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Abstract

�is study empirically investigates the role of face-to-face contact in innovation, by exploiting the
Spanish �u pandemic in Japan from 1918 to 1921, which prohibitively increased the cost of face-to-face
contact between inventors. By using unique patent bibliographic data for this period, we estimate the
pandemic’s impact on innovation for face-to-face contact intensive technologies by the Di�erence-in-
Di�erences (DID) approach. �e estimation results show that during the pandemic, patent applications
for face-to-face contact intensive technologies signi�cantly decreased, and did not fully recover even
a�er the pandemic ended. We also �nd that the negative impact is driven by a decrease in new entries
into patent applications, that is, patent applications by the inventors who applied for patents for the
�rst time. We further �nd that productive inventors were experienced co-inventions during their early
careers. �ese results suggest that the decrease in face-to-face contacts with colleagues and seniors in
the preliminary stages of inventors’ careers reduced the opportunity to nurture new inventors.
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1 Introduction

Exchange of ideas with others is the key for knowledge growth (Lucas and Moll, 2014), and collaborative
work is an e�ective way for idea exchange (Azoulay et al., 2010). Indeed, collaboration in scienti�c research
and invention has been increasing and the average quality of collaborative work is higher than that of
solo work (Wuchty et al., 2007). Based on these observations, this study explores the channel of idea
exchange in collaborative work, focusing on the role of face-to-face communication. �is is because the
knowledge exchanged in collaborative work may o�en be tacit one, which could be e�ciently transmi�ed
only through face-to-face communication (Saxenian, 1996).

For this purpose, we study the patenting activities in Japan during the Spanish In�uenza pandemic
from 1918 to 1921. �e Spanish In�uenza was the most serious pandemic in the modern world, which
caused 20–40 million deaths. Japan was also seriously a�ected, with the number of deaths being 390,000.
In addition, it is notable that in Japan, the per mile of the deaths by the Spanish In�uenza to the population
was higher for the age group of 20–40 years, that is, the prime aged workers (Hayami, 2006). According
to Ministry of Home A�airs (1922), it is estimated that more than 240,000 employed people lost their lives
due to the pandemic in Japan. �e damage to the prime aged workers would reduce the opportunity for
knowledge exchange through face-to-face communication among them, and thereby, a�ect innovation to
the extent that face-to-face communication was essential.

To identify the e�ect of face-to-face communication on innovation, we exploit the di�erence in the
intensity of face-to-face communication across technology �elds. �at is, we categorize patent technology
�elds into the communication-intensive �elds and the communication non-intensive �elds, by the share
of co-inventions in the total patents before the pandemic. More speci�cally, we compare the percentages
of co-inventions in the total patents before the pandemic, across technology �elds. Following this, we
categorize the �elds with the percentages higher than the 75 percentile as the collaboration intensive �elds
that require more face-to-face communications for innovation, and the other �elds as the non-collaboration
intensive �elds. �en, using the former as the treatment group and the la�er as the control group, we
estimate how the decline in face-to-face communication due to the pandemic reduced innovations by
Di�erence-in-Di�erence (DID) approach.

�e estimation results show that the number of patent applications declined by 19% during the pan-
demic in the collaboration intensive �elds. In addition, the decline in the patent applications in the collabo-
ration intensive �elds was larger in the regions where the infection was more serious. We further �nd that
the decrease in patent applications in the collaboration intensive �elds during the pandemic was mainly
driven by the decrease in new entries into patent applications, that is, patent applications by the inventors
who applied patents for the �rst time. In other words, even in the collaboration intensive �elds, the num-
ber of patent applications by incumbent investors, who had applied for patent before the pandemic, did
not decline signi�cantly, and had just shi�ed from co-inventions to sole inventions in the pandemic. �ese
�ndings suggest that face-to-face communication indeed contributed to innovation by collaborative work,
and that opportunities of technical guidance, communication, and knowledge exchange with seniors and
colleagues in the early career of an inventor was especially important.

�is paper is related to several strands of the literature. First, it contributes to the literature on the
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peer e�ects in innovation. Azoulay et al. (2010) show that the collaborative research with highly com-
petent researchers enhances creativity of life scientists through knowledge spillovers, using the data on
co-authorship with academic “superstars” who died prematurely and unexpectedly. Moser et al. (2014)
show that the German Jewish chemists, who immigrated to the US from the Nazi Germany, improved the
US inventions in the chemistry �elds. �ey also show that the positive impact was driven by new entries
of American scholars to those �elds by collaborating with the immigrating German Jewish chemists. �is
shows the importance of co-invention experience with the productive inventors in the early career. Sim-
ilarly, Waldinger (2010, 2012) �nd that star scientists have positive impact on Ph.D. students, but not on
the established researchers, by exploiting the expulsion of Jewish professors from universities in Nazi Ger-
many. Jaravel et al. (2018) show the importance of team speci�c capital in the context of invention, instead
of scienti�c research. �is paper is consistent with the literature in the sense that it reveals the positive
impact of collaborative work on innovation, especially by early career inventors. In contrast, our study
covers inventions in Japan at a time when the country was still in the process of industrialization and the
level of technology was still low. Our contribution to this strand of literature is to show that knowledge
spillover played a signi�cant role in inventions in the contexts other than the cu�ing-edge science and
technology that have been the subject of previous studies.

Second, this paper is related to the literature on the implication of spatial distance in knowledge
spillovers. Starting with Ja�e et al. (1993), many articles have studied geographical barriers of knowledge
spillovers (e.g., Murata et al., 2014; Inoue et al., 2019; Gri�th et al., 2011). �ey �nd that the main driver of
the geographic frictions in knowledge spillovers is the cost of communication between remote inventors,
especially by face-to-face contacts, which requires trip costs. Inoue et al. (2019) show that co-invention
relationship is geographically concentrated. In addition, it reveals that the pa�ern of concentration is
unchanged from 1986 to 2006, although information technologies for remote communication were vastly
developed, suggesting the importance of face-to-face contacts. Our paper contributes to this strand of lit-
erature by showing the importance of face-to-face contacts on innovation in causal sense, using Spanish
In�uenza Pandemic as a plausible natural experiment.

