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Abstract—This paper presents a problem on model uncertain-
ties in stochastic control, in which an agent assumes a best
case scenario on one risk and at the same time a worst case
scenario on another risk. Particularly, the agent maximizes its
view on a Brownian motion, simultaneously minimizing its view
on another Brownian motion in choice of a probability measure.
This selection method of a probability measure generalizes an
approach to model uncertainties in which one considers the worst
case scenarios for the views on Brownian motions, such as in the
robust control. Specifically, we newly formulate and solve this
problem based on a backward stochastic differential equation
(BSDE) approach as a sup-inf (resp., inf-sup) optimal control
problem on choice of a probability measure with the control
domains dependent on stochastic processes. Concretely, we show
that under certain conditions, the sup-inf and inf-sup problems
are equivalent and these are solved by finding a solution of a
BSDE with a stochastic Lipschitz driver. Then, we investigate
two cases in which the optimal probability measure is explicitly
obtained. The expression of the optimal probability measure
includes signs of the diffusion terms of the value process, which
are hard to determine in general. In these cases, we show two
methods of determining the signs: the first one is by comparison
theorems, and the second one is to predetermine the signs a
priori and confirm them afterwards by explicitly solving the
corresponding equations.

Index Terms—Backward stochastic differential equations,
Stochastic control, Application to finance.

I. INTRODUCTION

In this paper, we present a sup-inf (resp., inf-sup) problem
with respect to choice of a probability measure, arising from
a motivation for asset pricing with market sentiments in
finance. Specifically, in the choice of a probability measure,
the agent maximizes its expectation on utility with respect to
its view on a Brownian motion, simultaneously minimizing
the expectation with respect to its view on another Brownian
motion.

In a model where risks are expressed by Brownian motions
(a multi-dimensional Brownian motion), there may exist a
fundamental uncertainty, which is an uncertainty about a risk
of each Brownian motion and is represented by a stochastic
process λj for the j-th risk (Brownian motion Bj). When
there is a fundamental uncertainty about the j-th risk, we
only know the true j-th risk is one of {Bλ

j ;λj ∈ Λj} with
Bλ

j,t := Bj,t −
∫ t

0
λj,sds, 0 ≤ t < ∞ given some set Λj . In

contrast, if λj ≡ 0 (i.e. Bλ
j = Bj), there is no fundamental

This is a supplementary material for the forthcoming paper in IEEE
Transactions on Automatic Control.

uncertainty about the j-th risk. Here, Bλ
j is a Brownian motion

under a new probability measure induced by (λj)j through
a change of a probability measure. (See the details for the
following sections.) Further, in order to model the best and
worst case scenarios towards fundamental uncertainties, we
consider a sup-inf (resp., inf-sup) problem on a single agent’s
objective (e.g. utility), who optimally chooses its probability
measure through minimizing the objective with respect to the
fundamental uncertainty (λ1) for the first Brownian motion
(B1) while maximizing the objective with respect to the
fundamental uncertainty (λ2) for the second Brownian motion
(B2). Here, the agent assumes the worst case scenario on a
risk of one Brownian motion say B1 and the best case scenario
on a risk of a different Brownian motion B2, while there are
no fundamental uncertainties about the risks associated with
the other Brownian motions.

This selection method of a probability measure generalizes
an approach to model uncertainties in which one selects the
worst case scenarios for uncertainties of stochastic systems,
such as in the robust control. Petersen et al. [19] introduce
relative entropy constraints to stochastic uncertain systems,
where the worst case scenario in the choice of a probability
measure is taken into account. Hansen and Sargent [12]
consider worst scenarios of an agent towards risks. Chen and
Epstein [4] also consider a stochastic control problem, in
which an agent is uncertain about risks and takes the worst
case on the Brownian motions in its choice of a probability
measure.

Particularly, we take a forward-backward stochastic differ-
ential equation (FBSDE) approach to solve the sup-inf (resp.,
inf-sup) problem. In the problem, the control domains are
unbounded and dependent on stochastic processes, and its cor-
responding backward stochastic differential equation (BSDE)
has a stochastic Lipschitz driver. We emphasize that our study
is to express a single agent’s pessimistic and optimistic views
on risks as a sup-inf (resp.,inf-sup) control problem in contrast
to a two-person zero sum stochastic differential game in which
two persons maximize their objective functions of opposite
signs. Moreover, the work is different from two-person zero
sum games in that we do not necessarily require the objective
values in the sup-inf and inf-sup problems coincide. Whether
we should consider the sup-inf or the inf-sup problem depends
on which side of the views (pessimistic or optimistic) we put
more emphasis on. In other words, if we aim to put more
emphasis on viewing risks pessimistically (optimistically), we
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consider a sup-inf (inf-sup) problem since the value for the
sup-inf problem is less than or equal to that of the inf-sup
problem as long as the set of admissible controls is expressed
as a direct product of two control sets. In this study, we provide
some conditions in which those two problems are solved at the
same time and the objective values coincide.

For related literature on two-person zero-sum stochastic dif-
ferential games, Hamadene and Lepeltier [11], Hamadene [10],
Buckdahn and Li [2] and Buckdahn et al. [3] investigate the
games with a recursive or non-recursive driver with bounded
control domains, for instance. Bayraktar and Yao [1] and
Cosso [8] deal with the cases of unbounded control domains,
but the driver of the corresponding BSDE is not a stochastic
Lipschitz type. For the drivers with a linear quadratic type,
Hamadene [9] and Yu [26] consider linear quadratic drivers for
zero-sum stochastic differential games and Wang and Yu [24]
and Wang et al. [25] for non-zero-sum stochastic differential
games, for example. Possamaı̈ et al. [22] and Pham and Zhang
[21] work on path-dependent stochastic differential games in
weak formulation.

The motivation of our study is as follows. In financial
markets, not only worst scenarios but also best scenarios on
some market risks are reflected in asset prices. In particular,
the term structure of interest rates in the recent global low
interest environments, especially when the market is controlled
by authorities such as central banks and governments, are
driven by those optimistic and pessimistic sentiments of the
market. In order to express effects of those sentiments in
asset prices, we model the market participants’ best and worst
case scenarios towards uncertainties by a sup-inf (resp., inf-
sup) problem on an agent’s utility by choice of a probability
measure.

For example, B1 and B2 can be taken as Brownian motions
associated with global and domestic specific risks, respec-
tively. In such a case, the market, which is deemed to be
the agent, has a pessimistic sentiment about taking global
risks (e.g. news on fiscal conditions of foreign countries),
while it does an optimistic one on domestic specific risks
(e.g. domestic business conditions) and hence is willing to take
those risks aggressively. The effectiveness of an interest rate
model with such sentiment factors in a period including the
global financial crisis is shown empirically by a text mining
approach (see Nishimura et al. [18], for instance). This paper
provides a theoretical foundation for the asset pricing model
with market sentiments.

This paper is organized as follows. Section II introduces a
sup-inf (resp., inf-sup) problem with respect to fundamental
uncertainties. Section III presents solution methods for the
sup-inf (resp., inf-sup) problem. Finally, Section IV concludes.
Appendices show the proofs of propositions in the main text.

II. SUP-INF (RESP., INF-SUP) PROBLEM WITH RESPECT TO
FUNDAMENTAL UNCERTAINTIES

In this section, we consider a sup-inf (resp., inf-sup) prob-
lem with respect to uncertainties on Brownian motions that
express worst and best scenarios of a single agent towards
risks. Hereafter, we call the uncertainties on Brownian mo-
tions as fundamental uncertainties. Particularly, we obtain a

probability measure of the agent, who assumes the worst case
on a certain risk, while the best case on another risk, by solving
the sup-inf (resp., inf-sup) problem through a BSDE approach.

A. Motivating example

We would like to consider an objective function (e.g.
expected profit and loss) determined by a state variable X0

for a single agent who has different views on risks driving the
state variable. In particular, as a simple example, we consider a
case in which the agent is cautious about global risks expressed
by a Brownian motion B1 and aggressive about domestic
specific risks represented by another Brownian motion B2,
respectively. Particularly, let Y λ1,λ2

0 be an objective value at
time 0 dependent on the state variable X0 under the probability
measure of the agent Pλ1,λ2 , who has an uncertainty λ1 on
B1 and an uncertainty λ2 on B2 taking values in Λ1 and
Λ2, respectively. Here, Λj , j = 1, 2, are sets of progressively
measurable processes satisfying

−λ̄j ≤ λj,t ≤ λ̄j , (1)

where λ̄j , j = 1, 2 are positive constants.

