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Abstract

The paper concerns small-area estimation in the heteroscedastic nested error regression
(HNER) model which assumes that the within-area variances are different among areas. Al-
though HNER is useful for analyzing data where the within-area variation changes from area
to area, it is difficult to provide good estimates for the error variances because of small samples
sizes for small-areas. To fix this difficulty, we suggest a random dispersion HNER model which
assumes a prior distribution for the error variances. The resulting Bayes estimates of small
area means provide stable shrinkage estimates even for small sample sizes. Next we propose an
empirical Bayes procedure for estimating the small area means. For measuring uncertainty of
the empirical Bayes estimators, we use the conditional and unconditional mean squared errors
(MSE) and derive their second-order approximations. It is interesting to note that the differ-
ence between the two MSEs appears in the first-order terms while the difference appears in the
second-order terms for classical normal linear mixed models. Second-order unbiased estimators
of the two MSEs are given with an application to the posted land price data.

Key words and phrases: Asymptotic approximation, conditional mean squared error, empir-
ical Bayes, parametric bootstrap, second-order approximation, second-order unbiased estimate,
small area estimation.

1 Introduction

Linear mixed (LM) models and the model-based estimators including empirical Bayes estimator
(EB) or empirical best linear unbiased predictor (EBLUP) have been studied quite extensively in
the literature from both theoretical and applied points of view. For a good review and account
on this topic, see Ghosh and Rao (1994), Pfeffermann (2002), Rao (2003) and Datta (2009). Of
these, the nested error regression (NER) model introduced by Battese, Harter and Fuller (1988)
has been used as a unit-level model. The NER model with m small-areas assumes that the data
Y; = (Yi1, - - -, Yin,)" are taken from the i-th small-area, i = 1,...,m, where y;, ... ,y,, are mutually
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independent. It is further assumed that y;; is normally distributed with Efy;;] = ac;fgﬂ, Var(yj) =
ag and Corr(yij, yix) = p, j # k, where 8= (B1,...,5,)7T, 05 and p are unknown parameters, x;;’s
are known vectors of covariates, and Corr(y;j;, yir) denotes the correlation coefficient of y;; and y;j.

The NER model can be expressed as a random effects model with
_ 5T S g
Yij = TiiB+viteg, i=1,...,m; j=1,...,n, (1.1)

where v;’s and €;;’s are mutually independent with v; ~ N(0,A0?) and &;; ~ N(0,0%). Then
Var(v;)/Var(ei;) = A, and that O'Z and p correspond to
JZ =(1+XNo? and p=XN/(1+)).
Jiang and Nguyen (2012) illustrated that the within-area sample variances change dramatically
from small-area to small-area for the data given in Battese, et al. (1988). Figure 1, given in
Section 5 in this paper, also indicates variability of the within-area variances. Jiang and Nguyen

(2012) assumed that the variance E|[(y;; — :cz; )2] is proportional to o2, which depends on the
area i. Since E[(y;; — :cg 2] = E[(vi + €;j)*] = Var(v;) + Var(e;;), this assumption implies
that Var(v;) + Var(eij) = Co? for some constant C. If we let Var(e;;) = o2, we can see that
{Var(v;)/Var(eij) + 1}Var(ei;) = {Var(vi)/Var(e;j) + 1}o? = Co?, which means that

Var(vi)/Var(e;) = C — 1.

That is, Var(v;)/Var(ei;) is a constant.

Using the same notation as in the NER model, we write Var(v;)/Var(e;;) = X. Thus, the
heteroscedastic nested error regression (HNER) model suggested by Jiang and Nguyen (2012) is
the model given in (1.1) with

Var(v;) = A\o? and Var(e;;) = o?.

(1.2)

In the HNER model, Jiang and Nguyen (2012) showed that the maximum likelihood (ML)
estimators of B and A are consistent for large m and that the resulting empirical Bayes (EB)
estimator of & = Z! B+ v; (T; = nlfl Z;”:l x;;) estimates the Bayes estimator consistently since
the Bayes estimator does not depend on ¢%,...,02,, but on B and A. This is quite interesting,
because the number of unknown variances o2’s increases as m tends to infinity. However, the
posterior variance of v; given (y;1,...,%in,) is

Var(vi“/il? ce 7yi,ni) = 0'22)\/(1 + nz)\),

which implies that the mean squared error (MSE) of the EB estimator of & depends on 2. Then,
we need to estimate o7 for estimating the MSE of the EB estimator of &. Since the sample sizes
n; is small in the small-area estimation, we cannot provide good estimates for 0? with reasonable
precision.

In this paper, we propose a random dispersion HNER (RHNER) model which assumes that
the areawise precisions (01-2)_1, 1 =1,...,m, are mutually independent gamma random variables.
The resulting Bayes estimator of o2 gives stable shrinkage estimates of small area means even for
n; —p=0.

For measuring uncertainty of the empirical Bayes estimator EZEB of &, we use the conditional
and unconditional mean squared errors (MSE) defined by

eMSE(w; £ |y;) =Bl(EF" - &)y,

1

MSE(w; £PP) =E[(£FP — &)?.
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When data of the small area of interest are observed as y,; and one wants to know the prediction
error of the EB estimators based on these data, the conditional mean squared error (cMSE) given
y, is used instead of the conventional unconditional MSE. Booth and Hobert (1998) showed that
the difference between the cMSE and MSE is quite small and appears in the second-order terms in
classical normal linear mixed models. In this article, however, we show that the difference appears
in the leading or the first-order terms for the RHNER model.

2 HNER Models with Random Dispersions

2.1 Setup of models and predictors

We begin with the model given in (1.1) and (1.2). For stable estimators of 02’s, we need sufficient
amount of data from each area. Since n;’s are typically small, o7 cannot usually be estimated with
reasonable precision. To give more stable estimators for 01-2, we assume a prior distribution for
o2. Let ; = 1/0?. Tt is assumed that 7y, ..., are independent and identically distributed with
common pdf

w(nilTi,72) ~ Ga(m/2,2/12), (2.1)
a gamma distribution with mean 71 /75 and variance 271 /72. The HNER model given in (1.1) and

(1.2) with the random dispersion (2.1) is called a Random Heteroscedastic Nested Error Regression
(RHNER) model.

