
 

 
 
 
 
 
 CIRJE Discussion Papers can be downloaded without charge from: 

http://www.cirje.e.u-tokyo.ac.jp/research/03research02dp.html 
 
 
 
 
Discussion Papers are a series of manuscripts in their draft form.  They are not 
intended for circulation or distribution except as indicated by the author.  For that 
reason Discussion Papers may not be reproduced or distributed without the written 
consent of the author. 

 
CIRJE-F-1146 

 
Macroeconomic Forecasting Using Factor Models and 

Machine Learning: An Application to Japan 
 

Kohei Maehashi 
School of Engineering, The University of Tokyo 

 
Mototsugu Shintani 

The University of Tokyo  
 

March 2020 



Macroeconomic Forecasting Using Factor Models and
Machine Learning: An Application to Japan�

Kohei Maehashiyand Mototsugu Shintaniz

This version: March 2020

Abstract
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as follows. First, factor models and machine learning perform better than the con-
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methods perform particularly well for medium to long forecast horizons. Third, the
success of machine learning mainly comes from the nonlinearity and interaction of
variables, suggesting the importance of nonlinear structure in predicting the Japanese
macroeconomic series. Fourth, while neural networks are helpful in forecasting, simply
adding many hidden layers does not necessarily enhance its forecast accuracy. Fifth,
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factor models or machine learning alone, and machine learning methods applied to
principal components are found to be useful in the composite forecast.
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1 Introduction

Big data environment and machine learning methods have recently attracted a great deal

of attention in economic analysis. When it comes to macroeconomic forecasting, Stock and

Watson (1999, 2002, 2012) recommended using common factors, that are extracted from a

large number of variables, as predictor variables and their dynamic factor approach has been

popularly used among macroeconomists. In an application of this methodology to Japanese

economy, Shintani (2005) evaluated the performance of dynamic factor models combined

with neural networks by using a balanced panel of 235 monthly series from 1973 to 2000,

and claimed the importance of considering the nonlinearity to improve the forecast accuracy.

However, machine learning methods other than neural networks were not considered by

Shintani (2005). In addition, since the sample period ended in 2000, the possibility of

structural changes, such as the one caused by the global �nancial crisis in 2007-2009, could

not be incorporated.

In this paper, we extend the analysis of Shintani (2005) and perform a thorough com-

parative analysis of factor models and machine learning methods for forecasting Japanese

economy by using updated macroeconomic data. In particular, we compare the forecast ac-

curacy of factor models and various types of machine learning methods for 7 target variables

by using 219 monthly series from 1973 to 2018. Other than the use of the extended series,

our forecast design di¤ers from that of Shintani (2005), in the following three points. First,

we employ not only neural networks but also other representative machine learning methods

such as the regularized least squares methods, which include lasso, ridge, and elastic net,

as well as the ensemble learning based on regression trees, which includes bagging, random

forests, and boosting. Second, we consider more general neural networks than the one con-

sidered in Shintani (2005) in terms of the choice of activation functions and the depth of
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hidden layers. Third, we examine the possibility of forecast improvement from composite

forecasts to seek for the best combination of the two cases: the case when the common

factors are extracted by principal component analysis and the case when machine learning

methods are employed.

Our main results can be summarized as follows. First, factor models and machine learning

methods perform better than the conventional AR model in most cases. Second, machine

learning methods work particularly well for relatively longer forecast horizons. Third, the

success of machine learning methods mainly comes from the nonlinearity and interaction

of variables, suggesting the importance of nonlinear structure in predicting the Japanese

macroeconomic series. Fourth, while neural networks are useful in forecasting, simply adding

many hidden layers does not necessarily enhance the forecast accuracy. Fifth, composite

forecasts of factor models and machine learning perform better than factor models or machine

learning alone, and machine learning methods applied to principal components are found to

be useful in the composite forecast.

There are many related studies on macroeconomic forecasting based on factor models

and machine learning. For the purpose of dimension reduction under the many predictors

environment, a dynamic factor approach based on principal components regression proposed

by Stock and Watson (1999, 2002, 2012) has been used in many applications, including

Bai and Ng (2002, 2006), Artis et al. (2005), Boivin and Ng (2006), Kim and Swanson

(2014, 2018), to name a few. Kitamura and Koike (2003) and Shintani (2005) applied this

principal components regression forecast to Japanese economy. There are also an increasing

number of studies which employ the machine learning methods in more recent macroeconomic

forecasting applications. For example, Inoue and Kilian (2008) considered lasso and ridge

regression and compared their performance with bagging for U.S. in�ation forecast. Diebold

and Shin (2019) employed lasso, ridge and their extensions for Euro area GDP forecast.
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Giannone et al. (2019) applied a Bayesian forecasting framework that covered lasso, ridge

and elastic net to Stock and Watson type macroeconomic data, among other series, for

the purpose of evaluating the usefulness of sparse modeling. Nakajima and Sueishi (2019)

employed a lasso-VAR model for forecasting Japanese macroeconomic series. The usefulness

of the ensemble machine learning based on regression trees, such as random forests, was

emphasized in Medeiros et al. (2019) and Chen et al. (2019). Bai and Ng (2009) examined

the e¤ectiveness of boosting in forecasting in�ation, interest rate, industrial production,

employment and the unemployment rate by using a large set of U.S. macroeconomic data.

Macroeconomic forecasting application of neural networks include Nakamura (2005) for U.S.

in�ation series, Shintani (2005) for Japanese macroeconomic series, and Cook and Hall (2017)

for US unemployment series, among others.

We are not interested in investigating the performance of a single method or single tar-

get series. Instead, we compare factor models and 8 di¤erent machine learning methods

to forecast 7 target macroeconomics variables at horizons from 1 month to 3 years. The

research design of our analysis is closely related to Kim and Swanson (2018) and Coulombe

et al. (2019) who conducted a horse race analysis using various machine learning methods

in forecasting the U.S. macroeconomic variables. However, to the best of our knowledge,

our study is the �rst one to conduct comprehensive forecast comparison of machine learning

methods using Japanese macroeconomic data.

The remainder of the paper is organized as follows. Section 2 introduces factor models

and machine learning methods which will be considered in this paper. In Section 3, we de-

scribe the overviews of our data and explain how we evaluate the performance of competing

forecast models. Section 4 demonstrates the main empirical results, followed by the addi-

tional analysis of composite forecast in Section 5. Concluding remarks are made in Section

6.
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2 Forecasting models

We construct an h-period ahead forecast of the variable of interest yt using various meth-

ods. As a benchmark model to evaluate the forecasting performance, we consider a simple

univariate autoregressive (AR) model given by

yt+h = �(L)yt + "t+h; (1)

where �(L) =
Pp

j=1 �jL
j�1 is the lag polynomial with a lag operator L and "t+h is the

forecast error. The AR forecast is constructed by running a simple linear regression of yt+h

on current and lagged yt�s with the lag length p selected by minimizing Bayesian Information

Criterion (BIC).1

In the following, we brie�y describe factor models and machine learning methods which

we use in our analysis.

2.1 Factor models

One of the most frequently used procedures of dimension reduction in macroeconomic fore-

casting, under the many predictors environment, is a dynamic factor approach based on

the principal component analysis proposed by Stock and Watson (1999, 2002, 2012). The

fundamental idea of a dynamic factor approach is to extract the unobserved latent driving

force from a large number of variables and then to use a relatively small number of factors

as predictors for forecasting. Let xit be a potential candidate predictor generated from

xit = �
0
iF

k
t + eit; (2)

for i = 1; :::; N and t = 1; :::; T , where F kt = (f1t; f2t; :::; fkt)
0 is a k � 1 vector of common

factors, �i is a k � 1 vector of factor loadings and eit is the idiosyncratic disturbance.
1In the analysis, intercept terms in the AR model and other linear regression models are always included,

but are omitted here for notational simplicity.
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Principal components regression (PCR): Stock and Watson�s dynamic factor approach

requires the following two steps. First, the common factor F kt is computed as the principal

component of all predictor variables fxitgNi=1 by minimizing
PN

i=1

PT
t=1(xit��

0
iF

k
t )
2. Second,

using the estimated factor, the h-period ahead forecast is constructed by running a principal

components regression (PCR) of the form

yt+h = �
0
FF

k
t + "t+h; (3)

where �F is a k � 1 vector of coe¢ cients. By construction, principal components are or-

thogonal to each other and normalized to have a unit variance. In the many predictors

environment, choosing the appropriate number of factors k, which should be su¢ ciently

smaller than N , is the crucial issue.2 We select k by minimizing the following information

criterion proposed by Bai and Ng (2002),

IC(k) = lnV (k) + k

�
N + T

NT

�
lnC2NT ; (4)

where V (k) = minf�i;Fkt g(NT )
�1PN

i=1

PT
t=1(xit � �

0
iF

k
t )
2 and CNT = minf

p
N;
p
Tg.3

Factor augmented autoregression (FAAR): We can also generalize PCR in two direc-

tions. One is to add lags of factors and the other is to include other covariates such as lagged

dependent variables. To this end, we consider the factor augmented autoregression (FAAR)

given by

yt+h = �
0
F (L)F

k
t + �(L)yt + "t+h; (5)

where �F (L) =
Pr

j=1 �FjL
j�1 and �(L) =

Pp
j=1 �jL

j�1 are the lag polynomials. Unlike

PCR, FAAR nests the AR forecast as a special case when all the factors are excluded from

the regression.

2Here, common factors are ordered so that �rst factor corresponds to the �rst principal component,
namely f1t, followed by the succeeding principal components.

3This is one of the six variants of information criteria proposed by Bai and Ng (2002). However, our
results are not sensitive to other possible choices of information criteria.
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2.2 Regularized least squares methods

An alternative popular approach to deal with many predictors is the penalized regression, or

regularized least squares which nests lasso, ridge and elastic net. All three methods minimize

the objective function
TX
t=1

(
(yt+h �

NX
i=1

�ixit)
2 + �J(�)

)
; (6)

where � is the parameter on regularization, but di¤ers in the speci�cation of the penalty

term J(�) where � = (�1; �2; :::; �N)
0. For all the regularized least squares in our application,

we choose � by cross-validation.4

Lasso: The least absolute shrinkage and selection operator (lasso), �rst introduced by

Tibshirani (1996), corresponds to the one with the penalty given by J(�) =
PN

i=1 j�ij. The

penalty term of lasso is the L1 norm which implies a kink at 0 in a constrained minimization

problem with respect to �. This characteristic results in many coe¢ cient estimates to become

exactly zero. In this sense, lasso estimator can be viewed as a variable selection in a sparse

modeling.

Ridge: Ridge regression, introduced by Hoerl and Kennard (1970), is characterized by L2

norm penalty J(�) =
PN

i=1 �i
2. The coe¢ cients of ridge regression can be very close to zero

but not exactly zero unlike the lasso. Hence, ridge estimator is a shrinkage method where

coe¢ cients are shrunk in order to prevent over�tting.

Elastic net (EN): Although lasso estimator was designed to improve ridge estimator and

it is certainly true particularly when most coe¢ cients of the true model are zeros, ridge

performs better than lasso when a correlation between predictors is high (Zou and Hastie,

2005). Against this background, elastic net was proposed to make the most of both lasso and

ridge simultaneously. The penalty function of elastic net is given by J(�) = !
PN

i=1 j�ij +
4In particular, we follow the standard approach in the literature and employ 5-fold cross-validation.
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(1�!)
PN

i=1 �
2
i , where ! is the additional hyperparameter governing the relative importance

of L1 norm penalty to L2 norm penalty and it is determined by cross-validation. The elastic

net reduces to lasso when ! = 1, and it becomes ridge when ! = 0. In this sense, elastic net

embodies both selection and shrinkage features.

In forecasting the U.S. macroeconomic variables, Kim and Swanson (2018) included lasso,

ridge and elastic net, along with other machine learning methods, and showed that there

is no single best method among the three regularized least squares that works for all cases.

For this reason, we also consider all three types of regularized least squares methods in our

analysis.

So far, our forecast methods are based on the linear combination of predictor variables.

To take account of the possibility of nonlinearity in predictive regression or the e¤ect of

interaction among predictors, we also consider two classes of machine learning methods: one

is ensemble approach based on regression trees (bagging, random forests, boosting) and the

other is neural networks.

2.3 Ensemble machine learning based on regression trees

A decision tree is a useful machine learning method to incorporate nonlinearity. For the

purpose of macroeconomic forecasting of continuous target variable yt+h, a regression tree

can be used to detect groups of observations which have similar characteristics. Within the

tree, nodes are generated step by step. At the initial step, observations of a target variable

yt+h are sorted into several nodes using one of the predictor variables Xt = (x1t; x2t; :::; xNt)
0.

Some nodes can take values using the sample average of yt+h conditional on the range of a

selected predictor. Nodes without values are again divided by using the range of remaining

predictors. This process continues until all the nodes take values using some stopping rule.
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Speci�cally, a regression tree with M terminal nodes can be written as

yt+h =
MX
m=1

�m1fXt2Rmg + "t+h; (7)

where 1f�g is an indicator function, Rm is a partition of the space of Xt, and �m is the sample

average of yt+h conditional on Xt 2 Rm. The estimation of regression trees is to �nd the best

tree structure to minimize the least square criterion
PT

t=1 "
2
t+h. In order to delineate such

a tree numerically, we need to choose sorting variables from Xt and set splitting values at

each node. We employ a greedy algorithm of a binary regression tree, presented by Breiman

et al. (1984) for the purpose of discovering the locally optimal sorting variable and splitting

values at each node.

The regression trees are good at dealing with nonlinearity and interaction of variables.

Furthermore, interpreting the determinants of a target variable is relatively simple and the

structure of the model can be visibly understood. However, at the same time, regression trees

are known to be sensitive to small change in data so out-of-sample forecast performance can

become very poor. To avoid the over�tting problem, regression trees are typically employed

as the basis of ensemble machine learning methods. In our analysis, we consider the following

three types of ensemble procedures; bagging, random forests and boosting.

Bagging: Bagging, �rst proposed by Breiman (1996), comes from the abbreviation of boot-

strap aggregating. Breiman (1996) provided the empirical evidence that bagging improved

the forecast accuracy in various situations. Later, Bühlmann and Yu (2002) showed that

baggin had the ability to reduce forecast errors for i.i.d. data, while Inoue and Kilian (2008)

and Stock and Watson (2012) extended this idea to time series framework.

