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Abstract

To publish a data set we must ensure that included individuals are unidentifiable. Nev-
ertheless this unidentifiability is often judged rather subjectively. The author has proposed
objectifying this practical judge by the statistical estimation of a model, where an unknown
parameter describes uncertainty on identification. This idea exploits observation as a statisti-
cal evidence. To promote this evidence based method, the present article demonstrates its ap-
plicability to the decision of the acceptable range of disclosure risk on Japanese Anonymized
Data.
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1 Introduction

Confidentiality or privacy reasons let laws allow no individual to be identified when data are
published. Many techniques to prevent such identification are known as anonymization; see e.g.
Willenborg and de Waal (1996, 2000). After anonymizing a data set, data publishers need to
decide whether the set is identifiable or not. This decision, however, has been made in a rather
subjective manner.

Technical efforts to formalize this decision result in many measures of (re-)identification
risk, but no objective method to decide a threshold of those measures seems known. This is
so because those researches authorize this decision to depend on a personal preference under a
tradeoff between re-identification risk and utility of data; see e.g. Duncan et al. (2001).

However, identifiability does not depend on a personal preference: When data are identifiable
they are so regardless of the preference of their publisher. Also laws say nothing about the utility
of data. In other words, no identifiable data set is publishable even if they are highly useful.
Therefore in practice the true goal of anonymization is not to take the balance of risk and utility
but to maximize utility within an acceptable range of risk. This goal has been claimed by
Dalenius (1977) and others, and for a practitioner the decision of the threshold of identification
risk is the primary issue.

This important decision should be objective and explicable. To achieve this clarity the
present article employs Hoshino’s (2013) statistical model of identification with an unknown
threshold of risk, and estimates it by observing whether published data have been identified
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or not. These observations are statistical evidence that carries information on the threshold of
identification risk. Thus we call our approach “Evidence Based Anonymization (EBA)”.

In this way an estimated threshold depends on the measured elements of risk. Our risk
measure only accounts for the difference of data and neglect institutional effects as typical risk
measures do. Institutional effects, however, seem to exist since the degree of anonymization
empirically depends on the qualifications of users of data: A public use file tends to be more
anonymized than a scientific use file. Therefore in order to control institutional effects that may
exist, we restrict our sample space to the cases of each institution. In other words, the threshold
of our risk measure can differ among institutions. Such a difference arises from the difference of
pooled institutional effects.

Restricting our sample space is advantageous in that we do not have to decompose institu-
tional effects. This decomposition is virtually impossible due to very limited information on the
latent ability of identification that a society possesses.

To exemplify EBA, the present article estimates the risk threshold of Japanese Anonymized
Data of surveys conducted by Ministry of Internal Affairs and Communications (MIAC). Anonymized
Data are defined by Statistics Act so that no individual shall be identified. Global recoding and
record suppression are mainly used to satisfy this definition.

MIAC’s Anonymized Data have been available on 4 surveys (Employment Status Survey,
Housing and Land Survey, National Survey of Family Income and Expenditure, and Survey
on Time Use and Leisure Activities) from 2009, on Labour Force Survey from 2011, and on
Population Census from 2013. The Japanese society has not recognized any identification of an
individual contained in these data as of 2015.

Anonymized Data are provided for academic research and advanced education under a li-
cense. The number of past users of these data varies among surveys, but in total about 30
applicants have passed the same review procedure for use in each year as of 2013. We consider
that these cases of using Anonymized Data share the same threshold of identification risk, since
they are under the same institutional measures against identification.

The present article is organized as follows. Section 2 explains our statistical model that links
our risk measure to the observation of identification. Section 3 explains the detail of evaluating
our risk measure. Section 4 estimates the threshold of identification risk of Anonymized Data.
Section 5 concludes.

2 Statistical model of identification

This section explains Hoshino’s (2013) method to decide whether a measured identification risk
is acceptable or not. The first subsection technically describes unidentifiability. The second
subsection presents a model whose parameter expresses uncertainty on identification. The third
subsection statistically estimates this paramter, by which the acceptable range of our risk mea-
sure is determined.

2.1 Definition of identifiability

An effort on modeling identification can be seen in Marsh et al. (1991). They argue that the
probability of identification is the product of the following probabilities:



Pr(actual identification) = Pr(success of identification|trial of identification) Pr(trial of identification).
(1)

In eq. (1), the event of “actual identification” is regarded as the joint event of “success of
identification” and “trial of identification”. This discrimination between “actual identification”
and “success of identification” corresponds to different legal concepts of anonymity or unidenti-
fiability.

