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Abstract

For estimating the integrated covariances of continuous time diffusion process with micro-market
noise, Kunitomo and Sato (2008, 2013) have proposed the Separating Information Maximum Like-
lihood (SIML) method by using high frequency financial data. We can improve the SIML method
such that the modified SIML (MSIML) method is asymptotically optimal in a sense while it has
the asymptotic robustness when the sample size is large. We investigate the effects of market
adjustments (autocorrelated noises), round-off errors, and random sampling. We find that the

MSIML estimator has reasonable finite sample properties and thus it would be useful for practice.
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1. Introduction

Recently a considerable interest has been paid on the estimation
problem of the continuous time diffusion processes and their relation-
ships. It is partly because there are many theoretical use of diffusion
processes in the area of mathematical finance. Since it is possible to
use a large number of high-frequency data in financial markets, the
estimation of the continuous time diffusion processes and their rela-
tionships have potentially many applications in practice. Although
there were some discussion on the estimation of continuous stochastic
processes in the statistical literature, the earlier studies often had ig-
nored the presence of micro-market noises in financial markets when
they tried to estimate the underlying stochastic processes. Because
there are several reasons why the micro-market noises are important
in high-frequency financial data both in economic theory and in sta-
tistical measurement, several new statistical estimation methods have
been developed.

The main purpose of this paper is to propose a way to improve the
Separating Information Maximum Likelihood (SIML) method for esti-
mating the continuous time diffusion process by using high frequency
data in the presence of possible micro-market noise. We shall call
the resulting one as the MSIML (modified SIML) method because the
SIML method was originally proposed by Kunitomo and Sato (2008,
2011) and its properties has been investigated by Kunitomo and Sato



(2013), Kunitomo and Misaki (2013). In this paper we shall show that
the MSIML method estimator has reasonable asymptotic properties
in the sense that it is asymptotically optimal when the sample size is
large and it improves the finite sample properties of the SIML method
under quite general situations.

The main motivation of our study is two-fold. First, the SIML
method has reasonable asymptotic properties, but generally it does
not attain the optimal rate in the ideal situation. Hence it may be
important to improve the SIML and also understand the underlying
main reason why the original SIML estimator does not attain the
optimal convergence rate. Secondly, the variance-covariances of micro-
market noise are also important because they cause important effects
and thus the estimation of their magnitude gives key information on
the underlying process. Because it is difficult to observe the micro-
market noises, the assumption of i.i.d. random variables may be often
too strong in the view of micro-market structure. In this paper we shall
investigate the effects for estimating the variance and covariances of

noises when they are weakly auto-correlated.

2. The MSIML estimation of the diffusion process with micro-

market noise



2.1 The statistical models in continuous time and discrete

time

Let y4(t7) be the i—th observation of the (log-) price of the first asset
at i for 0 =15 <t <--- < {3, <{; =1and yf(tf) be the j—th

observation of the (log-) price of the second asset at t{ for 0 = tg <
t <o <th <t =1 Let £, = maxisy e £, the = max, ) oy 1]

and we denote n as a constant index and n* as a stochastic index.
We consider the situation that the high-frequency data are observed
at random times t¢ (a = s or f) under some conditions on random

sampling.

Assumption 2.1 : There exist positive constants ¢, (a = s or f)

such that

(2.1) G L I
n

and

(2.2) Eltf —t{ 1] =0(n™")

as n — oo, where a = s or f.

These conditions imply that n~! corresponds to the average duration
of observations of the intervals in [0,1] when n is relatively large.
Without loss of generality we take ¢, = ¢y = 1.

A typical example is the Poisson Process Sampling on ¢/ and tlf with
the intensity functions A(¥) = nc, and A/} = ne;. In this case the se-
quence of random variables 7 (a = s, f) are exponentially distributed

with £(77) = 1/n (7§ = t7 —t¢ ;) if we take ¢ = ¢y = 1. In this



paper we make a further assumption on the independence of X (¢) and

1o (i > 1).

