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Abstract—The paper proposes a new computational scheme
for diffusion semigroups based on an asymptotic expansion with
weak approximation and deep learning algorithm to solve high-
dimensional Kolmogorov partial differential equations (PDEs).
In particular, we give a spatial approximation for the solution
of d-dimensional PDEs on a range [a, b]d without suffering from
the curse of dimensionality.

Index Terms—Deep learning, Asymptotic expansion, Weak
approximation, Kolmogorov PDEs, Malliavin calculus, Curse of
dimensionality

I. INTRODUCTION

Kolmogorov partial differential equations (PDEs) are widely
used in various fields such as physics, engineering and finan-
cial mathematics. In general there are no closed form solutions
except for a few special cases. Hence, numerical methods are
usually required to solve Kolmogorov PDEs.

As classical schemes for solving Kolmogorov PDEs, finite
element and finite difference methods are well known. These
spatial approximation schemes work only for lower (typically
from 1 to 3) dimensions since the computational complexity
grows exponentially in the dimension of target Kolmogorov
PDEs. In other words, finite element/difference methods suffer
from the curse of dimensionality.

Instead, Monte Carlo methods can be applied to high
dimensional cases due to the advantage of overcoming the
curse of dimensionality. In perspective of solving Kolmogorov
PDEs, some discretization methods (weak and strong approx-
imations) of stochastic differential equations are used with
Monte Carlo methods. However, Monte Carlo method provides
an approximation at a fixed single point for the solution, that
is, it does not give a spatial approximation.

We also point out that there exist closed form approxima-
tions for solutions of Kolmogorov PDEs such as asymptotic
expansion methods. In particular, an expectation of a diffusion
and a PDE solution at a single point are efficiently approx-
imated with a probabilistic method [34]. For instance, see
[19] [20] [21] [28] [29] [31] [36]. Moreover, some extended
expansion methods such as [26] [32] [33] are proposed with
discretization (weak approximation) schemes and Monte Carlo
methods. Further, pure weak approximation schemes based on
the concept of asymptotic expansion are obtained by [15] [23]
[35].

Recently, deep learning-based methods for solving high
dimensional PDEs have been developed by [1] [2] [3] [4] [5]
[6] [7] [8] [9] [10] [11] [12] [13] [27] [30], where the deep
learning algorithms are used in a crucial step and then new
tools for approximations of the solutions to high dimensional
PDEs are obtained.

In this paper, we propose a new spatial approximation
for the solution of high dimensional Kolmogorov PDEs by
applying an asymptotic expansion and weak approximation
scheme with a deep learning algorithm. The proposed scheme
is inspired by the work of Beck et al. (2018) [1], and we
provide an accurate deep learning-based approximation for
PDEs without suffering from the curse of dimensionality.
Particularly, we extend the work of [32] in the sense that
the current work provides a new efficient second order weak
approximation through a second order asymptotic expansion.
More precisely, for a function uε : [0, T ] × Rd → R with a
small parameter ε given by uε(t, x) = E[f(Xt,x,ε

T )] where f is
a continuous function f : Rd → R and Xε is a d-dimensional
diffusion process, satisfying a Kolmogorov PDE

(∂t + Lε
t )u

ε(t, x) = 0, uε(T, x) = f(x), (1)

where Lε
t is a second order differential operator, we construct

a spatial approximation Qε
t,t1 ◦ · · · ◦Q

ε
tn−1,tnf for uε(t, ·) on

a certain domain [a, b]d ⊂ Rd for a fixed t < T , as follows:

sup
x∈[a,b]d

|uε(t, x)−Qε
t,t1 ◦ · · · ◦Q

ε
tn−1,tnf(x)| = O

(
ε2

n2

)
, (2)

and approximate the function Qε
t,t1 ◦ · · · ◦ Qε

tn−1,tnf by
means of deep learning. We call this approximation the deep
asymptotic expansion (Deep AE) for short.

The paper is organized as follows. In the next section,
we introduce an asymptotic expansion approach for solving
Kolmogorov PDEs with weak approximation. Section III de-
scribes a deep learning-algorithm for our asymptotic expansion
method. Section IV shows numerical results to demonstrate the
efficiency of the proposed method. Appendix provides proofs
for propositions in the main text.