Let y = (y7,...,y0)T, XTI = (z1,...,%ipn,) and X = (XT,..., XT). All the unknown
parameters are denoted by w = (3, A\, 7) for 7 = (71, 72). Then, the RHNER model is given by
yi‘vivni ~ nz(XZ/B +jnivi777i_11ni)7
i ~Ga(11/2,2/72).
The conditional distribution of v; given y; and n; is N (¢, An; 1 /(n;\ + 1)), where
O~ a6, (2.3
It is noted that o; = E[v;|y;] does not depend on 7; or o

0 = 0(B,\) =

2

Z‘ .
In this paper, we consider the problem of predicting the mixed quantity
fi:flrﬁ—i-’l)i, 1=1,....,m.
The conditional expectation of &; given y, and 7; is
&7 (B,)) = Elgily;, o7] = 2/ B+ 0:(8, V).

This is interpreted as the Bayes estimator of ¢ under squared error loss. Since it does not depend on
ni, the estimator £2 (B3, \) continues to be the conditional expectation of &; given y; after integrating
out the n;, that is the Bayes estimator of §; is the same in the two situations. However, the empirical

Bayes estimators, which substitute estimators of 3 and A into é’lB (B, \), are different between the
HNER and RHNER models.

In the HNER model, we need to estimate (m + p + 1) parameters 3, A and 0%, ...,02,. Noting
that the number of parameters increases as m increases and that n;s are bounded in small-area
estimation, we are faced with the problem of consistency and instability of the estimators of 01-2.
In this situation, Jiang and Nguyen (2012) established the surprising result that the MLEs of 3
and A are consistent, which lead to the consistency of the EB estimator éZB(B, 5\) However, there
are no consistent estimators of the 012. This problem can be fixed if instead the RHNER model is
used. In fact, the parameters we need to estimate in the RHNER model are 3, A, m and 719, and
we can provide their consistent estimators.



2.2 A motivation from estimation of dispersions

We give more detailed motivation from the estimation of the dispersion parameters 0'? in the
HNER model. We first treat the simple case that 3 = 0 and n; = -+ = n,, = n in (1.1). Let
o? = (02,...,02)T and v = 1/(1 + n)). It follows from the equation (4) of Jiang and Nguyen

(2012) that the log-likelihood is then

L (y,0%) = 3 | ~nloga? +logy — {3 (s ~ 7)” + 9% } /o] + K
i=1 =

where K is a generic constant. Differentiating L (v, 0?) with respect to v and af’s, we see that the

maximum likelihood (ML) estimators, 4 and 6(2H)2., of v and 0?’s are solutions of the equations

A =
D N 6y

. 1oy _ H
6ty = { D — 72 + 13" ).

Jj=1

(2.4)

It is interesting to point out that 6(2H)Z. is an asymptotically unbiased estimator of 03. For the proof,
we can use the fact that ny? and > =1 (Yig —7,;)? are mutually independent with ny?/(1+n)) ~ o2x?
and Z?Zl(yij —7;)? ~ 02x%_,. Then, from the consistency of 4%, it follows that £ [&(QH)Z.] converges
to

n

1 7 - o2
AE [ =70+ o] =SB+ ] = o
]:

which shows that &(QH)Z. is an asymptotically unbiased estimator of o2.

Although &(21{)1‘ is asymptotically unbiased, it is clear that &(QH)i is not consistent when m — oo,

but n is bounded. Thus, we need to modify &%H)i when n is small. For example, we look at the
empirical Bayes estimator of &. In the simple case we treat here, we have & = v;, and the EB
estimator of &; is given by

FH ~H\= m -
& =1 =97)y; { AL, }yz,

from (2.4). This is a natural shrinkage estimator, and it is reasonable for large m since 47 is
consistent. When m is not large, however, there is a concern about the precision of the estimator
6(2H)Z.. Since > 0 (yij — 7;)% < nﬁ(QH)Z. <> yizj, it is seen that
v Ui _ Ui
o S o S
Zj:l yij/n T(HYi i/n

for T; = Z?’:l(yzj —7;)%. When n is small, clearly @2/5(2H)i has a large variation, which leads to

the instability of the empirical Bayes estimator éZH . Although the simple case of equal replications
n is considered here, in the survey data we need to handle the case of small sample sizes n;’s for
some small-areas, and the estimators &%H)i’s would not have enough degrees of freedom.

To overcome this drawback, we need to stabilize (7(2H)i by shrinking it to a point. The ran-
dom dispersion model is helpful for this purpose. Assume that 7, = 1/0’22 has a distribution
Ga(m1/2,2/72). Since Tyn; = T;/o? ~ x2_,, from the joint distribution of (T},7;), the posterior
mean of af given T; is

Eo}|T)) = (T; + 72)/(n — 1 + 7).

4



When 74 and 79 are estimators of 71 and 7 based on the statistics 11, ...,T},, it is reasonable to
estimate 012 by

5(2RH)i = (Ti + 72)/(n— 1+ 71).
Clearly, &(ZR H)i is more stable than the unbiased estimator 7;/(n — 1) when n is small. Replacing
&(QH)Z' in £¥ with a shrinkage estimator like 6(2RH)1., one can get the more stabilized empirical Bayes

estimator m
gRH = {1 — 3 }g.'
’ Z;ﬂlny /U(RH)z’ ‘

Another need for a consistent estimator of 012 appears in evaluation of uncertainty of the em-
pirical Bayes estimator le . When the mean squared error is used for measuring the uncertainty,
the MSE of ¢, denoted by E[(£# — &;)?] converges to

E[Var(vily;)] = 07A/(1+n)) = 07(1 —7)/n

for large m. In order to estimate the uncertainty of f , we want to estimate the leading term of
the MSE consistently. Since O'(QH)i is not consistent, however, we cannot provide any consistent

estimator of the leading term in the MSE of éff in the HNER model. This drawback is overcome
in the RHNER model.