Y λ1,λ2

0 = E

[
ZT (λ)

(
X2

0,T

2
+

∫ T

0

1

2
X2

0,sds

)]
, (2)

with X0, X1, and X2 satisfying

dX0,t

X0,t
= µx0dt+ σx0,1dB1,t + σx0,2dB2,t, x0 > 0,

(3)

where σx0,1, σx0,2 > 0, µx0 is a constant, and

Zt(λ) := exp


2∑

j=1

∫ t

0

λj,sdBj,s −
2∑

j=1

1

2

∫ t

0

λ2
j,sds

 (4)

is a martingale that defines a probability measure Pλ1,λ2 by

Pλ1,λ2(A) := E[ZT (λ)1A]; A ∈ FT . (5)

By Girsanov’s theorem, (2) and (3) are rewritten as

Y λ1,λ2

0 = EPλ1,λ2

[
X2

0,T

2
+

∫ T

0

1

2
X2

0,sds

]
, (6)

dX0,t

X0,t
= (µx0 + σx0,1λ1,t + σx0,2λ2,t)dt

+ σx0,1dB
λ1,λ2

1,t + σx0,2dB
λ1,λ2

2,t , x0 > 0. (7)

Thus, we observe that λ1 and λ2 appear in the drift term
of X0 under Pλ1,λ2 . Since σx0,1, σx0,2 > 0, an increase in
λ1 and λ2 indicates an increase in X0 and Y λ1,λ2

0 . We aim to
express the agent’s pessimistic view on risks B1 and optimistic
view on risks B2 by minimization and maximization of the
objective value on λ1 and λ2, respectively, namely by solving
the following sup-inf and inf-sup problems,

sup
λ2∈Λ2

inf
λ1∈Λ1

Y λ1,λ2

0 , inf
λ1∈Λ1

sup
λ2∈Λ2

Y λ1,λ2

0 . (8)
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These problems are solved in Example 2 in Section III-A. In
this particular example, the sup-inf and inf-sup problems in
(8) are solved as λ∗

1 = −λ̄1, λ∗
2 = λ̄2.

In the following sections, we formulate an agent’s pes-
simistic and optimistic views about the Brownian motions by
a sup-inf (resp. inf-sup) problem in a general setting, in which
λ̄1 and λ̄2, the bounds of λ1 and λ2, are stochastic processes.

Remark 1. We may consider the problem formulation in
another way which corresponds to strong formulation in two-
person zero-sum stochastic differential games as follows. For
a fixed probability space (Ω,F , {F}0≤t≤T , P ) equipped with
a two-dimensional standard Brownian motion B = (B1, B2),
where {F}0≤t≤T is a natural filtration generated by B, we
define

dX0,t

X0,t
= (µx0

+ σx0,1λ1,t + σx0,2λ2,t)dt

+ σx0,1dB1,t + σx0,2dB2,t, x0 > 0,

Y λ1,λ2

0 = E

[
X2

0,T

2
+

∫ T

0

1

2
X2

0,sds

]
.

Then, for λj ∈ Λj (j = 1, 2) as in (1), we consider the
sup-inf and inf-sup problems (8). These problems express the
agent’s views on the expected return of X0, the drift part of
the above SDE, in which the agent is conservative about λ1

and aggressive about λ2. However, our formulation considers
the sup-inf and inf-sup with respect to Pλ1,λ2 determining the
distribution of X0, which corresponds to weak formulation of
two-person zero-sum stochastic differential games.

B. Problem formulation

Firstly, we suppose that a filtered probability space
(Ω,F , {Ft}0≤t≤T , P ) and a d-dimensional Brownian motion
B = (B1, . . . , Bd) (d ≥ 2) are given, where {Ft}0≤t≤T is
the augmentation of the natural filtration generated by B, and
we call P the physical measure, hereafter. Next, for a R2-
valued {Ft}-progressively measurable process λ = (λ1, λ2),
satisfying that Zt(λ) set by

Zt(λ) := exp


2∑

j=1

∫ t

0

λj,sdBj,s −
2∑

j=1

1

2

∫ t

0

λ2
j,sds

 (9)

is a martingale, we define a probability measure Pλ1,λ2 by

Pλ1,λ2(A) := E[ZT (λ)1A]; A ∈ FT . (10)

Here, λ1 and λ2 stand for uncertainties about the risks asso-
ciated with Brownian motions B1 and B2, respectively.

Let Rl-valued stochastic process X be a state variable
process satisfying a stochastic differential equation (SDE)

dXt = µx(Xt)dt+

d∑
j=1

σx,j(Xt)dBj,t, (11)

where µx, σx,j : Rl → Rl, j = 1, 2, . . . , d, l ≥ d,
rank(σx,1σx,2 . . . σx,d) = d. Hereafter, we assume that X is
exogenously given and SDE (11) has a unique strong solution.

Then, the agent supposes the worst (best) case on Brownian
motion B1(B2) and implements optimization with respect to
λj (j = 1, 2), that is, it minimizes (maximizes) its utility with
respect to λ1(λ2). In contrast, the agent has no uncertainties
for risks represented by Brownian motions Bj , j = 3, · · · , d,
so that we have λj ≡ 0. Then, Bλ1,λ2

1,t = B1,t −
∫ t

0
λ1,sds,

Bλ1,λ2

2,t = B2,t−
∫ t

0
λ2,sds and Bλ1,λ2

j = Bj for j = 3, · · · , d
are Brownian motions under the probability measure Pλ1,λ2

generated by a martingale Z(λ) with λ = (λ1, λ2, 0, · · · , 0).
Let us define the agent’s stochastic differential utility (SDU,

continuous-time version of recursive utility. For an introduc-
tion of SDU, see Section 1.3 in Ma and Yong [15] for instance)
Y λ1,λ2 as follows: with an aggregator g : [0, T ]× C([0, T ] →
Rd)×Rl ×R → R,

Y λ1,λ2

t = E

[
ZT (λ)

Zt(λ)

(
ξ +

∫ T

t

g(s,B,Xs, Y
λ1,λ2
s )ds

)∣∣∣∣Ft

]
,

= EPλ1,λ2

[
ξ +

∫ T

t

g(s,B,Xs, Y
λ1,λ2
s )ds

∣∣∣∣Ft

]
, (12)

where ξ is a bounded FT -measurable random variable (for
example, a standard utility g(t, ω, x, y) = u(x) − βy is well
known) and X satisfies the following SDE under probability
measure Pλ1,λ2

dXt =

µx(Xt) +

d∑
j=1

σx,j(Xt)λj,t

 dt+

d∑
j=1

σx,j(Xt)dB
λ1,λ2

j,t .

(13)

Remark 2. For example, a well-known standard utility

Y λ1,λ2

t = EPλ1,λ2

[
ξ +

∫ T

t

e−β(s−t)u(Xs)ds

∣∣∣∣Ft

]
is expressed as a special case of (12), where u : Rd → R and
β > 0, that is,

Y λ1,λ2

t = EPλ1,λ2

[
ξ +

∫ T

t

(u(Xs)− βY λ1,λ2
s )ds

∣∣∣∣Ft

]
.

Next, let us set J(λ1, λ2) as

J(λ1, λ2) = Y λ1,λ2

0 , (λ1, λ2) ∈ Λ, (14)

where Λ = Λ1 × Λ2,

Λj = {λj ; |λj,t| ≤ |λ̄j,t|, 0 ≤ t ≤ T}, j = 1, 2, (15)

and λ̄j , j = 1, 2 are R-valued {Ft}-progressively measurable
processes satisfying a weak version of Novikov’s condition
(e.g. Corollary 3.5.14 in Karatzas and Shreve [14]); there exists
a partition of [0, T ], 0 = t0 < t1 < · · · < tN = T , such that

E

exp
 2∑

j=1

1

2

∫ tn

tn−1

λ̄2
j,sds

 < ∞,

for all 1 ≤ n ≤ N. (16)

Remark 3. The weak Novikov’s condition (16) guarantees that
for all λ = (λ1, λ2) with |λj,t| ≤ |λ̄j,t|, 0 ≤ t ≤ T, j = 1, 2,
{Zt(λ)}0≤t≤T is a martingale. Moreover, by Girsanov’s the-
orem, Pλ1,λ2 in (10) is well-defined as a probability measure
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and Bλ1,λ2 in (18) below is a d-dimensional Brownian motion
under Pλ1,λ2 for all λ ∈ Λ = Λ1 × Λ2. Some general
criteria that guarantee the exponential local martingale to be
a martingale are known (for instance, see Chikvinidze [5],
[6]). However, a set of (λ1, λ2) that satisfies such a criterion
does not take a direct product form as Λ1 × Λ2, thus we use
the weak Novikov’s condition (16) in this paper.

Then, we consider the following sup-inf and inf-sup prob-
lems:

sup
λ2∈Λ2

inf
λ1∈Λ1

J(λ1, λ2), inf
λ1∈Λ1

sup
λ2∈Λ2

J(λ1, λ2) (17)

where the agent takes the worst case scenario on the un-
certainty over B1 and minimizes the SDU J(λ1, λ2) with
respect to λ1, while it supposes the best case scenario on the
uncertainty over B2 and maximizes J(λ1, λ2) with respect to
λ2.