II. ASYMPTOTIC EXPANSION AND WEAK APPROXIMATION

On a filtered probability space (Ω,F , {Ft}t, P ), let W =
{Wt}t≥0 be a d-dimensional {Ft}–Brownian motion. For t ≥



0 and T > t, let Xt,x,ε
s , s ∈ [t, T ], x ∈ Rd be the solution of

Xt,x,ε
s = x+

∫ s

t

µ(r,Xt,x,ε
r )dr + ε

d∑
i=1

∫ s

t

σi(r,X
t,x,ε
r )dW i

r ,

where ε ∈ (0, 1] and µ : [0, T ] × Rd → Rd, σi : [0, T ] ×
Rd → Rd, i = 1, . . . , d are continuous and bounded in t
and continuously differentiable in x with bounded derivatives
of any order. Let {P ε

t,s}s≥t be a two-parameter semigroup of
linear operators given by

(P ε
t,sf)(x) = E[f(Xt,x,ε

s )], s ≥ t, x ∈ Rd, (3)

for a continuous function f : Rd → R. The aim of this paper
is to show an approximation scheme for the function x 7→
(P ε

t,T f)(x) where f : Rd → R is a continuous function. The
d-dimensional process Xt,x,ε = (Xt,x,ε,1, . . . , Xt,x,ε,d) can
be expanded as follows: for i = 1, . . . , d,

Xt,x,ε,i
s ∼ Xt,x,0,i

s + εXt,x,i
1,s + ε2Xt,x,i

2,s + · · · (4)

in Malliavin sense, where Xt,x,0,i
s is the solution of

Xt,x,0,i
s = x +

∫ s

t
µi(r,Xt,x,0

r )dr, and Xt,x,i
k,s , k ∈

N given by Xt,x,i
k,s = 1

k!
∂k

∂εk
Xt,x,ε,i

s |ε=0. Let us de-
fine X

t,x,ε

s = Xt,x,0
s + εXt,x

1,s for s ≤ T , where
Xt,x

1,s is explicitly obtained as the following Wiener inte-
gral: Xt,x

1,s =
∑d

i=1

∫ s

t
Jx,0
t→s(J

x,0
t→r)

−1σi(r,X
t,x,0
r )dW i

r , with
Jx,0
t→r = ∂/∂xXt,x,0

r , r ≥ t.
We introduce an expansion of P ε

t,T f with respect to the
parameter ε and then give a second-order discretization with
respect to the number of time-steps n. Here we only use
polynomials of the Gaussian random variable Xti,x

1,ti+1
up to the

third order on each subinterval [ti, ti+1], i = 0, 1, . . . , n − 1,
where ti = t + i(T − t)/n, i = 0, 1, . . . , n are the time-
grids of the uniform partition on [t, T ]. Let {Qε

t,s}s≥t be linear
operators given by

(Qε
t,sf)(x) = E[f(X

t,x,ε

s )Wt,x,ε
s ], s > t, x ∈ Rd, (5)

for a continuous and bounded function f : Rd → R, where
Wt,x,ε

s is a Malliavin weight given in Appendix.

Theorem 1. Then, there exists C > 0 such that∥∥∥P ε
t,T f −Qε

t,t1 ◦ · · · ◦Q
ε
tn−1,tnf

∥∥∥
∞

≤ ε2C‖f‖∞
1

n2
, (6)

for any ε > 0, n ≥ 1 and continuous bounded function f :
Rd → R.

Proof of Theorem 1. See Section V □

Here, the approximation can be expressed as

(Qε
t,t1 ◦ · · · ◦Qε

tn−1,tnf)(x) = E[f(X̄
t,x,(n)
T )

n∏
i=1

W
ti−1,X̄

t,x,(n)
ti−1

,ε

ti
],

for x ∈ Rd, where X̄
t,x,(n)
ti = X

ti−1,X̄
t,x,(n)
ti−1

,ε

ti , i = 1, . . . , n.
Solutions of Kolmogorov PDEs are approximated in the
following way. Let uε : [0, T ] × Rd → R be a function

given by uε(t, x) = E[f(Xt,x,ε
T )] with a continuous function

f : Rd → R of polynomial growth order, which satisfies

(∂t + Lε
t )u

ε(t, x) = 0, uε(T, x) = f(x), (7)

where

Lε
t =

d∑
j=1

µj(t, ·) ∂

∂xj
+

ε2

2

d∑
i,j1,j2=1

σj1
i (t, ·)σj2

i (t, ·) ∂2

∂xj1∂xj2

.