3 Predictors and Asymptotic Properties of MSE

3.1 MLE of parameters and the empirical Bayes estimator

We now return back to the RHNER model given in (2.2). When A and B are known, the best
predictor or the Bayes estimator of & = =/ 3 + v; is given by

& =EP(B.)) = Eléily]
=z B+ (L= %)@ — 7, B),
where v; = 7;(\) = 1/(n;A+1). In our case since A and 3 are unknown, we need to estimate them

from the marginal distributions of the y;. We provide the maximum likelihood (ML) estimators
for unknown parameters w = (3, A, 71, 72).

(3.1)

The marginal likelihood of y = (yy,...,¥,,)T and 9 = (n1,...,mm)7 after integrating out the
full joint likelihood with respect to v;’s can be expressed as

n;/2

s ; n?)\ L
f(y,n!w)—il;[l{(%)mn VDTt {Zym wB) N - 6))]

m(nilT1, 72)}

m 7'1/2 (nz+Tl)/2 12 (ni+11)/2 i
1;[{ wm/2r EYON DS p[—g{Qi(yi,ﬂ,AHm}]}, (3.2)
where
S T 3)2 A 1o
Qi = Qi(y:.8.)) =;(yzj —2if)’ - S - B)
=> Ay =7 — (@i; — )" B + (N (@i — 7 B), (3-3)
j=1



where v; = 7;(\) = 1/(n; A+ 1). Integrating out the joint density f(y,n|w) in (3.2) with respect to
1 yields the marginal likelihood of y given by

m T1/2

_ 7o T ((ni +11)/2) (i)
$) = I s 5 o 2y (@080 ) ) (3.4)

Let L = L(B, A\, 11, 72) = log f(y|w). Then,

m
2L:—nilogTr—i—mTllong-i-sz(nz+7-1

1=1

m m
=3 log(nid + 1) = > (ni + 1) 1log(Qi + 72),
= i=1

) - 2my(%)

where ¢(a) = log(I'(a)). Let Lg, Ly, Ly, and L, be the derivatives of L with respect to 3, A, 7
and 79. Then,

m
2Lﬁ:_z n; + 71 an

1 Qi+ 1 087
i+ 71 0Q;
2Ly = — - i )iy
' Zl Qi+ T2 OA ;n !
o . (3.5)
_ T2 gty T
n; + 71
2L, =m- Z@-m’
where 0Q; /0N = —n2+2(y; — =l B)? for 0v;/ON = —n;v?, and
8@1 o T — — =T 2\=

= -2 Z{ Yij — ;) — (®ij — ®i)" BH(@ij — Ti) — 2n7%i(Y; — T; B)Ti. (3.6)

The MLEs of 3, A, 71 and 72 are the solution of the simultaneous equations Lg = 0, Ly = 0,
L. =0and L;, =0, and the MLEs are denoted by 3, A, 71 and 7. The empirical Bayes estimator
of & = &1 B + v; is provided by

/\

=B, ) == B+ (1-4) 7 — = B), (3.7)

where 4; = v;(\) = 1/(@ +1).

3.2 Asymptotic properties of MLE

To evaluate the mean squared errors of the empirical Bayes estimator fiEB asymptotically, we need
to derive asymptotic variances and covariances of the MLE when m tends to infinity. To derive
asymptotic properties of the MLE, we assume the following:

(A1) The sample sizes n;’s are bounded below and above as n < n; <7 for constants n and 7.
The elements of X are uniformly bounded, X7 X is positive definite and X7 X /m converges to a
positive definite matrix.



Since their asymptotic variances and covariances are expressed by the Fisher information matrix,
we begin by deriving the Fisher information. Let Igg be the Fisher information matrix of 3. The
Fisher information matrix of @ = (X, 71, 72)7 and the inverse are denoted by

I I)\ﬁ I)\TQ JAM AT AT

ITgg = iy Inn Inn and 1;01: TASET S

I)\7—2 17-17-2 17-2.,-2 ]/\7'2 JTiT2 [T2T2

Then, exact expressions of the Fisher information matrices can be derived in the following theorem.
The proof is given in the Appendix.

Theorem 3.1 The Fisher information of 3 is given by

m ng
! n; + 71 _ _\T __T
To = 0 3 o @ )@y — =)+ mmal

Also, Igy, =0, Ig,, =0 and Ig;, = 0. The elements of 2199 are given by

m m
(ni + 11 — Dniry? niYi

2_[ — (A 2'[7' = — s

M ; ni+m+2 AT ;nﬂrﬁ
YA L BV e S NI e B

& T2 i i +7+2 nm 2 P 2 2 ’
o N 1 Zm n, of ! Zm n;

ne o — n; + 71’ T2T2_7'22 — ni+m+2

It follows from Theorem 3.1 and assumption (A1) that m~1Igg = O(1) and m~1Ig9 = O(1),
and the limiting values of these quantities are away from zero. The following theorem is essential

for approximating the MSE of éiEB asymptotically. The proof is given in the Appendix.

Theorem 3.2 Assume condition (Al). Then, for 0= (A, 71,70)T, it holds that

E[(B-B)(B - B ly] =(Igs) " + 0p(m™3/?),
E[(0 - 0)(8 — 0)|y,] =(Ige) " + Op(m~%?), (3.8)

~ ~

E[(B - B)(6 — 0)"|y,] =0,(m /)0

This implies that 3 — Bly; = Op(m~/?) and 60— 0ly; = O,(m~'/?). Also, the conditional biases
E[B = Bly;] = O(m™") and E[0 — 6ly,] = O(m™).

4 Measures of Uncertainty of the Empirical Bayes Estimator

4.1 Second-order approximation of the conditional and unconditional MSEs

We shall derive a second-order approximation of the MSE of the empirical Bayes (EB) estimator
and its second-order unbiased estimator. Recall that we want to predict & = EzT,B + v; with EB
¢EB = ¢B(B,)\) = =l B+ 9;(B,\). For measuring uncertainty of EB, we use the conditional and
unconditional mean squared errors (MSE) defined by
eMSE(w; PP |y;) =E[(EF7 — )|y,
MSE(w; £FP) =E[(EFP - &)7].