Absolute anonymity, using a German legal term, is a state where the possibility of identifi-
cation is eliminated with no doubt. We regard this state as equivalent to a state that

Pr(success of identification|trial of identification) = 0. (2)

De facto anonymity, which is also a German legal term, is a state where the cost of iden-
tification dominates the benefit of identification. In this case the probability of the trial
of identification should be low, and thus we regard this state as equivalent to a state that
Pr(actual identification) is low.

The present article focuses upon the assessment of the absolute anonymity, because Japan
Law seems to define confidentiality as such. Consequently we evaluate whether the conditional
probability of “success of identification” given “trial of identification” is zero or not.

Marsh et al. (1991) regard the success of identification as the result of matching betweeen a
published file and an outer file owned by an attacker (who tries to identify an individual). They
accordingly propose the following factorization:

Pr(success of identification|trial of identification) = Pr(a) Pr(b|a) Pr(c|a, b) Pr(d|a,b,c), (3)
where the events from a to d are

(a) On the attribute of the same individual, both a published file and an outer file record the
same value (i.e. no misclassification etc.).

(b) A published file contains an individual.
(¢) An individual is a population unique.
(d) A population unique is verified to be so.

If we can evaluate the probabilities of the right hand side of eq. (3), we can obtain the
conditional probability of “success of identification” given “trial of identification”. However, the
evaluation of these probabilities by Marsh et al. (1991) is not convincing from a modern point
of view.

As discussed in Section 3, Pr(a,b,c) depends on information that an attacker currently
knows, yet Pr(d|a, b, ¢) should depend on information that an attacker does not currently know.
An attacker may be able to collect additional information to verify a population unique. Such
currently nonexistent information is unobservable and hard to estimate. Hence the author
considers that no one can plausibly evaluate Pr(d|a, b, ¢).

Now let us be reminded that we just would like to know whether eq. (2) holds or not. This
evaluation is far easier than to evaluate the conditional probability of “success of identification”
given “trial of identification”.



Therefore we rewrite eq. (3) as
Pr(success of identification|trial of identification) = Pr(a, b, ¢) Pr(d|a, b, c). (4)

Then we can see that eq. (2) holds if and only if at least one of Pr(a, b, ¢) and Pr(d|a, b, ¢) is zero.
On data for scientific purposes, Pr(a, b, ¢) is usually positive. Consequently our usual assessment
on unidentifiability reduces to a decision whether Pr(d|a, b, ¢) equals zero or not. Since the direct
evaluation of Pr(d|a, b, ¢) is hopeless, we will estimate whether Pr(d|a, b, ¢) equals zero or not.

2.2 Model for discerning identifiability

From our argument so far, we would like to discern whether
Pr(dla,b,c) =0 (5)

or not, since eq. (5) is sufficient for an unidentifiable state.

To this goal we note that Pr(d|a, b, ¢) is subject to the event of (a, b, ¢), and Pr(a,b, c) can be
evaluated since it only depends on existent information. The increment of Pr(a, b, ¢) implies that
more information about population uniques is published. The more information exists, more
easier the verification of a population unique should become. Hence the conditional probability
of d given (a,b, c) should be monotonically increasing as Pr(a, b, ¢) increases. If so, there exists
nonnegative 5 such that

Pr(a,b,c) < B < Pr(d|a,b,c) = 0. (6)

Then we conclude that the assessment of identifiability reduces to the evaluation of Pr(a, b, ¢),
since eq. (2) is tantamount to Pr(a,b,c) = 0 or Pr(d|a,b,c) = 0.

In the model (6), Pr(a,b,c) can be interpreted as the easiness of identification. This is a

type of re-identification risk measure, and its threhold S is unknown. We decide it by statistical
estimation in the following.

2.3 Observational model of identification

For the statistical estimation of 5 in eq. (6), we need an observation that carries information
on . Hence we would like to observe the event of d or the success of identification. However, a
society may not always recognize such an event; a successful attacker may hide. Therefore we
discriminate “actual identification” from its social recognition.