Then, there exist C > 0 and q > 0 such that∣∣∣uε(t, x)− E[f(X̄
t,x,(n)
T )

n∏
i=1

W
ti−1,X̄

t,x,(n)
ti−1

,ε

ti
]
∣∣∣ ≤ ε2C(1 + |x|q) 1

n2
,

for any ε > 0, n ≥ 1 and x ∈ Rd.

III. DEEP LEARNING-BASED APPROXIMATION

Let a ∈ R, b ∈ (a,∞), t > 0, T > t, n ∈ N and
ξ : Ω → [a, b]d be a F0/B([a, b]d)-measurable uniformly
distributed random variable. Let f : Rd → R be a continuous
function with polynomial growth. We define Xt,(n)

T = X̄
t,ξ,(n)
T .

Then, the following holds.

v∗ = argminv∈C([a,b]d)E
[∣∣∣v(ξ)− f(Xt,(n)

T )

n∏
i=1

W
ti−1,X

t,(n)
ti−1

,ε

ti

∣∣∣2],
and it holds that for all x ∈ [a, b]d,

v∗(x) = Qε
t,t1 ◦ · · · ◦Q

ε
tn−1,tnf(x). (8)

With the above representation, the function P ε
t,T f can be

approximated using deep learning. Let Rr 3 x 7→ Lr(x) ∈ Rr

be the Rectified Linear Unit (ReLU) activation function given
by

Lr(x) = (max{x1, 0}, . . . ,max{xr, 0}) , x ∈ Rr, (9)

and for p, ℓ ∈ N, q ∈ {0} ∪ N, θ = (θ1, . . . , θν) ∈ Rν with
ν ∈ N such that q + ℓ(p + 1) ≤ ν, let Aθ,q

p,ℓ : Rp → Rℓ be a
function given by

Aθ,q
p,ℓ(x)

=

 θq+1 · · · θq+p

...
. . .

...
θq+(ℓ−1)p+1 · · · θq+ℓp


 x1

...
xp

+

 θq+ℓp+1

...
θq+ℓp+ℓ

 .

Let s ∈ {3, 4, 5, . . .} such that
∑s

k=1 dk(dk−1 + 1) ≤ ν for
d0 = d, ds = 1, d1, . . . , ds−1 ∈ N. Then, we have

P ε
t,T f ≈ Q

ε,[n],θ∗

t,T f, (10)

where Q
ε,[n],θ∗

t,T f is given by

Q
ε,[n],θ
t,T f(x) = (A

θ,
∑s−1

k=1
dk(dk−1+1)

ds−1,ds
◦ Lds−1 ◦Aθ,

∑s−2
k=1

dk(dk−1+1)

ds−2,ds−1

◦ · · · ◦ Ld2 ◦Aθ,d1(d0+1)
d1,d2

◦ Ld1 ◦Aθ,0
d0,d1

)(x), x ∈ Rd

with θ∗ satisfying

θ∗ = argminθE
[∣∣∣Qε,[n],θ

t,T f(ξ)− f(Xt,(n)
T )

n∏
i=1

W
ti−1,X

t,(n)
ti−1

,ε

ti

∣∣∣2].
The function Q

ε,[n],θ∗

t,T f : Rd → R with θ∗ represents an
artificial neural network with s+ 1 layers (1 input layer with
d neurons, k-th hidden layers with dk neurons for each k =
1, . . . , s− 1, and 1 output layer with 1 neuron).



IV. NUMERICAL EXAMPLES FOR FINANCIAL
MATHEMATICS

In the section, we apply the proposed method to the follow-
ing d-dimensional Kolmogorov PDE:

(∂t + Lε
t )u

ε(t, x) = 0, uε(T, x) = f(x), (11)

where Lε
t is a second order differential operator given by

Lε
tφ(x)

=

d∑
j=1

rxj
∂φ(x)

∂xj
+

ε2

2

d∑
i,j1,j2=1

σj1
i xj1σ

j2
i xj2

∂2φ(x)

∂xj1∂xj2

,

(12)

for a smooth function φ and x ∈ Rd, and f is a continuous
function which is specified in the following subsections.