Finally, this paper is related to the literature on the economic impact of Spanish In�uenza. In the previ-
ous literature, there has been a body of studies examining the fatal origin hypothesis, as exempli�ed by the
study by Almond (2006). In the context of Japan, Ogasawara (2017, 2018) examines the hypothesis. How-
ever, studies examining Spanish In�uenza’s direct impact on the economy are scarce. As an exemption,
Barro et al. (2020) showed that Spanish In�uenza had a signi�cant negative macroeconomic impact using
cross country data. In Japan, Noy et al. (2020) showed that the high mortality rate of Spanish in�uenza
negatively a�ected production in the textile industry, which was the largest industrial sector at that period
in Japan. Contrasting those papers, our paper contributes the literature by showing the pandemic’s impact
on innovation activities in line with Berkes et al. (2020), which shows the impact on NPCs on innovation
activity in US city level panel data. Our �ndings are consistent with Berkes et al. (2020), who estimate
the impact of Non-Pharmaceutical Interventions (NPIs) on innovation in the Spanish �u pandemic in the
U.S. �ey �nd that the number of patent applications do not decrease in cities with stronger NPIs. �is is
possibly because the NPIs prevented the increase in inventor deaths and did not result in the loss of human
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interactions. Given that strong NPIs were not implemented in Japan, the reason for the decrease in the
number of patent applications in collaboration intensive technology in this study is consistent with Berkes
et al. (2020)’s interpretation. �at is, the decrease in human interaction is due to the death of inventors.

�e remainder of this paper is organized as follows. In the next section, we overview the Spanish
In�uenza pandemic in Japan. Section 3 describes the dataset, especially our novel historical patent database
in Japan. Section 4 explains our empirical strategy, exploiting the pandemic period and characteristics of
the patent technology classes. Section 5 presents the results and discusses possible mechanisms. Finally,
Section 6 concludes the paper.

2 Historical backgrounds

�e Spanish in�uenza pandemic in Japan had three waves. �e �rst wave was from October 1918 to March
1919, the second wave from December 1919 to March 1920, and the third wave from December 1920 to
March 1921. According to the Ministry of Health Bureau, 23.8 million people were infected and 0.39 million
people died against the total population of 55 million in Japan (Ministry of Home A�airs, 1922, pp.85-91).
Figure 1 shows the number of excess deaths which can be a�ributable to the Spanish �u in the period of the
pandemic following Hayami (2006)1. �e �rst and second waves caused a substantial number of deaths,
and the third wage was much lower.

�e pandemic had a substantial impact on economic activities and lifestyles. For instance, the number
of trains and buses was reduced because of the rise in infection rate among employees of railroad and bus
companies, making it di�cult for citizens to travel within a city. (Hayami, 2006; Ministry of Home A�airs,
1922). Even though the government did not o�cially order the closure of factories, many factories had
to shut down due to the spread of the �u among their employees. Given this situation, the government
instructed that if any worker of a factory had the in�uenza infection or was suspected to have it, they
were required to be absent from work for a certain period of time. Reduction of the trains and buses would
be an impediment to face-to-face communication between inventors. Factory closures would also be an
impediment to the R&D activities conducted there.

A notable feature of the Spanish In�uenza in Japan was that the mortality rate was highest for working
age people from 20 to 49 years old. More precisely, the mortality rate by the Spanish In�uenza, that is,
the number of in�uenza deaths per total population in each age group, was the highest for the 30-34 age
group for males and for the 25-29 age group for females. �is suggests that many workers in various
occupations were lost. In fact, Ministry of Home A�airs (1922) states that among the total deaths by the
Spanish In�uenza, 62.6% were employed, which means more than 240,000 employed people were lost due
to the Spanish In�uenza.

So many deaths of employed people could have a signi�cant impact on innovation activities. Deaths
of colleagues had the opportunities of knowledge di�usion through face-to-face contacts lose. Especially

1Excess deaths are de�ned as the number of in�uenza-related deaths minus the number of in�uenza-related deaths in a
normal year. We use the years before the pandemic, 1916 and 1917, as normal years. In�uenza-related death is de�ned using
the following medium categories of causes of death in the data: in�uenza, pulmonary tuberculosis, acute bronchitis, chronic
bronchitis, pneumonia and bronchopneumonia, other respiratory diseases, and unknown cause.
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Figure 1: Number of excess deaths in the pandemic in Japan

Note: Following to Hayami (2006), excess death is calculated based on the average number of deaths in 1916 and 1917.

deaths of senior colleagues would negatively a�ect the future of early career inventors Waldinger (2010).
Unlike the ”star scientists,” whom Waldinger (2010) focus on, it is di�cult to obtain the information on
detailed careers of each engineer or on the exact number of engineers who died by the pandemic. For
a certain group of companies, however, we can obtain the information on the deaths of engineers. Each
issue of the Internal Newsle�er of Mitsubishi (Mitsubishi Shashi) (Mitsubishi Corporate History Publishing
Association, 1981) lists the names and dates of retirements from each company in the Mitsubishi Group,
along with the reason for retirement and the job title at the time of retirement. Table 1 shows the annual
number of cases where the reason for retirement was death and the job title at the time of retirement was
an engineer (gishi or gishi-ho in Japanese). It is observed that the number of deaths of engineers increased
between 1918 and 1920. Of course, not all deaths during this period were because of the Spanish In�uenza,
but the increase in deaths during the pandemic period (excess deaths) can be a�ributed to the Spanish
In�uenza. Two of the engineers who died during this pandemic period had registered patents, according
to our patent database explained in the next section. Both of them had a tenure of about 10 years, and
were presumably young. One of them had applied for a patent in 1918 with three colleagues, and the
loss productive colleague who could produce a patent must have had a signi�cant negative impact to the
remaining colleagues.
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Table 1: Number of engineer deaths in Mitsubishi Group during the pandemic