Let a random variable X be 1 when “actual identification” is socially recognized, and 0
otherwise. That is,

Pr(X = 1) = Pr(recognized|actual identification) Pr(actual identification).
Then from eq. (1) and eq. (3),

Pr(X =1) = Pr(recognized|actual identification)
x Pr(a, b, ¢, d) Pr(trial of identification). (7)

Further, let us write the evaluated value of Pr(a, b, ¢) as v, and write

p(y) = v Pr(d|a, b, ¢) Pr(recognized|actual identification) Pr(trial of identification).  (8)



Then

prox =1 = { 50 720 Q

If p(y) is positive, the observed value of X carries information on 3, and we can estimate /3
from X’s. Actually p(v) is positive when both

Pr(recognized|actual identification)) > 0 (10)

and
Pr(trial of identification) > 0 (11)

hold. The first condition (10) should be satisfied because an attacker has an incentive to show off
their success of identification. Also hiding through is not always possible. The second condition
(11) should also be satisfied because of a potential incentive to do so. Hence we regard that p(~)
is positive. It is worth mentioning that we assume no specific form of p(-).

Suppose that there are n past experiences of publishing anonymized data. We regard these
as independent samples from the model (9). For the i-th, i = 1,2,...,n, sample we measure
Pr(a,b,c) = v; and observe the social recognition of actual identification X; = z;. Write the
likelihood of the observations as £(3). To simplify our argument we assume that y; > v > -+ >
Tn-

Now we consider the maximum likelihood estimator B of the threshold. If there exists an
integer m such that z,, 1 = 1,2y = 1 = -+ = 2, = 0, then £(3) = 0 for B8 > vy,—1, £(B) x
p(ym-1) for ym—1 > B > ym, and £(B) o< p(Ym—1) [[j=n(1 = p(75)) for v > B > ~ip1,i > m.
Hence vp—1 > B > ~m because p(7y) is positive. If there exists no social recognition of actual
identification, then 3 > 1.

In general we denote the lowest easiness of identification among samples with social recogni-
tion of actual identification by v~. If there has been no such recognition, let vy~ be 1. Also among
samples with the easiness that is lower than v~ we denote the highest easiness of identification
by 7. Then vt < 3 < ~~.

3 Measuring disclosure risk

To substantiate our theoretical model of the previous section, we have to establish the method
of evaluating Pr(a, b, c), which is explained in this section following Hoshino (2013). The first
subsection clarifies the policy of selecting key variables or quasi-identifiers. Under this policy
the second subsection decomposes Pr(a, b, ¢) to the product of Pr(a), Pr(b|a) and Pr(c|a,b), and
explains the method of evaluating each probability.

3.1 How to select key variables

First we discuss the policy of selecting key variables for matching, on which the number of
population uniques heavily depends. Because EBA compares Pr(a, b, ¢) among cases, the policy
must be fixed.

Few arguments exist on the formal selection of key variables. For example, Elliot et al. (2010,
2011) claim a comprehensive survey of existent information about individuals in a society for
this purppose. The author never denies the importancd of such information, but their argument



does not directly result in the best selection of key variables. Fung et al. (2010) describe the
selection of key variables as “an open problem”.

The present article selects key variables to best estimate 5. Existing researches can not
optimize the selection because they do not consider the aftermath of evaluating population
uniques.

Suppose that there are k variables in a published file. Then there are 2* ways to select key
variables in theory. The number of population uniques can be evaluated in each way, and we
write the order statistics of these numbers as uy Sup) < -0 < Ugk)- Then the issue of the
selection of key variables is nothing but the selection of a rank among (1,2,..., 2k), over which
attackers are distributed subject to their knowledge about individuals.

For given data we evaluate Pr(a,b,c) at a selected rank r, and compare it with v*, which
is also evaluated under the same policy of selecting key variables. Suppose that Pr(a,b,c) at
the 7-th rank is smaller than y*. Then, for fixed Pr(a, b), the given data should be safe against
attackers who lie on ranks smaller than r, since u(;) < u(, for ¢ <r. The given data, nevertheless,
have no evidence of safety against attackers who lie on ranks larger than r.

Thus one might think that we should select the largest rank: 2. However, an attacker may
not exist on the 2¥-th rank. If so, an observed X of eq. (9) carries no information on the safety
of Pr(a,b,c) at the 2¥-th. Hence, considering the distribution of attackers over the ranks, we
should select the largest rank on which an attacker exists.