In bagging, bootstrap samples of original predictor variables Xt = (x1t; x2t; :::; xNt)
0 and

the target variable yt+h are repeatedly generated B times. A regression tree is then applied

to each bootstrap sample X(b)
t and y(b)t+h to compute the forecast by(b)t+h. The forecast from
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bagging is then constructed as B�1
PB

b=1 by(b)t+h, namely, the average of forecasts from individ-
ual bootstrap samples. Although the forecast of a regression tree in each bootstrap sample

su¤ers from over�tting and tends to be volatile, averaging forecasts of bootstrap samples

diminishes the variation and yields the stable forecast. In our application below, we set the

number of bootstrap samples at B = 10.

Random forests: A random forest is one derivative of bagging and thus their algorithms

are closely related with each other (Breiman, 2001). In order to maintain the stability of

forecasts from bagging, regression trees of di¤erent bootstrap samples should not be highly

correlated. Otherwise, the forecast of a regression tree in each bootstrap sample behaves

similarly and averaging may not be e¤ective in reducing the variance of forecast.

In random forests, a dropout procedure is employed to decorrelate regression trees of

bootstrap samples (see Hastie et al., 2009). Namely, the number of original predictor vari-

ables Xt = (x1t; x2t; :::; xNt)
0 is reduced by randomly drawing a subset of predictor variables

X�
t = (x

�
1t; x

�
2t; :::; x

�
kt)

0 where k < N . For a subset X�
t , a forecast is constructed by bagging,

namely by B�1
PB

b=1 by(b)t+h where by(b)t+h is computed using a bootstrap sample X�(b)
t and y(b)t+h.

Repeat this procedure for many subsets of predictor variables, and compute the average of

forecasts from all di¤erent subsets. This procedure reduces the correlation of regression trees

between each subset because the structures of regression trees are forced to be di¤erent by

subsampling. The decorrelated regression tree is expected to generate stability of forecasts.

In our analysis, we set the dimension for the subset of predictor variables at k = N=2.

Boosting: Boosting is another ensemble machine learning algorithm to resolve the over-

�tting problem. Boosting was originally introduced by Schapire (1990) and Freund (1995)

in classi�cation problems. In the context of macroeconomic forecasting, Bai and Ng (2009)

employed boosting in selecting predictors of the factor augmented regression.

In boosting, multiple regression trees are constructed as in the case of bagging. Let
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a very simple regression tree be given by
PM

m=1 �m1fXt2Rmg and set the initial regression

tree by f0(Xt) = �
PM

m=1 �m1fXt2Rmg. Here, � 2 (0; 1) is a learning rate which we set at

� = 0:1. Note that the depth of all the regression trees in boosting should be relatively

shallow which implies that each base learner fs(Xt), for s = 0; 1; :::; S, is a weak learner. In

each stage, information of forecast errors from the previous trees is utilized in searching for

a new regression tree. To be more speci�c, we employ a gradient boosting tree algorithm

with L2 loss function so that the model at s-th stage is updated using

fs(Xt) = fs�1(Xt) + �

MsX
m=1

�sm1fXt2Rsmg;

where a new regression tree
PMs

m=1 �sm1fXt2Rsmg is estimated for the residual from (s � 1)-

th stage, yt+h � fs�1(Xt). Continue updating the model until s reaches a total number of

boosting stages, which we set at S = 100. See Hastie et al. (2009) and Gu et al. (2019) for

more details.

2.4 Neural networks

Neural networks can also incorporate nonlinearity and interaction of variables through a very

�exible functional form. The structure of a neural network can be described by three com-

ponents: input layer, hidden layer and output layer.5 Each layer is collegiated by synapses

which deliver signals of neurons in the preceding layer to the succeeding one. In our setting,

the input layer corresponds to predictor variables Xt = (x1t; x2t; :::; xNt)
0 so that the number

of neurons in the input layer is the same as the dimension of predictors N . The hidden

layer converts an output from the preceding layer (including the input layer) through an

activation function. Finally, the output layer summarizes the output from the hidden layer.

For a single hidden layer feedforward neural network, the forecasting model can be written

5In this paper, we focus on the standard feedforward neural network.
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as

yt+h = f(Xt) + "t+h; (8)

where

f(Xt) =

qX
j=1

�j�(w
0
jXt + bj) + b;

� is an activation function and q is the number of hidden units (neurons). The model

can be estimated by minimizing the least square criterion with respect to (�j; w0j; bj; b) for

j = 1; :::; q.

Neural network becomes more complex and �exible when we increase the number of units

in a hidden layer (wider neural network) or increase the number of hidden layers between

input and output layers (deeper neural network). For example, a neural network with two

hidden layers can be written as

f(Xt) =

q2X
k=1

�
(2)
k �

 
q1X
j=1

�
(1)
kj �(w

0
jXt + bj) + b

(1)
k

!
+ b(2);

while that of three hidden layers can be written as

f(Xt) =

q3X
m=1

�(3)m �

 
q2X
k=1

�
(2)
mk�

 
q1X
j=1

�
(1)
kj �(w

0
jXt + bj) + b

(1)
k

!
+ b(2)m

!
+ b(3);

where q` is the number of units for `-th hidden layer.

Gu et al. (2019) examined the e¤ect of increasing the number of hidden layers in the

context of asset pricing and found that deep learning does not necessarily outperform shallow

learning. They discussed that this result came from the limited sample size available in

economic applications. For this reason, we need to carefully choose the width and depth

of hidden layers. Since searching for the best neural network structure by cross-validation

is computationally intensive, we follow the approach adopted by Gu et al. (2019) and

employ neural networks with their hidden layers ranging from 1 to 5, with the number of

11



hidden unit q` in each layer ` following the geometric pyramid rule (Masters, 1993). In

particular, there are 32 units (q1 = 32) in the single hidden layer neural network. For the 2

hidden layers neural network, there are 32 units in layer 1 (q1 = 32) and 16 units in layer

2 (q2 = 16). Likewise, the combination of units for the 5 hidden layers neural network is

(q1; q2; q3; q4; q5) = (32; 16; 8; 4; 2).

There are several options for the choice of activation functions. In our analysis, we employ

two representative activation functions, namely, sigmoid function given by

�(z) =
1

1 + e�z
; (9)

and ReLU (recti�ed linear unit) function

�(z) =

8<: 0 if z < 0

z otherwise
; (10)

where z is the input of a hidden layer. Figure 1 describes the mapping of both sigmoid and

ReLU function.

While sigmoid function was often employed as an activation function in the past, in-

cluding Shintani (2005) who used neural networks in forecasting Japanese macroeconomic

data, ReLU function has become a more popularly used activation function recently. This

is because its learning speed is known to be much faster under the deep neural network

environment and it can circumvent the vanishing gradient problem.6 We examine these

two activation functions because their relative performance in the context of macroeconomic

forecasting is not yet known.

6The vanishing gradient problem refers to the failure in computing deeper neural network models with
some activation functions. For details, see Hochreiter and Schmidhuber (1997) and LeCun et al. (2015).
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3 Data and evaluation method

3.1 Data

The data that we used are monthly observations of 219 Japanese macroeconomic time series

from January 1973 to June 2018, resulting in the many predictors environment for macro-

economic forecasting (N =219, T =546, N � T =119,574).7 Target variables in our analysis

are 7 representative macroeconomic variables, which include index of industrial production

(IIP), capacity utilization ratio (UTIL), unemployment rate (UR), real wage (WAGE), real

household consumption expenditure (CONS), wholesale price index (WPI), and consumer

price index (CPI). Table 1 shows the transformation method of each target variable. It is

noteworthy that some of our target variables are transformed using year-on-year change of

the nonseasonally adjusted series (WPI and CPI) rather than month-on-month change of

the seasonally adjusted series (IIP, UTIL, WAGE, and CONS). A full list of all 219 variables

is presented in the Appendix.

3.2 Forecast evaluation

Our forecast methods include factor models (PCR, FAAR), regularized least squares meth-

ods (lasso, ridge, elastic net), ensemble machine learning based on regression trees (bagging,

random forests, boosting) and neural networks (sigmoid and ReLU). These methods are

selected to cover standard factor models and machine learning methods for forecasting and

we will examine which method (factor models, machine learning, or their combination) per-

forms the best for macroeconomic forecasting. We consider the following 3 types of forecast

speci�cations, which are similar to the ones used in Kim and Swanson (2018), and evaluate

their performance using the AR model as a benchmark.

7Our dataset is an updated version of Shintani (2005), which covers 235 macroeconomic series. However,
due to the revision and terminition of some o¢ cial statistics, the number of variables has been reduced to
219.
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Speci�cation 1 (SP1): Factor models

Common factors are extracted as principal components of the entire set of predictor

variables. We determine the optimal number of common factors by minimizing (4), with the

maximum number of factors set at 20. Forecast models are then estimated as either PCR

or FAAR. Regarding FAAR, the number of lags in the AR part is selected by BIC, with

the maximum lag length set at 12. In this speci�cation, machine learning methods are not

employed.

Speci�cation 2 (SP2): Machine learning applied to individual series

Forecast models are constructed by using one of 8 machine learning methods directly

applied to all individual predictor variables. The 8 machine learning methods are lasso,

ridge, elastic net (EN), bagging, random forests (RF), boosting (boost), neural network with

sigmoid activation function (sigmoid) and neural network with ReLU activation function

(ReLU). In this speci�cation, factor models are not employed.

Speci�cation 3 (SP3): Machine learning applied to common factors

Common factors are extracted as principal components of the entire set of predictor

variables as in SP1. The number of factors is set at 20. Forecast models are then constructed

by one of 8 machine learning methods, using 20 principal components plus lags of target

variables (up to 12 lags). This speci�cation can be interpreted as the combination of factor

models and machine learning. This speci�cation generalizes the approach used by Shintani

(2005) who �rst extracted common factors and then applied neural networks to the estimated

factors.

In our forecasting experiments, we also take into account the lagged factors for SP1 and

SP3, which will be denoted by SP1L and SP3L, respectively. Because a preliminary analysis

did not yield improvement from adding more than one lags, we only report the results from
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the models with one lagged factor. For this reason, in addition to the AR benchmark, we

have a total of 5 speci�cations: SP1, SP1L, SP2, SP3, and SP3L.

We evaluate the pseudo-out-of-sample forecast performance of each model speci�cation

for 7 target variables at 9 di¤erent forecast horizons (h = 1; 2; 3; 6; 12; 18; 24; 30; 36). For

each speci�cation, AR lag lengths, the number of factors, and the hyperparameters for

machine learning are repeatedly selected at each point of the forecast. For example, at

period t = R, we construct the forecast byR+h of a target variable yR+h using the information
only up to t = R and evaluate the forecast error yR+h � byR+h. For the next period t =
R + 1, the model is reestimated using the data up to t = R + 1 and forecast value byR+h+1
is constructed. Therefore, the entire series of common factors are recalculated when new

forecasts are constructed. Furthermore, the lag length, the number of factors, and the

hyperparameters may be di¤erent depending on the point of forecast, even if the model

speci�cation is unchanged.

We conduct this forecast exercise using both the rolling and recursive schemes. In the

rolling scheme, we adjust the initial point of estimation so that the length of training data

window is �xed at 120. In the recursive scheme, the initial point of estimation is set at

1973.01 and the sample size increases as we proceed the forecast point ahead. For instance,

to construct a forecast at 2018.06 for h = 1, the estimation period is from 2008.06 to 2018.05

in the rolling scheme, while the estimation period is from 1973.01 to 2018.05 in the recursive

scheme.

As a measure of forecast performance, we focus on mean square forecast errors (MSFEs)

de�ned by P�1
PT�h

t=R (yt+h � byt+h)2, where byt+h is the forecast value for horizon h by a
forecast model, R is the initial sample size in estimating the model, and P (= T �h�R+1)

is the number of forecasts. If the MSFE for model 1 is smaller than the MSFE of model 2,

we view that the former outperforms the latter in out-of-sample forecast. To provide some
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guidance, we compute the Diebold and Mariano (DM) statistic de�ned by

DM =
�d

�̂ �d
; (11)

where �d is the mean of the di¤erence between squared forecast errors of model 1 (such as

factor model or machine learning method) and those of model 2 (such as benchmark AR

model), and �̂ �d is the Newey-West standard error of the di¤erence.
8

4 Main results

This section presents the results of our pseudo-out-of-sample forecasting experiments. Tables

2 to 6 show the forecast performance of 5 speci�cations from SP1 to SP3L, in terms of

their MSFEs relative to the benchmark AR model. A careful examination of Tables 2 to 6

addresses some of our research questions.

First, with some exceptions, most MSFE ratios are less than one, which indicates the

better forecast accuracy of all 5 speci�cations compared to the benchmark AR model. For

example, panel A in Table 4 reports that, for IIP forecast at horizon h = 1 under the

rolling scheme, the lowest relative MSFE among SP2 is 0.762. In addition, because SP2

involves 8 di¤erent machine learning methods, panel B shows that the best machine learning

method with the MSFE ratio of 0.762 corresponds to lasso. It is further noteworthy that the

DM test statistic rejects the null hypothesis of the same forecast performance between SP2

(namely, lasso) and AR at 5% signi�cance level. On the whole, our forecasting experiments

indicate that factor models and machine learning enhance the forecast performance in many

occasions, as in line with existing literatures (e.g., see Kim and Swanson, 2018, and Shintani,

2005).

8The DM test statistic asymptotically follows the standard normal distribution under the null hypothesis
of equal MSFEs for nonnested models. However, we also report the results for nested cases because it can
still be used for the purpose of informal guidance rather than the rigorous statistical inference.
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Second, predictions by machine learning methods tend to perform well for medium and

longer forecast horizons. To see this point, Table 7 summarizes the best pair of speci�cation

and method in terms of MSFE, based on the results from Tables 2 to 6. According to this

table, when the forecast horizon is short, such as h = 1, 2 and 3, the best speci�cation varies

among target variables. Moreover, in some cases (WAGE, WPI and CPI), the best relative

MSFE among SP1-SP3L is larger than 1, indicating that neither factor models nor machine

learning can improve forecast accuracy over that of an AR model. However, for medium to

longer horizons, SP2 becomes the best speci�cation for most cases.

Third, with respect to machine learning, Table 4 implies that allowing for nonlinearity

and interaction between variables enhances the forecast performance. The best forecast

method under SP2 is, in most cases, ensemble machine learning based on regression trees

(bagging, random forests and boosting) and they perform signi�cantly better than the AR

model. As discussed in Section 2, the main characteristic of ensemble machine learning based

on regression trees is its ability to deal with nonlinearity and interaction of variables. In this

regard, Coulombe et al. (2019) claimed the importance of employing nonlinear methods,

such as random forests, in forecasting U.S. macroeconomic variables, and conjectured that

observed nonlinearity came from uncertainty and �nancial frictions. Shintani (2005) also

emphasized the usefulness of a nonlinear approach in forecasting Japanese macroeconomic

data. Although we leave further investigations to future research, our experiments here also

suggest the importance of nonlinearity in Japanese economy.

