot be veri�ed.

Another problem arising from games of network is the variation of structure among net-

works. In an entry game, each market has the same number of potential entrants, whose
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decision is a¤ected by all the rest of players in the market. In the peer e¤ects model, each

disconnected network is an analogue of a market in an entry game. However, the number

of people and the friendship relationship among them are generally di¤erent across discon-

nected networks. The outcome of a network depends on how players are linked. If a moment

inequality is placed on the outcome of the full network, there may not be enough number of

networks of the same size and structure to construct moment conditions of the game.

In this paper, instead of constructing moment conditions of outcomes of full networks,

we address the computation and consistency issues by exploring properties of subnetworks.

Because there are links that connect agents inside and outside the subnetwork, we have to

consider the interaction between agents inside and outside the subnetwork as well. The

novelty of our method is to �nd conditions of subnetwork that are satis�ed regardless of

which actions people outside the network take. By this additional relaxation in constructing

upper bounds, the moment conditions can be easily veri�ed. We detail our identi�cation

strategy in the next section.

3 Identi�cation and Inference via Subnetworks

3.1 An Illustration

In the 4-person peer e¤ects model in Figure 1, assuming no control variable x, agents�actions

are characterized by the following set of equations:

y1 = 1(
 � y2 + �1 > 0);

y2 = 1(
 � y1 + y3
2

+ �2 > 0);

y3 = 1(
 � y2 + y4
2

+ �3 > 0);

y4 = 1(
 � y3 + �4 > 0):

As before, assume � i:i:d:� N(0; 1). We temporarily assume 
 > 0.

Consider a subnetwork that consists of agents 2 and 3. Our goal is to �nd moment

inequalities for outcomes of the subnetwork, for example, the probability of observing the
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Figure 2: An Illustration of Subnetwork

event

A := (y2 = 0; y3 = 1):

(y2 = 0; y3 = 1) is observed if and only if one of the following outcomes of the full network

is observed.

B1 := (y1 = 0; y2 = 0; y3 = 1; y4 = 0);

B2 := (y1 = 0; y2 = 0; y3 = 1; y4 = 1);

B3 := (y1 = 1; y2 = 0; y3 = 1; y4 = 0);

B4 := (y1 = 1; y2 = 0; y3 = 1; y4 = 1):

By checking the best response functions for each agents, it is veri�able that B1 is an Nash

equilibrium of a game if and only if � 2 R1, where

R1 := f� 2 R4 : 
 � 0 + �1 < 0; 
 �
1

2
+ �2 < 0; 
 � 0 + �3 > 0; 
 � 1 + �4 < 0g:

If � =2 R1, B1 cannot be observed because it is not a Nash equilibrium of the game. If � 2 R1,

the game may have other equilibria in addition to B1. Whether or not observing B1 depends
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on how multiple equilibria are selected. Therefore � 2 R1 is a necessary condition of observing

B1.

Similarly, � 2 R2 is a necessary condition of observing B2, where

R2 := f� 2 R4 : 
 � 0 + �1 < 0; 
 �
1

2
+ �2 < 0; 
 �

1

2
+ �3 > 0; 
 � 1 + �4 > 0g;

� 2 R3 is a necessary condition of observing B3, where

R3 := f� 2 R4 : 
 � 0 + �1 > 0; 
 � 1 + �2 < 0; 
 � 0 + �3 > 0; 
 � 1 + �4 < 0g;

And � 2 R4 is a necessary condition of observing B4, where

R4 := f� 2 R4 : 
 � 0 + �1 > 0; 
 � 1 + �2 < 0; 
 �
1

2
+ �3 > 0; 
 � 1 + �4 > 0g:

De�ne H as

H := f� 2 R4 : 
 � 1
2
+ �2 < 0; 
 �

1

2
+ �3 > 0g:

It is easy to check that Ri � H,8i = 1; 2; 3; 4:

Putting these together, we get

Pr(A) = Pr(B1 or B2 or B3 or B4)

� Pr(� 2 (R1 [R2 [R3 [R4))

� Pr(� 2 H): (2)

By replacing H and A with their expressions, the following inequality for the probability

of the outcome in subnetwork A = f2; 3g is satis�ed :

Pr(y2 = 0; y3 = 1) � Pr(
 �
1

2
+ �2 < 0; 
 �

1

2
+ �3 > 0): (3)

Note that because y2 = 1(
 � y1+y3
2

+ �2 > 0) and y3 = 1, 
 � 1
2
+ �2 < 0 is a necessary

condition for y2 = 0 when y1 = 0. Similarly, because y3 = 1(
 � y2+y42
+ �3 > 0) and y2 = 0,


 � 1
2
+ �3 > 0 is a necessary condition for y3 = 1 when y4 = 1. The upper bound is coincident
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with the conditions that requires each player i inside the subnetwork to play best response

to the hypothetical scenario such that player i�s all friends outside subnetwork A take the

same action as player i does.