We note that λ1 and λ2 represent deviation of the agent’s
probability measure Pλ1,λ2 from the physical measure P .
Specifically, the relation between Bj , j = 1, 2, under the
physical measure P and Bλ1,λ2

j under the probability measure
Pλ1,λ2 is dBj,t = dBλ1,λ2

j,t + λj,tdt. Taking the conditional
expectations under Pλ1,λ2 with respect to Ft in the both sides
, we obtain EPλ1,λ2

[dBj,t|Ft] = λj,tdt, which implies that
under the probability measure Pλ1,λ2 , dBj,t is expected as
λj,tdt.

Thus, the sup-inf (resp., inf-sup) problem in (17) is consid-
ered to be an optimization to determine the views on Brownian
motions B1 and B2 so that the utility is minimized with respect
to λ1 for given λ2, and maximized with respect to λ2 for given
λ1. In other words, the agent takes the worst case scenario for
the uncertainty λ1 on B1, and at the same time, the best case
scenario for the uncertainty λ2 on B2.

C. BSDEs for the model with fundamental uncertainties

Next, we introduce BSDEs associated with the sup-inf
(resp., inf-sup) problem. Particularly, we provide existence and
uniqueness of solutions of the BSDEs under certain conditions
in Propositions 1 and 2.

First, for a R2-valued {Ft}-progressively measurable pro-
cess (λ1, λ2) satisfying that Zλ1,λ2 is a P -martingale, by
Girsanov’s theorem, we can define a d-dimensional Brownian
motion under Pλ1,λ2 , Bλ1,λ2 = (Bλ1,λ2

1 , . . . , Bλ1,λ2

d ), by

Bλ1,λ2

j,t = Bj,t −
∫ t

0

λj,sds, j = 1, 2,

Bλ1,λ2

j,t = Bj,t (3 ≤ j ≤ d). (18)

Then, under a certain condition, Y λ1,λ2 in (12) is char-
acterized as a unique solution of the following BSDE as a
consequence of the martingale representation theorem and the
Girsanov transformation:

dY λ1,λ2

t = −g(t, B,Xt, Y
λ1,λ2

t )dt+

d∑
j=1

Zλ1,λ2

j,t dBλ1,λ2

j,t

= −
(
g(t, B,Xt, Y

λ1,λ2

t ) + λ1,tZ
λ1,λ2

1,t + λ2,tZ
λ1,λ2

2,t

)
dt

+

d∑
j=1

Zλ1,λ2

j,t dBj,t, Y λ1,λ2

T = ξ. (19)

In detail, by taking a conditional expectation under Pλ1,λ2

in both sides of the first equality in the integral form of (19),
we obtain (12) if the Itô integral is a martingale.

In the following, we show two propositions on existence
and uniqueness of a BSDE, which will be used in Theorem
1 in Section II-D. The next proposition presents conditions
under which BSDE (19) with stochastic Lipschitz coefficients
λ1 and λ2 has a unique solution.

Proposition 1. Suppose that SDE (11) has a unique strong
solution and g : [0, T ] × C([0, T ] → Rd) × Rl × R → R
satisfies the following conditions: (i) g(t, ω, x, 0) is bounded.
(ii) There exists a constant L > 0 such that

|g(t, ω, x, y)− g(t, ω, x, y′)| ≤ L|y − y′|,
∀y, y′ ∈ R, x ∈ Rl, ω ∈ C([0, T ] → Rd), t ∈ [0, T ].

Suppose also that the exponential local martingale Z(λ) in
(9) is a martingale and

E

[
sup

0≤s≤T
|λs|4

]
< ∞. (20)

Then, BSDE

dY λ1,λ2

t = −
(
g(t, B,Xt, Y

λ1,λ2

t ) + λ1,tZ
λ1,λ2

1,t

+λ2,tZ
λ1,λ2

2,t

)
dt+

d∑
j=1

Zλ1,λ2

j,t dBj,t, Y λ1,λ2

T = ξ, (21)

has a unique solution (Y λ1,λ2 , Zλ1,λ2) such that
E
[∫ T

0
|Zλ1,λ2

s |2ds
]
< ∞ and Y λ1,λ2 is uniformly bounded

with respect to (t, ω) ∈ [0, T ]× C([0, T ] → Rd).

Proof. See Appendix A.
In addition, the next proposition provides conditions under

which existence and uniqueness of a solution for a BSDE,
containing the absolute values of the diffusion terms |Zλ∗

1 ,λ
∗
2

1 |
and |Zλ∗

1 ,λ
∗
2

2 | in the driver, holds.

Proposition 2. Suppose that SDE (11) has a unique strong
solution and g : [0, T ] × C([0, T ] → Rd) × Rl × R → R
satisfies the following conditions: (i) g(t, ω, x, 0) is bounded.
(ii) There exists a constant L > 0 such that

|g(t, ω, x, y)− g(t, ω, x, y′)| ≤ L|y − y′|,
∀y, y′ ∈ R, x ∈ Rl, ω ∈ C([0, T ] → Rd), t ∈ [0, T ].

Also, suppose that a weak version of Novikov’s condition (16)
holds and

E

[
sup

0≤s≤T
|λ̄s|4

]
< ∞. (22)

Then BSDE

dY
λ∗
1 ,λ

∗
2

t = −
(
g(t, B,Xt, Y

λ∗
1 ,λ

∗
2

t )− |λ̄1,t||Z
λ∗
1 ,λ

∗
2

1,t |

+|λ̄2,t||Z
λ∗
1 ,λ

∗
2

2,t |)
)
dt+

d∑
j=1

Z
λ∗
1 ,λ

∗
2

j,t dBj,t, Y
λ∗
1 ,λ

∗
2

T = ξ, (23)
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has a unique solution (Y λ∗
1 ,λ

∗
2 , Zλ∗

1 ,λ
∗
2 ) such that

E
[∫ T

0
|Zλ∗

1 ,λ
∗
2

s |2ds
]
< ∞ and Y λ∗

1 ,λ
∗
2 is uniformly bounded

with respect to (t, ω) ∈ [0, T ]× C([0, T ] → Rd).

Proof. See Appendix B.
Example 1. (Square-root process)
Suppose that |λj | ≤ λ̄j,t = λ̃j,t

√
Xj,t, j = 1, 2 for some

bounded deterministic functions λ̃j,t > 0, and Xt is a R2-
valued square root process following an SDE:

dXj,t = (aj,t − bj,tXj,t)dt+ σx,j,t

√
Xj,tdBj,t,

Xj,0 = xj > 0, j = 1, 2,

where aj,t, bj,t, σx,j,t : [0, T ] → R are bounded functions with
aj,t, bj,t > 0, σx,j,t > c0 for some c0 > 0, 0 ≤ t ≤ T, j =
1, 2, and B1 and B2 are independent. Then, a weak version
of Novikov’s condition (16) is satisfied and exponential local
martingale (9) is a martingale, which follows from Theorem
3.2 in Shirakawa [23]. Moreover, the moment conditions (20)
and (22) are satisfied by Eq. 5.3.17 in Problem 5.3.15 in
Karatzas and Shreve [14]. Notice that existence and uniqueness
of a strong solution of the SDE follow from Theorems 4.1.1,
4.2.3, and 4.2.4 in Ikeda and Watanabe [13] and Proposition
5.2.13 in Karatzas and Shreve [14].

D. Solution of the sup-inf (resp., inf-sup) problem

Then, we show that under certain conditions, the sup-inf
and inf-sup problems (17) are equivalent and these are solved
by finding a solution of BSDE (23), which is summarized in
the following theorem.

Theorem 1. Suppose that assumptions in Proposition 2 hold.
Let (Y λ∗

1 ,λ
∗
2 , Zλ∗

1 ,λ
∗
2 ) be a unique solution of BSDE (23) and

λ∗
j,t = (−1)j |λ̄j,t|sgn(Zλ∗

1 ,λ
∗
2

j,t ), (j = 1, 2). (24)

Then, (λ∗
1, λ

∗
2) attains the sup-inf and inf-sup in problems

(17).

Proof. In the following, we show that

Y
λ∗
1 ,λ

∗
2

0 = sup
λ2∈Λ2

inf
λ1∈Λ1

Y λ1,λ2

0 = inf
λ1∈Λ1

sup
λ2∈Λ2

Y λ1,λ2

0 .

To prove this, it suffices to show that (λ∗
1, λ

∗
2) is a saddle

point of J(λ1, λ2), meaning that

J(λ∗
1, λ2) ≤ J(λ∗

1, λ
∗
2) ≤ J(λ1, λ

∗
2),∀λ1 ∈ Λ1, λ2 ∈ Λ2.

(25)

Next, we show the second inequality in (25),

J(λ∗
1, λ

∗
2)− J(λ1, λ

∗
2) = Y

λ∗
1 ,λ

∗
2

0 − Y
λ1,λ

∗
2

0 ≤ 0.