Table 8 lists the best combination of speci�cation, method and window scheme. Aside

from three �ndings above, this table implies that the recursive scheme tends to be a better

window scheme for shorter horizons, while the rolling scheme seems to be better for medium

and longer horizons. For example, when the forecast horizons are h = 1, 2 and 3, the

recursive scheme performs better than the rolling scheme for 16 out of 21 results (76:2%).
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However, for horizons h = 24, 30 and 36, the situation is completely opposite and the

recursive scheme performs better for only 6 out of 21 cases (28:6%). These results may

come from the trade-o¤ between the cases of estimation accuracy and parameter stability.

Intuitively, the recursive scheme bene�ts from having a larger sample size for estimation

accuracy when the parameters are stable, while the rolling scheme is expected to adjust

quickly in the case of structural breaks (e.g., see Clark and McCracken, 2009, and Pesaran

et al., 2011).

Let us now examine further on the performance of the neural network forecast. As

mentioned in Section 2, the estimation of neural networks involves the choice of the activation

function and the choice of width and depth of the neural network. Hence, we �rst examine

the e¤ect of choosing between sigmoid and ReLU activation functions, and then examine the

e¤ect of increasing the number of hidden layers. For the sake of brevity, we only discuss the

results for the case of SP2 below.9

Table 9 shows the MSFE of ReLU relative to that of sigmoid for all target variables

and for all forecast horizons. Overall, the table shows that the ReLU performs better than

sigmoid for more occasions. To be more speci�c, MSFE of ReLU is less than that of sigmoid

for 418 out of 630 combinations (= 7 variables �9 horizons �2 schemes �5 layers), or 66:3%

of the total results.

Given the good performance of ReLU, Table 10 further examines the e¤ect of changing the

number of hidden layers on the forecast accuracy.10 For each variable and forecast horizon,

the MSFE is normalized relative to that of the single layer ReLU. According to Table 10,

adding more layers to the single layer ReLU does not always enhance the forecast accuracy,

particularly when the target variables are IIP, UTIL, CONS andWPI. For these variables, the

9Similar results are also obtained for SP3 and SP3L. They are available from the authors upon request.
10While we only report the result of ReLU in the table, results of sigmoid can be obtained from authors

upon request.
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multiple layer ReLU is sometimes even worse than the single layer ReLU. On the other hand,

if the target variables are UR, WAGE and CPI, multiple layers ReLU generally performs

better than single layer ReLU. However, increasing layers does not necessarily lead to the

lower MSFE in a monotonic manner. These outcomes are in line with Gu et al. (2019) who

found that more hidden layers does not necessarily enhance the asset price forecast accuracy.

5 Composite forecast

In this section, we consider the further possibility of improving the out-of-sample forecast

performance by employing composite forecast. Composite forecast, or the forecast combi-

nation, is motivated by the fact that, even if a model was selected as the best model, other

models may still contain some meaningful information which is not captured by the best

model. In our analysis, as the method of composite forecast, we consider the following 4

representative approaches, namely, arithmetic mean (AM), Bates-Granger method (BG),

Granger-Ramanathan method (GR), and Bayesian model averaging (BMA).

(1) Arithmetic mean (AM): Suppose there are m types of forecast models. This method

is based on a simple average with an equal weight wi = 1=m on each forecast model in

constructing the composite forecast.

(2) Bates-Granger method (BG): Bates and Granger (1969) suggested using an optimal

weight given by

wi =
��2i

��21 + ��22 + � � �+ ��2m
; (12)

where �2i is the MSFE of model i 2 f1; :::;mg. Composite forecast is then computed as the

average of multiple forecasts weighted by wi.

(3) Granger-Ramanathan method (GR): Granger and Ramanathan (1984) introduced

a regression method to compute the optimal weight by running a regression of the realized
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value of target variable yt on multiple forecasts fi;t for model i or

yt = �1f1;t + �2f2;t + � � �+ �mfm;t + et; (13)

with restrictions
Pm

i=1 �i = 1 and �i � 0. Composite forecast is then computed as the

average of multiple forecasts weighted by wi = �i.

(4) Bayesian model averaging (BMA): BMA has recently become a popular method

in constructing composite forecasts. In BMA, the weight on model i is constructed using

the posterior probability of the corresponding model. Using Bayes rule, this weight can be

computed as

wi = p(MijXT ) =
p(XT jMi)p(Mi)Pm
j=1 p(X

T jMj)p(Mj)
; (14)

where p(MijXT ) is the posterior probability of model i, p(XT jMi) is the marginal likelihood

of model i, p(Mi) is the prior probability of model i, and XT = fXtgTt=1 is the data. See

Koop and Potter (2004) for an example of BMA applied to macroeconomic forecasting using

dynamic factor models.

Here, we employ these 4 composite forecasts under 2 di¤erent settings. One setting is

to combine forecasts from various models (e.g., PCR, FAAR, lasso, and so on) within the

same speci�cation (for each of SP1, SP1L, SP2, SP3, SP3L). The other setting is to combine

forecasts from various speci�cations (from SP1 to SP3L).

For the �rst setting, we construct the composite forecast from various models at each

speci�cation. For example, when computing AM for SP2, the output is the simple average

of 8 forecasts of 8 machine learning methods. Notice that we conduct this exercise under

the rolling and recursive schemes, respectively.

Table 11 extends Table 7 so that comparisons are made not only across the best models

from each speci�cation but also across composite forecasts constructed by combining all
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the models. Table 11 shows the usefulness of the composite forecasts using GR and BMA.

In addition, a direct comparison of relative MSFEs between Table 7 and Table 11 reveals

that all the values larger than unity in Table 7 disappears in Table 11. This suggests that

composite forecasts can bring about the forecast improvement over the benchmark AR model

for shorter horizons, while factor models or machine learning alone cannot.

For the second setting, we construct the composite forecast among di¤erent speci�cations.

From such a composite forecast, we can examine which speci�cation type conveys the most

signi�cant information necessary to improve the forecast accuracy. Because the composite

forecast is designed to capture the signals relevant to the target output, coe¢ cient weights

on forecast models can be regarded as the relative importance of that model. Figures 2

to 5 show the coe¢ cient weights based on the GR method, with forecast horizons on the

horizontal axis. On one hand, in Figures 2 and 3, the best model in each speci�cation as

well as the AR model are combined to construct forecasts. On the other hand, in Figures

4 and 5, composite forecasts of each speci�cation, namely, outputs from the aforementioned

�rst setting, are further combined to construct a second stage composite forecast of all

speci�cations.

Figures 2 and 3 suggest the large relative contribution of SP2 (machine learning only) for

many target variables and horizons. This tendency becomes more apparent when the target

variables are UR, WAGE, WPI and CPI, or when the horizons are longer. It should also

be noted that SP3 and SP3L (machine learning applied to principal components) play an

important role in many cases as well, particularly for IIP, UTIL and CONS. Meanwhile, there

is some contribution from the benchmark AR model for shorter horizons, but its contribution

becomes negligible for longer horizons. The same is true in Figures 4 and 5, where we use a

composite forecast of composite forecasts, rather than a composite forcast of the best models.

To summarize the results in this section, we �nd that a composite forecast of factor models
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and machine learning perform better than the forecast based solely on factor models or on

machine learning. Furthermore, machine learning methods applied to principal components

(SP3 and SP3L) are found to be useful in the composite forecast in terms of their relative

contribution, along with factor models (SP1 and SP1L) and machine learning (SP2).

6 Conclusion

In this paper, we discuss various factor models and machine learning methods and empirically

apply them in forecasting the Japanese macroeconomic data. We �nd that factor models and

machine learning perform better than the conventional AR models in many occasions, and

particularly, machine learning methods work well for longer horizons. Because the success of

machine learning often comes from the ensemble approach based on regression trees, we con-

sider the nonlinearity and interaction of variables are signi�cant in forecasting the Japanese

macroeconomic series. However, at the same time, deep neural networks, which are assumed

to accommodate complex nonlinearity and interaction of variables, do not necessarily en-

hance the forecast accuracy. Furthermore, not only factor models and machine learning,

but also model selection through composite forecast improves the forecast performance, and

speci�cally, their joint application is bene�cial for macroeconomic forecasting in Japan.

22



References

Artis, M.J., Banerjee, A., Marcellino, M., 2005. Factor forecasts for the UK. Journal of

Forecasting 24, 279-298.

Bai, J., Ng, S., 2002. Determining the number of factors in approximate factor models.

Econometrica 70(1), 191-221.

Bai, J., Ng, S., 2006. Con�dence intervals for di¤usion index forecasts and inference for

factor-augmented regressions. Econometrica 74(4), 1133-1150.

Bai, J., Ng, S., 2009. Boosting di¤usion indices. Journal of Applied Econometrics 24, 607-629.

Bates, J.M., Granger, C.W.J., 1969. The combination of forecasts. Journal of the Operational

Research Society 20, 451-468.

Boivin, J., Ng, S., 2006. Are more data always better for factor analysis? Journal of Econo-

metrics 132(1), 169-194.

Breiman, L., 1996. Bagging predictors. Machine Learning 24(2), 123-140.

Breiman, L., 2001. Random forest. Machine Learning 45(1), 5-32.

Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A., 1984. Classi�cation and Regression

Trees. Chapman and Hall/CRC, New York, NY.

Bühlmann, P., Yu, B., 2002. Analyzing bagging. Annals of Statistics 30(4), 927-961.

Chen, J.C., Dunn, A., Hood, K., Driessen, A., Batch, A., 2019. O¤to the races: a comparison

of machine learning and alternative data for predicting economic indicators. In Abraham,

K.G., Jarmin, R.S., Moyer, B., Shapiro, M.D., editors, Big Data for 21st Century Economic

Statistics. University of Chicago Press, Chicago, IL, forthcoming.

Clark, T.E., McCracken, M.W., 2009. Tests of equal predictive ability with real-time data.

Journal of Business and Economic Statistics 27(4), 441-454.

Cook, T.R., Hall, A.S., 2017. Macroeconomic indicator forecasting with deep neural net-

works. Federal Reserve Bank of Kansas City, Research Working Paper, 17-11.

Coulombe, P.G., Leroux, M., Stevanovic, D., Surprenant, S., 2019. How is machine learning

useful for macroeconomic forecasting? Mimeo.

23



Diebold, F.X., Shin, M., 2018. Machine learning for regularized survey forecast combination:

partially-egalitarian lasso and its derivatives. International Journal of Forecasting 35(4),

1679-1691.

Freund, Y., 1995. Boosting a weak learning algorithm by majority. Information and Com-

putation 121(2), 256-285.

Giannone, D., Lenza, M., Primiceri, G.E., 2019. Economic predictions with big data: the

illustration of sparsity. Mimeo.

Granger, C.W.J., Ramanathan, R., 1984. Improved methods of combining forecasts. Journal

of Forecasting 3(2), 197-204.

Gu, S., Kelly, B., Xiu, D., 2019. Empirical asset pricing via machine learning. NBERWorking

Paper 25398.

Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning (2nd

ed.). Springer, New York, NY.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Computation 9(8),

1735-1780.

Hoerl, A.E., Kennard, R.W., 1970. Ridge regression: biased estimation for nonorthogonal

problems. Technometrics 12(1), 55-67.

Inoue, A., Kilian, L., 2008. How useful is bagging in forecasting economic time series? A case

study of U.S. consumer price in�ation. Journal of American Statistical Association 103(482),

511-522.

Kim, H.H., Swanson, N.R., 2014. Forecasting �nancial and macroeconomic variables using

data reduction methods: new empirical evidence. Journal of Econometrics 178(2), 352-367.

Kim, H.H., Swanson, N.R., 2018. Mining big data using parsimonious factor, machine learn-

ing, variable selection and shrinkage methods. International Journal of Forecasting 34(2),

339-354.

Kitamura, T., Koike, R., 2003. The e¤ectiveness of forecasting methods using multiple in-

formation variables. Monetary and Economic Studies 21(1), 105-143.

24



Koop, G., Potter, S., 2004. Forecasting in dynamic factor models using Bayesian model

averaging. Econometrics Journal 7(2), 550-565.

LeCun, Y., Bengio, Y., Hilton, G., 2015. Deep learning. Nature 521, 436-444.

Medeiros, M.C., Vasconcelos, G.F.R., Veiga, Á., Zilberman, E., 2019. Forecasting in�ation

in a data-rich environment: the bene�ts of machine learning methods. Journal of Business

and Economic Statistics, forthcoming.

Masters, T., 1993. Practical Neural Network Recipes in C++. Academic Press, San Diego,

CA.

Nakajima, Y., Sueishi, N., 2019. Forecasting the Japanese macroeconomy using high-

dimensional data. Mimeo.

Nakamura, E., 2005. In�ation forecasting using a neural network. Economics Letters 86(3),

373-378.

Pesaran, M.H., Pick, A., Timmermann, A., 2011. Variable selection, estimation and inference

for multi-period forecasting problem. Journal of Econometrics 164(1), 173-187.

Schapire, R.E., 1990. The strength of weak learnability. Machine Learning 5(2), 197-227.

Shintani, M., 2005. Nonlinear forecasting analysis using di¤usion indexes: an application to

Japan. Journal of Money, Credit and Banking 37(3), 517-538.

Stock, J.H., Watson, M.W., 1999. Forecasting in�ation. Journal of Monetary Economics,

44(2), 293-335.

Stock, J.H., Watson, M.W., 2002. Macroeconomic forecastig using di¤usion indexes. Journal

of Business and Economic Statistics 20(2), 147-162.

Stock, J.H., Watson, M.W., 2012. Generalizaed shrinkage methods for forecasting using

many predictors. Journal of Business and Economic Statistics 30(4), 481-493.

Tibshirani, R., 1996. Regression shrinkage and selection via lasso. Journal of the Royal

Statistical Society: Series B 58(1), 267-288.

Zou, H., Hastie, T., 2005. Regularization and variable selection via the elastic net. Journal

of the Royal Statistical Society: Series B 67(2), 301-320.