3.2 Moment Conditions in General Cases

For the full network consists of notes V = f1; 2; :::Ng, let yV denote the outcome of all players

in V . yV is a Nash equilibrium of a game if each individual in V plays best response given the

actions of all other players in the network. Player i chooses action 1 if the utility of choosing

action 1 is positive, because the utility of the alternative is normalized to 0. Player i chooses

the alternative if the utility of action 1 is negative.

Let

R(yV ;x; �) := f� 2 RN : u(yi; xi; y�i; �) � 0; 8yi = 1; i 2 V ;

u(yi; xi; y�i; �) � 0; 8yi = 0; i 2 V g; (4)

denote the set of games of which yV is a Nash equilibrium. If the utility function takes

the form as in Eq. (1) , R(yV ;x; �) is equivalent to

R(yV ;x; �) = f� 2 RN : (2 � yi � 1) � (�xi + 


P
j2V gijyjP
j2V gij

+ �i) � 0; 8i 2 V g: (5)

yV will only be observed if it is an equilibrium of the game. Hence

Pr(yV jx) � Pr(� 2 R(yV ;x;�)): (6)

This is an example of moment inequalities of full network. As discussed in the previous

section, moment conditions of full network cannot be consistently estimated if the size of

network is large, or if the interaction matrix varies across networks. Therefore we need to

seek alternative moment conditions.

Recall that a subnetwork contains three types of information: the list of agents A, the

connects among agents in the subnetwork GA, and the number of connections to agents
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outside the subnetwork nA. Theorem 1 shows how moments of subnetwork are bounded

above by moments predicted by the model. Moment inequalities like this could be used to

make partial identi�cation of the original model.

Theorem 1 Consider a simultaneous game of complete information in network V = f1; 2; :::Ng

with the utility function

yi = 1(�xi + 


P
j2V gijyjP
j2V gij

+ �i > 0);

where 
 > 0 and �i
i:i:d:� N(0; 1), 8i 2 V . Let A be a subset of V . De�ne

H(yA;x; GA; nA;�)

:= f� 2 RN : (2 � yi � 1) � (�xi + 


P
j2V gij[1(j 2 A) � yj + 1(j =2 A) � yi]P

j2V gij
+ �i) � 0; 8i 2 Ag

= f� 2 RN : (2 � yi � 1) � (�xi + 


P
j2A gij � yj + nA;i � yiP

j2A gij + nA;i
+ �i) � 0; 8i 2 Ag

The following inequality holds for any A � V :

Pr(yAjx; GA; nA;�) � Pr(� 2 H(yA;x; GA; nA;�)): (7)

H(yA;x; GA; nA;�) is the key innovation of our subnetwork approach. Besides that the

conditions of � are placed on the agents in the subnetwork rather than all agents, what is

special about H(yA;x; GA; nA;�) is that yj in R(yV ;x;�) is replaced by 1(j 2 A) � yj + (j =2

A) � yi. Mathematically, this new term takes value yj for agent j inside the subnetwork and

takes value yi for j outside the subnetwork. In other words, for individual i, we assume all of

his or her friends outside the subnetwork takes the same value as i takes, regardless of what

their true actions are. This is because when we focus on actions in the subnetwork, we look

for conditions that will be satis�ed regardless of what action agents outside the subnetwork

take. When we construct the upper bound for Pr(yA), we seek actions that will make yA

most likely to happen. When 
 > 0, individual i will gain extra utility of taking an action if

a larger percent of his or her friends take the same action. Following this intuition, for i 2 A
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who has friends outside the subnetwork, yi = 0 is more likely to occur if i�s �outside friends�

all take action 0; alternatively, yi = 1 is more likely to occur if i�s �outside friends�all take

action 1, that is why we replace the actions of agents outside the network by the action of

player i in the de�nition of H(yA;x; GA; nA;�).