EN|



The conditional and unconditional MSEs can be decomposed as

cMSE(w; &7 ly;) =El{& — €8 (B, 1yl + EHEP (B, ) — £7(B, )Y |yi]

=91(wly;) + g2 (wlyy),  (say) (4.1)
and
MSE(w;{PP) =E[{& - £P (B, M) + EHEP (B, A) - €8 (B, M)
=g1(w) +gz( ). (say) (4.2)
The first term g¢§(w|y;) is the posterior variance of &; given y, namely,
c _ A S A Qi + 72
91 (wly;) = Var(&ly;) = i + 1E[77¢ ;] = A+ 1n 1 —2 (4.3)
where @); is given in (3.3). Similarly, ¢;(w) is given by
A _ A T2
- E iy = En 1= 4.4
nw) = ElVar(&ily)) = - Bl Y| = 2 (4.4

Noting that g5(wly;) = Op(1), g5(wly)) = Op(m™), g1(w) = O(1) and ga(w) = O(m™"), we can
see that the difference between the cMSE and MSE appears in the leading or the first-order terms.
This is an interesting fact, because the difference is small and appears in the second-order terms
in the classical normal theory mixed models as demonstrated by Booth and Hobert (1998). They
also showed that the difference is significant and appears in the first-order terms for distributions
far from normality. Noting that the random dispersion model (2.2) is not a normal distribution,
but close to a t-distribution, we observe that the above fact coincides with their assertion.

In the case of the HNER model, Var(&;|y;) is identical to E[Var(&;|y;)] since y; has a normal
distribution, and is given by o?X/(n;A + 1). Thus, it should be noted that we cannot estimate the
first-order term o?)\/(n;A + 1) consistently in the HNER model, since n; is bounded. However,
we can estimate gf(w|y;) and g;(w) consistently in the RHNER model (2.2) since A\, 71 and 79 are
estimated consistently.

Theorem 4.1 Under assumption (A1), the conditional MSE of éiEB s approximated as

1—v Qi+ . 1
cMSE, ;PP |y,) = o 5 T (Igp) @i
+ 02y} (@ — =L B) I + Op(m™2), (4.5)

for ~vi =1/(n;A + 1), and the unconditional MSE is approzimated as

1T—m —1_
MSE(\, 7;&77) =—— 17 _2+% {(Ips) T
?

+ 0} =5 4+ O(m™2). (4.6)

4.2 Second-order unbiased estimators of the conditional and unconditional MSEs

We now derive second-order unbiased estimators of the unconditional and conditional MSEs. Since
it is hard to derive second-order biases of the MLEs of 8, A, 71 and 7, we could not provide
analytical second-order unbiased estimators of the MSEs. Instead, we use the parametric bootstrap
methods, which provide second-order unbiased MSE estimators.



We begin by treating the unconditional case. The parametric bootstrap sample in this case is
denoted as
yzj—mwﬁjtv +e, i=1...m;j=1,.. (4.7)

where v7’s and €7;’s are conditionally mutually independent given 7;’s and

v lnp ~N(0, M /n7),
e5ilni ~N(0,1/n;), (4.8)
N~ ~ Ga(71/2,2/72).

The estimator of the unconditional MSE, M SE (), T; fiEB), is given by
mee* (€7) = g7 + 63
where

a1 =291(;\7?) — EJgi (N, 7)),

=L (& (B~ B)Y] + nidl 5 B[N — 47,

Proposition 4.1 Assume the condition (Al). Then,

E[mse*(EFP)) = MSE(\, ;€E8) + O(m™3/?).

We next consider the conditional case. Keeping y,; = (i1, . .. ,ymi)T fixed, a bootstrap sample
Y = (Yk1, - - ,y;mk) is generated from (4.7) for k # i. Noting that y, is fixed, we construct the
estimators ,8 ( ) %f(i) and %2”‘“) from y; and the bootstrap sample

yia'"7y;!<717yi7y>;+17'”7y:n (49)

with the same technique as used to obtain the estimator 8, A, 7, and 7. Let E, [-|y;] be
the expectation with regard to the bootstrap sample (4.9). The conditional MSE is given by

MSB(w; PP ly,) = g (wlys) + g5(wlys), where gi(wly;) = E[{& — £8(8, M)} ly:] and g5(wly,) =
E[{€P(B.3) — €2(8, V)}[y;] from (4.1). Since gf(wly,) = n; (1~ %(A)(Qily;. B.N) + 1)/ (n; +

71 — 2) from (4.3), a second-order unbiased estimator of ¢§(w|y;) is given by
gf* = 291(yi7167 5\7 ?) - E* [gl(yzaﬁ( i) )\(z z))|yz:| .

Then, it can be verified that E[g*|y,] = g¢(wly;) + op(m™1). g5(wly;), is estimated via parametric
bootstrap as . o
35" = B [{€7 (Bl Aiy) = &7 (B, VY.
Thus,
emse* (EFP|y;) = 97 + 5™ (4.10)

Theorem 4.2 Under the condition (A1), the estimator (4.10) is a second-order unbiased estimator
of cMSE, namely ) R
Blemse*(§7Py:)lyi] = eMSE(w; EPP y;) + op(m ™).



5 Application to PLP data in Japan

We now investigate empirical performances of the suggested model, the empirical Bayes estimator
and the second-order unbiased estimators of the conditional and unconditional MSEs through
analysis of real data. The data used here originates from the posted land price data along the
Keikyu train line in 2001. This train line connects the suburbs in the Kanagawa prefecture to the
Tokyo metropolitan area. Those who live in the suburbs in the Kanagawa prefecture take this
line to work or study in Tokyo everyday. Thus, it is expected that the land price depends on the
distance from Tokyo. The posted land price data are available for 52 stations on the Keikyu train
line, and we consider each station as a small area, namely, m = 52. For the i-th station, data of n;
land spots are available, where n; varies around 4 and some areas have only one observation.