Year Number of engineer deaths
1917 4
1918 9
1919 13
1920 11
1921 5

Note:

3 Data

We use a novel historical patent database in Japan developed by Inoue et al. (2020). �e database covers
all the Japanese patent information from 1887, when the modern patent system was established in Japan
to 1950. �e database provides the information on the inventor’s name and address, the assigner’s name
and address, and the technology classi�cations. We restrict sample period from 1911 to 1930.2

�e o�cial technology classi�cation system was revised in our sample period. To make the technology
classi�cation consistent throughout the sample period, we use the Catalogue of Patents by Technology
Classi�cation published in 1958 (Japan Patent O�ce, 1958). �is is the list of all the patents registered
to that time, which reassigned a technology class to each patent according to the technology classi�ca-
tion system at that time. �e reassigned technology class in the Catalogue is a so-called Japan Patent
Classi�cation established in 1952, which has 132 classes. We use the Japan Patent Classi�cations as the
main technology classi�cation measure. Additionally, to capture broad industry classi�cations (agricul-
ture, chemistry, electricity, machinery, textile, and necessities), we use the patent classi�cation system in
1915 as a supplement. By combining Japan Patent Classi�cation and the patent classi�cation in 1915, we
have a patent classi�cation system with 182 classes.

Figure 2 shows the number of patents applied in the sample period. �e sample period covers the
period when Japanese industries started to upgrade by adopting foreign technologies. Around 2,000 patents
were applied each year in the 1910s. Out of them, almost one third were held by inventors with foreign
addresses. �e majority of these foreign patents were by German inventors. Since Germany became
Japan’s enemy in World War I from 1914 to 1918, the number of foreign patent applications decreased
during the war. Meanwhile, the number of patents applied by inventors with domestic addresses steadily
increased throughout the sample period.

Table 2 reports the summary statistics of the samples for selective three years: pre-pandemic (1916),
during-pandemic (1921), and a�er-pandemic (1926). We can identify co-inventions by the information of
inventor’s name. If multiple inventors are registered for a patent, we regard that patent as a co-invention

2As Inoue et al. (2020) write, the Japan Patent O�ce in Tokyo was destroyed by the Great Kanto Earthquake in 1923, and
all the documents until that time were lost. �e patent information available today for the years before 1923 was organized by
re-collecting documents that were sca�ered outside Tokyo, such as at the regional branch o�ces. �erefore, for a considerable
number of patents before 1911, bibliographic information are incomplete.
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Figure 2: Number of patents applied

Note: �e number of patents by domestic and foreign inventors.

by the registered inventors. As shown in Table 3, the share of patents by co-inventions gradually increased
overtime. In 1916, the share of patents by co-invention is 9.6%, which became 13.4% in 1926.

4 Hypothesis and empirical strategy

As described above, the Spanish In�uenza pandemic led to the closure of factories, restrictions on move-
ment, and the deaths of workers. �is resulted in a signi�cant loss of opportunities for face-to-face contact
between workers. �is would signi�cantly impede knowledge di�usion across workers and consequently
decline innovation. However, the pandemic’s impact would not be uniform across technology �elds. �e
impact would be greater for technologies that required more knowledge di�usion through face-to-face
communication. �us, we propose the testable hypothesis that Spanish In�uenza pandemic hindered in-
novation activities in the technology �elds that required intensive face-to-face contacts.

We use di�erence-in-di�erence approach to identify the impact of pandemic on innovation activi-
ties. We categorize patent technology classes into the face-to-face communication intensive classes and
the face-to-face communication non-intensive classes. To do so, we use the role of collaborative innova-
tion activities in each patent technology class before the pandemic. �e patent technology classes, where
knowledge exchange through face-to-face communication was important, are likely to have a greater frac-
tion of collaborative patents. However, the patent technology classes, where knowledge exchange through
face-to-face communication is less important are likely to have a smaller fraction of collaborative patents
because it is easier for one person to invent. We consider a patent a collaborative patent if multiple in-
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Table 2: Summary statistics

Mean SD Min Median Max
(A) 1916
Number of Patent (All) 14.339 12.42 1 11 80
Number of Patent (Domestic) 10.137 8.727 0 8 41
Share of Co-invented Patent (All) 0.096 0.112 0 0.074 0.667
Share of Co-invented Patent (Domestic) 0.111 0.199 0 0.025 1
(B) 1921
Number of Patent (All) 26.903 18.697 2 21.5 78
Number of Patent (Domestic) 17.548 14.082 0 13.5 68
Share of Co-invented Patent (All) 0.115 0.104 0 0.099 0.625
Share of Co-invented Patent (Domestic) 0.088 0.101 0 0.071 0.5
(C) 1926
Number of Patent (All) 34.702 33.18 2 24 169
Number of Patent (Domestic) 25.524 24.692 0 18 149
Share of Co-invented Patent (All) 0.134 0.131 0 0.106 0.667
Share of Co-invented Patent (Domestic) 0.126 0.141 0 0.085 0.667

Note:

ventors are registered. We then calculate the fraction of collaborative patents for all the patents in each
technology class, for the period from 1911 to 1917. We use the patent technology classes with the fraction
of collaborative patents greater than the 75 percentile as the treatment group, and the other technology
classes as the control group. In other words, the treatment group is the technology classes that was more
collaborative before the pandemic, while the control group is the less collaborative one.