Note that BSDE (23) is rewritten as

dY
λ∗
1 ,λ

∗
2

t

= −
(
g(t, B,Xt, Y

λ∗
1 ,λ

∗
2

t ) + λ∗
1,tZ

λ∗
1 ,λ

∗
2

1,t + λ∗
2,tZ

λ∗
1 ,λ

∗
2

2,t

)
dt

+

d∑
j=1

Z
λ∗
1 ,λ

∗
2

j,t dBj,t, Y
λ∗
1 ,λ

∗
2

T = ξ. (26)

Here, uniqueness and existence of a solution of BSDE (26)
are guaranteed by Proposition 2.

Also note that Y λ1,λ
∗
2

t is a unique solution of a BSDE

dY
λ1,λ

∗
2

t

= −
(
g(t, B,Xt, Y

λ1,λ
∗
2

t ) + λ1,tZ
λ1,λ

∗
2

1,t + λ∗
2,tZ

λ1,λ
∗
2

2,t

)
dt

+

d∑
j=1

Z
λ1,λ

∗
2

j,t dBj,t, Y
λ1,λ

∗
2

T = ξ, (27)

in which existence and uniqueness of a solution are guar-
anteed by Proposition 1 as in the following discussion; for
any (λ1, λ

∗
2) ∈ Λ, Zλ1,λ

∗
2 is a P -martingale since a weak

version of Novikov’s condition holds for (λ1, λ
∗
2). Similarly,

the condition (20) in Proposition 1 holds for any (λ1, λ
∗
2) ∈ Λ

due to the assumption (22) on the moment of (λ̄1,t, λ̄2,t).
Then, by (26) and (27), we have

d(Y
λ∗
1 ,λ

∗
2

t − Y
λ1,λ

∗
2

t )

= −bt(Y
λ∗
1 ,λ

∗
2

t − Y
λ1,λ

∗
2

t )dt− (λ∗
1,t − λ1,t)Z

λ∗
1 ,λ

∗
2

1,t dt

+

d∑
j=1

(Z
λ∗
1 ,λ

∗
2

j,t − Z
λ1,λ

∗
2

j,t )dB
λ1,λ

∗
2

j,t ,

where bt = − g(t,B,Xt,Y
λ∗
1 ,λ∗

2
t )−g(t,B,Xt,Y

λ1,λ∗
2

t )

Y
λ∗
1 ,λ∗

2
t −Y

λ1,λ∗
2

t

×1
{Y

λ∗
1 ,λ∗

2
t −Y

λ1,λ∗
2

t ̸=0}
, and Bλ1,λ

∗
2 = (B

λ1,λ
∗
2

1 , . . . , B
λ1,λ

∗
2

d ) is

a d-dimensional Brownian motion under Pλ1,λ
∗
2 defined as in

(18).
Set Ȳt = e

∫ t
0
budu(Y

λ∗
1 ,λ

∗
2

t − Y
λ1,λ

∗
2

t ) and Z̄j,t =

e
∫ t
0
budu(Z

λ∗
1 ,λ

∗
2

j,t − Z
λ1,λ

∗
2

j,t ), j = 1, . . . , d.
Then, we have

dȲt = −(λ∗
1,t − λ1,t)Z

λ∗
1 ,λ

∗
2

1,t e
∫ t
0
bududt+

d∑
j=1

Z̄j,tdB
λ1,λ

∗
2

j,t ,

and thus

Ȳ0 =

∫ T

0

(λ∗
1,s − λ1,s)Z

λ∗
1 ,λ

∗
2

1 e
∫ s
0
bududs−

d∑
j=1

∫ T

0

Z̄j,sdB
λ1,λ

∗
2

j,s .

(28)

Next, we note that
{∑d

j=1

∫ t

0
Z̄j,sdB

λ1,λ
∗
2

j,s

}
0≤t≤T

is a

Pλ1,λ
∗
2 -martingale. This follows from the fact that Ȳt is

uniformly bounded and
∫ t

0
(λ∗

1,s − λ1,s)Z
λ∗
1 ,λ

∗
2

1,s e
∫ s
0
bududs is a

negative decreasing process, which is due to the following
inequality

λ∗
1,sZ

λ∗
1 ,λ

∗
2

1,s = −|λ̄1,s||Z
λ∗
1 ,λ

∗
2

1,s | ≤ −|λ1,s||Z
λ∗
1 ,λ

∗
2

1,s |

= −|λ1,sZ
λ∗
1 ,λ

∗
2

1,s | ≤ λ1,sZ
λ∗
1 ,λ

∗
2

1,s .

Thus, we have Eλ1,λ
∗
2

[∑d
j=1

∫ t2
0

Z̄j,sdB
λ1,λ

∗
2

j,s

∣∣∣∣Ft1

]
=∑d

j=1

∫ t1
0

Z̄j,sdB
λ1,λ

∗
2

j,s .

Taking the expectation with respect to Pλ1,λ
∗
2 in both sides

in (28), we have

Ȳ0 = Eλ1,λ
∗
2

[∫ T

0

(λ∗
1,s − λ1,s)Z

λ∗
1 ,λ

∗
2

1,s e
∫ s
0
bududs

]
.



6

Hence, Ȳ0 ≤ 0 and

Y
λ∗
1 ,λ

∗
2

0 ≤ Y
λ1,λ

∗
2

0 .

The first inequality in (25) also follows in the same manner.
Therefore, (λ∗

1, λ
∗
2) is a saddle point of J(λ1, λ2).

Remark 4. In general, as in the strong formulation of two
person zero-sum stochastic differential games, results of sup-
inf and inf-sup problems are not equivalent (for example, see
Example 9.1.1 in Zhang [27]). Compared with the strong
formulation of stochastic differential games, in which the state
variables include the controls in their SDEs under a common
probability measure, in our case, the state variable X does not
include the control processes λ1 or λ2 in its SDE (11) under
P . As in the proof of Theorem 1, while X does not include λ1

or λ2 in its SDE (11), BSDE (19) for Y λ1,λ2 includes those in
its driver, then, by comparison in the BSDE (19) that includes
both λ1 and λ2 in the driver under P , we obtain λ∗

1 and λ∗
2

in (24) that solve the sup-inf and inf-sup problems in (17).

III. SOLUTION METHODS

As we observed in (24) of Theorem 1 in Section II-D,
(λ∗

1, λ
∗
2) that defines the probability measure of the agent

Pλ∗
1 ,λ

∗
2 includes signs of Z

λ∗
1 ,λ

∗
2

j , j = 1, 2, in its expression.
Thus, in order to obtain Pλ∗

1 ,λ
∗
2 , we need to solve BSDE (23)

for sgn(Z
λ∗
1 ,λ

∗
2

j ), j = 1, 2. In this section, we present two
methods to solve for sgn(Z

λ∗
1 ,λ

∗
2

j ), j = 1, 2 in the system of
equations consisting of forward SDE (11) and BSDE (23) in
concrete cases. Firstly, in Section III-A, we investigate a case
in which sgn(Z

λ∗
1 ,λ

∗
2

1 ) and sgn(Z
λ∗
1 ,λ

∗
2

2 ) in (24) are determined
by comparison theorems. Secondly, in Section III-B, we show
a case in which we predetermine these signs a priori and
confirm them afterwards by explicitly solving the equations.

Let Rl-valued stochastic process X be a state-variable
process satisfying

dXt = µx(Xt)dt+

d∑
j=1

σx,j(Xt)dBj,t, (29)

and X0 be a R+-valued stochastic process satisfying an SDE

dX0,t

X0,t
= µx0(Xt)dt+

d∑
j=1

σx0,j(Xt)dBj,t, x0 > 0 (30)

where µx, σx,j : Rl → Rl, σx0,j , µx0 : Rl → R, j =
1, 2, . . . , d, and R+ is the set of positive real numbers. This
type of modeling frequently appears in finance (e.g. [18]), and
corresponds to the case in which Rl-valued process X in (11)
in Section II is replaced with Rl+1-valued process (X0, X).