Assumption 2.2 : The stochastic process X (t) (0 < ¢ < 1) is inde-

pendent of the random sequences ¢ and tf (1,5 > 1).

The underlying two-dimensional continuous process X (¢) = (X,(t), X(t))')
(0 <t < 1) is not necessarily the same as the observed (log-)price at

t? and t; (7, > 1) and
(2.3) X(t) = X(0) + [ C.(s)dB(s) (0 <t<1),

where B(s) is the two-dimensional Brownian motion, C,(s) is the 2x 2
instantaneous volatility matrix adapted to the o —field F(x(r), B(r),r <
s). The main statistical objective is to estimate the quadratic varia-

tion or the integrated volatility matrix

() (%)
1 g g

(2.4) pI :/ So(s)ds=| . ¥

0 P CIRC)

sf 2 ff

(2,(5) = C,(5)C,(s)) of the underlying continuous process X(t) (0 <
t < 1) from the set of discrete observations on (ys(tf),yf(t}t )) with
the condition that 3,(s) is a progressively measurable matrix and
SUPp<s<q 2z (5) < 00 (a.s.).

We also consider the situation that the observed (log-)prices ys(t7) and

yf(tjf ) are the sequence of discrete stochastic processes generated by

(2.5) ys(t7) = hs (X(7), ys(ti-1), us(17))

5



and

(2.6) yp(t) = hy (X(t), ys (1), up(8]))

where hg( - ) and hs( - ) are measurable functions, the (unobservable)
continuous martingale process X(t) (0 < ¢ < 1) is defined by (2.3) and
the micro-market noises us(t) and u f(tj'c ) are the discrete stochastic
processes. In particular, we assume that u,(¢{) and u f(tf ) are a se-
quence of independently and identically distributed random variables
with &(us(£)) = 0,E(us(t])) = 0 and E(us(#)?) = 0@, E(up(t])?) =

o, E(us () (t))) = o(t2,t))al.

There are special cases of (2.3), (2.5) and (2.6), which reflect the im-
portant aspects on modeling financial markets and the high frequency
financial data. The basic (high-frequency) financial model with micro

market noises can be represented by
(27)  walt]) = Xolt]) +uslt]) , ys(t]) = Xp(t]) + ug(t))

where the underlying process X(t) = (X,(t), X;(t)) is given by (2.3).
The synchronous sampling means t; = tzf and the fixed grid obser-
vation means t¢ — t¢ ; = n~'. We shall consider the more general
situations, that is, we have the non-synchronous observations as well
as the random sampling.

The most important statistical aspect of (2.7) is the fact that it
is an additive (signal-plus-noise) measurement error model. However,

there are some reasons why the standard situation as (2.7) is not



enough for applications. For instance, the high frequency financial
models for micro-market price adjustments and the round-off-errors
models for financial prices are not in the form of (2.7), but they can
be represented as special cases of (2.3), (2.5) and (2.6). Sato and
Kunitomo (2012) have discussed several important examples of (2.5)
and (2.6) when the state variable is one dimension.

More generally, it is straightforward to extend our analysis to the
cases when the observatios are the p-dimensional vector value process
yj(tgj )), j=1,---,p. The model we have discussed has been the case
when p = 2.

2.2 The MSIML estimation

We consider the situation when x; and v; (i = 1,---,n) are inde-
pendent with 3,(s) = 3, (0 < s < 1), and v; are independently,
identically and normally distributed as N,(0,X,). We use an n X p
matrix Y = (y;) and consider the distribution of np x 1 random vector