Table 3 shows the mean value of the fraction of co-invention in the pre-pandemic period by industry.
For the all-patent applications, including those from both of domestic and foreign inventors, Chemistry
and Textile have larger mean values. However, if we focus on the patent applications by domestic in-
ventors, Electricity and Textile have larger mean values, whereas Machinery and Necessities have smaller
mean values. According to Nakaoka (2006), there are two types of inventors in Japan during this period:
traditional inventors who invented in the �eld of traditional industries, and the so-called engineers who
invented in the �eld of modern industries. Traditional inventors mainly belonged to the necessity sector.

Table 3: Share of co-invented patent by technology

Technology Share of Co-invented Patent (All) Share of Co-invented Patent (Domestic)
Agriculture 0.11 0.10
Chemistry 0.14 0.11
Electric 0.11 0.13
Machinery 0.11 0.08
Necessities 0.09 0.08
Textile 0.14 0.13

Note:
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Table 4 shows the summary statistics of the main variables in the pre-pandemic periods. We aggregate
each variable in each technology class by summing all the pre-pandemic periods, and calculate mean and
standard deviations by collaboration intensive and non-collaboration intensive technology classes. Main
outcome variables, number of patents by all inventors, and number of patents by domestic inventors are not
signi�cantly di�erent between the collaboration intensive and the non-collaboration intensive technology
classes. For both variables, the mean values are slightly larger for collaboration the intensive technology
class, but the di�erence is not signi�cant.

Table 4: Share of co-invented patent by technology

collaborative non-collaborative
No. Obs mean (sd) No. Obs mean (sd) p-value

Number of Patent (All) 33 109.97 (124.521) 99 96.212 (70.005) 0.431
Number of Patent (Domestic) 33 74.182 (87.784) 99 68.071 (54.741) 0.638
Share of Co-invented Patent (All) 33 695.606 (806.124) 99 605.414 (442.912) 0.42
Share of Co-invented Patent (Domestic) 33 0.14 (0.072) 99 0.083 (0.074) 0 ***

Note:

�e estimation equation is as follows,

Number of patentsit =β(Collaboration Intensive Dummyi × I[1918 ≤ t ≤ 1922])

+ β(Collaboration Intensive Dummyi × I[1923 ≤ t]) + ηi + ζt + εit,

where Number of patentsit is the number of patent applications in technology class i in year t. Collaboration Intensive Dummyi
is the dummy variable that equals to one, if technology class i belongs to the collaboration intensive tech-
nology class, and zero otherwise. I[1918 ≤ t ≤ 1922] is the dummy variable that equals to one, if year t
is the during pandemic period (1918-1922). I[1923 ≤ t] is the dummy variable that equals to one, if year t
is a�er the pandemic period (1923-). ηi is technology class �xed e�ect, ζt is year �xed e�ect, and εit is the
error term.

As shown in Table 2, some technology classes had no patent application during certain years. To
address this zero-application problem, we conduct the estimation by Pseudo Poisson Maximum Likelihood
method proposed by Silva and Tenreyro (2006).

5 Results

5.1 Baseline results

Figure 3 shows the average number of patents by matched treatment and control groups. �ose variables
are standardized in 1917 by dividing the number of patents in 1917. �e number of patent applications
was similar for the treatment and control groups, before the pandemic. However, when the pandemic
broke out in 1918, patent applications of the two groups sharply diverged. �at is, patent applications in
the treated group decreased relative to those in the control group. Furthermore, although the pandemic
was over by the end of 1921, the gap between the two groups did not narrow until the late 1920s. �e
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Figure 3: Number of patents (Collaborative vs. non-collaborative)

Note: �e number of patents are standardized by dividing by those in 1917. Two vertical lines show 1918 and 1921, the start and
end of the pandemic respectively.

plot shows that the Spanish In�uenza pandemic had a signi�cant and persistent impact on the innovation
activities in collaboration intensive technology.

�e baseline results of the DID estimation are reported in Table 5. Column (1) is the result of using
the patent samples by both foreign and domestic inventors. First, the coe�cient on the interaction of
the collaboration intensive dummy and the pandemic dummy is negative and statistically signi�cant. �e
number of patent applications in the collaboration intensive technology classes declined to 18% during
the pandemic period. Second, the coe�cient on the interaction of the collaboration-intensive and the
a�er-pandemic dummies are negative, but not signi�cant. �ese results suggest that patent applications
in collaboration intensive technology �elds declined during the pandemic period, but it recovered a�er it.
�ird, Column (2) shows the result for the case where we the use number of patents by domestic inventors
as the outcome variable. �e result is qualitatively the same as Column (1). �at is, during the pandemic
period, invention by domestic inventors signi�cantly declined in the collaboration intensive technology
classes. To control for the heterogeneity across technology classes, we conduct the same exercise using
matched sample. Column (3) shows the result. �e result is qualitatively the same, but the magnitude
increases. Especially, even if it is not signi�cant, the decline in the number of patent application is larger
a�er the pandemic than during the pandemic. �is suggests that the pandemic’s negative impact on the
innovation activities, in collaboration intensive technology, sustains a�er the pandemic.

Figure 4 shows the event study plots. �e outcome variable is the number of patent applications by do-
mestic inventors. We use the matched sample and set 1917 as the base year. �e red shaded areas represent
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Table 5: Baseline result

Dependent Variables: Number of patents (All) Number of patents (Domestic)
Model: (1) (2) (3)

Variables
Collaboration Intensive Dummy × During Pandemic -0.177∗∗∗ -0.159∗∗ -0.193∗∗

(0.060) (0.065) (0.094)
Collaboration Intensive Dummy × A�er Pandemic -0.108 -0.067 -0.218

(0.134) (0.114) (0.134)
Sample All All Matched

Fixed-e�ects
Technology class Yes Yes Yes
Year of Submission Yes Yes Yes

Fit statistics
Pseudo R2 0.66172 0.61077 0.65518
Log-Likelihood -11,215.7 -9,434.3 -4,764.4
Observations 2,640 2,640 1,320

Note: Standard errors are clustered by technology-class level.