As an extension of Theorem 1, we can also consider the case where the interaction e¤ect

is negative. In this case, we replace the actions of agents outside the network by the opposite

of player i�th action. This is summarized in the next corollary:

Corollary 2 Consider a simultaneous game of complete information in network V = f1; 2; :::Ng

with the utility function

yi = 1(�xi � 


P
j2V gijyjP
j2V gij

+ �i > 0); (8)

where 
 > 0 and �i
i:i:d:� N(0; 1), 8i 2 V . Let A be a subset of V . De�ne

~H(yA;x; GA; nA;�)

:= f� 2 RN : (2 � yi � 1) � (�xi � 


P
j2V gij[1(j 2 A) � yj + 1(j =2 A) � (1� yi)]P

j2V gij
+ �i) � 0; 8i 2 Ag

= f� 2 RN : (2 � yi � 1) � (�xi � 


P
j2A gij � yj + nA;i � (1� yi)P

j2A gij + nA;i
+ �i) � 0; 8i 2 Ag

The following inequality holds for any A � V :

Pr(yAjx; GA; nA;�) � Pr(� 2 ~H(yA;x; GA; nA;�)): (9)

With an unknown sign of 
, we can modify the set H(yA;x; GA; nA;�) to be8

H(yA;x; GA; nA;�)

= f� 2 RN : (2 � yi � 1) � (�xi

+


P
j2A gij � yj + nA;i � [(1� sgn(
))=2 + sgn(
)yi]P

j2A gij + nA;i
+ �i) � 0; 8i 2 Ag:

8We thank Yoshi Nishiyama for making this suggestion.
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3.3 Inference and Estimation

Our inference procedure is based on subnetworks. For each subnetwork A, the model predicts

moment inequality (7) if the interaction e¤ect is positive.

Suppose we are interested in subnetwork A, let yA denote all the possible outcomes of A.

The identi�ed set is

�I = f� : Pr(yAjx; GA; nA) � Pr(� 2 H(yA;x; GA; nA;�)) 8yA 2 YAg;

where Pr(yAjx; GA; nA) is the choice probability of the data.

Let m(yA;x; GA; nA;�) = P (yAjx; GA; nA)� Pr(� 2 H(yA;x; GA; nA;�)), the model pre-

dicts m(yA;x; GA; nA;�) � 0. Let m(x; GA; nA;�) be the vector of of these moment condi-

tions for all outcomes of subnetwork A. Our inference procedure uses the objective function

Q(�) = E(x;GA;nA)jj(m(x; GA; nA;�))+jj

where (x)+ = max(x; 0), and jj � jj is the Euclidean norm.9

To make inference, we use a sample analogue of Q(�). In the case where there are N

nextworks, and N ! 1, for network i, we choose all the subnetworks of the same size A,

and constructe the sample analogue of the criterion function as

QS(�) =
1

N

NX
i=1

1

Si

SiX
s=1

jj(m(xi;si ; Gi;A; ni;A;�))+j

where Si is the number of all the subnetworks of the same size A in network i. On the other

hand, if there is only one large network, and assume that there is no correlation among the

��s, then we can choose all the non-overlapping subnetworks of the same size A, and construct

the sample analogue of the criterion function as

9Clearly our approach o¤ers considerable advantage when allowing the individual shocks to be dependent,

as what is required here to compute is the multiple integral in Pr(� 2 H(yA;x; GA; nA;�)) with the dimension

equal to the number of agents in the subnetwork. If the number of agents is less than or equal to 3, the

integral is straighforward to calculate. Otherwise, one can use the GHK simulator to approximate the integral

(see, e.g. Geweke (1991), B½orsch-Supan and Hajivassiliou (1993), and Keane (1994)).
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QS(�) =
1

S

SX
s=1

jj(m(xs; GAt ; nAt ;�))+jj

where S is the number of all the non-overlapping subnetworks of the same size A.

Inference could be made by subsampling as discussed in Chernozhukov, Hong and Tamer

(2007) and Ciliberto and Tamer (2009). The con�dence set is

�̂I = f� : S � (QS(�)�min
k
QS(k)) � c� (�)g:

4 Monte Carlo Study

<To be completed>

5 Application

In this application, we study peer e¤ects on smoking using the data from the National

Longitudinal Study of Adolescent to Adult Health (Add Health). Add Health is a nation-

wide longitudinal survey of adolescent health. We use Wave I in Home Survey, which collects

social, economic and physical information of teenagers from grades 7 to 12 in year 1993 and

1994. Add Health is one of the most commonly used data set in studying peer e¤ects (e.g.

Gaviria and Raphael 2001 on juvenile behavior, Calvó-Armengol, Patacchini and Zenou 2009

on education, Trogdon, Nonnemaker and Pais 2008 on overweight, Cohen-Cole and Fletcher

2008 on obesity). What is special about Add Health is that respondents are asked to nominate

their friends. The information on family, social background, activities together with friend

nomination provides a unique opportunity to study interactions among friends controlling

for other social and economic in�uences.