The best way to select key variables has been described theoretically, but in practice, the
distribution of attackers is unknown. Therefore we have to estimate the maximum of the dis-
tribution of attackers over ranks. The precise estimation of a maximum is, however, known to
be difficullt, the theory of extreme values might be usable though. Also an errorneous estimate
of the maximum rank leads to unstable 3 . Hence, as a second best way, we should estimate a
percentile, which is less difficult. For example it should be more practical to estimate the 99th
percentile of the distribution of attackers, as in the case of financial risk called Value at Risk
(VaR).

Unfortunately the quantitative evaluation of such a percentile is virtually impossible since we
can not observe the distribution of attackers. Hence we select key variables whose information
is publicly known. This policy is common in practice, which actually implies that some large
percentile is estimated.

Our policy sacrifices anonymization’s grip on the strongest attackers, but other institutional
protection may suffice. For example, since the strongest attackers should be conspicuous, a data
publisher may be able to reject their request for a scientific use file. It censors the right tail of
the distribution of attackers. A penal code should be effective even in the case of a public use
file.

3.2 Risk measured to control most

This section describes the method of measuring Pr(a), Pr(b|a) and Pr(c|a, b) under our policy of
measuring risk at a large percentile.

3.2.1 Measuring Pr(a)

The attribute of an individual may be differently recorded between a published file and an
outer file. Marsh et al. (1991) ascribe this difference to an error in recording or a change of an



attribute with the passage of time. A perturbation technique such as swapping can also cause
this difference.

If at least one key variable of an individual is affected by these causes, then the event of a
does not occur. Therefore Marsh and others claim that the increment of key variables tends to
decrease Pr(a); Shlomo and Skinner (2010) give a numerical example of this kind.

Nevertheless they neglect the possibility of the correction of such differences. A record-
linkage-like technique can correct them especially when a unique individual lies in a sparse
space. Because this sparsity emerges when key variables increase, the increment of key variables
does not necessarily decrease Pr(a). Hence we do not relate Pr(a) to the number of key variables.

Consequently we evaluate Pr(a) = 1 for an unperturbed file. This evaluation does not imply
no error in recording. The rate of errors, which is uncontrolable by a data pulisher, is a part of
uncertainty on identification. Hence we consider that the rate of errors too is described by f.

The effect of perturbation should be evaluated casewise. The present article does not deal
with a perturbed file, and thus we do not argue further.

3.2.2 Measuring Pr(bla)

Following Marsh et al. (1991) we evaluate Pr(b|a) as the ratio of the size of a published file to
the correspoinding population size.

3.2.3 Measuring Pr(c|a,b)

Marsh et al. (1991) defines Pr(c|a,b) by a ratio of the number of population uniques to its
population size. The evaluation of this ratio usually involves estimating the number of population
uniques, which is not straightforward.

On this estimation we employ Hoshino’s (2001) method that exploits Pitman’s (1995) sam-
pling formula. Our method is advantageous in that it does not require tailored modeling for
each data set. It is thus suitable for comparing many data sets with the same standard.

Regression is a common way to estimate the number of population uniques, but as Skinner
and Shlomo (2008) address, such an inference may be sensitive to the specification of a model.
Therefore regression is unsuitable for our comparison of estimates.

Another advantage of our method is its applicability to sparse data. Many key variables are
likely to be selected under our policy. Then individuals are distributed over the high dimensional
space of these key variables, and a frequency on a location in this space tends to be zero, which
implies sparse data. If most of these frequencies are zero, such a location indexed by the values
of key variables has little information on the number of uniques. That is, key variables are
useless to estimate the number of uniques: Regression fails. Our method still works.

4 Risk of Anonymized Data

This section demonstrates the estimation of 3 for the cases of Anonymized Data. Results are
to be presented only orally.



5 Concluding remarks

The implication of our argument in Section 2 is clear: A given data set is publishable if its
Pr(a,b,c) does not exceed 7, since it has a statistical evidence of unidentifiability. This y* is
estimated in Section 3 for Anonymized Data provided by MIAC.

By these arguments the present article illustrates one method to objectively decide whether
given data are identifiable or not. Subjective decision may employ past experiences implicitly,
yet our method explicitly employs past experiences as a statistical evidence.

What if there has been no past example that can be an evidence? Then begin with publishing
apparently safe data; a clinical trial decides the threshold of some dose by gradually increasing
risk. The idea of evidence based decision originates in medicine. It can also be applied to
anonymization.
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