First of all, we consider the corresponding sup-inf (resp.,
inf-sup) problem in (17) replacing g in (12) with f , which
does not depend on B ∈ C([0, T ] → Rd). Here, f :
[0, T ]×R+×Rl×R → R satisfies the following conditions:
(i) f(t, x0, x, 0) is bounded, (ii) There exists a constant L > 0
such that |f(t, x0, x, y)− f(t, x0, x, y

′)| ≤ L|y − y′|,∀y, y′ ∈
R, x0 ∈ R+, x ∈ Rl, t ∈ [0, T ], and (iii) f is continuously
differentiable with respect to x0 and y. Moreover, we assume
that a weak version of Novikov’s condition (16) and the

moment condition (22) hold for {λ̄j,t}0≤t≤T , j = 1, 2. Then,
by Theorem 1, (λ∗

1, λ
∗
2) that attains the sup-inf and inf-sup in

problems (17) is expressed as

λ∗
1,t = −|λ̄1,t|sgn(Z

λ∗
1 ,λ

∗
2

1,t ), λ∗
2,t = |λ̄2,t|sgn(Z

λ∗
1 ,λ

∗
2

2,t ), (31)

where Zλ∗
1 ,λ

∗
2 is from a unique solution (Y λ∗

1 ,λ
∗
2 , Zλ∗

1 ,λ
∗
2 ) of

a BSDE:

dY
λ∗
1 ,λ

∗
2

t = −
(
f(t,X0,t, Xt, Y

λ∗
1 ,λ

∗
2

t )− |λ̄1,t||Z
λ∗
1 ,λ

∗
2

1,t |

+|λ̄2,t||Z
λ∗
1 ,λ

∗
2

2,t |)
)
dt+

d∑
j=1

Z
λ∗
1 ,λ

∗
2

j,t dBj,t, Y
λ∗
1 ,λ

∗
2

T = h(X0,T ),

(32)

where h : R → R is a bounded function.

A. The case in which the diffusion terms of X0 on B1 and B2

only depend on X0 (Method by comparison theorems)

Firstly, we provide the case in which the signs of Z
λ∗
1 ,λ

∗
2

1

and Z
λ∗
1 ,λ

∗
2

2 in the equations (29), (30) and (32) are determined
by comparison theorems.

As a specific case of (29) and (30), we consider the
following SDEs for the state-variable process X and X0. Here,
the first two diffusion terms of X0 only depend on itself. Let
d = l = 3. We assume that under the physical measure P ,
X1, X2, X3 and X0 are unique strong solutions of SDEs

dXj,t = µj(Xj,t)dt+ σj(Xj,t)dBj,t, Xj,0 = xj ,

j = 1, 2, 3,
dX0,t

X0,t
= µx0

(X1,t, X2,t, X3,t)dt+ σx0,1dB1,t

+σx0,2dB2,t + σx0,3(X3,t)dB3,t, X0,0 = x0,

(33)

where µj , σj : R → R, j = 1, 2, 3, µx0 : R3 → R with∫ T

0
|µx0

(X1,t, X2,t, X3,t)|dt < ∞, x0 > 0, σx0,1, σx0,2 ∈ R,
and σx0,3 : R → R. Let f : [0, T ]×R+ ×R3 ×R → R be
an aggregator satisfying conditions (i)-(iii) in Section III.

Then, the next proposition shows that sgn(Z
λ∗
1 ,λ

∗
2

1 ) and
sgn(Z

λ∗
1 ,λ

∗
2

2 ) in (31) are uniquely determined under certain
conditions.

Proposition 3. Let v : [0,∞) × R3 × R+ → R be a value
function defined by

v(t,x, x0) = Y t,x,x0

t , x = (x1, x2, x3) (34)

where (Y t,x,x0
s , Zt,x,x0

s ) is the solution of a BSDE

dY t,x,x0
s

= −(f(s,Xt,x0

0,s , Xt,x1

1,s , Xt,x2

2,s , Xt,x3

3,s , Y t,x,x0
s )

−|λ̄1(s,X
t,x1

1,s )||Zt,x,x0

1,s |+ |λ̄2(s,X
t,x2

2,s )||Zt,x,x0

2,s |)ds

+

3∑
j=1

Zt,x,x0

j,s dBj,s,

Y t,x,x0

T = h(Xt,x0

0,T ), t ≤ s ≤ T, (35)

and X
t,xj

j,s , j = 1, 2, 3, and Xt,x0

0,s (t ≤ s ≤ T ) are
unique strong solutions of SDEs (33) with the initial conditions
replaced with X

t,xj

j,t = xj and Xt,x0

0,t = x0 at s = t.
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Here, h : R → R is a bounded increasing function. Let
λ̄j(s, xj), j = 1, 2 : [0, T ] × R → R be measurable
functions and we assume that a weak version of Novikov’s
condition (16) and the moment condition (22) hold for λ̄j,t =
λ̄j(t,Xj,t), j = 1, 2. Assume that f is increasing with respect
to x0, decreasing with respect to x1, and increasing with
respect to x2, µx0

(x1, x2, x3) is decreasing with respect to
x1 and increasing with respect to x2, and |λ̄j(s, xj)|, j =
1, 2, are increasing with respect to xj . Also, assume that
σx0,1, σx0,2 > 0, σ1(X1,t) < 0, σ2(X2,t) > 0 in (33). Suppose
that v(t,x, x0) is continuously differentiable with respect to t
and twice continuously differentiable with respect to x1, x2, x3

and x0.
Then, we have

sgn(Z
λ∗
1 ,λ

∗
2

j,t ) = +1 (j = 1, 2), (36)

for (Z
λ∗
1 ,λ

∗
2

1 , Z
λ∗
1 ,λ

∗
2

2 ) in (32).

Proof. By a comparison theorem on SDEs (see Propo-
sition 5.2.18 in Karatzas and Shreve [14], for example),
when x1 increases, Xt,x1

1,s increases. Since µx0
is decreas-

ing with respect to the first variable, Xt,x0

0,s also decreases.
As a result, by a slight modification of the proof of The-
orem 1, a comparison theorem on a stochastic Lipschitz
BSDE holds and it follows that Y t,x,x0

t decreases. In detail,
when x1 increases, Xt,x0

0,s decreases, and consequently, the
driver f(s,Xt,x0

0,s , Xt,x1

1,s , Xt,x2

2,s , Xt,x3

3,s , y)−|λ̄1,s(X
t,x1

1,s )||z1|+
|λ̄2,s(X

t,x2

2,s )||z2| in (35) decreases for all s ∈ [0, T ], y ∈ R,
(z1, z2) ∈ R2, since fx0

> 0 and −|λ̄1,s(X
t,x1

1,s )| also
decreases.

Similarly, when x2 increases, both Xt,x2

2,s and Xt,x0

0,s in-
crease, and then Y t,x,x0

t increases. When x0 increases, Xt,x0

0,s

increases, and then Y t,x,x0

t increases.
Thus, we have

∂x1
v(t,x, x0) ≤ 0,

∂x2
v(t,x, x0) ≥ 0,

∂x0
v(t,x, x0) ≥ 0, (37)

since v(t,x, x0) is differentiable with respect to x1, x2 and
x0.

Also, by applying Ito’s formula to v(t,Xt, X0,t), Xt =
(X1,t, X2,t, X3,t), and comparing the result with (35), we have

Z
λ∗
1 ,λ

∗
2

j,t =


σj(Xj,t)∂xj

v(t,Xt, X0,t)

+σx0,jX0,t∂x0v(t,Xt, X0,t), j = 1, 2,

σj(X3,t)∂x3v(t,Xt, X0,t)

+σx0,3(X0,t)X0,t∂x0
v(t,Xt, X0,t), j = 3.

By (37) and σx0,1, σx0,2 > 0, σ1(X1,t) < 0, σ2(X2,t) > 0,

Z
λ∗
1 ,λ

∗
2

j,t ≥ 0, j = 1, 2.

Thus,

sgn(Z
λ∗
1 ,λ

∗
2

1,t ) = sgn(Z
λ∗
1 ,λ

∗
2

2,t ) = +1.

Example 2 (continuation of the motivating example in
Section II-A). First, we consider a quadratic objective function

case in which f in (32) is given by f(x0, y) =
1
2x

2
0, with X0

satisfying

dX0,t

X0,t
= µx0

dt+ σx0,1dB1,t + σx0,2dB2,t, x0 > 0, (38)

where σx0,1, σx0,2 > 0 and µx0
is a constant. We also assume

λ̄j(t,Xt) = λ̃j , j = 1, 2, λ̃1, λ̃2 > 0.
We remark that although the boundedness assumptions in

Propositions 1 and 2 and Theorem 1 are not satisfied in this
quadratic objective function case, the results of the proposi-
tions and the theorem hold. In detail, since λ is bounded as
in (1), BSDE (32) is a Lipschitz driver case. Then, a theorem
for the existence and uniqueness of a solution for a BSDE
with a Lipschitz driver (e.g. Theorem 6.2.1 in Pham [20])
can be applied and the conclusions of Propositions 1 and 2
hold. Moreover, by a comparison theorem for a BSDE with a
uniform Lipschitz driver (e.g. Theorem 6.2.2 in Pham [20]),
the conclusion of Theorem 1 holds.