To investigate variability in each area, the boxplots are drawn for all areas. For nine selected
areas among areas with more than 4 observations, we draw the boxplots in Figure 1, which clearly
indicates that the posted land price has the large within-area variation and the conventional NER
model (which assumes homogeneity of variance) does not seem to be appropriate.

- @ B
o 3 S o
< 7 i)
. o < A
n T ' - ! %
® ;E _ E‘ ™
_— == o D N
3 |
- = — 3
| : o -
N - T T T T T T T
T T T T T T T T T
17 32 33 34 35 43 48 49 52 0.0 01 02 03 04 05 0.6
areas sigma’2

Figure 1: Boxplots of the Posted Land Price Data for Selected Areas (left) and the Estimated
Density Function of o2 = 1/5; (right).

For j = 1,...,n;, y;; denotes the value which is transformed by logarithm from the posted
land price (Yen/10,000) for the unit meter squares of the j-th spot, T; is the time to take from the
nearby station ¢ to the Tokyo station around 8:30 in the morning, D;; is the value of geographical
distance from the spot j to the station ¢ and F'AR;; denotes the floor-area ratio, or ratio of building
volume to lot area of the spot j. These values of T;, D;; and FAR;; are transformed by logarithm.
Since these data have within-area variability as indicated in Figure 1 (left), we use the RHNER
model

Yij = Bo + FAR;j81 + T; B2 + Dy B3 + v; + €4, (5.1)

where v; and €;; are mutually independent and distributed as N'(0, A\o?) and N(0,0?), and 7;(=
1/0?) is independently distributed as I'(11/2,2/72).

The estimates of the parameters (So, 81, B2, B3, A, T1, T2) are
Bo=5.69, B = 0.11, By = —0.63, B3 = —0.08, \ = 0.22, 7 = 2.93, 7 = 0.04.

It is interesting to point out that the estimated regression function is a decreasing function of T;
and D;;, which means that the land price y;; tends to decrease as the time from Tokyo or distance
from nearest station increases. Since 71 = 2.93 and 7» = 0.04, the distribution of 7; has a large
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mean about 73 and a heavy tail. Since the estimated value of 71 is smaller than 4, the variance
of m; or af does not exist, which agrees the observation that the posted land price data has great
variability as indicated by the boxplots in Figure 1. Figure 1 (right) draws the estimated density
function of o7 = 1/n; where n; has I'(71/2,2/72), so that the distribution of o7 has a small mean,
but a heavy tail.

The predicted values of ;3 + v; and their conditional and unconditional MSE estimates, which
can be obtained based on 1,000 bootstrap samples, are given in Table 4. It is revealed from Table
4 that the estimates of the unconditional MSE get smaller as n; gets larger. On the other hands,
the estimates of the conditional MSE do not have a similar property, because the conditional MSE
is affected by not only n; but also the observed values as indicated in Table 3. It is interesting to
point out that, in area 48, the estimated conditional MSE is relatively large while the estimated
unconditional MSE is not large. Noting that this area has great variability as shown in Figure 1,
it seems that the conditional MSE can capture the variability of areas.

Table 1: Values of EBLUP and Estimates of Unconditional and Conditional MSES for Selected
fifteen Areas. (Estimates of MSE and ¢cMSE are multiplied by 100)

Area n; EBLUP MSE cMSE

1 1 4.02 5.19  0.58
4 2 3.91 434 049
) ) 3.96 3.13 231
8 3 3.86 3.83  0.33
17 7 3.50 2.66 1.04
25 7 3.39 2.65 1.37
26 4 3.45 3.42 188
32 6 3.22 2.86  2.68
33 8 3.12 248  1.90
34 11 3.16 2.09 1.10
35 7 2.99 2.65  3.58
43 6 3.02 2.86 3.73
48 6 3.07 2.86 5.11
49 10 2.82 221 2.69
52 6 2.76 2.87  6.55
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[FU&HIC

/NI HETE

o HEHFEEMAIN (IHE) C&ICENT BHIC, BEROEHNE LT
BB DOFIEDFEHZMD 2\ T 3.

o UNMh UFEHINZE DEEG T/IMIBLANILTIE+oRT Y ILESS
NiaWEE, BRI TIIHEERENKEL, NEYIRFEEDHT
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[FU&HIC

Fay—Herriot model (Fay and Herriot, 1979)
o /I\Mhis i DEELK BEFIED direct estimator (BRI E) % 2z &
U, zZUATOLSB2EREDETY V7 Z1TD.
Level 1: (sampling model) : z; = ¢; + ¢;;
Level 2 : (linking model) : ¢; = x}3 + v;,

ei I& sampling error, v; [EHIEENE (random effect) T,
Ej ~ N(O, d,'), Vi ~ N(O, 7'2), TCTC L d,' L&"E}E%ﬂ

e EFINICHEDVT ¢; ZHET 3.
— model based estimator:

~2
~ T d, t A A2
. — . X:
¢ ¢+ﬁz+m+ﬂ’(7)

o direct estimator z; & x!3 OHMICHENG Z2EADN IS E, /R
DEENLTET 5.
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NYFI—T&

@ model based estimator D§AF1%, direct estimator DFF] (R F~V¥—
) [c— &1 5. — benchmarked estimator

o model misspecification (Z¥f U CTHBfE.
o BMMEtICHBIT2ER (Met0ESEDERANS).
o FfIfTENRA ZXHEEE (Ghosh, 1992) HV/\higkdD benchmarked
estimator E UL TK<AWSN S,



[FU&HIC

ZNTEADL T

o FIBREEDEDHZEEDEATVNET—FICHL, LU
DH Fay—Herriot ETILERD L DBEEETILELT,
transformed Fay—Herriot model (Slud and Maiti, 2006) %% % .

e weighted Kullback—Leibler loss % & T, benchmarked estimator Z &
9 %. benchmarked estimator (& non-benchmarked model based
estimator DEHEZE & WS BABI L L7185,

o HEED XV DEHANRHEEE ZHNT 5.