Figure 4: Event study plot on number of patent applications by domestic inventors

Note: Dots show the point estimates of the coe�cient for Collaboration Intensive Dummyi times year dummies. Bars show
that the 95 percent con�dence intervals. We set 1917 as the baseline year. Dark shaded area shows the period of the pandemic
(1918–1922). Sample for the estimation is matched by the pre-treatment characteristics.
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the pandemic period. It clearly shows that before the pandemic, the trends of the patent applications are
not di�erent between the treatment group and the control group. During the pandemic period, however,
the number of patent applications in collaboration intensive technology declined. Even a�er the pandemic,
the downward trend continues until 1925. �is shows that the Spanish In�uenza pandemic negatively af-
fected innovation activities in the collaboration intensive technology classes during the pandemic period,
and this negative e�ect continued for a few years.

�e number of technology classes is not so large, and the results may be sensitive to the threshold to
de�ne treatment group. Hence, instead of using a binary variable on the treatment group or the control
group, we conduct the same DID exercise using the share of co-invented patent in the patent applications
before the pandemic as the treatment variable. �e results are shown in Table �. Results are qualitatively

Table 6: Results using continuous treatment variable

Dependent Variables: Number of patents (All) Number of patents (Domestic)
Model: (1) (2) (3)

Variables
Share of Patents by Collaboration × During Pandemic -1.23∗∗ -1.37∗∗ -1.86∗∗

(0.504) (0.629) (0.841)
Share of Patents by Collaboration × A�er Pandemic -0.763 0.602 -1.01

(1.47) (1.10) (1.35)
Sample All All Matched

Fixed-e�ects
Technology class Yes Yes Yes
Year of Submission Yes Yes Yes

Fit statistics
Pseudo R2 0.66139 0.61092 0.65391
Log-Likelihood -11,226.5 -9,430.6 -4,782.0
Observations 2,640 2,640 1,320

Note: Standard errors are clustered by technology-class level.

similar to the baseline results. During the pandemic period, the number of patent applications declined in
the collaboration intensive technology.

In summary, the number of patent applications in the collaboration-intensive technology decreased
during the pandemic period. �is can be observed even if patent applications by foreign inventors are
excluded, which means that the number of inventions by domestic inventors in the collaboration-intensive
technology classes decreased during the period. In addition, this negative impact of the pandemic on
inventions was observed even a�er the pandemic period. �ese results indicate that the pandemic a�ected
the inventions in the collaboration-intensive technology not only during the pandemic, but also for years
a�er the pandemic ended.

5.2 Other nature of the technologies

5.2.1 Technologies related modern vs. traditional industries

It is possible that the nature of inventors di�ered by technology, and the di�erence in the development
paths of technologies drive the baseline results. As mentioned above, Nakaoka (2006) classi�es pre-war
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Japanese inventors into two groups. �e �rst is cra�sman in the traditional sector who created inventions
related to the improvement of incumbent technologies. �e second are the so-called engineers with higher
education who belonged to modern industries and engaged in development of technologies as professional
engineers. Most collaboration intensive technologies might be modern technologies, and they would be
developing along with Japan’s industrialization. To control for the di�erence between traditional and
modern technologies, we exclude traditional technologies from our samples.

To identify traditional technologies, we use the broader class information of the patent classi�cation.
As mentioned above, the patent classi�cation system in 1915 classi�es six broad technology categories
(Table 4), and most of the traditional technologies are classi�ed into the necessities class. Hence, we
consider the technology classes categorized into necessities as traditional technologies. �en, we run the
regressions excluding the technologies of the necessities. As shown in Table �, the share of co-invented
patents in the necessities class is smaller than the other classes.

�e estimation results are reported in Table 7. Column (1) shows the results using Collaboration Intensive Dummyi

Table 7: Results excluding technologies in Necessity

Dependent Variable: Number of patents (Domestic)
Model: (1) (2) (3) (4)

Variables
Collaboration Intensive Dummy × During Pandemic -0.169∗∗ -0.193∗∗

(0.070) (0.094)
Collaboration Intensive Dummy × A�er Pandemic -0.117 -0.218

(0.119) (0.134)
Share of Patents by Collaboration × During Pandemic -1.67∗∗ -1.86∗∗

(0.698) (0.841)
Share of Patents by Collaboration × A�er Pandemic -0.121 -1.01

(1.21) (1.35)
Sample All Matched All Matched

Fixed-e�ects
Technology class Yes Yes Yes Yes
Year of Submission Yes Yes Yes Yes

Fit statistics
Pseudo R2 0.61457 0.65518 0.61427 0.65391
Log-Likelihood -7,773.3 -4,764.4 -7,779.2 -4,782.0
Observations 2,140 1,320 2,140 1,320

Note: Standard errors are clustered by technology-class level.

as the treatment variable, and Column (2) shows the results restricting to matched samples. In both speci�-
cations, even if we exclude technologies belonging to necessities related to traditional industries, the results
are mostly unchanged. �e number of patent applications by domestic inventors in the collaboration-
intensive technologies decreased during the pandemic period. Similarly, if we use the share of patents by
collaboration as the treatment variable, the results remain qualitatively unchanged (Columns 3 and 4).
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5.2.2 Impact of WWI

�e Spanish In�uenza began during WWI (1914-1918), and the pandemic’s inception in Japan was just
a�er WWI. �erefore, it is possible that the e�ect of the end of WWI drives our baseline results. In this
section, we discuss this possibility.