A. Numerical error of Deep AE

First, we evaluate the error for an entire region [a, b]d.
Let d = 10, a = 99.0, b = 101.0, r = 0.01, σj

i = δji ,
ε = 0.2, T = 5.0, and fd : Rd → R be a function
y 7→ max{max{y1 −K, 0}, . . . ,max{yd −K, 0}} with K =
100.0, where δji is the Kronecker delta. As an example,
we apply the proposed second order asymptotic expansion
with second order scheme (Deep AE) and continuous uni-
formly distributed random variable ξ : Ω → [a, b]d. For
comparison, we use Deep EM scheme, the standard deep
learning-based splitting method of Beck et al. (2018). Here,
we use 1 input layer, 2 hidden layers, 1 output layer with
neurons (d, d + 50, d + 50, 1) in the deep learning com-
putation. Also, the batch size M , the train steps J and
learning rate γ(j), j ≤ J in the stochastic gradient descent
method are taken as M = 4096, J = 50000 and γ(j) =
10−21[0, 0.2J](j) + 10−31(0.2J, 0.6J](j) + 10−41(0.6J, J](j),
j = 0, 1, . . . , J for both schemes. As an error analysis
after the solution of Kolmogorov PDE is estimated by each
scheme, we compute maxx∈{y0,...,yk}

∣∣∣Ref(x)−Deep AE(x,n)
Ref(x)

∣∣∣
and maxx∈{y0,...,yk}

∣∣∣Ref(x)−Deep EM(x,n)
Ref(x)

∣∣∣, where yi = (a +

(b − a)i/k, . . . , a + (b − a)i/k) ∈ Rd, k = 20, i ≤ k,
Deep AE(x, n) and Deep EM(x), x ∈ {y0, . . . , yk} represent
numerical values of Deep AE and Deep EM, respectively,
and Ref(x), x ∈ {y0, . . . , yk} are computed by Monte Carlo
simulations with the number of paths 108 and the explicit
solution of Xx obtained by Itô formula. The table below shows
that the convergence of our scheme is faster than that of deep
EM as spatial approximation.

TABLE I
THE NUMERICAL ERROR FOR SPATIAL APPROXIMATIONS (DEEP AE AND

DEEP EM)

Number of Error for Runtime for Error for Runtime (s) for
train steps Deep AE Deep AE Deep EM Deep EM

(n = 21) (n = 21) (n = 26) (n = 26)
50000 0.00609 459.45s 0.00671 2636.21s

B. Weak convergence

Next, we check the rate of weak convergence based on the
theoretical estimate (6). As in the previous subsection, we
compare the accuracies of the proposed scheme with those
of Deep EM of Beck et al. (2018). In the experiments, we
first estimate the function Qε

t,t1 ◦ · · · ◦Q
ε
tn−1,tnf on a region

[a, b]d with continuous uniformly distributed random variable
ξ : Ω → [a, b]d, and compute Qε

t,t1 ◦ · · · ◦ Qε
tn−1,tnf(x) at

x ∈ [a, b]d. Then, we check the numerical error, where our
reference value is computed by a Monte Carlo simulation with
the number of paths 108.

Figure 1 shows the result for d = 10, a = 99.0, b = 101.0,
r = 0.015, σj

i = δji , ε = 0.3, T = 2.0, f : Rd → R given by
y 7→ max{max{y1 −K, 0}, . . . ,max{yd −K, 0}} with K =
100.0, and x = (100.0, . . . , 100.0) ∈ [a, b]d, where the relative
errors are plotted. Here, we use 1 input layer, 2 hidden layers,
1 output layer with neurons (d, d+ 50, d+ 50, 1) in the deep
learning computation. Also, the batch size M , the train steps J
and learning rate γ(j), j ≤ J in the stochastic gradient descent
method are taken as M = 8192, J = 50000 and γ(j) =
10−21[0, 0.2J](j) + 10−31(0.2J, 0.6J](j) + 10−41(0.6J, J](j),
j = 0, 1, . . . , J . In Table II, numerical errors and runtimes
of the schemes are shown.