EFILERYFI—THEIK

transformed Fay—Herriot model
o B i=1,..., mICFLT, IED direct estimarot y; NEEETIL
yi =0m; ICUTch > TWB, HEFEDRRIE 0;.
@ zZ; = Iogy,-, (b,' = |og9,', g = Iogn; tj% t, Zj b\D(T@
Fay—Herriot model (C U7chYS.
zi=¢j+ei, ¢i=xiB+v,
4 NN(O,T2), Ej N(O, d,')
di FEERIDEL, 72 @FBRISSA—H, vi, .o Vi €1y Em EEL
(CHIT,
o B IIEFINT B ~ uniform(RP) 6D T2 (BEERA XETIL).
0 0, ENAXHEFEL, BENAX (HB) #EE (I %53,
— (H#9# L) model based estimator
o NYFY—UHIHDE ETERY A VFIMEZITW, FIKITEEEN
A ZEER I8 2153,
— benchmarked estimator



EFILERYFI—THEIK

RNy FNY—7HIK

o FHXDFIMNTTOERY RIRIMLEBEDEN, HIHINSHEENAX
(CHB) #EE

o L(6,0) #EAEBETZE, VIV IERIUTTERIND.

m

LM(8.)) = E[L(6, e>|y]+A{Z zw,y,}
o HTEIF, BEREAKOEDAITEKEFT S.
o 0 DHETEICHT L TEYIT, D CHBHEENGICEITBRABI S
ICRBIERERZRIELIL.



EFILERYFI—THEIK

BRBIMDREIR
o BREBHDMEME VW DONEZ 3.

Lo(6,6) = > &b - 60)?,

i—1

LTQ(a, 0) = Z&;(Iog 0; — log )2,
i—1

L51,(6,0) = fo{@'/@' — log(f/67) — 1},
i—1

o Lo BISIEL AL KRR, FETH E(0ly). LhL, CBHER
HNEEZED S5, TREDK O OHEEICZRBRIEL TR,

o Ltq : CBEEENZICEIT R,
o Ly : HHOMLAY EERE, BRI 1/E(0; y).



EFILERYFI—THEIK

weighted Kullback—Leibler loss

m

L.(8,0) =" witi{8;/0; — 1og(0;/0)) — 1}

i=1

o weighted KL loss DH & TD 0; D (HIHIEL) BEENT XHEEE,
OB (r2) = E(0ily) (BHFH) 123,

o LUTF®D ACHB (3, weighted KL loss ERYFI—7#IDH ETOD, i
W ERBAA AHTEE.

N A ST Wiy
GQHB(Tz) _ QHB(TZ) j=1"97J
] 1 A :
2o wifB(7?)
o TPEHEE T THENAT,
o OB(72) - (9% L) model based estimator
o ACHB(#2) - henchmarked estimator



F#%E U model based estimator DHEE Y X7
o weighted KL loss [26 & Wz, JHB OIEY 22 D 2 REBERIFH
T8 (O(m™!) DIEXT) %##EBRT 3.
o 0MB(12) = E(Bi]y, ) SR IF 3L, URIBUTFEAREND.
R {01'(#?)}
=E[6i"(#%) — 6; — 6; log{0]">(#?) /6,}]
=E[0;log{7 /6;}] + E[6}"°(7%) — 6, — 0, 10g{6]"> (%) /67 }]
+ E[O'P(72) — 0] (72) — 0; log{0]"® (#2)/0}B (r*)}]
=h+hb+5h (say).
12U, 6P = 6B (w) = E(bi]y,w), w = (8%, 72)".
o I, b IEBITHRFHENLLENBR S LD, K IFHB/INTX—F 12 DHEE
U0 % [ > TEDFHENEEL W,
BTN GFE (T4 7—EBRA) CBEMNGFE (parametric bootstrap)
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HIFIEE U model based estimator DHEEY X7 (BRFHIFEE)
o I = g1i(w), h=gi(w)+0(m2), I =gsi(w)+O(m32) &7 D,

RoAOTB(#2)} = g1i(w) + goi(w) + gzi(w) + O(m~*/3),

EUZRIPERTED. KL,
gii(w) = 0(1), gi(w) = O(m™), gi(w) = O(m™1).
o g1i(@) 2 RINA 7 R byj(w) = O(m™1) BEL 3.

E{g1i(®@)} = g1i(w) + bui(w) + O(m™*?)
o INSORBEHINRTEMNICESNZIHE,
Rot0IP(77)} = £i(@) — bui(@) + £21(@) + g31(@)

EULTYRID 2 REENRIEEEZIBR TE 3.
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FI#IEE U model based estimator DHEEY XY (T—KhXAKZ v )
o HEETHEBRUILUTOETIHLST—MIANT Y TIEEEES
oi=1,...micHLT, EOBH y NEEEFI yF = 0 I LT

No>TW3,
o ZI?“ = Iogy;'"(b* = |Og«9,, ; = log 77;k E9BE, Z;k DT O EERZE
FILIC LAY,

7 =¢f +¢l,  oF = xIB(?) + uf,
u;k NN(OJ/Q)a 57 ~ N(Oa dl)
2L, B(F2) &2 =22(y) ik, T—F y KbEDWIIHEEE.
o If = {&i(@0)}*/E{gui(@")}, kK = &i(®), 51
I3 _ E [9HB*(7¢2*) . 9HB*(7/;2) QB*( )Iog{eHB*(%%)/é‘HB*(ﬁﬂ)}]

EUtEE, R{OIB(R)) = IF + 1 + 5 U R D 2 RADERIRHE

EE.
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benchmarked estimator OHEE Y X &
o benchmarked estimator °HB(72) DU X0 % #ET 3.