25



Maehashi Shintani

Table 1: Forecast target variables

Series Abbreviation Yt

Index of industrial production IIP ln(XSA
t ) − ln(XSA

t−1)
Index of capacity utilization ratio UTIL ln(XSA

t ) − ln(XSA
t−1)

Unemployment rate UR XSA
t

Real wage index WAGE ln(XSA
t ) − ln(XSA

t−1)
Real household consumption expenditure CONS ln(XSA

t ) − ln(XSA
t−1)

Wholesale price index WPI ln(XOR
t ) − ln(XOR

t−12)
Consumer price index (less fresh food) CPI ln(XOR

t ) − ln(XOR
t−12)

* SA represents the seasonally adjusted series, whereas OR means the original (not seasonally
adjusted) series.
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Table 2: Relative MSFE and the best method under SP1

h = 1 h = 2 h = 3 h = 6 h = 12 h = 18 h = 24 h = 30 h = 36
Panel A: Relative MSFE for the best method under SP1
Case of rolling scheme

IIP 0.901 0.978 0.926 1.048 1.024 1.073∗∗ 1.036 1.054∗∗ 1.046
UTIL 0.871 0.910 0.927 0.978 1.031∗ 1.088∗∗ 0.974 1.029 1.040
UR 1.073 1.035 0.957 0.804 0.738∗∗∗ 0.706∗∗∗ 0.751∗∗∗ 0.817∗∗ 0.757∗∗∗

WAGE 1.087∗∗ 1.084∗∗ 1.070∗ 1.164∗∗ 0.988 0.996 1.114∗∗ 1.086∗ 1.022
CONS 0.998 0.978 0.924 0.984 0.950 0.995 0.995 1.021 1.027
WPI 1.168∗∗∗ 1.261∗∗ 1.342∗∗ 1.495∗∗ 1.026 1.176 1.166 1.114∗∗ 1.158∗∗∗

CPI 1.287∗∗ 1.229∗ 1.316∗∗ 1.290∗∗ 1.140 1.184 1.057 0.762∗∗∗ 0.619∗∗∗

Case of recursive scheme
IIP 0.883 0.978 0.896 0.966 0.984 0.944 0.964 0.985 0.998

UTIL 0.865 0.924 0.899 0.957 0.967 0.921∗ 0.973 0.978 1.003
UR 0.915 0.897 0.833∗ 0.826 0.794∗∗ 0.825∗∗ 0.836∗∗∗ 0.862∗∗∗ 0.873∗∗∗

WAGE 1.158∗∗∗ 1.120∗∗∗ 1.118∗∗∗ 1.049∗∗∗ 0.859∗ 0.821∗∗∗ 0.792∗∗∗ 0.769∗∗∗ 0.771∗∗

CONS 0.951 0.961 0.966 1.040 1.137 0.924 0.898 1.007 1.037
WPI 1.125 1.122 1.125 1.156 1.211 1.016 1.017 1.014 1.028
CPI 1.521∗∗∗ 1.136 1.089 1.052 2.021∗∗ 1.589∗∗ 1.241 0.985 1.040

Panel B: Best MSFE method under SP1
Case of rolling scheme

IIP FAAR PCR FAAR PCR FAAR FAAR PCR PCR PCR
UTIL PCR PCR FAAR FAAR FAAR PCR PCR PCR PCR
UR FAAR FAAR FAAR FAAR FAAR FAAR FAAR FAAR FAAR

WAGE FAAR FAAR FAAR FAAR PCR PCR PCR FAAR PCR
CONS FAAR FAAR FAAR FAAR FAAR FAAR PCR PCR PCR
WPI FAAR FAAR FAAR FAAR PCR PCR PCR PCR PCR
CPI FAAR FAAR FAAR FAAR PCR PCR PCR PCR PCR

Case of recursive scheme
IIP FAAR FAAR FAAR FAAR PCR PCR PCR FAAR PCR

UTIL FAAR FAAR FAAR FAAR FAAR PCR PCR FAAR PCR
UR FAAR FAAR FAAR FAAR FAAR FAAR FAAR FAAR FAAR

WAGE FAAR FAAR FAAR FAAR FAAR PCR PCR FAAR PCR
CONS FAAR FAAR FAAR FAAR FAAR FAAR PCR PCR FAAR
WPI FAAR FAAR FAAR FAAR PCR PCR PCR PCR PCR
CPI FAAR FAAR FAAR FAAR FAAR PCR PCR FAAR PCR
Note: The figure in panel A represents the best (lowest) MSFE among the methods under SP1. MSFE is normalized relative to
AR model. Therefore, figures lower than 1 represent the best method under SP1 outperforms better than AR model, whereas
figures higher than 1 mean the best method under SP1 underperforms worse than AR model. ∗∗∗, ∗∗, ∗ stand for 1%, 5%,
10% significance of Diebold-Mariano test. Panel B reports the best (lowest) MSFE method under SP1, corresponding to the
relative MSFE in panel A.
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Table 3: Relative MSFE and the best method under SP1L

h = 1 h = 2 h = 3 h = 6 h = 12 h = 18 h = 24 h = 30 h = 36
Panel A: Relative MSFE for the best method under SP1L
Case of rolling scheme

IIP 0.907 0.939 0.947 1.048 1.050 1.081∗∗ 1.036 1.054∗∗ 1.046
UTIL 0.871 0.857 0.936 1.037 1.053 1.088∗∗ 0.974 1.029 1.040
UR 1.251∗∗ 0.984 0.942 0.752∗∗ 0.734∗∗∗ 0.619∗∗∗ 0.725∗∗∗ 0.778∗∗∗ 0.751∗∗∗

WAGE 1.182∗∗∗ 1.079∗∗ 1.087∗∗ 1.202∗∗∗ 0.988 0.996 1.114∗∗ 1.097∗ 1.022
CONS 1.048 0.980 0.987 0.984 1.055 1.020 0.995 1.021 1.027
WPI 1.209∗∗ 1.293∗∗ 1.361∗∗ 1.466 1.026 1.176 1.166 1.114∗∗ 1.158∗∗∗

CPI 1.317 1.241∗∗ 1.322∗∗∗ 1.303∗ 1.140 1.184 1.057 0.762∗∗∗ 0.619∗∗∗

Case of recursive scheme
IIP 0.899 0.898 0.901 0.979 0.977 0.944 0.964 1.005 0.998

UTIL 0.873 0.866 0.875 0.949 0.975 0.921∗∗ 0.973 1.001 1.003
UR 0.944 0.915 0.771∗∗ 0.800 0.760 0.859 0.893 0.941 0.958

WAGE 1.157∗∗ 1.140∗∗∗ 1.253∗∗∗ 1.111∗∗∗ 0.901 0.821∗∗∗ 0.792∗∗∗ 0.813∗∗∗ 0.771∗∗∗

CONS 0.943 0.913 0.914 0.883 0.884 0.993 0.898 0.982∗ 1.011
WPI 1.136 1.124 1.070 1.044 1.163 1.016 1.017 1.014 1.028
CPI 1.528∗∗ 1.365∗∗ 1.295∗∗ 1.425∗∗ 1.432∗∗∗ 1.092 1.241 1.062 1.040

Panel B: Best MSFE method under SP1L
Case of rolling scheme

IIP PCR FAAR PCR PCR PCR PCR PCR PCR PCR
UTIL PCR FAAR PCR PCR PCR PCR PCR PCR PCR
UR FAAR FAAR FAAR FAAR FAAR FAAR FAAR FAAR FAAR

WAGE FAAR FAAR FAAR FAAR PCR PCR PCR PCR PCR
CONS PCR FAAR PCR FAAR FAAR FAAR PCR PCR PCR
WPI FAAR FAAR FAAR FAAR PCR PCR PCR PCR PCR
CPI FAAR FAAR FAAR PCR PCR PCR PCR PCR PCR

Case of recursive scheme
IIP PCR FAAR FAAR PCR FAAR PCR PCR FAAR PCR

UTIL PCR FAAR FAAR FAAR FAAR PCR PCR FAAR PCR
UR FAAR FAAR FAAR FAAR FAAR FAAR FAAR FAAR FAAR

WAGE FAAR FAAR FAAR FAAR FAAR PCR PCR PCR PCR
CONS FAAR FAAR FAAR FAAR FAAR FAAR PCR FAAR PCR
WPI FAAR FAAR FAAR FAAR FAAR PCR PCR PCR PCR
CPI FAAR FAAR FAAR FAAR FAAR FAAR PCR PCR PCR
Note: The figure in panel A represents the best (lowest) MSFE among the methods under SP1L. MSFE is normalized relative
to AR model. Therefore, figures lower than 1 represent the best method under SP1L outperforms better than AR model,
whereas figures higher than 1 mean the best method under SP1L underperforms worse than AR model. ∗∗∗, ∗∗, ∗ stand for 1%,
5%, 10% significance of Diebold-Mariano test. Panel B reports the best (lowest) MSFE method under SP1L, corresponding
to the relative MSFE in panel A.
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Table 4: Relative MSFE and the best method under SP2

h = 1 h = 2 h = 3 h = 6 h = 12 h = 18 h = 24 h = 30 h = 36
Panel A: Relative MSFE for the best method under SP2
Case of rolling scheme

IIP 0.762∗∗ 0.804 0.888∗ 0.943 1.012 0.974 0.887∗ 1.000 0.962
UTIL 0.827 0.829∗ 0.916 0.961 0.974 0.974 0.860 0.980 0.957
UR 1.345∗∗∗ 1.223∗∗ 1.064 0.698∗∗∗ 0.291∗∗∗ 0.207∗∗∗ 0.136∗∗∗ 0.093∗∗∗ 0.098∗∗∗

WAGE 1.172∗∗∗ 1.143∗∗ 0.955 0.738∗∗∗ 0.454∗∗∗ 0.414∗∗∗ 0.483∗∗∗ 0.550∗∗∗ 0.385∗∗∗

CONS 0.975 0.945 0.959 0.970 0.939 0.943∗∗ 0.925∗∗∗ 0.916∗∗∗ 0.868∗∗∗

WPI 1.480∗∗∗ 1.200∗∗ 0.998 0.650∗∗ 0.561∗∗∗ 0.592∗∗∗ 0.463∗∗∗ 0.301∗∗∗ 0.377∗∗∗

CPI 1.180∗∗ 0.970 0.912 0.462∗∗∗ 0.534∗∗∗ 0.567∗∗∗ 0.354∗∗∗ 0.203∗∗∗ 0.160∗∗∗

Case of recursive scheme
IIP 0.779∗∗ 0.898 0.912 0.964∗∗ 0.969 0.922 0.902∗ 0.987 0.981

UTIL 0.770∗∗ 0.858∗ 0.894 0.952∗∗∗ 0.956∗ 0.879∗∗ 0.900∗ 0.986 0.981
UR 1.029 0.891∗ 0.779∗∗∗ 0.568∗∗∗ 0.315∗∗∗ 0.195∗∗∗ 0.115∗∗∗ 0.094∗∗∗ 0.083∗∗∗

WAGE 1.204∗∗∗ 1.188∗∗∗ 0.911 0.651∗∗∗ 0.361∗∗∗ 0.302∗∗∗ 0.331∗∗∗ 0.368∗∗∗ 0.277∗∗∗

CONS 1.095∗∗∗ 1.035 1.035∗∗∗ 1.021∗∗∗ 0.850 0.886 0.785∗ 0.801∗∗∗ 0.811∗∗∗

WPI 1.888∗∗∗ 1.339∗ 1.143 0.758∗∗ 0.558∗∗∗ 0.507∗∗∗ 0.410∗∗∗ 0.292∗∗∗ 0.387∗∗∗

CPI 1.505∗∗∗ 1.109 1.086 0.713∗∗∗ 0.379∗∗∗ 0.775 0.264∗∗∗ 0.181∗∗∗ 0.160∗∗∗

Panel B: Best MSFE method under SP2
Case of rolling scheme

IIP lasso EN bagging lasso bagging lasso lasso lasso EN
UTIL EN EN bagging lasso lasso EN lasso lasso EN
UR EN EN boost boost boost boost boost boost boost

WAGE lasso boost boost boost boost boost boost boost boost
CONS EN boost lasso EN boost bagging bagging bagging boost
WPI lasso boost boost boost boost boost boost boost boost
CPI EN boost RF RF boost RF boost boost boost

Case of recursive scheme
IIP EN lasso lasso lasso lasso lasso lasso lasso lasso

UTIL lasso lasso lasso lasso lasso lasso lasso lasso lasso
UR lasso lasso lasso boost boost boost boost boost boost

WAGE EN boost boost boost boost boost boost boost boost
CONS bagging boost bagging bagging lasso lasso lasso bagging boost
WPI boost boost boost boost boost boost boost boost boost
CPI boost boost boost boost boost boost boost boost boost
Note: The figure in panel A represents the best (lowest) MSFE among the methods under SP2. MSFE is normalized relative to
AR model. Therefore, figures lower than 1 represent the best method under SP2 outperforms better than AR model, whereas
figures higher than 1 mean the best method under SP2 underperforms worse than AR model. ∗∗∗, ∗∗, ∗ stand for 1%, 5%,
10% significance of Diebold-Mariano test. Panel B reports the best (lowest) MSFE method under SP2, corresponding to the
relative MSFE in panel A.
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Table 5: Relative MSFE and the best method under SP3

h = 1 h = 2 h = 3 h = 6 h = 12 h = 18 h = 24 h = 30 h = 36
Panel A: Relative MSFE for the best method under SP3
Case of rolling scheme

IIP 0.865 0.915 0.928 1.005 0.994 0.988 0.908 0.971 0.991
UTIL 0.829 0.869 0.939 0.972 0.978 0.972 0.873 0.974 0.988
UR 1.263 1.389 1.235 0.949 0.696 0.557∗∗∗ 0.565∗∗∗ 0.464∗∗∗ 0.475∗∗∗

WAGE 1.287∗∗∗ 1.170∗∗ 1.031 0.952 0.907 0.939∗ 0.884∗∗ 0.928∗ 0.920∗∗

CONS 0.892∗∗ 0.870∗∗ 0.879∗ 0.940∗ 0.966 0.969 0.996 0.999 0.977
WPI 1.502∗∗∗ 1.426∗∗∗ 1.211 0.715 0.782∗∗ 0.937∗ 0.941 0.958 0.991
CPI 1.848∗∗ 1.174∗ 1.000 0.645∗∗∗ 0.773∗∗∗ 0.799∗∗∗ 0.799∗∗∗ 0.608∗∗∗ 0.444∗∗∗

Case of recursive scheme
IIP 0.854 0.953 1.004 0.992∗∗ 0.976 0.937 0.947 0.995 0.979∗∗