20 21 22 23 24 25 26 27 28

���

����������
���	����

����

����

����


�
��
��

�

����
O(n−1)
�

����
O(n−2)

Fig. 1. Weak convergence (d = 10)



TABLE II
THE NUMERICAL ERROR AT x = (100.0, . . . , 100.0) ∈ [a, b]d (d = 10)

Number of Error for Runtime (s) for Error for Runtime (s) for
train steps Deep AE Deep AE Deep EM Deep EM

(n = 23) (n = 23) (n = 28) (n = 28)
50000 0.00064 1375.25s 0.00080 19350.10s

Figure 2 shows the example for d = 100, a = 99.0,
b = 101.0, r = 0.015, σj

i = δji , ε = 0.2, T = 0.5, f : Rd → R
given by y 7→ max{max{y1 −K, 0}, . . . ,max{yd −K, 0}}
with K = 100.0, and x = (100.0, . . . , 100.0) ∈ [a, b]d, where
the relative errors are plotted. Here, we use 1 input layer, 2
hidden layers, 1 output layer with neurons (d, d+50, d+50, 1)
in the deep learning computation. In the stochastic gradient de-
scent method, the batch size M , the train steps J and learning
rate γ(j), j ≤ J are taken as M = 1024, J = 25000 and
γ(j) = 5× 10−21[0, 0.2J](j) + 5× 10−31(0.2J, 0.6J](j) + 5×
10−41(0.6J, J](j), j = 0, 1, . . . , J . Table III shows numerical
errors and runtimes of the schemes.

Those figures and tables demonstrate that our Deep AE
gives more accurate approximations than Deep EM and pro-
vides high performance in terms of runtime to achieve the
same level of accuracies.

20 21 22 23 24 25 26

���

����������
���	����

����

����

����


�
��
��

�

����
O(n−1)
�

����
O(n−2)

Fig. 2. Weak convergence (d = 100)

TABLE III
THE NUMERICAL ERROR AT x = (100.0, . . . , 100.0) ∈ [a, b]d (d = 100)

Number of Error for Runtime (s) for Error for Runtime (s) for
train steps Deep AE Deep AE Deep AE Deep AE

(n = 21) (n = 21) (n = 22) (n = 22)
25000 0.00450 298.61s 0.00070 463.20s

Number of Error for Runtime (s) for Error for Runtime (s) for
train steps Deep EM Deep EM Deep EM Deep EM

(n = 25) (n = 25) (n = 26) (n = 26)
25000 0.00448 1544.26s 0.00168 3273.39s

Throughout the numerical experiments, we have checked
that the proposed scheme works as a spacial approximation in
high-dimensional PDE models and the numerical results are
consistent with theoretical parts given in Section II and III.

V. PROOF OF THEOREM 1

We prepare some notations on Malliavin calculus. Let
D∞ be the space of smooth Wiener functionals F :
C([0, T ];Rd) → R in the sense of Malliavin. For a nonde-
generate F ∈ (D∞)d, G ∈ D∞ and a multi-index γ, there
exists Hγ(F,G) ∈ D∞ such that

(IBP) E[∂γφ(F )G] = E[φ(F )Hγ(F,G)] (13)

for all φ ∈ C∞
b (Rd). See Chapter V.8-10 in Ikeda and

Watanabe (1989) [15] and Chapter 1-2 in Nualart (2006) [25]
for the details.

The following lemma is useful for the proof of Theorem 1.

Lemma 1. Let 0 ≤ t < s, k ≥ 3, ∆t,s := {(t1, . . . , tk) ∈
Rk; t ≤ t1 < · · · < tk ≤ s} and α ∈ {0, 1, · · · , d}k be a
multi-index. Let h : ∆t,s → R be a bounded function. There
exists C > 0 such that

sup
x∈Rd

∣∣∣E[g(X̄t,x,ε
s )

∫
t<t1<···<tk<s

h(t1, . . . , tk)dW
α1
t1 · · · dWαk

tk
]
∣∣∣

≤ Cε#{ℓ; αℓ ̸=0}‖∇#{ℓ; αℓ ̸=0}g‖∞(s− t)k, (14)

for all ε ∈ (0, 1], g ∈ C∞
b (Rd,R) and t < s ≤ T .

Proof of Lemma 1. Use the duality formula in Malliavin
calculus. □

In the first step, we expand P ε
t,sφ for φ ∈ C∞

b (Rd) as
follows:

P ε
t,sφ(x) = E[φ(X̄t,x,ε

s )]

+

5∑
k=1

k∑
ℓ=1

∑
k1+···+kℓ=k+ℓ

kp≥2
,

∑
α(ℓ)∈{1,··· ,d}ℓ

1

ℓ!