(y/17 cee y;L)/. Given the initial condition y, we have

(2.8) Y, ~ Nusp (1o ¥0, 1. ® £, + C,.C,, @ hy %)



where 1, = (1,---,1), h, = 1/n (=17 —t7 ;) and
1 0 0 0
1 1 O -0
(2.9) C,=[11 1 -0
1 - 1 1 0
1 - 1 1 1
We transform Y, to Z, (= (z;)) by
(2.10) Z, = h,"”P,C." (Y, — Yy
where
1 0 0 0
-1 1 O 0
(2.11) C,'=| 0 -1 1 0 - |,

o 0 -1 1 0O
o 0 0 -1 1

2
(2.12) P, = (pji) , pjr = o Cos

and Yo = 1, -y, . We have the spectral decomposition C,;'C/~! =
PnDnP;l = 2I, — 2A,, and D,, is a diagonal matrix with the k-th

s <2k — 1)
2 \2n+1
Then given the initial condition y( the likelihood function can be

defined as

2T 1. 1
103

element
2k — 1
2n+1

(2.13)  ag, = 2[1 — cos(n( ))] = 4n sin®

n 1 n ,
(214)L, = Y- log |ap By + B = 0 Y- gyfan Dy + o] 'z
k=1 k=1
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Since ay,, — 0 as n — oo when k, = O(n®) (0 < a < 1) and
ans1-1,n = O(n) when [,, = O(n”) (0 < 3 < 1). Then we may approx-
imate 2 X L, by 2 x L,, and the separating information maximum

likelihood (SIML) estimator of 3, is defined by

1 T
(2.15) = — 3 7z,
Mp k=1
and the SIML estimator of 32, is defined by
- 1 n 1
(2.16) So=— Y, ap,ZrZy -
ln k=n+1-1,,

For both f]v and Sx, the number of terms m,, and [,, are dependent on
n and we have the order requirements that m, = O(n®) (0 < a < 3)
and [, = O(n”) (0 < B < 1) for B, and X, respectively.

In order to improve the SIML method, we notice that the (1st

order) asymptotic bias term of 3, is given by

1 mn m2
(2.17) ABIAS = (— >~ apn) By + 0,(—") .
Mp =1 n

In this paper we propose to modify the SIML method and to use the
MSIML estimator of 3, by

(2.18) So=7 % [apnmz

where [, = ny — nq and ny = n*, ny = n™ (% <G < P <1).
Then given (2.14) the modified SIML (MSIML) estimator of 3, is
defined by

. 1 m 1 m
(2.19) Yom [ > zkzk} — { > akn}
My =1 My =1

9



2.3 Asymptotic Properties of the MSIML estimator

The asymptotic properties of the SIML estimator have been investi-
gated by Kunitomo and Sato (2008, 2011) on the estimation problem
of the integrated volatility and integrated covariances. For the simplic-
ity, we take the case of p = 1 and we consider the estimation problem
of the variance of micro-market noise. It seems that there have not
been any clear statement on the asymptotic properties of alternative
estimators for the noise variance.

We have the following result.

Theorem 2.1 : We assume that X (¢') and v; = v(t]) (i =1,---,n")
are given by (2.1) and (2.2) with supy<,<; 02(s) < oo.

For 1/2 < (1,0 <1 and 0 < a < 0.5, as n — 00,

(2.20) i [62 =02 S N0, V],
where
(2.21) V =20".

For the deterministic time varying volatility case the asymptotic
properties of the MSIML estimator can be summarized as the next

proposition.

Theorem 2.2 : We assume that X () and v; = v(t}) (i =1,---,n")
are given by (2.1) and (2.2) with supj<,<; 02(s) < oo and o2 =
Jo 02(s)ds is a positive constant (or deterministic). Define the MSIML
estimator of o2 by (2.19).

10



For m, =n“and 0 < a < 0.5, as n — o0

(2.22) Vi (62, — a2 L N0, V],
where
(2.23) V= 2/01 02(s)] " ds .