UTIL 0.832∗∗ 0.957 0.975 0.978∗ 1.013 0.886∗∗ 0.931 1.006∗ 0.988
UR 0.997 1.003 0.998 0.866 0.714 0.689∗∗ 0.681∗∗∗ 0.640∗∗∗ 0.590∗∗∗

WAGE 1.137∗∗∗ 1.139∗∗∗ 1.007∗∗ 0.971 0.829 0.764 0.678 0.748∗∗ 0.691
CONS 0.969 0.976 0.925 0.935 0.908 0.952 0.889 0.930 0.944
WPI 1.254 1.357 1.330 1.067 0.979 0.983 1.011 1.031 1.095
CPI 1.450∗∗ 1.181∗ 1.146 0.933 0.825 0.722∗∗∗ 0.703∗∗∗ 0.606∗∗∗ 0.585∗∗∗

Panel B: Best MSFE method under SP3
Case of rolling scheme

IIP bagging bagging EN bagging EN lasso EN lasso EN
UTIL EN bagging EN bagging lasso EN lasso lasso lasso
UR ridge boost boost boost boost RF boost RF RF

WAGE lasso boost boost boost boost bagging RF bagging bagging
CONS lasso lasso lasso lasso EN lasso lasso bagging bagging
WPI lasso lasso boost boost boost bagging boost boost boost
CPI boost boost boost boost boost boost boost boost boost

Case of recursive scheme
IIP bagging bagging lasso EN bagging bagging lasso lasso EN

UTIL bagging sigmoid EN EN EN lasso sigmoid lasso lasso
UR ridge ridge ridge boost boost boost boost boost boost

WAGE EN bagging bagging bagging bagging sigmoid boost RF RF
CONS EN lasso lasso EN EN bagging lasso bagging bagging
WPI lasso EN lasso bagging bagging EN EN EN lasso
CPI boost boost boost boost RF boost boost boost boost
Note: The figure in panel A represents the best (lowest) MSFE among the methods under SP3. MSFE is normalized relative to
AR model. Therefore, figures lower than 1 represent the best method under SP3 outperforms better than AR model, whereas
figures higher than 1 mean the best method under SP3 underperforms worse than AR model. ∗∗∗, ∗∗, ∗ stand for 1%, 5%,
10% significance of Diebold-Mariano test. Panel B reports the best (lowest) MSFE method under SP3, corresponding to the
relative MSFE in panel A.
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Table 6: Relative MSFE and the best method under SP3L

h = 1 h = 2 h = 3 h = 6 h = 12 h = 18 h = 24 h = 30 h = 36
Panel A: Relative MSFE for the best method under SP3L
Case of rolling scheme

IIP 0.868 0.921 0.919 0.988 1.004 0.983 0.915 0.985 0.999
UTIL 0.554 0.522 0.579 0.609 0.622 0.607 0.538 0.606 0.614
UR 1.894∗ 1.520 1.252 1.023 0.805 0.603∗∗∗ 0.588∗∗∗ 0.475∗∗∗ 0.528∗∗∗

WAGE 1.294∗∗∗ 1.169∗∗∗ 1.052 0.907 0.906∗ 0.909∗ 0.814∗∗∗ 0.933 0.902∗∗

CONS 0.906∗ 0.874∗∗ 0.907∗ 0.905∗∗∗ 0.968 0.971 0.976 0.956∗∗ 0.979
WPI 1.954∗∗∗ 1.736∗∗∗ 1.301∗∗ 0.772 0.832∗∗ 0.941∗∗∗ 0.932∗ 0.956 1.021
CPI 1.748∗∗∗ 1.202∗∗ 0.989 0.596∗∗∗ 0.758∗∗∗ 0.902∗∗ 0.796∗∗∗ 0.566∗∗∗ 0.455∗∗∗

Case of recursive scheme
IIP 0.786∗∗ 0.971 0.930 0.991∗ 0.984 0.924 0.925∗ 0.988 0.998

UTIL 0.783∗∗ 0.929 0.915∗ 0.990∗∗ 0.992 0.887∗∗ 0.927∗ 1.010 1.000
UR 1.061 1.009 1.004 0.799 0.655 0.677∗∗ 0.678∗∗∗ 0.639∗∗∗ 0.575∗∗∗

WAGE 1.069∗∗ 1.131∗∗∗ 1.016∗∗ 0.991 0.817 0.751 0.720 0.747∗∗∗ 0.686
CONS 0.964 0.962 0.918 0.923 0.896 0.927 0.856 0.909 0.913∗

WPI 1.266 1.348 1.278 1.109 0.938∗ 0.929∗∗∗ 0.950 1.004 1.079
CPI 1.334∗ 1.179∗ 1.082 0.893 0.712∗∗ 0.699∗∗ 0.698∗∗∗ 0.606∗∗∗ 0.554∗∗∗

Panel B: Best MSFE method under SP3L
Case of rolling scheme

IIP RF lasso bagging bagging lasso lasso EN EN EN
UTIL EN EN EN EN EN EN EN EN EN
UR boost boost boost boost boost boost boost RF boost

WAGE boost boost boost boost RF boost boost bagging bagging
CONS lasso EN EN EN lasso EN EN bagging bagging
WPI lasso lasso boost boost bagging bagging boost boost EN
CPI lasso boost boost boost boost boost boost boost boost

Case of recursive scheme
IIP lasso bagging EN lasso lasso lasso lasso lasso lasso

UTIL lasso bagging EN EN EN lasso EN lasso EN
UR ridge ridge ridge boost boost boost boost boost boost

WAGE EN bagging bagging bagging lasso sigmoid boost bagging RF
CONS EN lasso EN EN ridge bagging EN bagging bagging
WPI lasso lasso lasso bagging bagging EN lasso lasso bagging
CPI lasso boost boost boost boost boost RF boost boost
Note: The figure in panel A represents the best (lowest) MSFE among the methods under SP3L. MSFE is normalized relative
to AR model. Therefore, figures lower than 1 represent the best method under SP3L outperforms better than AR model,
whereas figures higher than 1 mean the best method under SP3L underperforms worse than AR model. ∗∗∗, ∗∗, ∗ stand
for 1%, 5%, 10% significance of Diebold-Mariano test. Panel B table reports the best (lowest) MSFE method under SP3L,
corresponding to the relative MSFE in panel A.
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Table 7: MSFE-best specification and method under SP1-SP3L

h = 1 h = 2 h = 3 h = 6 h = 12 h = 18 h = 24 h = 30 h = 36
Panel A: Relative MSFE for the best specification and method under SP1-SP3L
Case of rolling scheme

IIP 0.762∗∗ 0.915 0.888∗∗ 0.943 0.994 0.974 0.887 0.971 0.962
UTIL 0.554 0.522 0.579 0.609 0.622 0.607 0.538 0.606 0.614
UR 1.073 0.984 0.942 0.698∗∗∗ 0.291∗∗∗ 0.207∗∗∗ 0.136∗∗∗ 0.093∗∗∗ 0.098∗∗∗

WAGE 1.087∗∗ 1.079∗∗ 0.955 0.738∗∗∗ 0.454∗∗∗ 0.414∗∗∗ 0.483∗∗∗ 0.550∗∗∗ 0.385∗∗∗

CONS 0.892∗∗ 0.870∗∗ 0.879∗ 0.905∗∗∗ 0.939 0.943∗∗ 0.925∗∗∗ 0.916∗∗∗ 0.868∗∗∗

WPI 1.168∗∗∗ 1.200∗∗ 0.998 0.650∗∗ 0.561∗∗∗ 0.592∗∗∗ 0.463∗∗∗ 0.301∗∗∗ 0.377∗∗∗

CPI 1.180∗ 0.870 0.912 0.462∗∗∗ 0.534∗∗∗ 0.567∗∗∗ 0.354∗∗∗ 0.203∗∗∗ 0.160∗∗∗

Case of recursive scheme
IIP 0.779∗∗ 0.898 0.896 0.964∗∗ 0.969 0.922 0.902∗ 0.985 0.979

UTIL 0.770∗∗ 0.858∗ 0.875 0.949 0.956∗ 0.879∗∗ 0.900∗ 0.978 0.981
UR 0.915 0.891∗ 0.771∗ 0.568∗∗∗ 0.315∗∗∗ 0.195∗∗∗ 0.115∗∗∗ 0.094∗∗∗ 0.083∗∗∗

WAGE 1.069∗∗ 1.120∗∗∗ 0.911 0.651∗∗∗ 0.361∗∗∗ 0.302∗∗∗ 0.331∗∗∗ 0.368∗∗∗ 0.277∗∗∗

CONS 0.943 0.913 0.914 0.883 0.850 0.886 0.785∗ 0.801∗∗∗ 0.811∗∗∗

WPI 1.125 1.122 1.070 0.758∗∗ 0.558∗∗∗ 0.507∗∗∗ 0.410∗∗∗ 0.292∗∗∗ 0.387∗∗∗

CPI 1.334∗ 1.109 1.086 0.713∗∗∗ 0.379∗∗∗ 0.699∗∗ 0.264∗∗∗ 0.181∗∗∗ 0.610∗∗∗

Panel B: Best MSFE specification and method under SP1-SP3L
Case of rolling scheme

IIP SP2 SP3 SP2 SP2 SP3 SP2 SP2 SP3 SP2
lasso bagging bagging lasso EN lasso lasso lasso EN

UTIL SP3L SP3L SP3L SP3L SP3L SP3L SP3L SP3L SP3L
EN EN EN EN EN EN EN EN EN

UR SP1 SP1L SP1L SP2 SP2 SP2 SP2 SP2 SP2
FAAR FAAR FAAR boost boost boost boost boost boost

WAGE SP1 SP1L SP2 SP2 SP2 SP2 SP2 SP2 SP2
FAAR FAAR boost boost boost boost boost boost boost

CONS SP3 SP3 SP3 SP3L SP2 SP2 SP2 SP2 SP2
lasso lasso lasso EN boost bagging bagging bagging boost

WPI SP1 SP2 SP2 SP2 SP2 SP2 SP2 SP2 SP2
FAAR boost boost boost boost boost boost boost boost

CPI SP2 SP2 SP2 SP2 SP2 SP2 SP2 SP2 SP2
EN boost RF RF boost RF boost boost boost

Case of recursive scheme

IIP SP2 SP1L SP1 SP2 SP2 SP2 SP2 SP1 SP3
EN FAAR FAAR lasso lasso lasso lasso FAAR EN

UTIL SP2 SP2 SP1L SP1L SP2 SP2 SP2 SP1 SP2
lasso lasso FAAR FAAR lasso lasso lasso FAAR lasso

UR SP1 SP2 SP1L SP2 SP2 SP2 SP2 SP2 SP2
FAAR lasso FAAR boost boost boost boost boost boost

WAGE SP3L SP1 SP2 SP2 SP2 SP2 SP2 SP2 SP2
EN FAAR boost boost boost boost boost boost boost

CONS SP1L SP1L SP1L SP1L SP2 SP2 SP2 SP2 SP2
FAAR FAAR FAAR FAAR lasso lasso lasso bagging boost

WPI SP1 SP1 SP1L SP2 SP2 SP2 SP2 SP2 SP2
FAAR FAAR FAAR boost boost boost boost boost boost

CPI SP3L SP2 SP3L SP2 SP2 SP3L SP2 SP2 SP2
lasso boost boost boost boost boost boost boost boost

Note: The figure in panel A represents the best (lowest) MSFE among the methods under SP1-SP3L. MSFE is normalized
relative to AR model. Therefore, figures lower than 1 represent the best method under SP1-SP3L outperforms better than
AR model, whereas figures higher than 1 mean the best method under SP1-SP3L underperforms worse than AR model. ∗∗∗,
∗∗, ∗ stand for 1%, 5%, 10% significance of Diebold-Mariano test. Panel B reports the best (lowest) MSFE specification and
method under each window scheme, corresponding to panel A. For each entry, the first row is specification and the second is
method.

32



Table 8: MSFE-best specification, method and window scheme

h = 1 h = 2 h = 3 h = 6 h = 12 h = 18 h = 24 h = 30 h = 36

IIP
SP2 SP1L SP1 SP2 SP2 SP2 SP2 SP3 SP2
lasso FAAR FAAR lasso lasso lasso lasso lasso EN

rolling recursive recursive rolling recursive recursive rolling rolling rolling

UTIL
SP3L SP3L SP3L SP3L SP3L SP3L SP3L SP3L SP3L
EN EN EN EN EN EN EN EN EN

rolling rolling rolling rolling rolling rolling rolling rolling rolling

UR
SP1 SP2 SP1L SP2 SP2 SP2 SP2 SP2 SP2

FAAR lasso FAAR boost boost boost boost boost boost
recursive recursive recursive recursive rolling recursive recursive rolling recursive

WAGE
Bench Bench SP2 SP2 SP2 SP2 SP2 SP2 SP2

AR AR boost boost boost boost boost boost boost
recursive recursive recursive rolling recursive rolling rolling recursive rolling

CONS
SP1L SP1L SP1L SP1L SP2 SP2 SP2 SP2 SP2
FAAR FAAR FAAR FAAR lasso bagging bagging bagging boost

recursive recursive recursive recursive recursive rolling rolling recursive rolling

WPI
Bench Bench Bench SP2 SP2 SP2 SP2 SP2 SP2

AR AR AR boost boost boost boost boost boost
recursive recursive recursive rolling recursive recursive rolling rolling recursive

CPI
Bench Bench Bench SP2 SP2 SP2 SP2 SP2 SP2

AR AR AR RF boost RF boost boost boost
rolling recursive recursive rolling rolling rolling recursive rolling rolling

Note: This table reports the best (lowest) MSFE specification, method and window scheme. For each entry, the first row is
specification, the second is method and the third is window scheme.
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Table 9: Relative MSFE of ReLU to sigmoid
# of h = 1 h = 2 h = 3 h = 6 h = 12 h = 18 h = 24 h = 30 h = 36layer

Case of rolling scheme

IIP

1 0.607∗∗∗ 0.556∗∗∗ 0.679∗∗∗ 0.713∗∗∗ 0.669∗∗∗ 0.610∗∗∗ 0.796∗∗∗ 0.697∗∗∗ 0.772∗∗∗

2 0.348∗∗∗ 0.374∗∗∗ 0.429∗∗∗ 0.402∗∗∗ 0.366∗∗∗ 0.337∗∗∗ 0.490∗∗∗ 0.438∗∗∗ 0.525∗∗∗