Table 1 reports summary statistics of our key variables. There are a total of 20,745

observations in the survey. The key dependent variable, smoke, is an indicator of whether a

correspondent smokes on a regularly basis. On average 26% of the respondents are smokers.
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Table 1: Summary Statistics

Full Sample NumF > 0

Mean Stdev Mean Stdev

Obs 20,745 9,075

Smoke 0.26 0.44 0.27 0.38

Age 15.70 1.74 15.70 1.70

School_program 0.92 0.27 0.93 0.26

Gender 0.49 0.50 0.49 0.50

Parent_smoke 0.26 0.44 0.24 0.43

log(Income) 3.52 0.81 3.58 0.81

Race 0.72 0.45 0.62 0.49

NumMF 0.80 1.12

NumFF 0.85 1.13

The control variables include age, gender, race, parents� smoking behavior and household

income. We further include a dummy variable indicating whether a person�s school has

prevention programs for smoking. We also report summary statistics for individuals that

have at least one friend. We will use this sample to conduct estimation for peer e¤ects.

The goal of our study is to identify factors that in�uence smoking decision, especially the

peer e¤ects. Our model is as follows

yi = 1(�xi + 


P
j2V gijyjP
j2V gij

+ �i);

where V is the set of all individuals in the data set, �i � i:i:d: N(0; 1). yi = 1 if person i

smokes, yi = 0 otherwise. xi are control variables. We set gij = gji = 1 for fi; jg 2 V as long

as one of persons i and j nominates the other as a friend.

We start with estimating a linear model of peer e¤ects using ordinary least squares (OLS)

and the instrumental variable (IV) approach. Although the dependent variable is binary,
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Table 2: OLS and Linear IV Estimation

OLS Linear IV

Coef. Std.Err. Coef. Std.Err.

Sample NumF > 0 NumF > 0

Obs 6545 6545

Peer_e¤ects 0:359� 0:014 0:637� 0:080

Age 0:025� 0:003 0:015� 0:004

School_program 0:017 0:019 0:015 0:020

Gender 0:004 0:010 0:002 0:010

Parent_smoke 0:095� 0:012 0:060� 0:013

log(Income) 0:002 0:007 0:003 0:007

Race 0:105� 0:011 0:060� 0:017

Constant �0:333 0:056 �0:219 0:066

we temporarily treat them as a continuous outcome because the properties of continuous-

outcome network models are well studied (Bramoullé, Djebbari and Fortin (2009)). Coef-

�cients and standard errors are reported in Table 2. In the IV approach, we use friends�

characteristics as instrumental variable for peer�s average outcome. The marginal peer ef-

fect is estimated at 0.359 in OLS estimation and 0.637 in IV estimation. The linear model

shows signi�cant coe¢ cients of peer e¤ects, age, parent and race; while the e¤ects of school

smoking-prevention programs, gender and household income are insigni�cant.

Next, we conduct two Probit estimations as shown in Table 3. The �rst one is a naive

Probit estimation of peer e¤ects on smoking using data of people who have friends. The

estimation is inconsistent due the presence of endogenous peers�actions. The second one is

a Probit estimation of smoking using data of people who report no friend. The coe¢ cients

would not be a¤ected by the endogeneity issue as there is no peer e¤ects variable in the

model because these people report no friends. In one of our structural estimations we use
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Table 3: Probit Estimation

Probit Probit

Coef Std.Err. Mar.E¤. Coef Std.Err. Mar.E¤.

Sample NumF > 0 NumF = 0

Obs 6,545 11,657

Peer_e¤ects 1:054� 0:045 0:297

Age 0:090� 0:011 0:025 0:104� 0:007 0:032

School_program 0:064 0:070 0:018

Gender 0:024 0:036 0:007

Parent_smoke 0:007� 0:042 0:069 0:342� 0:030 0:104

log(Income) 0:007 0:023 0:002

Race 0:388� 0:041 0:109 0:525� 0:027 0:159

Constant �0:267� �0:163 �2:741 0:121

this Probit estimation as the �rst step and conduct inference on peer e¤ects only. Doing so

signi�cantly improves the tightness of con�dence interval for peer e¤ects.