When 02 is a random variable, we need the concept of stable conver-
gence in law because the limiting distribution of the SIML estimator
is the mixed-Gaussian distribution. In order to discuss the stable
convergence in law we extend the probability space (€2, F, P) to the
extended probability space (€, F, P) as explained by Chapter VIII of
Jacod and Syriyaev (2003) or Jacod (2007). We say that a sequence

of random variables Z,, with an index n stably converges in law if
(2:24) E[Y f(Z,)] — E[Y f(2)]

for all bounded continuous functions f(-) and all bounded random
variables Y, and E[] is the expectation operator with respect to the

extended probability space. We write this convergence as
(2.25) Z, 55 7

(See Jacod and Shriyaev (2003) and Jacod (2007) for the details.)
As a typical stochastic volatility case in the continuous time, we con-
sider that the volatility function o,(t) is a strong solution of the

stochastic differential equation (SDE)

(226:(8) = 02(0) + [ pol5.02(5))ds ++ [ 7(s.04(5))dB(s)
[ s, 0(5))dB (s)

11



where the coefficients p,(s),7,(s) and ~v*(s) are in the class of A
(extensively measurable, continuous and bounded), and B*(s) is a
Brownian motion which is orthogonal to B(s). Here we set B(t) =
(B(t), B(t)*) as the vector of Brownian motions. Then there exists
a strong solution such that supyc,<;E[os(s)] < oo. (There can be
weaker conditions on the coefficients which give the existence of a
strong solution and the moment conditions. See Chapter III of Ikeda
and Watanabe (1989) for the notations and the details.)

The asymptotic properties of the MSIML estimator in the stochastic

volatility cases can be summarized as Theorem 2.3.

Theorem 2.3 : We assume that X (') and v; = v(t}') (i =1,---,n")
are given by (2.1) and (2.2) with supj.,<;02(s) < oo and o2 =
Ja 02(s)ds (> 0) is finite (a.s.). We assume that E[v(t?)?] < oo. For

m, =n® and 0 < a < 0.5, as n — oo we have the weak convergence

(2.27) T =Ty |0 — 03] = ZF,
where the characteristic function g,(t) = Elexp(itZ,~)] of Z,- con-

verges to the characteristic function of Z*, which is written as

(2.28) g(t) =Ele 2],
where
(2.29) V= 2/01 [02(s)]” ds .
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2.4 Generalizations

It is straightforward to extend our analysis in the previous section
to the p dimension cases (p > 1). Another direction to extend our
analysis would be to assume that the p x 1 vector noise process {v;}

is stationary process which can be represented as

(230) v; = Z VsWi_g (i:--~,—1,0,1,'-~)7

S§=—00

where w; = (w;;) are the vector sequence of independent random vari-
ables with &€(w;;) = 0, E(w;) = 05, E(wiwig) = 0 (i # j), E(wj;) < oo

and % ||3, 2 < .

3. Simulations

We have investigated the robustness properties of the MSIML es-
timator for the integrated volatility based on a set of simulations
and the number of replications is 1,000. We have taken the sam-
ple size n = 20,000, and we have chosen a = 0.5 and ny = n“,ny =
n—n? (c; = 0.85,¢c5 = 0.66). The other details of the simulation pro-
cedure are similar to the corresponding ones reported by Kunitomo
and Sato (2008, 2011).

In our simulations we consider several cases when the observations

are generated by (2.3) and (2.7) as the basic case. The volatility

2
T

function (¢2(s)) is given by
(3.1) o2(s) = 0(0)* [ag + ars + ass?]

13



where a; (i = 0,1,2) are constants and we have some restrictions
such that o,(s)?> > 0 for s € [0,1]. It is a typical time varying (but
deterministic) case and the integrated volatility o2 is given by

ai a9
ag+ — + —

(3.2) 02 = /01 0,.(s)%ds = 0,(0)? 5 T3

In this example we have taken several intra-day volatility patterns
including the flat (or constant) volatility, the monotone (decreasing or
increasing) movements and the U-shaped movements.