3 0.455∗∗∗ 0.449∗∗∗ 0.674∗∗∗ 0.614∗∗∗ 0.536∗∗∗ 0.510∗∗∗ 0.495∗∗∗ 0.543∗∗∗ 0.574∗∗∗

4 0.528∗∗∗ 0.473∗∗∗ 0.714∗∗∗ 0.724∗∗ 0.562∗∗∗ 0.656∗∗∗ 0.641∗∗∗ 0.663∗∗∗ 0.586∗∗∗

5 1.296 1.196∗ 1.184∗ 1.245∗∗ 1.300∗∗∗ 1.236∗∗ 1.284∗∗∗ 1.059 1.211∗∗

UTIL

1 0.507∗∗∗ 0.467∗∗∗ 0.563∗∗∗ 0.541∗∗∗ 0.558∗∗∗ 0.514∗∗∗ 0.680∗∗∗ 0.603∗∗∗ 0.665∗∗∗

2 0.294∗∗∗ 0.251∗∗∗ 0.306∗∗∗ 0.316∗∗∗ 0.274∗∗∗ 0.284∗∗∗ 0.403∗∗∗ 0.350∗∗∗ 0.352∗∗∗

3 0.481∗∗∗ 0.535∗∗∗ 0.597∗∗∗ 0.549∗∗∗ 0.458∗∗∗ 0.482∗∗∗ 0.608∗∗∗ 0.527∗∗∗ 0.501∗∗∗

4 0.408∗∗∗ 0.424∗∗∗ 0.592∗∗∗ 0.471∗∗∗ 0.513∗∗∗ 0.446∗∗∗ 0.597∗∗∗ 0.529∗∗∗ 0.489∗∗∗

5 1.168 1.120 1.172 1.195∗ 1.404∗∗∗ 1.263∗∗ 1.400∗∗∗ 1.261∗∗ 1.374∗∗∗

UR

1 3.282∗∗∗ 3.396∗∗∗ 3.145∗∗∗ 2.904∗∗∗ 2.765∗∗∗ 3.214∗∗∗ 3.253∗∗∗ 3.718∗∗∗ 3.463∗∗∗

2 7.199∗∗∗ 6.475∗∗∗ 6.449∗∗∗ 6.528∗∗∗ 5.663∗∗∗ 6.822∗∗∗ 7.531∗∗∗ 6.566∗∗∗ 6.004∗∗∗

3 3.981∗∗∗ 4.207∗∗∗ 4.291∗∗∗ 4.074∗∗∗ 4.137∗∗∗ 4.356∗∗∗ 3.350∗∗∗ 4.804∗∗∗ 3.664∗∗∗

4 1.669∗∗∗ 1.847∗∗∗ 1.744∗∗∗ 1.944∗∗∗ 1.738∗∗∗ 1.868∗∗∗ 2.036∗∗∗ 2.282∗∗∗ 2.232∗∗∗

5 1.194 1.271 1.474∗ 1.255∗ 1.093 1.403∗∗ 1.487∗∗ 1.332∗ 1.412∗∗

WAGE

1 1.313∗∗∗ 1.224∗∗ 1.139∗ 1.183∗∗∗ 1.057 1.061 1.135 1.171∗∗ 1.059
2 1.190 0.935 1.056 0.996 0.880∗ 0.834∗∗∗ 0.824∗∗∗ 0.914∗ 0.751∗∗∗

3 1.008 0.860∗∗ 0.831∗∗∗ 0.875∗∗ 0.835∗∗ 0.856∗∗ 0.716∗∗∗ 0.834∗∗ 0.784∗∗∗

4 1.067 0.879∗ 0.956 0.811∗∗ 0.843∗∗ 0.936 0.857∗∗ 0.906 0.748∗∗∗

5 0.817∗∗ 0.847∗ 0.930 0.829∗∗ 0.944 1.057 1.030 1.027 0.894

CONS

1 0.989 0.948 0.901 0.824∗∗∗ 0.869 0.828∗ 0.878∗∗∗ 0.820∗∗ 0.909
2 0.742∗∗∗ 0.717∗∗∗ 0.648∗∗∗ 0.604∗∗∗ 0.618∗∗∗ 0.678∗∗∗ 0.625∗∗∗ 0.694∗∗∗ 0.743∗∗∗

3 0.665∗∗∗ 0.775∗∗∗ 0.761∗∗∗ 0.609∗∗∗ 0.663∗∗∗ 0.692∗∗∗ 0.684∗∗∗ 0.725∗∗∗ 0.794∗∗∗

4 0.868 0.913 0.820∗∗ 0.805∗∗∗ 0.706∗∗∗ 0.790∗∗∗ 0.891 0.845∗∗ 0.914
5 1.373∗∗∗ 1.178∗∗∗ 1.104 1.148∗∗ 1.178∗∗∗ 1.339∗∗∗ 1.287∗∗∗ 1.126 1.195∗∗

WPI

1 0.596∗∗ 0.772∗∗∗ 0.699∗∗∗ 0.674∗∗∗ 0.747∗∗∗ 0.869∗∗ 0.777∗∗∗ 0.734∗∗∗ 0.671∗∗∗

2 0.345∗∗∗ 0.471∗∗∗ 0.455∗∗∗ 0.380∗∗∗ 0.488∗∗∗ 0.694∗∗∗ 0.506∗∗∗ 0.491∗∗∗ 0.442∗∗∗

3 0.302∗∗∗ 0.327∗∗∗ 0.334∗∗∗ 0.423∗∗∗ 0.500∗∗∗ 0.645∗∗∗ 0.491∗∗∗ 0.472∗∗∗ 0.474∗∗∗

4 0.220∗∗∗ 0.300∗∗∗ 0.328∗∗∗ 0.405∗∗∗ 0.565∗∗∗ 0.680∗∗ 0.633∗∗∗ 0.536∗∗∗ 0.560∗∗∗

5 0.408∗∗∗ 0.570∗∗∗ 0.651∗∗∗ 0.913∗∗ 0.940 1.428∗∗ 1.308∗ 1.158 1.277∗∗

CPI

1 2.287∗∗∗ 2.456∗∗∗ 2.168∗∗∗ 1.558∗∗∗ 1.297∗∗∗ 1.420∗∗ 1.363∗∗ 1.363∗∗∗ 1.278∗∗∗

2 0.979 0.684 0.975 0.931 0.706∗ 0.618∗∗∗ 0.711∗∗∗ 1.093 0.696∗∗∗

3 0.638 0.722 0.815 0.907 0.723∗∗ 0.842 0.881 0.809 0.735∗∗

4 0.531 0.620 0.774 0.598 0.959 1.000 0.720 0.558∗∗ 0.889
5 0.574∗∗∗ 0.706∗∗ 0.835 0.831∗∗∗ 1.164 1.454∗∗ 1.179 1.130 1.217∗∗

Case of recursive scheme

IIP

1 1.083 1.011 1.095 1.114 0.977 1.034 1.100 0.973 0.985
2 0.878 0.859∗ 0.868 0.851∗∗ 0.781∗∗∗ 0.830∗∗∗ 0.963 0.841 0.770∗∗∗

3 0.954 0.983 0.880∗ 0.908 0.866 0.904∗ 0.925 0.883 0.859∗∗

4 0.888 0.976 0.919 0.905 0.912 0.952 0.888 0.879 0.919
5 1.183 1.281∗∗∗ 1.308∗∗∗ 1.431∗∗∗ 1.275∗∗∗ 1.431∗∗∗ 1.614∗∗∗ 1.333∗∗∗ 1.489∗∗∗

UTIL

1 1.011 1.012 0.928 0.978 0.871∗∗ 0.979 1.060 0.997 0.988
2 0.944 0.675∗∗∗ 0.649∗∗∗ 0.803∗∗ 0.694∗∗∗ 0.704∗∗∗ 0.795∗∗ 0.677∗∗∗ 0.706∗∗∗

3 0.927 1.062 0.907 0.869∗ 0.819∗∗ 1.050 0.982 0.855∗ 0.868∗∗

4 0.916 1.130 0.851 1.029 0.884 0.895 1.018 1.051 0.888∗

5 1.285∗∗ 1.495∗ 1.326∗∗∗ 1.221∗∗ 1.347∗∗∗ 1.462∗∗∗ 1.373∗∗∗ 1.314∗∗∗ 1.503∗∗∗

UR

1 4.553∗∗∗ 4.552∗∗∗ 3.957∗∗∗ 4.123∗∗∗ 4.918∗∗∗ 4.239∗∗∗ 3.713∗∗∗ 4.060∗∗∗ 4.203∗∗∗

2 2.250∗∗∗ 1.792∗∗∗ 1.939∗∗∗ 1.922∗∗∗ 2.067∗∗∗ 2.290∗∗∗ 2.274∗∗∗ 2.608∗∗∗ 2.824∗∗∗

3 1.312∗∗∗ 1.272∗∗ 1.217 1.322∗∗ 1.326∗∗∗ 1.540∗∗∗ 1.562∗∗∗ 2.023∗∗∗ 1.672∗∗∗

4 0.552∗∗∗ 0.573∗∗∗ 0.590∗∗∗ 0.544∗∗∗ 0.726∗∗ 0.600∗∗∗ 0.727∗∗ 0.740∗∗∗ 0.783∗∗

5 0.237∗∗∗ 0.266∗∗∗ 0.278∗∗∗ 0.300∗∗∗ 0.370∗∗∗ 0.369∗∗∗ 0.461∗∗∗ 0.360∗∗∗ 0.503∗∗∗

WAGE

1 1.007∗ 1.035 1.047 0.892∗∗ 0.854∗∗ 1.186∗∗ 1.196∗∗ 1.187∗ 1.254∗∗∗

2 0.642∗∗∗ 0.647∗∗∗ 0.762∗∗∗ 0.763∗∗∗ 0.646∗∗∗ 0.914 0.909 0.904 1.018
3 0.738∗∗∗ 0.778∗∗∗ 0.591∗∗∗ 0.625∗∗∗ 0.505∗∗∗ 0.741∗∗∗ 0.857∗∗ 0.931 0.839∗∗

4 0.975 0.808∗∗∗ 0.731∗∗∗ 0.608∗∗∗ 0.573∗∗∗ 0.828∗∗∗ 0.794∗∗∗ 0.887∗∗ 0.910
5 0.959 0.896 0.917 0.912 1.259∗∗∗ 1.331∗∗∗ 1.099 1.412∗∗∗ 1.401∗∗∗

CONS

1 0.882∗ 0.848∗∗ 0.830∗∗ 0.764∗∗∗ 1.058 1.218∗∗∗ 1.169∗∗ 1.070 1.121∗

2 0.572∗∗∗ 0.513∗∗∗ 0.473∗∗∗ 0.409∗∗∗ 0.533∗∗∗ 0.935 0.950 0.870∗∗ 0.979
3 0.615∗∗∗ 0.582∗∗∗ 0.529∗∗∗ 0.581∗∗∗ 0.711∗∗∗ 0.830∗∗ 0.776∗∗∗ 1.006 0.902∗

4 0.607∗∗∗ 0.601∗∗∗ 0.848∗ 0.502∗∗∗ 0.723∗∗∗ 0.972 0.808∗∗∗ 1.109 0.953
5 1.107 1.260∗∗∗ 1.080 1.139 1.070 1.348∗∗∗ 1.289∗∗∗ 1.149∗ 1.323∗∗∗

WPI

1 0.397∗∗∗ 0.446∗∗∗ 0.409∗∗∗ 0.527∗∗∗ 0.962 0.927∗∗ 0.905∗∗∗ 0.820∗∗∗ 0.820∗∗∗

2 0.118∗∗∗ 0.156∗∗∗ 0.158∗∗∗ 0.267∗∗∗ 0.546∗∗∗ 0.621∗∗∗ 0.610∗∗∗ 0.530∗∗∗ 0.443∗∗∗

3 0.078∗∗∗ 0.110∗∗∗ 0.163∗∗∗ 0.306∗∗∗ 0.573∗∗∗ 0.636∗∗∗ 0.540∗∗∗ 0.577∗∗∗ 0.464∗∗∗

4 0.272∗∗∗ 0.254∗∗∗ 0.240∗∗∗ 0.484∗∗∗ 0.803∗∗ 0.787∗∗∗ 0.621∗∗∗ 0.717∗∗∗ 0.523∗∗∗

5 0.738∗∗∗ 0.606∗∗∗ 0.651∗∗∗ 0.920∗∗ 1.583∗∗∗ 1.718∗∗∗ 1.544∗∗∗ 1.323∗∗∗ 1.396∗∗∗

CPI

1 0.525∗∗∗ 0.534∗∗∗ 0.657∗∗∗ 0.518∗∗∗ 1.222 1.385∗∗∗ 1.733∗∗∗ 1.344∗∗∗ 1.297∗∗

2 0.346∗∗∗ 0.554∗∗∗ 0.272∗∗∗ 0.320∗∗∗ 0.813∗∗ 1.083 1.069 0.951 0.729∗∗∗

3 0.327∗∗∗ 0.240∗∗∗ 0.478∗∗ 0.177∗∗∗ 0.743 1.294∗∗∗ 0.990 0.903 0.865
4 0.220∗∗∗ 0.279∗ 0.268∗ 0.300∗∗∗ 0.699 0.844 1.121 0.953 0.983
5 0.525∗∗ 0.964 0.794∗ 0.804 0.859∗∗ 0.900 1.027 1.160 0.997

Note: The figure in this table represents the MSFE of ReLU relative to that of sigmoid. ∗∗∗, ∗∗, ∗ stand for 1%, 5%, 10%
significance of Diebold-Mariano test. 34



Table 10: Relative MSFE of multiple layers ReLU to 1 layer ReLU
# of h = 1 h = 2 h = 3 h = 6 h = 12 h = 18 h = 24 h = 30 h = 36layer

Case of rolling scheme

IIP

1 − − − − − − − − −
2 0.896 0.919 0.934 0.805∗∗ 0.842∗∗ 0.915∗∗ 0.884 1.001 1.054
3 0.772 0.885 0.996 1.001 0.961 0.956 0.809 0.955 0.942
4 0.884 0.914 0.948 0.946 0.886 0.988 0.981 0.938 0.898
5 1.034 0.994 0.911 1.012 0.982 1.006 0.838 0.913 0.953

UTIL

1 − − − − − − − − −
2 0.963 0.915 0.889 1.078 0.915 0.985 1.012 0.895 0.896
3 1.000 1.009 0.951 1.077 0.909 0.946 0.974 0.936 0.917
4 0.966 1.000 1.009 1.027 0.948 0.880 1.082 0.843 0.848
5 1.026 0.990 0.916 1.053 1.012 0.949 0.937 0.989 0.942