E
[
∂α(ℓ)φ(X̄t,x,ε

s )

ℓ∏
p=1

εkpX
t,x,αp

kp,s

]
+ Rt,ε

1,sφ(x), x ∈ Rd.

(15)

Here, Rt,ε
1,sφ satisfies supx |R

t,ε
1,sφ(x)| ≤ Cε6‖φ‖∞(s − t)3,

where the constant C > 0 does not depend on φ and t, s. Using



the integration by parts on the Wiener space with Lemma 1,
we get

P ε
t,sφ(x)−Qε

t,sφ(x) = Rt,ε
1,sφ(x) + Rt,ε

2,sφ(x), x ∈ Rd,
(16)

where Rt,ε
2,sφ satisfies ‖Rt,ε

2,sφ‖∞ ≤
C
∑q

e=0ε
2+e‖∇eφ‖∞(s − t)3 for some C > 0 which

does not depend on φ and t, s.
We now estimate the global error. Note that the following

decomposition holds: for x ∈ Rd,

P ε
t,T f(x)−Qε

t,t1 ◦ · · · ◦Q
ε
tn−1,tnf(x)

=

n−1∑
i=0

Qε
t,t1 ◦ · · · ◦Q

ε
ti−1,ti(P

ε
ti,ti+1

−Qε
ti,ti+1

)P ε
ti+1,T f(x)

=

n−1∑
i=0

2∑
ℓ=1

Qε
t,t1 ◦ · · · ◦Q

ε
ti−1,tiR

ti,ε
ℓ,ti+1

P ε
ti+1,T f(x). (17)

For Qε
t,t1 ◦· · ·◦Q

ε
ti−1,tiR

ti,ε
1,ti+1

P ε
ti+1,T

f , we immediately have∥∥∥Qε
t,t1 ◦ · · · ◦Q

ε
ti−1,tiR

ti,ε
1,ti+1

P ε
ti+1,T f

∥∥∥
∞

≤ c‖Rti,ε
1,ti+1

P ε
ti+1,T f‖∞ ≤ Cε6‖f‖∞

1

n3
. (18)

We next estimate the bound of Qε
t,t1 ◦ · · · ◦

Qε
ti−1,tiR

ti,ε
2,ti+1

P ε
ti+1,T

f . For 0 ≤ i ≤ [n/2]− 1,

‖Qε
t,t1 ◦ · · · ◦Q

ε
ti−1,tiR

ti,ε
2,ti+1

P ε
ti+1,T f‖∞

≤ c

q∑
e=0

ε2+e‖∇eP ε
ti+1,T f‖∞

1

n3
≤ ε2C‖f‖∞

1

n3
, (19)

where we used the estimate supi‖∇eP ε
ti+1,T

f‖∞ ≤
ε−e‖f‖∞C for some C > 0 independent of f and n. For
[n/2] ≤ i ≤ n − 1, we apply the integration by parts on the
Wiener space:

Qε
t,t1 ◦ · · · ◦Q

ε
ti−1,tiR

ti,ε
2,ti+1

P ε
ti+1,T f(x)

=

q∑
e=1

ε2+eE[P ε
ti+1,T f(X̄

t,x,(n)
ti+1

)M
t,x,(n),ε
e,ti+1

], (20)

where M
t,x,(n),ε
e,ti+1

satisfies for p ≥ 1,
sup[n/2]≤i≤n−1‖M

t,x,(n),ε
e,ti+1

‖p ≤ ε−eCn−3 with some
C > 0 independent of x and n, and get

‖Qε
t,t1 ◦ · · · ◦Q

ε
ti−1,tiR

ti,ε
2,ti+1

P ε
ti+1,T f‖∞ ≤ Cε2‖f‖∞

1

n3
.

(21)

Then, by (18), (19) and (21), we have the assertion:∥∥∥P ε
t,T f −Qε

t,t1 ◦ · · · ◦Q
ε
tn−1,tnf

∥∥∥
∞

≤ ε2C‖f‖∞
1

n2
. □ (22)

VI. CONCLUSIONS

In the paper, we introduced a computational scheme for
diffusion semigroups based on an asymptotic expansion with
weak approximation and deep learning algorithm to solve
high-dimensional Kolmogorov PDEs. In particular, we pro-
vided a spatial approximation for the solution of d-dimensional

PDEs on a hypercube [a, b]d without suffering from the curse
of dimensionality. It can be regarded as an extension of clas-
sical finite element method of PDEs. Numerical experiments
demonstrated the validity and the effectiveness of the proposed
scheme.