é.CHB(%Z) _ é‘_HB(%z) ij 1 Wi
ZJ W, ‘gHB( )

o GCHB(+2) DU 2 o1& 4HB(#2) DU R/ ZBWT, MUTO&SICERR
TE3,

ACHB AHB B o 2t Wi )]
RAOTP (%)} =RL{61°(#?)} — Ele(ﬂg(Z )

m AHB (22
j—1 W0 (7

pneay |
' >y wifB(72)
=R {0B(#2)} — K1 + Ka.

o OIB(£2) & IPUB(22) DU R DE — Ky + Kr BHTETNIEE L,
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benchmarked estimator O#FEY X (DDE)
o —Ki+ Ko = E[K] + K3 £ EZ#HZ SN, 1201,

Rzgn%z){ 27 Yy _|Og( Sy wiyi )_1}
Sy wiB(72) Sy Wil (72)

AHB [ ~2 AB Z, WiYi
{orm @) - 8] (w)}log{zjl (7 )}

o K Iz E[K] DTREEEREND, K3=O0(m ) EITARNY Y -
T—RZANSY TETHET 2 K 5183,

o R{ACHB(22)1 — R*{AMB(#2)} + K + K; A ICHB(#2) Y 2 U D 2
KA RIEER.

Kz =E
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ETF—FIcHEDLLHI

INHEIR DB X H DO FIFHEE

e 2011 F 11 BOREFTAEHOHBEI DI ZHTET 2.

o NETIAE ",EXH, % direct estimator & T 3.

o REHFAEIFERTLONSD, /NHIRTIET Y TILEI/NS CHEENT
E LR,

@ % Z T transformed Fay—Herriot model &% Ti&é, (FIHIEL D)
model based estimate, benchmarked estimate ZZ#NZNkHsd. =
S5V RTDEEHITD.

o MBNEWR (ETILOFHBEH) & LT, 5FIC1ETbNS2EEEE
REEAE®M 2000 £ "HEXH) OTF—FZRHWS. 2EHEEERAE
ERBEGABED6, HEEDBEI L.
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ETF—FIcHEDLLHI

o ZEETAAEMZEH SDOIRAFi=1,....m(m=47)IcHLT, i&H
B D 2011 F 11 BOREGRAE 'HEXH) 7—F (BAFTH)
%Z yi &9 % (direct estimator),

o FEAZHE LT, i HEHDEMD 2009 F2FEEEERERE "HEXH,
7_‘_9%_: Xi1 t—g_é.

o zi=logy IcX L, UTDEFIZHTIEHS.

zi=¢;+ei, ¢i=xiB+ uj,
ui ~N(0,72), & ~N(0,d)

FRU xt = (Lxy) £33,

o ETI/LLIFRREEDDE d; (FBEFIEA, RUEHD@EE 10 FD 11 B
D "HEXH OERERDETHET 5.

o | BEHDHE,TDIELRE % n &L, DA MNIEBRETEHE DT
w; = n,-/ ijl nj %FH\I\%.
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ETF—FIcHEDLLHI

HERER
o YoMy wiyi/ ST, wifHB(72) DfEIE 1.0876 £ oT, &2 T, HBH#
EfEZ 1.0876 591, CHB EEMEBEMNEENS.
@ direct estimator y; DU XV HHEFE LI
o CHB HEER NG =DERY XV RNRIZOT, HIHELDERY
AVRINETHBDHB LKDH, VRIVEKELRKRS, ULHLIFEAE
DHUFT y; DU RT LD IFINE W,

[ n; d: Vi HB CHB | Rup Rfiz R&us Ry
S 05 056 | 810 889 965|195 19.1 224 456
AR 95 2696 | 10.03 9.48 1029 | 23.6 234 273 1347
HE 94 841 | 521 771 837|197 194 223 420
BE 95 3.93 1233 1273 1383|199 197 250 26.0
TFE 94 37.83 |30.71 13.10 14.22 | 32.1 315 37.0 2403
IR 38 230 | 1545 1445 1568 | 12.4 127 183 14.2

R 142 1599 | 2325 14.06 1527 | 30.0 293 350 98.4

Table : HB #7EfE, CHB #EEEENSD YRV DHEEE



e Fay, R.E. and Herriot, R. (1979). Estimates of income for small
places: An application of James-Stein procedures to census data. J.
Amer. Statist. Assoc., T4, 269-277.

@ Ghosh, M. (1992). Constrained Bayes estimation with applications. J.
American Statist. Assoc., 87, 533-540.

@ Slud, E.V. and Maiti, T. (2006). Mean-squared error estimation in
transformed Fay-Herriot models. J. Royal Statist. Soc., B 68,
239-257.
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INIBHEE (3252 - HIY - 58

RTE

midD 7 7 2% — (HIK) 23H 0, SHBAT oMl (i=1,...,m) DY~
TNy, xy), J=1,...,m BRFENT S,

IR = mIigRZECD n 13HFEHREL LW,

=]:)

FHUE D1 2 KR CHEE L 72w,
(i THEE L 7255813 np VNS OIUCAZEGHEERICZ>TLE ). )



INIBHEE (3252 - HIY - 58

Fi&

b DMK DR P H LR OHEHZ ) <) w3,

HARMIIZIE Nested Error Regression Model(NERM) & FEEL 5 DL D€
TNLzEH0S,

/ . .
yi=xiB+vitej Jj=L1...,m i=1....m

vi~ N(0,72) : ZBEIIR, e ~ N(0,02) : BHFETH, v; ey I3 \OITHRAT,

fldl % DHIRDOKF#Z v TRBEL 2L L ToR#Ez g TREL Tw3,
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INIBHEE (3252 - HIY - 58

AL FOETFLZD EIC

pi = XiB + vi
DFHEZRELT 2 &
~2
i =XB+ (7 — %
fi =XiB + 55 (Vi — %)
E2 5,

INz{MEDOFoHtER E L THWE 2 ETREL HiEEZTT)
EPTES,



%13 NERM ZSBRAE TV (LMM) EIEIZN 2 EF VDY 5 AICE
5.

y=X8+12Zb+c¢,
b~ N,(0,G), e~ Ny(0,R)

ZDETNMIZEWT p=cB+dbDFHlEIZ
p=cdB+d6z'S (y - XB)
ThHZ o615, (EBLUP: f&BR RAR 7l E)
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AN VIR S TR (2 5 2 5 — 1) 1B S e F— 2 1c BT
yi BEDME k7 % 7 — 5 W,

LMM (2850 y ICIEBRSHZIREL TV 572, [EDT—2IZW L T%
DEFHEHATLDIFFEY TR,

ZD &9 BRVLTIERE L% VT log y; 10 LT LMM &4 Tk e
2 D3R,



AHHZED HIYY

Box-Cox(BC) Z#ERW - LMM £8AL, ZOEFILICHT BHES
SUTUEEZ, INEESEEGRT 3.