First of all, although Japan participated in WWI as an Allied country, it did not su�er direct damage to
its land, because it was far away from Europe, the main ba�leground. �erefore, we need not to consider
the direct damage caused by the war. WWI a�ected Japan through the channel of international trades.
In particular, the disruption of European exports to Japan due to WWI had a substantial impact on the
Japanese economy. During that time, Japan was in the process of industrialization and relied on imports
from Europe for a variety of materials and products. In particular, it depended on imports of dyes and
pharmaceuticals from Germany. Disruption of import from Europe provided an opportunity for Japan
to substitute domestic production for import (Oishi, ed, 1985; Nakaoka, 2006). In addition, Japanese gov-
ernment enforced compulsory licensing of the patents registered German applicants by the enemy act to
promote those industries and technologies. Moser and Voena (2012) revealed that the compulsory licens-
ing of German patents in the U.S. led to a 20% increase in patent production in the U.S., and a similar
phenomenon may have occurred in Japan.3

To exclude the impact of the compulsory licensing, we conduct the DID exercise excluding technologies
related to dyes and pharmaceuticals (Japan Patent O�ce, 1985; Nakaoka, 2006). �e results are reported
in Table 8. �e results are mostly the same as the baseline results.

5.3 Mechanism

We have established that the number of patent applications by domestic inventors decline during the
pandemic period. �en, the next question is, why did this occur? �is subsection tackles this question.

5.3.1 Entrant vs. incumbent inventors

To do that, we divide patent applications into those by entrant inventors and incumbent inventors. �e
entrant inventors here are the inventors who applied patents for the �rst time in their careers. Using the
number of patents applied by the entrant inventors, we conduct the same DID exercise. �e results are
reported in Table 9. Column (1) shows the results using the number of patents applications by domestic
entrant inventors as the outcome variable. �e number of patent applications by domestic entrant inven-
tors declined signi�cantly during the pandemic period. Column (2) shows the result using the share of
collaborative patents before the pandemic as the treatment variable. Columns 3 and 4 restrict the samples
to the matched ones. �e results are qualitatively the same. �e number of patents applied by domestic
entrant inventors declined for collaboration intensive technology classes during the pandemic period.

3Moser and Voena (2012) also show that the positive impact of compulsory licensing mainly arises from patents registered in
1931, ten years a�er the licensing. �is is because it takes take time to understand the advanced technology through experience
and learning. Since Japan, during those periods, was relatively less developed than the US, it was expected to take more time to
catch up with the latest technologies. �us, even if the compulsory licensing positively a�ects domestic invention in technologies
that have licensed patents, it would be ignorable in our study periods till 1928.
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Table 8: Results excluding WWI related technology

Dependent Variable: Number of patents (Domestic)
Model: (1) (2) (3) (4)

Variables
Collaboration Intensive Dummy × During Pandemic -0.143∗∗ -0.187∗

(0.067) (0.097)
Collaboration Intensive Dummy × A�er Pandemic -0.072 -0.202

(0.115) (0.134)
Share of Patents by Collaboration × During Pandemic -1.20∗ -1.77∗∗

(0.666) (0.896)
Share of Patents by Collaboration × A�er Pandemic 0.672 -0.859

(1.18) (1.47)
Sample All Matched All Matched

Fixed-e�ects
Technology class Yes Yes Yes Yes
Year of Submission Yes Yes Yes Yes

Fit statistics
Pseudo R2 0.60517 0.64854 0.60529 0.64730
Log-Likelihood -9,108.0 -4,465.9 -9,105.4 -4,481.6
Observations 2,580 1,260 2,580 1,260

Note: Standard errors are clustered by technology-class level.

Table 9: Entrant inventors

Dependent Variable: Number of Patents (Domestic)
Model: (1) (2) (3) (4)

Variables
Collaboration Intensive Dummy × During Pandemic -0.232∗∗∗ -0.267∗∗∗

(0.053) (0.089)
Collaboration Intensive Dummy × A�er Pandemic -0.144 -0.333∗∗∗

(0.108) (0.125)
Share of Patents by Collaboration × During Pandemic -2.25∗∗∗ -2.82∗∗∗

(0.591) (0.847)
Share of Patents by Collaboration × A�er Pandemic -0.413 -2.09∗

(0.965) (1.14)
Sample All All Matched Matched

Fixed-e�ects
Technology class Yes Yes Yes Yes
Year of Submission Yes Yes Yes Yes

Fit statistics
Pseudo R2 0.54008 0.53970 0.59186 0.58965
Log-Likelihood -9,294.9 -9,302.5 -4,761.5 -4,787.3
Observations 2,640 2,640 1,320 1,320

Note: Standard errors are clustered by technology-class level.
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We can conduct the same exercise using the number of patents by incumbent inventors as the outcome
variable. �e results are reported in Table 10. Contrasting the case of the entrant inventors, the number of
patents by incumbent inventors in the collaboration intensive technology classes did not change during
the pandemic period in any speci�cations. �ese results suggest that the decline in the number of patents
in collaboration intensive technology is driven by the decline in the entries of new inventors, not by the
decline in inventions by incumbent inventors.

Table 10: Incumbent inventors

Dependent Variable: Number of Patents (Domestic)
Model: (1) (2) (3) (4)

Variables
Collaboration Intensive Dummy × During Pandemic -0.101 -0.175

(0.145) (0.177)
Collaboration Intensive Dummy × A�er Pandemic 0.111 -0.021

(0.198) (0.234)
Share of Patents by Collaboration × During Pandemic 0.963 0.594

(1.24) (1.50)
Share of Patents by Collaboration × A�er Pandemic 2.62 0.582

(1.96) (2.46)
Sample All All Matched Matched

Fixed-e�ects
Technology class Yes Yes Yes Yes
Year of Submission Yes Yes Yes Yes

Fit statistics
Pseudo R2 0.57757 0.57832 0.60753 0.60732
Log-Likelihood -5,953.3 -5,942.8 -3,184.0 -3,185.7
Observations 2,640 2,640 1,320 1,320

Note: Standard errors are clustered by technology-class level.

