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Abstract 
 
 This study investigates the unique implementation of a social choice function in 
iterative dominance in the ex-post term. We assume partial ex-post verifiability; that is, 
after determining an allocation, the central planner can only observe partial information 
about the state as verifiable. We demonstrate a condition of the state space, termed “full 
detection,” under which any social choice function is uniquely implementable even if the 
range of the players’ lies, which the ex-post verifiable information directly detects, is quite 
narrow. To prove this, we construct a dynamic mechanism according to which each player 
announces his (or her) private signal before the other players observe this signal at an 
earlier stage, and each player also announces the state at a later stage. In this construction, 
we can impose several severe restrictions, such as boundedness, permission of only tiny 
transfers off the equilibrium path, and no permission of transfers on the equilibrium path. 
This study does not assume either expected utility or quasi-linearity. 
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1. Introduction 

 

 This study investigates the unique implementation of a social choice function (SCF). 

The equilibrium concept we adopt is an iteratively undominated strategy in the ex-post 

term, which is a very weak notion. Therefore, the uniqueness requirement is demanding. 

To achieve the allocation implied by a social choice function, which is contingent on the 

state, the unaware central planner must require informed players to reveal what they know 

about the state. Hence, the central planner must construct an appropriate mechanism that 

incentivizes each player to make the desirable (i.e., truthful) announcements as unique 

equilibrium behavior. This construction should be generally regarded as a difficult task. 

 To overcome this difficulty, we assume partial ex-post verifiability, that is, after 

determining an allocation, the central planner can only observe partial information about 

the state. This observation is verifiable and contractible ex-post. Hence, to resolve the 

difficulty presented by this uniqueness issue, the central planner makes ex-post monetary 

transfers with these players. These transfers are contingent not only on players’ 

announcements, but also on the verifiable information. We thus present the possibility 

that this partial ex-post verifiability fully solves the unique implementation problem. 

 We assume complete information about the state just before determining an allocation. 

We further assume incomplete information, such that each player observes his (or her) 

private signal concerning the state earlier than the other players do. We design a dynamic 

mechanism, such that the central planner requires each player to announce his (or her) 

private signal at an earlier stage and announce the whole description of the state at a later 

stage. 

 Based on this dynamic procedure of information acquisition and revelation, we 

introduce a condition on the state space, which we term full detection. We show that with 

full detection, an SCF is uniquely implementable via iterative dominance, even if the 

range of the players’ lies, which the ex-post verifiable information directly detects, is quite 

narrow. 

Full detection requires ex-post verifiable information to detect only a limited class 

of players’ lies. However, the elimination of these detected lies can help in turn detect 
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another class of lies. By using this “chain of detection,” we can iteratively detect all 

possible lies. 

Full detection is a necessary condition for the existence of a direct revelation 

mechanism in which truth-telling is the unique iteratively undominated strategy for any 

player whose only concerns is his (or her) monetary transfer. Our main theorem states 

that full detection is generally sufficient for unique implementation via iterative 

dominance. 

The dynamic mechanism in our main theorem satisfies various severe restrictions, 

such as boundedness (e.g., Jackson, 1992), permission of only tiny monetary transfers off 

the equilibrium path, and no permission of transfers on the equilibrium path. We do not 

assume either expected utility or quasi-linearity. In fact, we only make basic assumptions 

on preferences, such that each player’s utility function is continuous in lottery over 

allocations and is continuous and increasing in monetary transfers. 

 The literature on implementation already establishes that it is generally impossible to 

uniquely (or fully) implement an SCF in a Nash equilibrium if there is no such verifiable 

signal.3  For instance, Makin-monotonicity is a necessary condition for an SCF to be 

implementable in Nash equilibrium (e.g., Maskin, 1999). However, Maskin-monotonicity 

is quite a demanding condition for a deterministic SCF. 

 Several works attempt to weaken the requirements of unique implementation to 

derive the corresponding possibility results. For instance, Matsushima (1988) and Abreu 

and Sen (1991) show permissive results in the Nash equilibrium by considering stochastic 

SCFs and requiring not exact but virtual (i.e., approximate) implementability. Abreu and 

Matsushima (1992) strengthens these results in virtual implementation by replacing Nash 

equilibrium with a much weaker solution concept termed iterative dominance, as well as 

by utilizing only bounded mechanisms (e.g., Abreu-Matsushima mechanisms). Palfrey 

and Srivastava (1991) replaces Nash equilibrium with a more restrictive solution concept 

termed weakly undominated Nash equilibrium, and then derived a possibility result in 

exact implementation. Abreu and Matsushima (1994) strengthens this result by replacing 

the uniqueness of weakly undominated Nash equilibrium with a more restrictive 

                                                        
3  For surveys on implementation theory, see Moore (1992), Palfrey (1992), Osborne and 
Rubinstein (1994, Chapter 10), Jackson (2001), and Maskin and Sjöström (2002). 
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requirement, that is, the unique survival from the iterative elimination of weakly 

dominated strategies. Moore and Repullo (1988) derive a possibility result in exact 

implementation by replacing the Nash equilibrium with a refinement, that is, subgame 

perfect equilibrium. Matsushima (2008a, 2008b) derive possibility results in exact 

implementation by considering behavioral aspects of players such as preferences for 

honesty. 

 Matsushima (2018) is the first work to incorporate ex-post verifiability into unique 

implementation, showing a very permissive result, such that with full ex-post verifiability, 

any SCF is uniquely and exactly implementable in iterative dominance ex-post. This is 

regarded as the most demanding of the solution concepts used in this literature. 