In our Monte-Carlo simulations, we also investigate the situation
that the observed (log-)price y(t}') is a sequence of discrete stochastic

process generated by

(3-3) y(ti) = h(X(t7), y(ti ), v(t}))

where h( - ) is a measurable function and the (unobservable) continu-
ous martingale process X (t) (0 <t < 1) is defined by (2.3) and v(t}")
is the micro-market noise process. In Appendix we give some results

and each model corresponds to the cases when we take h(-,-,-) as

Model 1 hi(z,y,u) =y +g(xr —y)+u (g :aconstant) ,

Model 2 ha(@,y,u) =y + gy(w —y +u) (gy(-) 1 (2.7))

Model 3 hs(z,y,u) =y + go(z —y) +u (g,() is (2.7)) ,

Model 4 ha(oyu) = g+t gi(x —y) ify >0 (g1 : a constant)
g2(x —y) ify <0 (g2 : aconstant)

Model 5 hs(z,y,u) =y + [g1 + g exp(—v|z — y*)] (z — y)

(g1, g2 : constants) ,

14
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respectively.

Model 1 is the basic additive model when ¢ = 1. When 0 < g <
2, Model 1 corresponds to the linear price adjustment model with
the micro-market noise. Model 2 and Model 3 are the micro-market
models with the round-off errors. Model 2 is the basic round-off errors
model and Model 3 has a more complicated nonlinearity. Model 4 and
Model 5 are the SSAR model and the exponential AR model, which
have been known as nonlinear (discrete) time series models.

For a comparison we have calculated the historical volatility (HI)
estimates. Overall the estimates of the MSIML method are quite
stable and robust against the possible values of the variance ratio
even in the nonlinear transformations we have considered.

For Model-1, the estimates obtained by historical-volatility (H-vol)
are badly-biased, which have been known in the analysis of high fre-
quency financial data. Actually, the values of H-vol are badly-biased
in all cases of our simulations.

By examining these results of our simulations we conclude that we
can estimate the integrated volatility of the hidden martingale part
reasonably by the MSIML estimation method despite of the possi-
ble non-linear transformations. It may be surprising to find that the
MSIML method gives reasonable estimates even when we have non-
linear transformations of the original unobservable security (intrinsic)
values. We have conducted a number of further simulations, but the

results are quite similar as we have reported in this section.
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4. Concluding Remarks

In the present study we propose a way to improve the statisti-
cal estimation method of the integrated volatility and covariances in
the presence micro-market noises. We extend the Separating Informa-
tion Maximum Likelihood (SIML) method proposed by Kunitomo and
Sato (2008, 2011). We have shown that the modified SIML (MSIML)
method has reasonable asymptotic properties; it is consistent and it
has the asymptotic normality (or the stable convergence in the general
case) and it is asymptotically optimal in a sense when the sample size
is large and the data frequency interval is small under reasonable con-
ditions. The MSIML estimator has reasonable finite sample properties
and also it has the asymptotic robustness properties.

The MSIML estimator is so simple that it can be practically used
not only for the integrated volatility but also the integrated covari-
ances of the multivariate high frequency financial series and the hedg-
ing ratios. Further developments of applications will be discussed in

other occasions.
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APPENDIX : TABLES

In Tables the estimates of the variance (02) are calculated by the MSIML method while
H-vol are calculated by the historical volatility estimation. The true-val means the true
parameter value in simulations and mean, SD and MSE correspond to the sample mean,
the sample standard deviation and the sample mean squared error of each estimators,

respectively.

B-1 : Estimation of integrated volatility (Model-1)
(ap = 1,a1 = 0,a2 = 0;02 = 1.00E — 04,9 = 0.2)

n=20000 o2 o2 H-vol U§7m
true-val 1 1.00E-04 1 1
mean 1.000648 6.93E-05 2.333708 1.000422
SD 0.118420 9.85E-07 0.023389 0.118420
MSE 0.014024 9.44E-10 1.779325 0.014024

B-2 : Estimation of integrated volatility (Model-1)
(ap = 1,a1 = 0,a3 = 0;02 = 0.0,g = 0.2)

n=20000 o2 o? H-vol o2
true-val 1 0.00E+00 1 1
mean 0.992748 1.16E-06 0.1110989 0.992744
SD 0.111878 2.38E-08 0.0024040 0.111878
MSE 0.012569 1.35E-12  0.7901510 0.012569