We first note that in this example, the assumptions on
σx0 and λ̄ in Proposition 3 are satisfied. If the continuous
differentiablity of v is satisfied, then by Proposition 3, we
obtain sgn(Z

λ∗
1 ,λ

∗
2

j ) = +1, j = 1, 2.
In fact, we can confirm the continuous differentiability of v

as follows. Let us consider a BSDE

dY
λ∗
1 ,λ

∗
2

t = −1

2
X2

0,tdt+ Z
λ∗
1 ,λ

∗
2

t dB
λ∗
1 ,λ

∗
2

t , Y
λ∗
1 ,λ

∗
2

T =
X2

0,T

2
,

(39)
dX0,t

X0,t
= (µx0,t − σx0,1λ̃1 + σx0,2λ̃2)dt

+ σx0,1dB
λ∗
1 ,λ

∗
2

1,t + σx0,2dB
λ∗
1 ,λ

∗
2

2,t , x0 > 0, (40)

where dB
λ∗
1 ,λ

∗
2

j,t = dBj,t − (−1)j λ̃jdt, j = 1, 2, which
corresponds to BSDE (32) under Pλ∗

1 ,λ
∗
2 when sgn(Z

λ∗
1 ,λ

∗
2

j ) =
+1, j = 1, 2.

We suppose a solution for BSDE (39) of the form

Y
λ∗
1 ,λ

∗
2

t =
A(t)X2

0,t

2
. (41)

By applying Ito’s formula to (41), we have

Ȧ(t) + 2A(t)(µx0,t − σx0,1λ̃1 + σx0,2λ̃2) + 2|σx0
|2 = −1,

A(T ) = 1, (42)

which is solved as A(t) =

e−
∫ t
0
bsds

(
1 +

∫ T

t
(2|σx0

|2 + 1)e
∫ v
0

bsdsdv
)

> 0, with

bt = 2(µx0,t − σx0,1λ̃1 + σx0,2λ̃2), and

Z
λ∗
1 ,λ

∗
2

t = A(t)X2
0,tσx0

. (43)

Hence, (Y λ∗
1 ,λ

∗
2 , Zλ∗

1 ,λ
∗
2 ) given by (41) and (43) satisfies

BSDE (40).
Then, it follows that (Y λ∗

1 ,λ
∗
2

t ,Zλ∗
1 ,λ

∗
2

t ) also satisfies BSDE
(32). Thus, by (41), v(t, x0) = A(t)x2

0, which indicates the
continuous differentiability of v.

Remark 5. In this particular example, the proof of Propo-
sition 3 is described as follows. By applying Ito’s formula
to v(t,X0,t) and focusing on the diffusion terms, we have
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Z
λ∗
1 ,λ

∗
2

j,t = σx0,jX0,t∂x0
v(t,X0,t). For v(t, x0) = Y t,x0

t , by
a comparison theorem for SDEs (e.g. Proposition 5.2.18 in
Karatzas and Shreve [14]), if x0 increases Xt,x0

0,s , t ≤ s ≤ T
increases. Then, since f and h are increasing with respect
to Xt,x0

0,s , by a comparison theorem for BSDEs (e.g. Theorem
6.2.2 in Pham [20]), Y t,x0

s also increases for t ≤ s ≤ T . Thus
∂x0

v(t, x0) ≥ 0, and since σx0,j > 0 and X0,t > 0, we obtain
sgn(Z

λ∗
1 ,λ

∗
2

j ) = +1, j = 1, 2.

Remark 6. Alternatively, if some Lipschitz modification is
made on the quadratic objective function and its terminal
condition, then Assumption 5.0.1 in Zhang [27] is satisfied and
by Problem 5.7.4 in Zhang [27], the continuously differentia-
bility of v is guaranteed. Thus, we also have sgn(Z

λ∗
j ,λ

∗
2

j ) =
+1, j = 1, 2 in that case.

Example 3.
Let ρ < 1 with ρ ̸= 0, and β > 0. We consider the case of

a standard power utility

f(x0, y) =
β

ρ
(xρ

0 − 1)− βy, (44)

with X0 satisfying

dX0,t

X0,t
= µx0dt+ σx0,1dB1,t + σx0,2dB2,t, x0 > 0, (45)

where σx0,1, σx0,2 > 0, and state-variable processes X1 and
X2 satisfying

dXj,t = (µj,1Xj,t + µj,0)dt+ σj

√
Xj,tdBj,t,

Xj,0 = xj > 0, j = 1, 2, (46)

where µ1,0, µ2,0 > 0, µ1,1, µ2,1 < 0, σ1 < 0, σ2 > 0. Here,
X0 typically represents a consumption process.

We also assume h(X0,T ) =
Xρ

0,T−1

ρ for the terminal
condition, and

λ̄1(t,X1) = λ̃1

√
X1,t, λ̄2(t,X2) = λ̃2

√
X2,t,

where λ̃1 < 0, λ̃2 > 0.
Then, we note that fx0

> 0 and |λ̄j(s, xj)| is increas-
ing with respect to xj . With some necessary modifications
on X0 and the state-variable process X in (45) and (46)
or the aggregator f in (44) and the terminal condition
h(X0,T ) as in Remark 7, by applying Proposition 3, we
obtain sgn(Z

λ∗
1 ,λ

∗
2

j ) = +1, j = 1, 2, and by (31), we have
λ∗
1,t = λ̃1

√
X1,t, λ∗

2,t = λ̃2

√
X2,t.

Remark 7. In the above example, without any modifications,
the boundedness on f(x0, 0) and h(X0,T ), and the continuous
differentiability of the value function v, which are assumptions
in Proposition 3, are not necessarily satisfied. One possible
adjustment is that we consider bounded modifications of X0

and X in SDEs (45) and (46), in particular so that X does not
take values in a neighborhood of 0. Then, the boundedness on
f(x0, 0) and h(X0,T ), as well as a uniform Lipschitz condition
on the driver of BSDE (32), follows, and by Lemma 5.2.3 in
Zhang [27], the continuous differentiability of v is obtained.
Another approach is that we consider bounded modifications
of f(x0, 0) in (44) and h(X0,T ) as functionals of x0, and
assume existence of a classical solution of PDE (A.14) without

the jump component in Theorem A.9.22 in Cohen and Elliott
[7], which also yields the continuous differentiability of v.

B. The case in which the diffusion terms of X0 include both
X0 and X

Next, we consider the case in which sgn(Z
λ∗
1 ,λ

∗
2

1 ) and
sgn(Z

λ∗
1 ,λ

∗
2

2 ) in the expressions of λ∗
1 and λ∗

2 in (31) are
obtained by solving the equations (29), (30) and (32) explicitly
with the diffusion terms of X0 and X including both X0 and
X .

Firstly, we rewrite SDEs (29) and (30) in Section III under
Pλ∗

1 ,λ
∗
2 by Girsanov’s theorem as follows.

dXt = µ∗
x,tdt+ σx(Xt)dB

λ∗
1 ,λ

∗
2

t , (47)
dX0,t

X0,t
= µ∗

x0,tdt+ σx0(Xt) · dB
λ∗
1 ,λ

∗
2

t , (48)

where Bλ∗
1 ,λ

∗
2 ∈ Rd, σx(x) ∈ Rl×d (2 ≤ d ≤ l), σx0(x) ∈

Rd,

µ∗
x,t = µx(Xt) + σx(Xt)λ

∗
t , (49)

µ∗
x0,t = µx0

(Xt) + λ∗
t · σx0

(Xt), (50)

with the stochastic process λ∗ in (31), which is

λ∗
j,t = (−1)j |λ̄j,t|sgn(Z

λ∗
1 ,λ

∗
2

j,t ) (51)

for j = 1, 2, and λ∗
j,t ≡ 0 for j = 3, · · · , d.

Here, Zλ∗
1 ,λ

∗
2 ∈ Rd satisfies BSDE (32) under Pλ∗

1 ,λ
∗
2

dY
λ∗
1 ,λ

∗
2

t = −f(t,X0,t, Xt, Y
λ∗
1 ,λ

∗
2

t )dt+ Z
λ∗
1 ,λ

∗
2

t · dBλ∗
1 ,λ

∗
2

t ,

Y
λ∗
1 ,λ

∗
2

T = h(X0,T ). (52)

Then, we solve the equations (47)-(52) in the following
way. We first suppose sgn(Z

λ∗
1 ,λ

∗
2

j,t ) = +1, j = 1, 2, which
indicates λ∗

j = (−1)j |λ̄j,t|, j = 1, 2 by (51), and separate
FBSDEs (47)-(52) into forward SDEs and a BSDE. We con-
firm that sgn(Zλ∗

1 ,λ
∗
2

j,t ) = +1, j = 1, 2, by explicitly solving
BSDE (52) under certain conditions. If these conditions are
met, we observe that X and (Y λ∗

1 ,λ
∗
2 , Zλ∗

1 ,λ
∗
2 ) also satisfy the

equations (47)-(52).
Example 4. Next, we consider the case of a stochastic

differential log-utility as in equation (2.9) in Nakamura et al.
[16], whose aggregator f does not depend on t or x and is
defined as

f(x0, y) = β(1 + αy)

[
log x0 −

log(1 + αy)

α

]
, (53)

with the terminal condition h(X0,T ) =
Xα

0,T−1

α in BSDE
(32). Note that this is a generalization of a standard log-utility
whose aggregator is given by f(x0, y) = β(log x0 − y) with
h(X0,T ) = logX0,T . This aggregator for the standard log-
utility is obtained by sending α to 0 in (53) and h(X0,T ).