Results from the naive Probit estimation show that the marginal e¤ect of peer e¤ects is

30%, which means if half of a person�s friends smoke, that person�s probability of smoking

would increase by 15%. However, the Probit estimation could be misleading because it treats

friend�s smoking behavior exogenous. If there is indeed peer e¤ects on smoking, an unobserved

factor that in�uences person i�s behavior can be correlated with the behavior of his/her

friends�, because his/her friends�actions are a¤ected by his/her behavior via peer e¤ects.

To deal with the endogeneity problem of friends� actions, we next turn to our structural

approach.

We make inference using subnetwork of size 2 for computational tractability. The sparsity

of the data set also supports our choice of using small subnetworks. The last two rows of

Table 1 show that the average number of male and female friends nominated by an individual
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Table 4: Number of Nominated Friends

Obs Frequency

NumF = 0 6045 29.13%

NumF = 1 6738 32.48%

NumF = 2 4453 21.47%

NumF �2 17206 83.09%

is 0:80 and 0:85, respectively. Table 4 reports more information about friend nomination.

About 2=3 of respondents nominate zero of one friend. 83% of people nominate two friends

or fewer. This suggests that each individual only connects to a few people. Inference based

on small subnetworks is therefore informative.

The moment conditions are tested by 6,642 pairs of agents that are friends. For subnet-

works of 2 agents, there are two adjacent matrices GA, either the two connects or disconnects.

The upper bounds are higher if agents are not connected because the percentage of friends

outside the subnetwork is larger. Moment inequalities are more likely to be violated for pairs

of agents who are connected. To reduce the computational burden, we only check inequalities

for pairs of agents that are friends. This is equivalent to checking the conditional moment

inequalities given a �xed GA.

The �nal result is reported in Table 5. In the one-step approach, we make inference on

all parameters. The con�dence interval of peer e¤ects estimated by the structural approach

is (0.762, 1.471). This suggests positive and signi�cant peer e¤ects on smoking. Though

the subnetwork approach concludes larger con�dence intervals as compared to the Probit

estimation, it produces more convincing results because it takes into account the endogeneity

of friends � actions due to social interactions. It should also be noted that the criterion

function evaluated at the Probit estimator is 0.014, while the minimum of criterion function

is 0.003 and the max of criterion function of con�dence set is 0.005. The Probit estimate

lies outside the con�dence set, and is therefore unlikely to be the true parameter of the data
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Table 5: Structural Appraoch

One-Step Approach Two-Step Approach

Con�dence Interval Mar.E¤. Coef. Std.Err Mar.E¤.

Peer_e¤ect (0:762; 1:471) (0:194; 0:457) (0:948; 1:252) (0:310; 0:446)

Age (�0:026; 0:077) (�0:006; 0:019) 0:104 0:007 (0:034; 0:037)

Parent_smoke (�0:191; 0:231) (�0:050; 0:061) 0:342 0:030 (0:112; 0:122)

Race (�0:151; 0:327) (�0:038; 0:087) 0:525 0:027 (0:172; 0:187)

Constant (�2:202;�0:540) �2:741 0:121

generating process.

We also conduct a two-step structural inference, where in the �rst step, we run Probit

estimation of smoking using the data from the individuals who report no friend and in the

second step, we �x the coe¢ cients of individual characteristics obtained in the �rst step and

conduct inference on peer e¤ects only. As shown in Table 1, the summary statics of people

with and without friends are very similar. We could therefore think that individual charac-

teristics a¤ect these two groups of people in a similar way. From this two-step procedure, we

obtain a much tighter bound of peer e¤ects, which is (0.949,1.252).

6 Conclusion

This paper studies identi�cation and estimation of peer e¤ects on binary choices in social

networks. Our framework belongs to discrete games of complete information. As is well-

known in the entry literature, identifying discrete games is di¢ cult in general because the

model often yields multiple equilibria. The inherited network feature of our model makes

identi�cation and estimation even more challenging.

The existing econometric methods that rely on the choice probabilities of the full game are

not feasible in our case because we consider networks that are large and have varying friend-
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ship relationships. Not only does the number of outcomes grow exponentially, the number of

observations of the same network structure is not su¢ cient to construct moment conditions.