5.4 Incumbent inventors’ response to the pandemic

To explore why incumbent inventors in the collaboration intensive technology were not a�ected by the
pandemic, and how they react to the pandemic, we conduct the inventor level analysis. First, we restrict
the data to the incumbent inventors, that is, the inventors who applied at least one patent before the
pandemic. �en, we aggregate the number of patent applications by inventor and by year. Using these
data, we analyze how invention activities di�ered between the inventors who had many collaborations
before the pandemic and those who did not during the pandemic. Speci�cally, we estimate the following
equation.

Number of patentsit =β(Share of co-inventioni × I[1918 ≤ t ≤ 1922])

+ β(Share of co-inventioni × I[1923 ≤ t]) + ηi + ζt + εit
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where Number of patentsit is number of patent applications by inventor i in the year t. Share of co-inventioni

is the share of co-invented patents of inventor i before the pandemic.
�e estimation results are reported in Table 11. Column (1) shows the results when we use the sum of

the numbers of the patents by solo-invention and by co-invention, as the outcome variable. During and
a�er the pandemic, the number of patents by the collaboration intensive inventors declined. Column (2)
shows the results when number of patents by co-invention as the outcome variable. During and a�er the
pandemic, the number of co-invented patents by the collaboration intensive inventors declined. Column
(3) shows the results when number of patents by solo-invention as the outcome variable. During and a�er
the pandemic, the number of solo-invented patents by the collaboration intensive inventors increased.
Taken together, the results suggest that incumbent co-invention intensive inventors shi�ed their invention
activities from co-invention to solo-invention during and a�er the pandemic. At the same time, the number
of patents declined overall, which suggests that the shi� does not completely compensate the decline in
co-inventions.

Table 11: Invention by incumbent inventors who applied at least one patent both before and a�er the
pandemic

Dependent Variables: Number of patents (All) Number of patents (Co-invented) Number of patents (Solely-invented)
Model: (1) (2) (3)

Variables
Share of Co-invention (pre pandemic) × During Pandemic -0.402∗∗∗ -2.98∗∗∗ 0.817∗∗∗

(0.155) (0.362) (0.206)
Share of Co-invention (pre pandemic) × A�er Pandemic -0.303∗∗ -4.21∗∗∗ 2.20∗∗∗

(0.138) (0.255) (0.178)
Sample All All Matched

Fixed-e�ects
Inventor Yes Yes Yes
Year of Submission Yes Yes Yes

Fit statistics
Pseudo R2 0.25839 0.23459 0.25807
Log-Likelihood -59,669.9 -12,798.6 -48,137.2
Observations 239,084 65,164 194,860

Note: Standard errors are clustered by technology-class level.

Several inventors might quit their innovation activities because of illness and mortality by the �u.
�e above results might include such a direct impact of the �u. We conduct the same analysis restricting
�e samples to the inventors who applied at least one patent both before and a�er the pandemic period.
�e results are reported in Table 12. �ey are qualitatively the same as Table 12. However, in Column
(1), the negative impact on the number of patent applications by co-inventions and solo-inventions are
not signi�cant. �is suggests that the pandemic made collaboration intensive inventors shi� their inven-
tion activities from co-invention to solo-invention. Furthermore, collaboration intensive inventors who
continuously invented a�er the pandemic did not reduce their total invention activity.

In summary, the results suggest that for the inventors who continued inventing a�er the pandemic, the
total number of inventions did not decrease, although they shi�ed from co-invention to solo-invention.
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Table 12: Invention by incumbent inventors who applied at least one patent both before and a�er the
pandemic

Dependent Variables: Number of patents (All) Number of patents (Co-invented) Number of patents (Solely-invented)
Model: (1) (2) (3)

Variables
Share of Co-invention (pre pandemic) × During Pandemic -0.143 -1.70∗∗∗ 0.486∗∗

(0.165) (0.329) (0.205)
Share of Co-invention (pre pandemic) × A�er Pandemic 0.066 -2.82∗∗∗ 1.44∗∗∗

(0.142) (0.240) (0.171)
Sample All All Matched

Fixed-e�ects
Inventor Yes Yes Yes
Year of Submission Yes Yes Yes

Fit statistics
Pseudo R2 0.20507 0.22295 0.21535
Log-Likelihood -28,677.0 -6,141.9 -24,510.3
Observations 50,154 20,526 48,194

Note: Standard errors are clustered by technology-class level.

5.4.1 Early career of inventors

Moser et al. (2014) revealed that co-invention with productive inventors in the initial stages of their career
leaves a long-term positive impact on the productivity of inventors. �e pandemic may have negatively
a�ected inventions in the collaboration intensive technologies classes by depriving potential inventors
of the opportunities to collaborate with their senior colleagues earlier in their careers, and thereby, it
prevented these potential inventors from being productive inventors. Especially as the level of technology
becomes more advanced, it will be di�cult to conduct research and development alone from the beginning,
and it is likely that an inventor’s career begins from learning from their seniors and gradually becoming an
independent inventor. In this case, reduction of learning opportunities in the workplace due to pandemics
would have a negative impact on the inventors’ development in that area, and the e�ect is expected to be
more serious in collaboration-intensive technology classes.

As stated above, deaths by the Spanish In�uenza were serious for the age group between 20 to 49 years
old, which includes the so-called prime aged workers. Also, according to Ministry of Home A�airs (1922),
who reported detailed analysis of pandemic in a large glass producing factory (Asahi Glass, Co.). 14.6%
of the employees in this factory were infected by in�uenza. Furthermore, among them, a high percentage
(16.2%) of young employees within the �rst year of employment were infected, and the incidence rate
decreased as the year since employment increased. �is suggests that the Spanish �u may have a greater
impact on younger people, and may prevent them from co-working with each other.