The next proposition shows that the equations (47)-(52),
in which the diffusion terms of X0 include X , are explicitly
solved and sgn(Z

λ∗
1 ,λ

∗
2

j ), j = 1, 2, are determined.
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For equations (47)-(52), we assume d = l = 3 and the
following coefficients. We denote (1, j) component of σx0(x)
by σj

x0
(x) and (i, k) component of σx(x) by σk

x,i(x).

µx0
(x) = µ̃x0,1x1 + µ̃x0,2x2 + µ̃x0,3x3

+µ̃x0,0,

σj
x0
(x) = σ̃x0,j

√
xj , j = 1, 2,

σ3
x0
(x) = σ̃x0,3,

µxj
(x) = µ̃xj ,1xj + µ̃xj ,0, j = 1, 2,

µx3
(x) = µ̃x3,1x3 + µ̃x3,0,

σk
x,i(x) = σ̃x,i

√
xi, i = 1, 2, i = k,

σk
x,3(x) = σ̃x,3, k = 3,

σk
x,i(x) = 0, i = 1, 2, 3, i ̸= k,

λ̄j(t,Xt) = λ̃j

√
Xj,t, j = 1, 2,

where µ̃x0,0, µ̃x0,j , σ̃j , µ̃xj ,i, σ̃x,j ∈ R, i = 0, 1, j =

1, 2, 3, λ̃1 ≤ 0, and λ̃2 ≥ 0.
Also, we assume

B2
i − 4AiCi ≥ 0, i = 1, 2, 3, (54)

where

Ai = ασ̃2
x,i,

Bi = (ασ̃x0,iσ̃x,i + µ̄xi,1 − β),

Ci = µ̄x0,i −
1

2
(1− α)σ̃2

x0,i,

with

µ̄x0,i = µ̃x0,i + λ̃iσ̃x0,i, i = 1, 2,

µ̄x0,3 = µ̃x0,3,

µ̄xi,1 = µ̃xi,1 + λ̃iσ̃x,i, i = 1, 2,

µ̄x3,1 = µ̃x3,1.

Let

mi(t) =
1

−Aiγi−Bi

γi(2Aiγi+Bi)e−(2Aiγi+Bi)(T−t)− Ai
2Aiγi+Bi

+ γi, (55)

where γi =
−Bi+

√
B2

i −4AiCi

2Ai
, i = 1, 2, 3.

Proposition 4. Suppose that conditions

σ̃x,jmj(t) + σ̃x0,j > 0, j = 1, 2, (56)

hold.
Then,
(i) sgn(Zλ∗

1 ,λ
∗
2

j ) = +1, j = 1, 2, holds.
(ii) In particular, (Y λ∗

1 ,λ
∗
2 , Zλ∗

1 ,λ
∗
2 ) of the form

Y
λ∗
1 ,λ

∗
2

t =
A(Xt, t)X

α
0,t − 1

α
, (57)

Z
λ∗
1 ,λ

∗
2

j,t =

{
Xα

0,tA(Xt, t)
√

Xj,t(σ̃x,jmj(t) + σ̃x0,j), j = 1, 2,

Xα
0,tA(Xt, t)(σ̃x,jmj(t) + σ̃x0,j), j = 3,

(58)

satisfies FBSDEs (47)-(52), where

A(x, t) = exp(α{m1(t)x1 +m2(t)x2 +m3(t)x3 + n(t)}),

n(t) =

∫ T

t

e−β(s−t)
3∑

j=1

mj(s)µ̃xj ,0ds, (59)

and (X,X0) is a unique strong solution of (47) and (48) with
sgn(Z

λ∗
1 ,λ

∗
2

j ) = +1, j = 1, 2 being substituted.

Proof. First, let X be a unique strong solution of forward
SDEs (47)-(49) with supposing sgn(Z

λ∗
1 ,λ

∗
2

j ) = +1, j = 1, 2,
in λ∗ in (51).

By applying Ito’s formula to (57) and comparing the
drift and the diffusion term with (52), we observe that
(Y λ∗

1 ,λ
∗
2 , Zλ∗

1 ,λ
∗
2 ) given by (57) and (58) satisfies BSDE (52),

if Riccati equations

−βmi(t) + ṁi(t) + µ̄x0,i

−1

2
(1− α)σ̃2

x0,i +mi(t)µ̄xi,1 + αmi(t)σ̃x0,iσ̃x,i

+αm2
i (t)σ̃

2
x,i = 0,

mi(T ) = 0, (60)

and ODE

−βn(t) + ṅ(t)

+m1(t)µ̃x1,0 +m2(t)µ̃x2,0 +m3(t)µ̃x3,0 = 0,

n(T ) = 0, (61)

hold. In fact, mi(t), i = 1, 2, 3, in (55) and n(t) in (59) are
solutions of (60) and (61), respectively.

Then, by condition (56), sgn(Z
λ∗
1 ,λ

∗
2

j ) = +1, j = 1, 2,
and thus X , originally defined as a unique strong solution of
forward SDEs (47)-(51) supposing sgn(Z

λ∗
1 ,λ

∗
2

j ) = +1, j =
1, 2 in λ∗ in (51), satisfies forward SDEs (47)-(51).

Remark 8. In this case, without any modifications, the bound-
edness on f(x0, 0) and h(X0,T ) is not necessarily satisfied.
However, we can consider bounded modifications of X0 and
X in SDEs (47) and (48), in particular so that X does not
take values in a neighborhood of 0. Then, the boundedness
on f(x0, 0) and h(X0,T ) is satisfied. Also, we can consider
bounded modifications of f(x0, 0) and h(X0,T ) as functionals
of X0.

IV. CONCLUDING REMARKS

In this study, we have presented a sup-inf (resp., inf-sup)
problem on choice of a probability measure in which a single
agent assumes a best case scenario on one risk at the same time
a worst case scenario on another risk. This selection method
of a probability measure generalizes the approach to model
uncertainties in which one considers the worst scenario on
the views of Brownian motions, such as in the robust control.
Besides, this sup-inf (resp., inf-sup) problem has unbounded
control domains dependent on stochastic processes and is
solved via a BSDE with a stochastic Lipschitz driver.
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APPENDIX A
PROOF OF PROPOSITION 1

In this section, we prove Proposition 1 with modifications
of the arguments in the proofs of Theorem 9.20 in Cohen and
Elliott [7] and Theorem I-3 in Hamadene and Lepeltier [11].

Let ϕ : [0, T ]×Rl × C([0, T ] → Rd)×R×Rd → R be

ϕ(t, x, ω, y, z) = g(t, ω, x, y) + λ1,t(ω)z1 + λ2,t(ω)z2. (62)

Then, (19) is rewritten as

dY λ1,λ2

t

= −
(
g(s,B,Xλ1,λ2

s , Y λ1,λ2
s ) + λ1,tZ

λ1,λ2

1,t

+ λ2,tZ
λ1,λ2

2,t

)
dt+

d∑
j=1

Zλ1,λ2

j,t dBj,t,

= −ϕ(t,Xt, B, Y λ1,λ2

t , Zλ1,λ2

t )dt+ Zλ1,λ2

t dBλ1,λ2

t ,

Y λ1,λ2

T = ξ. (63)

Hereafter, we suppress the superscript λ1, λ2 of Y λ1,λ2 and
Zλ1,λ2 .

By condition (ii), we have

|ϕ(t, x, ω, y, z)− ϕ(t, x, ω, y′, z′)|
= |λ1,t(ω)(z1 − z′1) + λ2,t(ω)(z2 − z′2)|+ L|y − y′|
≤ ∥λ(ω)∥t|z − z′|+ L|y − y′|, (64)

where λ(ω) = (λ1(ω), λ2(ω)) and ∥λ(ω)∥t =
sup0≤s≤t |λs(ω)|.

Set

ϕn,m(t, x, ω, y, z)

= ϕ(t, x, ω, y, z)1{∥λ(ω)∥t≤n}1{ϕ(t,x,y,ω,z)≥0}

+ϕ(t, x, ω, y, z)1{∥λ(ω)∥t≤m}1{ϕ(t,x,ω,y,z)<0}. (65)

Then, we have

|ϕn,m(t, x, ω, y, z)− ϕn,m(t, x, ω, y′, z′)|
≤ (n+m)|z − z′|+ L|y − y′|. (66)

Since ϕn,m(t, x, ω, y, z) satisfies the uniform Lipschitz condi-
tion and by Theorem 6.2.1 in Pham [20] , there exists a unique
solution (Y n,m, Zn,m) for a BSDE

dY n,m
t = −ϕn,m(t,Xt, B, Y n,m

t , Zn,m
t )dt+ Zn,m

t dBt,

Y n,m
T = ξ, (67)

such that

E

[∫ T

0

(Y n,m
s )2 + |Zn,m

s |2ds

]
< ∞, (68)

and by the boundedness of ξ and condition (i), it follows that
Y n,m is uniformly bounded with respect to t, ω, n,m.