Box-Cox 2t
h(x,A) = (x* —1)/A, A#0, h(x,0) = logx
= WA (A =0) LESEH (N =1) 2&.

BN T A= T =D OET L2 Lo TRMAET ) v I
AHEIC 72 5,



AtFEo HiN

BRI RO HIIZ LT D@y

e BC ZHaz ) A7z LMM 2% 1 3
e/ NHEE 2 © NERM 2 F W2 B 2 Bl Wil Tn 5.,

@ TRTDONI A=Y D—HHERZHERT 5.

F3 BCEMTIRAIEICE D N 2HEET 2 &L —BlEZ R 2w T
ZORZMRHT 5.

o PMIEZKKL, ZDAMEFN:ZM 2 7D FMIXEZ KT 5.
THlEDOY R 7 25 2 L3S RIERICEHEE,



BC-LMM

RD X 9 7% Box-Cox transformed LMM (BC-LMM) %&£ 2 5.
h(y;,\) =X;B+Zbj+¢e;, i=1,...,m

bi,...,.by €ERIBE W ey,... ey € RV IFH I
b; ~ Ng(0,R()), &i ~ Nn,(0,Gi(¥)).

P 3TN T A =5,

q=1tLTZ =1, £ 32 EUUTDLX % Box-Cox Bz H At
NERM(BC-NERM) %564 5413,

h(y;j,)\):xf-jﬂ+v,-+5,-j, j=1...,n,i=1...,m



A DGO G £ TIREH D LMM OB Z 3
= B, EHICXNDBIE LTBN),P(\) £ LTERE S,

TN X —F )\ DREHSEN,

BUF oA RROM & L THEE.
m n; ) A 3
S5t N - xB} =o,
i=1 j=1

P2 MY 5D ? 0 &2 IERUIAR VB VT % 72 @)
W) ZExEZDEHRBHEETIE
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A DMEETE UL B, 13 plug-in LT B, () LHEETE 3,

ED X )IBonERICN L TUIIRE 5,
0= (8, N\ £T2L

~

0—0=0,(mY?), E[f—6=0(m?)

XN DOHEBEICH LT ML 203 E ZoFEFIZE SN b,
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THl

DToEOTFHMZEZS.
W A) = Qn+ DY, =B +chb,

727ZL b= ( /1, ce, b;n)/ Ty, ¢ TMHIDELRR 7 b,
(EIE#R B LEEWMR b ORHES 1 EEEBRULEE
11 @ EBLUP i

. A ~BP A o
AP = B+ ¢4b™ (9, 3),

772 L
~BP

b (¥,\) = R($)Z/Zi(vp) ' {h(y;, \) — XiB} .

~

= hY(u, \) % hL(AEBLUP R) TTMIT 2.
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THIX [

~

A7 4 FOFPHIE A L(APBIUP X)) e L <2 o) A7 2 /b 570
DY MK Z KT 5.

= plug-in IC X % naive 27k —— O(m™1) DREE.
= parametric bootstrap 12 & 2 5%k ——  O(m~3/2) DS,

LU D o345 %2 300 S % DISAE Y,

A+ DM 1
7-26_—1{( P 3)\ _ﬁEBLUP}

0% = chdiag (V1,...,Vm)ez, Vi=R() — R(¥)Z/Z; (1) Z;R(¥).

ZOfEHRIZ m — oo T N(0,1) ICHURT 2 (&9 IThE STV 3).
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THIX [

HAT4 FD T DOAEDTHIE g, qu Db iUE

o 1/ . 1/
Im = [{/\(QEBLUP +qi16) + 1} : {A(ﬁEBLUP +q6) + 1} ]
DX ICFHIXEDRE 5,

T O53Ai% N(0,1) Tl = O(m™1) DREEE
T D434fi % parametric bootstrap T = O(m~3/2) DAFHE
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RBEUCHEESED MSEZ5TEU ML TA ZHELT—R EDHER.
T — & LG

h(yU,)\):ﬁo+51XU+Vi+€U, i=1,...,15 j=1,...,5

vi ~ N(0,02), gjj ~ N(0,03), 01 =1, o0 =15
xij ~ U(4,8). (BBICFEE S & TH run TRIEE)
Po=1, pr=2.
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HET— I DI

2001 4D B AR O AT Il (PLP) 5 — £ 12 BC-NERM %58 3 %

yij o 7sHufli (1000 FIH6T)

FAR,'J' : g%%

DSTj; : &% D B> & Dk

TRN; : BRi % 5 BRUR K T oAt (47)

h(yij, \) = Bo + 1 log(FAR;;) + B2 log(TRN;) + B3 log(DSTj;) + vi + €jj,
vi ~ N(0,72), gij ~ N(0, 0?)

X5 A — & X

A 7 & B b B Bs

0.43 0.67 221 49.0 205 —7.10 —1.18
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HET— I DI

1,000 HD7—=bFA 7y 12k ) PHIXEZERKT 2 EDLTDXIH I
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AWFZETIE Box-Cox ZH#a%2 B D A7z LMM(BC-LMM) 2% %2, Z Diff
EEB X OFHFEICOWTE T,

= BHRF XA —=F N IZOWTY VIV SBHEETIEZREL, ZOWHEm
WExZL 7.

= BCLMM 2B 2 THIRZEZEL, 20U R 75HliO 72 0 D FRIX
[l 2 RS 2 Fike e L 7.

= BC-LMM o BEf&f & LT BC-NERM 2% 2, PLP 7—#IZIBH L 7z,
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