Therefore, we seek alternative moment conditions that can be consistently estimated.

The novelty of our identi�cation strategy is the use of subnetworks. A subnetwork is

a collection of agents, whose actions depend on actions of their friends, both inside and

outside the subnetwork. Because we seek conditions that hold regardless the behavior of the

agents outside the subnetwork, the bound of an outcome of a subnetwork is constructed by

replacing the actions of the agents outside the subnetwork but connected to an individual

inside by this individual�s action. Because peer e¤ects are positive, such bound gives the

highest probability of observing an outcome. We therefore get a set of moment inequalities

that could be used to partially identify the model.

Our estimation strategy is closely related to Ciliberto and Tamer (2009). The criterion

function penalizes a parameter if upper bounds predicted by the parameters are less than the

empirical choice probabilities of the subnetwork. The identi�ed set is the set of parameters

whose criterion function is less than a threshold, calculated by subsampling.

The Monte Carlo examples presented in this paper study the performance of our approach.

The subnetwork approach is able to provide an informative inference on parameters of the

model, especially when the network is sparse. We apply our identi�cation and estimation

strategy to study peer e¤ects on smoking using the data from the National Longitudinal

Study of Adolescent to Adult Health. The identi�ed set suggests positive and signi�cant

peer e¤ects on smoking.

The moment conditions used in this paper are only a small part of conditions implied

by the model. The identi�cation set could shrink further if more informative and easily

veri�able conditions are considered. Sharp identi�cation based on our approach is left for

future research.
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Appendix

Proof of Theorem 1: For a given subnetwork A, let yA and y�A denote the actions of all

players inside and outside A. De�ne

R(yA; y�Ajx; GA; nA;�) := f� 2 RN : (2 � yi � 1) � (�xi + 

P
j2V gijyjP
j2V gij

+ �i) � 0 ;8i 2 Ag

A necessary condition for (yA; y�A) being an outcome of the game is that � 2 R(yA; y�Ajx; GA; nA;�):

Otherwise players in A don�t play best response to the actions of other players, therefore (yA; y�A)

is not a Nash equilibrium of the game.

On the other hand, for i 2 A such that yi = 0, we have yi � yj for 8j 2 V , therefore

�xi + 


P
j2V gij [1(j 2 A) � yj + 1(j =2 A) � yi]P

j2V gij
+ �i � �xi + 


P
j2V gij � yjP
j2V gij

+ �i:

When yi = 0, 2 � yi � 1 = �1. The above inequality is equivalent to

(2�yi�1)�(�xi+

P
j2V gij [1(j 2 A) � yj + 1(j =2 A) � yi]P

j2V gij
+�i) � (2�yi�1)(�xi+


P
j2V gij � yjP
j2V gij

+�i):

(10)

Similarly, for i 2 A such that yi = 1, we have yi � yj for 8j, therefore

�xi + 


P
j2V gij [1(j 2 A) � yj + 1(j =2 A) � yi]P

j2V gij
+ �i � �xi + 


P
j2V gij � yjP
j2V � gij

+ �i;

which is equivalent to

(2 �yi�1) �(�xi+

P
j2V gij [1(j 2 A) � yj + 1(j =2 A) � yi]P

j2V gij
+�i) � (2 �yi�1)(�xi+


P
j2V gijyjP
j2V gij

+�i):

(11)
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Note the left hand sides of inequalities (10) and (11) appear in the de�nition ofH(yA;x; GA; nA;�).

The right hand sides appear in R(yA; y�Ajx; GA; nA;�). If � 2 R(yA; y�Ajx; GA; nA;�), the left

hands of inequalities (10) and (11) are greater than 0, therefore the left hands are greater than 0.

Hence � 2 H(yA;x; GA; nA;�). In other words,

R(yA; y�Ajx; GA; nA;�) � H(yA;x; GA; nA;�):

If � =2 H(yA;x; GA; nA;�), � =2 R(yA; y�Ajx; GA; nA; ;�) for 8y�A. As a consequence, there

doesn�t exist y�A such that (yA; y�A) is an outcome of the game. Therefore, yA cannot be observed.

This suggests that

Pr(� =2 H(yA;x; GA; nA;�)) � 1� Pr(yAx; GA; nA;�);

or equivalently,

Pr(yAjx; GA; nA; �) � Pr(� 2 H(yA;x; GA; nA;�)):
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