APPENDIX

We give the formula of Malliavin weight in the following:

Wt,x,ε
s = 1 +

d∑
i1,i2,i3=1

H(i1,i2,i3)(X
t,x
1,s , 1)Ai1,i2,i3(t, s, x)

+

d∑
i1,i2=1

H(i1,i2)(X
t,x
1,s , 1)Ai1,i2(t, s, x)

+

d∑
i1=1

H(i1)(X
t,x
1,s , 1)Ai1(t, s, x), (23)

with Ai1,i2,i3(t, s, x) =
∑d

j1,k1,k2=1 C
(1),k1,k2

i1,i2,i3,j1
(t, s, x) +∑d

j1,j2,k1,k2=1 C
(2),k1,k2

i1,i2,i3,j1,j2
(t, s, x),

Ai1,i2(t, s, x) =
∑d

j1,j2,k1,k2=1 C
(3),k1,k2

i1,i2,j1,j2
(t, s, x) +∑d

j1,j2,k1,k2,k3=1 C
(4),k1,k2,k3

i1,i2,j1,j2
(t, s, x) and Ai1(t, s, x) =∑d

j1,j2,k1,k2=1 C
(5),k1,k2

i1,j1,j2
(t, s, x),

C
(1),k1,k2
i1,i2,i3,j1

(t, s, x)

= ε

∫ s

t

∫ t1

t
ai3k2

(t2, s, x)a
i2
k1

(t1, s, x)b
i1,j1
k1

(t1, s, x)a
j1
k2

(t2, t1, x)dt2dt1,

C
(2),k1,k2
i1,i2,i3,j1,j2

(t, s, x)

= ε

∫ s

t

∫ t1

t

∫ t2

t
ai3k1

(t3, s, x)a
i2
k2

(t2, s, x)

ci1,j1,j2 (t1, s, x)a
j1
k1

(t3, t1, x)a
j2
k2

(t2, t1, x)dt3dt2dt1,

C
(3),k1,k2
i1,i2,j1,j2

(t, s, x) = ε2
1

2

×
∫ s

t

∫ t1

t
aj1k1

(t2, t1, x)b
i1,j1
k2

(t1, s, x)a
j2
k1

(t2, t1, x)b
i2,j2
k2

(t1, s, x)dt2dt1,

C
(4),k1,k2,k3
i1,i2,j1,j2

(t, s, x)

= ε2
1

2
1k1=k2

∫ s

t

∫ t1

t
ai2k3

(t1, s, x)d
i1,j1,j2
k3

(t1, s, x)

aj1k1
(t2, t1, x)a

j2
k2

(t2, t1, x)dt2dt1,

C
(5),k1,k2
i1,j1,j2

(t, s, x)

= ε
1

2
1k1=k2

∫ s

t

∫ t1

t
ci1,j1,j2 (t1, s, x)a

j2
k2

(t2, t1, x)a
j1
k1

(t2, t1, x)dt2dt1,

and

aik(v, u, x) :=

d∑
j1,j2=1

[Jx,0
t→u]

i
j1
[(Jx,0

t→v)
−1]j1j2σ

j2
k (v,Xt,x,0

v ), (24)

bi,j3k (v, u, x) :=

d∑
j1,j2=1

[Jx,0
t→u]

i
j1
[(Jx,0

t→v)
−1]j1j2∂j3σ

j2
k (v,Xt,x,0

v ),

(25)

ci,j3,j4 (v, u, x) :=
d∑

j1,j2=1

[Jx,0
t→u]

i
j1
[(Jx,0

t→v)
−1]j1j2 [∂

2µj2 (v,Xt,x,0
v )]j3j4 ,

(26)

di,j3,j4k (v, u, x) :=
d∑

j1,j2=1

[Jx,0
t→u]

i
j1
[(Jx,0

t→v)
−1]j1j2 [∂

2σj2
k (s,Xt,x,0

s )]j3j4 .

(27)
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