Also, by applying comparison theorem (e.g. see Theorem
6.2.2. in Pham [20]) to BSDE (63), it follows that Y n,m is
increasing with respect to n and decreasing with respect to m.
Then, we define Yt as

Yt = lim
m→∞

lim
n→∞

Y n,m
t , P -a.s. (69)
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For each p ≥ 1, we take a subsequence {n(k)}k∈N, such
that

lim
k→∞

E

[∫ T

0

|Y n(k),k
s − Ys|pds

]
= 0. (70)

By the assumption on the integrability on λ in (20) and the
uniform boundedness of |Y n,m| , taking the subsequence n(k)
for p = 4, it follows that {Zn(k),k}k∈N is a Cauchy sequence
in L2([0, T ]×Ω). We define Z as the limit of {Zn(k),k}k∈N

in L2([0, T ]× Ω).
Then, by taking the limit of k → ∞ in the integral form

of (67) in which (n,m) is replaced by (n(k), k), we observe
that (Y, Z) is a solution of BSDE (19).

The uniqueness of (Y, Z) holds by the following discussion.
Let (Y, Z) and (Y ′, Z ′) be solutions of the BSDE (19).

By Ito’s formula, we have

d(Yt − Y ′
t )

2 = 2(Yt − Y ′
t )d(Yt − Y ′

t ) + d ⟨Y − Y ′⟩t , (71)

where

d(Yt − Y ′
t )

= −(g(t, B,Xt, Yt)− g(t, B,Xt, Y
′
t )

+ λ1,t(Z1,t − Z ′
1,t) + λ2,t(Z2,t − Z ′

2,t))dt

+

d∑
j=1

(Zj,t − Z ′
j,t)dBj,t,

= −g(t, B,Xt, Yt)− g(t, B,Xt, Y
′
t )

Yt − Y ′
t

1{Yt−Y ′
t ̸=0}(Yt − Y ′

t )dt

+

d∑
j=1

(Zj,t − Z ′
j,t)dB̃j,t,

= −bt(Yt − Y ′
t )dt+

d∑
j=1

(Zj,t − Z ′
j,t)dB̃j,t, (72)

and

d ⟨Y − Y ′⟩t =
d∑

j=1

(Zj,t − Z ′
j,t)

2dt. (73)

Here, we set

bt =
g(t, B,Xt, Yt)− g(t, B,Xt, Y

′
t )

Yt − Y ′
t

1{Yt−Y ′
t ̸=0}, (74)

and

dB̃j,t = dBj,t − λj,tdt, j = 1, 2, (75)

where B̃ is a P̃ -Brownian motion because of (9) and Gir-
sanov’s theorem if we define

P̃ (A)

= E

exp
−1

2

2∑
j=1

∫ T

0

λ2
j,sds+

2∑
j=1

∫ T

0

λj,sdBj,s

 1A

 ,

A ∈ F . (76)

Let Ȳt = (Yt − Y ′
t )e

∫ t
0
budu, Z̄t = (Zt − Z ′

t)e
∫ t
0
budu.

Then,

−Ȳ 2
t =

d∑
j=1

∫ T

t

2ȲtZ̄j,sdB̃j,s +

∫ T

t

d∑
j=1

Z̄2
j,sds. (77)

By taking conditional expectation with respect to P̃ and the
filtration Ft, we have

Ẽ

Ȳ 2
t +

∫ T

t

d∑
j=1

Z̄2
j,sds

∣∣∣∣Ft

 = 0. (78)

Here, we used the fact that {
∑d

j=1

∫ t

0
2ȲsZ̄j,sdB̃j,s}0≤t≤T

is a P̃ -martingale, which can be shown by a localization
argument.

APPENDIX B
PROOF OF PROPOSITION 2

Proposition 2 is proved in the same manner as Proposition
1 with the following modifications.

In the proof of existence of a solution, instead of (62) and
(65), we set

ϕ(t, x, ω, y, z) = g(t, ω, x, y)− |λ̄1(t, x)||z1|+ |λ̄2(t, x)||z2|
(79)

and

ϕn,m(t, x, ω, y, z)

= ϕ(t, x, ω, y, z)1{∥λ̄(x)∥t≤n}1{ϕ(t,x,ω,y,z)≥0}

+ ϕ(t, x, ω, y, z)1{∥λ̄(x)∥t≤m}1{ϕ(t,x,ω,y,z)<0}, (80)

respectively.
Then, noting that

|ϕ(t, x, ω, y, z)− ϕ(t, x, ω, y′, z′)|
≤ L|y − y′|+ |λ̄1,t(x)|||z1| − |z′1||+ |λ̄2,t(x)|||z2| − |z′2||
≤ L|y − y′|+ |λ̄1,t(x)||z1 − z′1|+ |λ̄2,t(x)||z2 − z′2|
≤ L|y − y′|+ |λ̄t(x)||z − z′|
≤ L|y − y′|+ ∥λ̄(x)∥t|z − z′|, (81)

we have

|ϕn,m(t, x, ω, y, z)− ϕn,m(t, x, ω, y′, z′)|
≤ |ϕ(t, x, ω, y, z)− ϕ(t, x, ω, y′, z′)|1{∥λ̄(x)∥t≤n}

1{ϕ(t,x,ω,y,z)≥0}

+ |ϕ(t, x, ω, y, z)− ϕ(t, x, ω, y′, z′)|
1{∥λ̄(x)∥t≤m}1{ϕ(t,x,ω,y,z)<0}

≤ L|y − y′|+ (n+m)|z − z′|, (82)

which corresponds to (66).
For uniqueness of the solution, let (Y, Z), (Y ′, Z ′) be solu-

tions of BSDE (23).
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Then, instead of (72), we have

d(Yt − Y ′
t )

= −g(t, B,Xt, Yt)− g(t, B,Xt, Y
′
t )

Yt − Y ′
t

1{Yt−Y ′
t ̸=0}(Yt − Y ′

t )dt

+ |λ̄1,t(Xt)|
|Z1,t| − |Z ′

1,t|
Z1,t − Z ′

1,t

1{Z1,t−Z′
1,t ̸=0}(Z1,t − Z ′

1,t)dt

− |λ̄2,t(Xt)|
|Z2,t| − |Z ′

2,t|
Z2,t − Z ′

2,t

1{Z2,t−Z′
2,t ̸=0}(Z2,t − Z ′

2,t)dt

+

d∑
j=1

(Zj,t − Z ′
j,t)dBj,t, YT − Y ′

T = 0. (83)

Setting Ȳt = Yt − Y ′
t , Z̄j,t = Zj,t − Z ′

j,t, j =

1, . . . , d, bt =
g(t,B,Xt,Yt)−g(t,B,Xt,Y

′
t )

Yt−Y ′
t

1{Yt−Y ′
t ̸=0},

c1,t = −|λ̄1,t(Xt)|
|Z1,t|−|Z′

1,t|
Z1,t−Z′

1,t
1{Z1,t−Z′

1,t ̸=0},

c2,t = |λ̄2,t(Xt)|
|Z2,t|−|Z′

2,t|
Z2,t−Z′

2,t
1{Z2,t−Z′

2,t ̸=0}, we have

dȲt = −btȲtdt+ Z̄1,t(dB1,t − c1,tdt) + Z̄2,t(dB2,t − c2,tdt)

+

d∑
j=3

Z̄j,tdBj,t, ȲT = 0. (84)

Since

|c1,t| = |λ̄1,t(Xt)|
||Z1,t| − |Z ′

1,t||
|Z1,t − Z ′

1,t|
≤ |λ̄1,t(Xt)|,

|c2,t| = |λ̄2,t(Xt)|
||Z2,t| − |Z ′

2,t||
|Z2,t − Z ′

2,t|
≤ |λ̄2,t(Xt)|, (85)

by a weak version of Novikov’s condition (16) for λ̄1 and λ̄2,
the probability measure P c1,c2

P c1,c2(A)

= E

exp
−1

2

2∑
j=1

∫ T

0

c2j,sds+

2∑
j=1

∫ T

0

cj,sdBj,s

 1A

 ,

A ∈ F , (86)

is well-defined and Girsanov’s theorem is applied.
Then,

dȲt = −btȲtdt+

d∑
j=1

Z̄j,tdB
c1,c2
j,t , ȲT = 0, (87)

where Bc1,c2 = (Bc1,c2
1 , . . . , Bc1,c2

d ) define by

Bc1,c2
1,t = B1,t −

∫ t

0

c1,sds,

Bc1,c2
2,t = B2,t −

∫ t

0

c2,sds,

Bc1,c2
j,t = Bj,t (3 ≤ j ≤ d). (88)

is a d-dimensional Brownian motion under P c1,c2 .
The rest of the proof is the same as the one for Proposition

1.