UR

1 − − − − − − − − −
2 0.759∗∗ 0.641∗∗∗ 0.681∗∗∗ 0.740∗∗ 0.685∗∗∗ 0.690∗∗∗ 0.765∗∗ 0.647∗∗∗ 0.685∗∗∗

3 0.550∗∗∗ 0.526∗∗∗ 0.587∗∗∗ 0.605∗∗∗ 0.615∗∗∗ 0.581∗∗∗ 0.461∗∗∗ 0.621∗∗∗ 0.495∗∗∗

4 0.425∗∗∗ 0.422∗∗∗ 0.439∗∗∗ 0.529∗∗∗ 0.471∗∗∗ 0.444∗∗∗ 0.504∗∗∗ 0.512∗∗∗ 0.530∗∗∗

5 0.394∗∗∗ 0.385∗∗∗ 0.495∗∗∗ 0.433∗∗∗ 0.373∗∗∗ 0.442∗∗∗ 0.462∗∗∗ 0.400∗∗∗ 0.441∗∗∗

WAGE

1 − − − − − − − − −
2 0.968 0.876∗ 0.985 0.907∗∗ 0.922 0.841 0.800 0.834∗∗ 0.804∗∗

3 0.901∗ 0.830∗∗ 0.857∗∗∗ 0.831∗∗∗ 0.902 0.876 0.772 0.799∗∗∗ 0.912
4 0.895∗ 0.872∗∗ 0.921∗∗ 0.792∗∗∗ 0.876∗∗ 0.892 0.856 0.819∗∗ 0.770∗

5 0.835∗∗ 0.792∗∗∗ 0.902∗∗ 0.826∗∗∗ 0.829∗∗ 0.871 0.844 0.847∗∗ 0.823∗

CONS

1 − − − − − − − − −
2 0.979 0.984 0.974 0.947 0.978 1.069 0.979 1.077 1.048
3 0.924 1.055 1.085 0.938 1.034 1.080 0.982 1.087 1.064
4 0.971 1.034 1.015 0.948 0.985 1.003 1.123∗∗ 1.111 1.089
5 1.030 0.937 0.961 1.009 1.133 1.134 1.067∗∗ 1.075 1.022

WPI

1 − − − − − − − − −
2 1.012 0.952 0.984 0.824∗∗ 0.964 1.083 0.858∗ 0.919∗∗ 0.947
3 1.138 0.830 0.882 0.909 0.992 1.121 0.929 0.831∗∗ 0.984
4 0.849∗∗∗ 0.849 0.929 0.984 1.000 1.057 1.015 0.814∗∗∗ 1.029
5 0.799∗∗∗ 0.848 0.947 0.970 0.872 1.144 1.048 0.922 0.996

CPI

1 − − − − − − − − −
2 0.770∗∗∗ 0.437∗∗∗ 0.710∗∗∗ 0.729∗∗∗ 0.776∗∗ 0.586∗∗∗ 0.760∗∗ 1.023 0.712∗∗∗

3 0.564∗∗∗ 0.433∗∗∗ 0.524∗∗∗ 0.629∗∗∗ 0.629∗∗∗ 0.647∗∗∗ 0.805 0.620∗∗∗ 0.570∗∗∗

4 0.438∗∗∗ 0.399∗∗∗ 0.518∗∗∗ 0.642∗∗∗ 0.607∗∗∗ 0.681∗∗ 0.581∗∗∗ 0.572∗∗∗ 0.590∗∗∗

5 0.507∗∗∗ 0.386∗∗∗ 0.521∗∗∗ 0.543∗∗∗ 0.624∗∗∗ 0.630∗∗∗ 0.560∗∗∗ 0.632∗∗∗ 0.593∗∗∗

Case of recursive scheme

IIP

1 − − − − − − − − −
2 0.983 0.942 1.025 0.964 1.057 1.053 1.050 1.071 1.056
3 1.042 1.069 0.944 0.986 1.093 1.055 1.008 1.108 1.092
4 1.010 1.084 1.106 1.025 1.209∗∗ 1.003 0.896 1.065 1.132
5 0.948 1.037 0.984 0.977 1.057 1.042 1.165 0.992 1.119

UTIL

1 − − − − − − − − −
2 1.123 0.888 0.876∗ 1.020 1.045 0.970 0.952 0.905∗ 0.967
3 0.966 1.050 1.052 0.950 1.014 1.026 0.997 0.919 1.041
4 0.969 1.144∗ 0.958 1.175∗∗ 1.021 0.863∗ 0.986 1.092 1.061
5 1.060 1.115 1.035 0.908 1.114∗ 0.950 0.900∗ 0.939 1.066

UR

1 − − − − − − − − −
2 0.791∗∗ 0.627∗∗∗ 0.764∗ 0.725∗∗∗ 0.642∗∗∗ 0.798∗∗∗ 0.800∗ 0.820∗∗ 0.886
3 0.500∗∗∗ 0.476∗∗∗ 0.553∗∗∗ 0.559∗∗∗ 0.477∗∗∗ 0.645∗∗∗ 0.739∗∗∗ 0.872 0.753
4 0.419∗∗∗ 0.515∗∗∗ 0.517∗∗∗ 0.487∗∗∗ 0.550∗∗∗ 0.515∗∗∗ 0.588∗∗∗ 0.594∗∗∗ 0.585∗∗∗

5 0.365∗∗∗ 0.380∗∗∗ 0.477∗∗∗ 0.500∗∗∗ 0.486∗∗∗ 0.491∗∗∗ 0.629∗∗∗ 0.449∗∗∗ 0.601∗∗∗

WAGE

1 − − − − − − − − −
2 1.097 0.939 0.976 1.128 1.052 0.934 0.893 0.886 0.966
3 1.224∗∗ 1.056 0.899 1.024 1.127∗ 0.895 1.044 1.052 0.972
4 1.305∗∗∗ 0.954 1.027 1.179∗ 1.135 0.981 1.087 0.993 1.064
5 1.123 1.016 0.990 1.219∗∗ 1.273∗∗∗ 0.999 1.002 1.138∗∗ 1.043

CONS

1 − − − − − − − − −
2 1.007 0.996 0.875∗∗ 0.965 0.955 0.999 1.123∗ 1.029 1.127∗

3 0.984 1.083 0.944 1.049 1.031 1.014 0.969 1.219∗∗∗ 1.048
4 0.944 1.035 1.053 0.973 0.954 1.126 1.057 1.308∗∗∗ 1.108
5 1.099 1.246∗∗∗ 1.015 1.167∗∗ 1.054 1.111 1.171∗∗ 1.123∗∗ 1.140∗∗

WPI

1 − − − − − − − − −
2 0.834 0.871 0.910 0.804∗∗ 0.819∗ 1.008 1.028 1.019 0.904
3 0.848 0.964 0.944 0.929 0.919 0.969 1.057 1.131 0.958
4 0.854 1.035 0.975 0.863 0.862 1.044 1.023 1.084 0.831
5 0.893∗ 0.868 0.974 0.988 0.899 0.978 1.060 1.035 0.992

CPI

1 − − − − − − − − −
2 0.863 0.986 0.724∗∗ 0.774∗∗∗ 0.744∗∗ 0.814∗∗ 0.662∗∗∗ 0.855 0.735∗∗∗

3 0.778∗ 0.721∗ 0.676∗∗ 0.632∗∗ 0.735∗∗∗ 0.746∗∗ 0.613∗∗∗ 0.793∗∗∗ 0.820∗

4 0.993 0.705 0.611∗∗∗ 0.923 0.739∗ 0.650∗∗∗ 0.670∗∗∗ 0.728∗∗∗ 0.706∗∗

5 1.294∗ 1.516∗∗ 1.024 1.059 0.630∗∗∗ 0.601∗∗∗ 0.607∗∗∗ 0.723∗∗∗ 0.731∗∗

Note: The figure in this table represents the MSFE of multiple layers ReLU relative to that of 1 layer ReLU. ∗∗∗, ∗∗, ∗ stand
for 1%, 5%, 10% significance of Diebold-Mariano test.
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Table 11: MSFE-best specification and method including forecast combination under SP1-SP3L

h = 1 h = 2 h = 3 h = 6 h = 12 h = 18 h = 24 h = 30 h = 36
Panel A: Relative MSFE for the best specification and method under SP1-SP3L
Case of rolling scheme

IIP 0.679∗∗ 0.784 0.823 0.943 0.990 0.929 0.799∗∗ 0.927 0.903
UTIL 0.554 0.522 0.579 0.609 0.622 0.607 0.538 0.606 0.614
UR 0.360 0.700 0.617 0.442∗ 0.181∗∗∗ 0.183∗∗∗ 0.119∗∗∗ 0.074∗∗∗ 0.083∗∗∗

WAGE 0.215∗∗∗ 0.675∗∗∗ 0.689∗∗∗ 0.588∗∗∗ 0.404∗∗∗ 0.387∗∗∗ 0.441∗∗∗ 0.456∗∗∗ 0.348∗∗∗

CONS 0.854∗∗ 0.817∗∗∗ 0.825∗∗∗ 0.875∗∗∗ 0.875∗∗∗ 0.853∗∗∗ 0.863∗∗∗ 0.846∗∗∗ 0.811∗∗∗

WPI 0.847 0.527∗∗∗ 0.554∗∗∗ 0.488∗∗∗ 0.428∗∗∗ 0.334∗∗∗ 0.432∗∗∗ 0.270∗∗∗ 0.377∗∗∗

CPI 0.352 0.478∗∗∗ 0.567∗∗∗ 0.413∗∗∗ 0.393∗∗∗ 0.491∗∗∗ 0.326∗∗∗ 0.186∗∗∗ 0.147∗∗∗

Case of recursive scheme
IIP 0.546∗∗ 0.898 0.888 0.964∗∗ 0.953 0.898 0.835∗ 0.985 0.807

UTIL 0.715∗∗ 0.787 0.875 0.793 0.869 0.820∗∗∗ 0.874∗ 0.928 0.912
UR 0.198 0.574 0.537 0.359 0.172∗∗∗ 0.169∗∗∗ 0.093∗∗∗ 0.083∗∗∗ 0.055∗∗∗

WAGE 0.294∗∗∗ 0.701∗ 0.632∗∗∗ 0.520∗∗∗ 0.331∗∗∗ 0.281∗∗∗ 0.303∗∗∗ 0.352∗∗∗ 0.227∗∗∗

CONS 0.895 0.878 0.878∗∗ 0.883 0.797∗∗ 0.797∗∗∗ 0.764∗∗ 0.757∗∗∗ 0.752∗∗∗

PPI 0.491 0.569∗∗ 0.724∗ 0.729∗∗ 0.461∗∗∗ 0.296∗∗∗ 0.378∗∗∗ 0.269∗∗∗ 0.387∗∗∗

CPI 0.410 0.595∗∗ 0.701∗∗ 0.601∗∗∗ 0.329∗∗∗ 0.441∗∗∗ 0.239∗∗∗ 0.160∗∗∗ 0.160∗∗∗

Panel B: Best MSFE specification and method under SP1-SP3L
Case of rolling scheme

IIP SP2 SP1 SP2 SP2 SP2 SP3 SP2 SP3 SP2
GR BMA BMA lasso BMA BMA GR GR GR

UTIL SP3L SP3L SP3L SP3L SP3L SP3L SP3L SP3L SP3L
EN EN EN EN EN EN EN EN EN

UR SP1 SP2 SP2 SP2 SP2 SP2 SP2 SP2 SP2
BMA BMA BMA BMA BMA GR GR GR GR

WAGE SP1 SP1 SP2 SP2 SP2 SP2 SP2 SP2 SP2
BMA BMA BMA BMA GR GR GR GR GR

CONS SP3 SP3L SP3 SP2 SP2 SP2 SP2 SP2 SP2
GR GR GR BMA GR BMA GR BMA GR

WPI SP2 SP2 SP2 SP2 SP2 SP2 SP2 SP2 SP2
BMA BMA BMA BMA BMA BMA GR GR boost

CPI SP1 SP2 SP2 SP2 SP2 SP2 SP2 SP2 SP2
BMA BMA BMA GR GR GR GR GR GR

Case of recursive scheme

IIP SP2 SP1L SP2 SP2 SP3 SP3 SP2 SP1 SP3L
GR FAAR BMA lasso GR GR BMA FAAR GR

UTIL SP3L SP2 SP1L SP2 SP2 SP2 SP1 SP2 SP2
GR GR FAAR GR GR BMA BMA BMA GR

UR SP2 SP2 SP2 SP2 SP2 SP2 SP2 SP2 SP2
BMA BMA BMA BMA BMA GR GR GR GR

WAGE SP1 SP2 SP2 SP2 SP2 SP2 SP2 SP2 SP2
BMA BMA BMA BMA BMA GR BMA BMA BMA

CONS SP1 SP3L SP3L SP1L SP3L SP2 SP2 SP2 SP2
BMA GR GR FAAR GR BMA GR BMA GR

WPI SP3L SP3 SP2 SP2 SP2 SP2 SP2 SP2 SP2
BMA BMA BMA BMA BMA BMA BMA BMA boost

CPI SP3L SP2 SP2 SP2 SP2 SP2 SP2 SP2 SP2
BMA BMA BMA BMA GR BMA BMA GR boost

Note: The figure in panel A represents the best (lowest) MSFE among the methods including composite forecast under SP1-
SP3L. MSFE is normalized relative to AR model. Therefore, figures lower than 1 represent the best method including composite
forecast under SP1-SP3L outperforms better than AR model, whereas figures higher than 1 mean the best method including
composite forecast under SP1-SP3L underperforms worse than AR model. ∗∗∗, ∗∗, ∗ stand for 1%, 5%, 10% significance of
Diebold-Mariano test. Panel B table reports the best (lowest) MSFE specification and method including composite forecast
under each window scheme, corresponding to the relative MSFE in panel A. For each entry, the first row is specification and
the second is method.
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Figure 1: Activation function (left: sigmoid, right: ReLU)
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Figure 2: Coefficient weights on GR method for the best model in each specification (rolling)
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Figure 3: Coefficient weights on GR method for the best model in each specification (recursive)
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Figure 4: Coefficient weights on GR method for the composite forecast in each specification (rolling)
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Figure 5: Coefficient weights on GR method for the composite forecast in each specification (recursive)
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Appendix: Data description

This appendix lists the monthly observations of 219 Japanese macroeconomic time series from Jan-

uary 1973 to June 2018, which we used as our “big data” environment. In order to induce stationarity,

most of the variables were transformed using the first difference of the log of seasonally adjusted se-

ries, with some exceptions. These exceptions include the level of the series itself and the year-on-year

change of the original series. How we transformed each data is notified in the “T-Code”1 column in

the table below.