B-3 : Estimation of integrated volatility (Model-1)
(ao =1,a1 = 0,a2 = 0;02 = 0.0,g = 1.5)

n=20000 o2 o2 H-vol O'%m
true-val 1 0.00E4-00 1 1
mean 1.003343 6.53E-05  2.99923 1.00313
SD 0.12221  7.87E-07 0.036817 0.12221
MSE 0.014946 4.27E-09 3.998269 0.01494
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B-4 : Estimation of integrated volatility (Model-1)
(ap = 1,a1 = 0,as = 0;02 = 1.00E — 05,9 = 1.0)

n=20000 o2 o2 H-vol 02
true-val 1 1.00E-05 1 1

mean 1.004956 3.84E-05  1.3997  1.00483
SD 0.121406 4.88E-07 0.013967 0.121406
MSE 0.014764 8.06E-10 0.159962 0.014763

B-5 : Estimation of integrated volatility (Model-1)
(aop = 1,a1 = 0,a2 = 0;02 = 1.00E — 06,9 = 0.01)

n=20000 o2 o2 H-vol 02
true-val 1 1.00E-06 1 1

mean 0.523326 5.77E-07 0.0250976 0.523324
SD 0.071447 8.16E-09 0.0005492 0.071447
MSE 0.232323 1.79E-13  0.9504351 0.232325

B-6 : Estimation of integrated volatility (Model-2)
(ap = 7,a1 = —12,a2 = 6;02 = 2.00E — 02, = 0.5)

n=20000 o2 o2 H-vol o2
true-val 45 0.02 45 45
mean 46.59003 0.004002 136.3733 46.57694
SD 6.399936  0.00019 6.166522 6.399906
MSE 43.48737 0.000256 8387.097 43.44555

B-7 : Estimation of integrated volatility (Model-3)
(ap = 7,a1 = —12,a2 = 6;02 = 1.00E — 02,7 = 0.5)

n=20000 o2 o2 H-vol O3 m
true-val 45 1.00E-02 45 45
mean 47.185  1.17E-02  394.7923  47.14678
SD 6.548271 2.29E-04  7.1138  6.548203
MSE 47.6541 2.91E-06 122405.23 47.48761
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B-8 : Estimation of integrated volatility (Model-3)

(a0 = 1,a1 = 0,a2 = 0;02 = 0.0, = 0.005)
n=20000 o2 o2 H-vol 02
true-val 1 0.00E4-00 1 1
mean 1.002935 1.94E-05 0.68542  1.002872
SD 0.117878  3.32E-07 0.008776 0.117878
MSE 0.013904 3.78E-10  0.099037 0.013903

B-9 : Estimation of integrated volatility (Model-4)
(ao =1,a1 = 0,a2 = 0;02 = 0.0,91 = 0.2,g0 = 5)

n=20000 o2 o2 H-vol O3
true-val 1 0.00E+400 1 1
mean 1.001114  6.76E-05 2.221652 1.000893
SD 0.11993  2.22E-06 0.068095 0.11993
MSE 0.014384  4.57E-09  1.497069 0.014384

B-10 : Estimation of integrated volatility (Model-4)
(ao = 1,a1 = O,CLQ = O;Ug = 1.00E — 03,91 = 0.2,92 = 5)

n=20000 o2 o2 H-vol o2
true-val 1 1.00E-03 1 1

mean 1.029582 1.99E-03  66.6307  1.02307
SD 0.122565 4.86E-05 1.547753 0.122566
MSE 0.015897 9.86E-07 4309.795 0.015555

B-11 : Estimation of integrated volatility (Model-5)
(ap = 1,a1 = 0,a2 = 0;02 = 0.0,¢1 = 1.9,g0 = —1.7,7 = 10000)

n=20000 o2 o2 H-vol O3
true-val 1 0.00E+00 1 1
mean 0.996518  9.72E-05 6.375448  0.9962
SD 0.121183  3.21E-06 0.367669 0.12118
MSE 0.014697  9.46E-09 29.03062 0.01470
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