To see whether such a career path really existed, we conduct an analysis using the inventor-year level
data, used in the previous section. We count the number of patent applications by inventor and by year,
for both of solo-invention and co-invention. �en, analyze the relationship between the number of patent
applications and the inventors’ career. Speci�cally, we focus on the relationship between the number of
co-inventions and the inventor’s inventions in the �rst year of their career. �e estimation equation is:

Number of co-invented patentsit =βFirst application yearit + γNumber of patentsit + ηi + ζt + εit
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where Number of co-invented patentsit is number of co-invention patent applications by inventor i in the
year t. Number of patentsit is the total number of patent applications by inventor i in the year t.

�e results are reported in Table 13. Columns (1) and (2) show the results using the samples of the
inventors who applied for a patent at least more than one year. Column (1) shows the result using number
of solely invented patents as the outcome variable. �e coe�cient on the �rst submission year dummy is
negative but not signi�cant. In contrast, Column (2) shows the results using the number of co-invented
patents as the outcome variable. �e coe�cient on the �rst submission year dummy is positive but not
signi�cant. For inventors, including less productive ones who may have invented for just two years, the
pa�ern of collaborating and solo inventions are not signi�cantly di�erent between the �rst year of inven-
tion and the rest of the years of the inventor’s career. To focus on more productive inventors, we restrict

Table 13: Inventor’s �rst year of invention and collaboration

Dependent Variables: Number of Solo-invented Patents Number of Co-invented Patents Number of Solo-invented Patents Number of Co-invented Patents
Model: (1) (2) (3) (4)

Variables
An inventor’s �rst submission dummy -0.057 0.091∗∗∗ -0.113 0.119∗∗

(0.064) (0.031) (0.074) (0.049)
Log (Number of Total Patents) 2.20∗∗∗ 0.346∗∗∗ 2.10∗∗∗ 0.304∗∗∗

(0.269) (0.050) (0.133) (0.058)
Sample Patenting more than 1 year Patenting more than 1 year Patenting more than 3 years Patenting more than 3 years

Fixed-e�ects
Inventor Yes Yes Yes Yes
Year of Submission Yes Yes Yes Yes

Fit statistics
Pseudo R2 0.49427 0.88118 0.55087 0.66601
Log-Likelihood -3,032.1 -383.86 -1,241.2 -531.77
Observations 3,648 3,648 1,620 1,620

Note: Standard errors are clustered by technology-class level.

the samples to the inventors who applied for a patent at least more than three years. Column (3) shows
the result including the number of solely invented patents as the outcome variable. �e coe�cient on
the �rst submission year dummy is negative and signi�cant. Even though we control for the number of
total patents on the �rst year of invention, the number of solo-invented patents are signi�cantly fewer
than the rest of the inventor’s career. Column (4) shows the results using number of co-invented patents
as the outcome variable. �e coe�cient on the �rst submission year dummy is positive and signi�cant.
Contrasting the solo-invented patents on the �rst year of invention, the number of co-invented patents
are signi�cantly more than the rest of the inventor’s career. �e results suggest that inventors tend to
start their career by collaborating with other inventors. �en, they increase their solo inventions. Spanish
In�uenza pandemic impeded the opportunity of collaborating with the early career inventors and declined
the number of inventions, especially in the technologies that needed more collaboration and face-to-face
communications.

5.4.2 Summary of the possible mechanism

In summary, the results suggest the following mechanism. First, the incumbent inventors who had ap-
plied for patents before the pandemic shi�ed from co-inventions to sole inventions during the pandemic.
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However, the total number of patents did not decrease signi�cantly. Meanwhile, the number of patents
by entrant inventors, who had not applied for patents before the pandemic, decreased in collaboration
intensive technology classes during the pandemic, and the baseline result is driven by this decrease in new
inventors. Regarding the decrease in new inventors, we analyzed the careers of inventors to �nd that the
inventors who continued inventing for a certain period of years made more collaborative inventions early
in their careers. �is suggests that the pandemic made it di�cult for new inventors to invent technologies
that required intensive contact and collaboration.

As indicated by Hayami (2006), the pandemic caused a higher mortality rate for the so-called prime
age group between 20 to 49 years old. �is may have resulted in a decrease in patents by newcomers in
the collaboration intensive technology classes, which requires more technical guidance, communication,
and knowledge exchange.

6 Conclusion

�is study investigates the role of face-to-face communication on innovation using the case of Spanish
in�uenza pandemic in Japan as an event, which prohibitively increased the cost for face-to-face contact.
�e results show that the number of patent applications declined by 19% during the pandemic in the col-
laboration intensive �elds. We further �nd that the decrease in patent applications in the collaboration
intensive �elds during the pandemic was mainly driven by the decrease in new entries into patent ap-
plications. �ese �ndings suggest that face-to-face communication indeed contributed to innovation by
collaborative work. In addition, they also reveal that opportunities of technical guidance, communication,
and knowledge exchange with seniors and colleagues in the early career of an inventor were especially
important.

�e subject of this study is inventions in Japan at a time when the country was still in the process of
industrialization and the level of technology was low. Our results show that knowledge spillovers played a
signi�cant role in the inventive activities of such a developing economy and have important implications
for development policy.

Under the COVID-19 pandemic, many cities were locked down and social distancing policies were
implemented. Many people worked from home and their former communications with colleagues based
on face-to-face were replaced by online meetings. Even though online communication technologies can
complement the lack of face-to-face communication, the decline of face-to-face communication may a�ect
innovation activities in the medium term.
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