No. Description T-Code
Real Output

1 Index of Industrial Production (Mining and Manufacturing) 3
2 Index of Industrial Production (Manufacturing) 3
3 Index of Industrial Production (Mining) 3
4 Index of Industrial Production (Iron and Steel) 3
5 Index of Industrial Production (Non-Ferrous Metals) 3
6 Index of Industrial Production (Fabricated Metals) 3
7 Index of Industrial Production (General Machinery) 3
8 Index of Industrial Production (Electrical Machinery) 3
9 Index of Industrial Production (Transport Equipment) 3
10 Index of Industrial Production (Precision Instruments) 3
11 Index of Industrial Production (Ceramics, Clay and Stone Products) 3
12 Index of Industrial Production (Chemicals) 3
13 Index of Industrial Production (Petroleum and Coal Products) 3
14 Index of Industrial Production (Plastic Products) 3
15 Index of Industrial Production (Pulp, Papaer and Paper Products) 3
16 Index of Industrial Production (Textiles) 3
17 Index of Industrial Production (Foods and Tabacco) 3
18 Index of Industrial Production (Other Manufacturing) 3
19 Index of Industrial Production (Final Demand Goods) 3
20 Index of Industrial Production (Producer Goods) 3
21 Index of Industrial Production (Producer Goods for Mining and Manufacturing) 3
22 Index of Industrial Production (Producer Goods for Others) 3
23 Index of Producer’s Shipments (Final Demand Goods) 3
24 Index of Producer’s Shipments (Producer Goods) 3
25 Index of Producer’s Shipments (Producer Goods for Mining and Manufacturing) 3
26 Index of Producer’s Shipments (Producer Goods for Others) 3
27 Index of Capacity Utilization Ratio (Manufacturing) 3
28 Index of Capacity Utilization Ratio (Iron and Steel) 3
29 Index of Capacity Utilization Ratio (Non-Ferrous Metals) 3
30 Index of Capacity Utilization Ratio (Fabricated Metals) 3
31 Index of Capacity Utilization Ratio (General Machinery) 3
32 Index of Capacity Utilization Ratio (Electrical Machinery) 3
33 Index of Capacity Utilization Ratio (Transport Equipment) 3
34 Index of Capacity Utilization Ratio (Precision Instruments) 3
35 Index of Capacity Utilization Ratio (Ceramics, Clay and Stone Products) 3
36 Index of Capacity Utilization Ratio (Chemicals) 3
37 Index of Capacity Utilization Ratio (Petroleum and Coal Products) 3
38 Index of Capacity Utilization Ratio (Textiles) 3
39 Index of Capacity Utilization Ratio (Rubber Products) 3
40 Index of Capacity Utilization Ratio (Machinery) 3
41 Index of Tertiary Industry Activity (Total) 3
42 Index of Tertiary Industry Activity (Electricity, Gas, Heat and Water Supply) 3
43 Index of Tertiary Industry Activity (Transport and Communication) 3
44 Index of Tertiary Industry Activity (Transport) 3
45 Index of Tertiary Industry Activity (Wholesale, Retail Trade, Eating and Drinking Places) 3
46 Index of Tertiary Industry Activity (Eating and Drinking Places) 3

continued

1T-Code 1: the level of the series iteself; T-Code 2: the year-on-year change of the original series; T-Code 3: the first
difference of the log of the seasonally adjusted series.
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continued
No. Description T-Code

47 Index of Tertiary Industry Activity (Finance and Insurance) 3
48 Index of Tertiary Industry Activity (Real Estate) 3
49 Index of Tertiary Industry Activity (Services) 3
50 Index of Tertiary Industry Activity (Personal Services) 3
51 Index of Tertiary Industry Activity (Business Services) 3

Inventories
52 Index of Producer’s Inventory Ratio of Finished Goods (Mining and Manufacturing) 3
53 Index of Producer’s Inventory Ratio of Finished Goods (Final Demand Goods) 3
54 Index of Producer’s Inventory Ratio of Finished Goods (Investment Goods) 3
55 Index of Producer’s Inventory Ratio of Finished Goods (Capital Goods) 3
56 Index of Producer’s Inventory Ratio of Finished Goods (Construction Goods) 3
57 Index of Producer’s Inventory Ratio of Finished Goods (Consumer Goods) 3
58 Index of Producer’s Inventory Ratio of Finished Goods (Durable Consumer Goods) 3
59 Index of Producer’s Inventory Ratio of Finished Goods (Non-Durable Consumer Goods) 3
60 Index of Producer’s Inventory Ratio of Finished Goods (Producer Goods) 3
61 Index of Producer’s Inventory Ratio of Finished Goods (Producer Goods for Mining and Manufacturing) 3
62 Index of Producer’s Inventory Ratio of Finished Goods (Producer Goods for Others) 3
63 Index of Producer’s Inventory of Finished Goods (Mining and Manufacturing) 3
64 Index of Producer’s Inventory of Finished Goods (Final Demand Goods) 3
65 Index of Producer’s Inventory of Finished Goods (Investment Goods) 3
66 Index of Producer’s Inventory of Finished Goods (Capital Goods) 3
67 Index of Producer’s Inventory of Finished Goods (Construction Goods) 3
68 Index of Producer’s Inventory of Finished Goods (Consumer Goods) 3
69 Index of Producer’s Inventory of Finished Goods (Durable Consumer Goods) 3
70 Index of Producer’s Inventory of Finished Goods (Non-Durable Consumer Goods) 3
71 Index of Producer’s Inventory of Finished Goods (Producer Goods) 3
72 Index of Producer’s Inventory of Finished Goods (Producer Goods for Mining and Manufacturing) 3
73 Index of Producer’s Inventory of Finished Goods (Producer Goods for Others) 3

Investments
74 Index of Producer’s Shipments (Investment Goods Excluding Transport Equipments) 3
75 Index of Producer’s Shipments (Producer Goods) 3
76 Index of Industrial Production (Investment Goods) 3
77 Index of Industrial Production (Capital Goods) 3
78 Index of Industrial Production (Construction Goods) 3
79 Index of Production Capacity (Manufacturing) 3
80 Machinery Orders (Total Excluding Ships) 3
81 Machinery Orders (Private Sector Excluding Volatile Orders) 3
82 Machinery Orders (Manufacturing) 3
83 Machinery Orders (Non-Manufacturing Excluding Volatile Orders) 3
84 Machinery Orders (Government) 3
85 Order Received for Construction (Grand Total) 3
86 Order Received for Construction (Private) 3
87 Order Received for Construction (Public) 3
88 Total Floor Area of Building Construction Started (Grand Total) 3
89 Total Floor Area of Building Construction Started (Mining, Manufacturing and Commercial Use) 3
90 Total Floor Area of Building Construction Started (Mining) 3
91 Total Number of New Housing Construction Started (Total) 3
92 Total Number of New Housing Construction Started (Owned) 3
93 Total Number of New Housing Construction Started (Rented) 3
94 Total Number of New Housing Construction Started (Built for Sale) 3
95 Total Number of New Housing Construction Started (Government Housing Loan Corporation) 3
96 Total Floor Area of New Housing Construction Started (Total) 3
97 Total Floor Area of New Housing Construction Started (Owned) 3
98 Total Floor Area of New Housing Construction Started (Rented) 3
99 Total Floor Area of New Housing Construction Started (Built for Sale) 3

Employment
100 Index of Non-Scheduled Worked Hours (All Industries - 30 or more persons) 3
101 Index of Non-Scheduled Worked Hours (Manufacturing) 3
102 Index of Total Worked Hours (All Industries - 30 or more persons) 3
103 Index of Total Worked Hours (Manufacturing) 3
104 Ratio of Non-Scheduled to Total Worked Hours (All Industries -30 or more persons) 3
105 Ratio of Non-Scheduled to Total Worked Hours (Manufacturing) 3
106 New Job Offers 3
107 Effective Job Offers 3
108 New Job Offer Rate 3
109 Effective Job Offer Rate 3
110 New Job Offers (Parttime) 3
111 Effective Job Offers (Parttime) 3
112 New Job Offer Rate (Parttime) 3
113 Effective Job Offer Rate (Parttime) 3
114 Index of Regular Workers Employment (All Industries - 30 or more persons) 3
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115 Index of Regular Workers Employment (All Industries Excluding Services) 3
116 Index of Regular Workers Employment (Mining) 3
117 Index of Regular Workers Employment (Construction) 3
118 Index of Regular Workers Employment (Manufacturing) 3
119 Index of Regular Workers Employment (Electricity, Gas, Heat Suuply) 3
120 Index of Regular Workers Employment (Transport and Communication) 3
121 Index of Regular Workers Employment (Wholesale and Retail Trade) 3
122 Index of Regular Workers Employment (Finance and Insurance) 3
123 Index of Regular Workers Employment (Real Estate) 3
124 Index of Regular Workers Employment (Services) 3
125 Number of Unemployment 3
126 Unemployment Rate 1
127 Number of Beneficiaries of Unemployment Insurance (Initial Claimants) 2
128 Number of Beneficiaries of Unemployment Insurance (Total) 2
129 Number of Persons with Unemployment Insurance 2
130 Real Wage Index (Contractual Cash Earnings in All Industries - 30 or more persons) 2

Consumption
131 Sales at Department Stores (Total) 2
132 Sales at Department Stores (Per Square Meter Floor Space) 2
133 Index of Sales (Total) 2
134 Index of Sales (Wholesale) 2
135 Index of Sales (Retail) 2
136 Number of New Passenger Car Registrations and Reports (Total) 3
137 Number of New Passenger Car Registrations and Reports (Excluding Cars under 550cc) 3
138 Househould Consumption Expenditure (Workers) 2
139 Househould Consumption Expenditure (Food) 2
140 Househould Disposable Income (Workers) 2
141 Index of Industrial Production (Consumer Goods) 3
142 Index of Industrial Production (Durable Consumer Goods) 3
143 Index of Industrial Production (Non-Durable Consumer Goods) 3
144 Index of Producer’s Shipments (Consumer Goods) 3
145 Index of Producer’s Shipments (Durable Consumer Goods) 3
146 Index of Producer’s Shipments (Non-Durable Consumer Goods) 3

Firms
147 Index of Investment Climate (Manufacturing) 3
148 Corporation Tax Revenue 3
149 Suspension of Business Transaction with Bank 3

Moeny, Stock Price and Interest Rate
150 Money Stock (M2+CD, Average Outstanding) 2
151 Money Stock (M1, Average Outstanding) 2
152 Monetary Base (Average Outstanding) 2
153 Bank Notes Issued (Average Outstanding) 2
154 Bank Clearings (Number) 3
155 Bank Clearings (Value) 3
156 Nikkei Stock Average 225 Selected Stocks (Average of Month) 3
157 Nikkei Stock Average 500 Selected Stocks 3
158 Stock Price Index (TOPIX) 3
159 Stock Price Average (Tokyo Stock Market First Section) 3
160 Stock Price Index (Fisheries, Agriculture and Forestry) 3
161 Stock Price Index (Mining) 3
162 Stock Price Index (Construction) 3
163 Stock Price Index (Foods) 3
164 Stock Price Index (Textiles) 3
165 Stock Price Index (Pulp and Paper) 3
166 Stock Price Index (Oil and Coal Products) 3
167 Stock Price Index (Rubber Products) 3
168 Stock Price Index (Glass and Ceramics Products) 3
169 Stock Price Index (Iron and Steel) 3
170 Stock Price Index (Non-Ferrous Metals) 3
171 Stock Price Index (Metal Products) 3
172 Stock Price Index (Machinery) 3
173 Stock Price Index (Electrical Machinery) 3
174 Stock Price Index (Transportation Equipment) 3
175 Stock Price Index (Precision Equipment) 3
176 Stock Price Index (Other Products) 3
177 Stock Price Index (Electric and Gas) 3
178 Stock Price Index (Land Transportation) 3
179 Stock Price Index (Marine Transportation) 3
180 Stock Price Index (Air Transportation) 3
181 Stock Price Index (Warehouse and Transport Related) 3
182 Stock Price Index (Communication) 3
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183 Stock Price Index (Real Estate) 3
184 Stock Price Index (Service) 3
185 Sales Volume (Daily Average, Tokyo Stock Market First Section) 3
186 Sales Value (Daily Average, Tokyo Stock Market First Section) 3
187 Official Discount Rates 1
188 Short-Term Prime Lending Rates 1
189 Long-Term Prime Lending Rates 1
190 Average Contracted Interest Rate on Loans and Discounts (Domestically Licensed Bank) 1
191 Yields on Interest Bearing Government Bonds (10 years) 1

Price Indexes
192 Nikkei Commodity Price Index (17 items) 2
193 Nikkei Commodity Price Index (42 items) 2
194 Wholesale Price Index (All Commodities) 2
195 Wholesale Price Index (Manufacturing Industry Products) 2
196 Wholesale Price Index (Raw Materials) 2
197 Wholesale Price Index (Intermediate Materials) 2
198 Wholesale Price Index (Final Goods) 2
199 Wholesale Price Index (Capital Goods) 2
200 Wholesale Price Index (Consumer Goods) 2
201 Wholesale Price Index (Durable Consumer Goods) 2
202 Wholesale Price Index (Non-Durable Consumer Goods) 2
203 Consumer Price Index (General) 2
204 Consumer Price Index (General Excluding Fresh Food) 2
205 Consumer Price Index (General Excluding Fresh Food and Imputed Rent) 2
206 Consumer Price Index (Food) 2
207 Consumer Price Index (Housing) 2
208 Consumer Price Index (Fuel Light and Water Charges) 2
209 Consumer Price Index (Furniture and Household Utilities) 2
210 Consumer Price Index (Clothes and Footware) 2
211 Consumer Price Index (Medical Care) 2
212 Consumer Price Index (Transportation and Communication) 2
213 Consumer Price Index (Reading and Recreation) 2
214 Consumer Price Index (Miscellaneous) 2

Trade
215 Terms of Trade Index (All Commodities) 3
216 Quantum Index of Exports (Total) 3
217 Quantum Index of Imports (Total) 3
218 Customs Clearance (Value of Exports, Grand Total) 3
219 Foreign Exchange Rate (Yen per US Dollar, Spot) 3
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