Matsushima (2018) imposes various severe restrictions such as boundedness, permission 

of only small transfers off the equilibrium path, and no permission of transfers on the 

equilibrium path. Moreover, Matsushima (2018) does not assume either expected utility 

or quasi-linearity. 

 Assuming the availability of ex-post verifiable information is plausible in realistic 

situations. By conducting a follow-up survey, the central planner can generally obtain a 

resultant verifiable consequence of an allocation decision. The importance of evaluating 

past policies afterwards and making use of this evaluation to improve future policy 

decisions is widely acknowledged. Matsushima (2018) aims to enhance incentives for 

players to coordinate with each other in achieving more desirable policies by utilizing 

subsequent evaluations as threats. 

 However, the argument in Matsushima (2018) relies on the full verifiability of the 

state. It is generally unrealistic to assume that the state is fully ex-post verifiable, even if 

the technology to properly process data will substantially improve in the future. This 

study aims to extend the permissive result in Matsushima (2018) to the more general case 

of partial ex-post verifiability. This extension is by no means an easy task: without full 

verifiability, in a simple majority rule, players can successfully coordinate to 

communicate the same lie about the unverifiable parts of the state. Hence, we must 

develop a different mechanism design to detect such lies, and then clarify a condition 

under which this design method functions. This study proposes a new method for 

mechanism design and shows that full detection is a sufficient condition to guarantee the 
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same result as in Matsushima (2018), even if we replace full ex-post verifiability with 

partial ex-post verifiability. 

 This paper is organized as follows. Section 2 describes the basic model. Section 3 

defines iterative dominance and unique implementation. Section 4 introduces full 

detection. Section 5 argues for the necessity of full detection. Section 6 shows the main 

theorem, and Section 7 concludes. 

 

2. The Model 

 

We consider a situation in which the central planner determines an allocation and 

makes monetary transfers. Let {1,..., }N n  denote the finite set of all players, where we 

assume 3n . Let A  denote the finite set of all allocations. Let   denote the set of all 

lotteries over allocations. We denote    . We write a    if ( ) 1a   . Let   

denote the finite set of all states, that is, the state space. An SCF is defined as :f  . 

The state-contingent utility function for each player i N  is defined as: 

  :iu R R  , 

where ( , , )i iu t    is the utility for player i   when the state    occurs; the central 

planner determines an allocation according to the lottery  , and he (or she) makes 

a monetary transfer it R  to player i . We assume that ( , , )i iu t   is continuous with 

respect to   and it R , and is increasing in it . We do not assume expected utility 

and quasi-linearity.4 

Specifically, we describe a state as 

   0 1( , ,..., )n    . 

For each {0}i N  , let i  denote the set of possible i . We denote 

   {0}\{ }
{0}\{i}

( )i j j N i j
j N

   
    

, 

and 

   {0}\{ , }
{0}\{i, }

( )i j l l N i j l
l N j

    
    

. 

                                                        
4 See Matsushima (2018). 
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 We assume that   is a proper subset of 
{0}

i
i N
 


, that is, 

   
{0}

i
i N 

  


. 

Let 
{0}\{i}

( )i i j
j N

 
   


 denote the set of possible i , such that 

   ( , )i i   . 

We assume that ( )i i  is nonempty for all {0}i N   and all i i  . We denote 

   ( )
i i

i i i
 

    . 

We assume partial ex-post verifiability; after the central planner determines an 

allocation, but before he (or she) determines monetary transfers, only 0   becomes 

publicly observable and verifiable. The remaining part of the state 0  is unverifiable 

throughout. 

We consider the following two-stage procedure of players’ information acquisition 

and revelation. At stage 1, each player i N  observes i i   as his (or her) private 

signal. The central planner then requires each player i   to make his (or her) first 

announcement 1
im . At stage 2, each player i N  observes the remaining part of the 

state ( )i i i   . The central planner then requires each player i  to make his (or 

her) second announcement 2
im . Hence, we assume incomplete information at stage 1, 

but assume complete information at stage 2. We also assume imperfect information, that 

is, each player cannot observe the other players’ first and second announcements. 

We define a dynamic mechanism as 1 2( , , , )M M g x  , where 1 1
ii N

M M


  , and 

1
iM   denotes the set of possible first messages of player i  ; 2 2

i
i N

M M


   , and 2
iM  

denotes the set of possible second messages of player i ; 1 2:g M M   denotes the 

allocation rule; ( )i i Nx x    denotes the transfer rule; and 1 2
0:ix M M R    

denotes the transfer rule for player i . We assume that both 1
iM  and 2

iM  are finite. 

Each player i  makes his (or her) first announcement 1 1
i im M  at stage 1, and his 

(or her) second announcement 2 2
i im M . The central planner then selects an allocation 
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according to 1 2( , )g m m  . After 0  becomes verifiable, the central planner receives 

the monetary transfer 1 2
0( )ix m ,m , R    from each player i  . Because of ex-post 

verifiability, the allocation rule g  does not depend on 0 , while the transfer rule x  

does depend on 0 . 

The strategy for player i  in a dynamic mechanism   is defined as 1 2( , )i i is s s , 

where 1 1:i i is M    and 2 2:i i is M   . According to is  , at stage 1, player i  

announces 1 1( )i i is M   , which does not depend on i  . At stage 2, he (or she) 

announces 2 2( )i is M   , which does depend on i  , as well as i  . Note from the 

imperfect information that each player’s announcements do not depend on the other 

players’ announcements. For each {1,2}t , let t
iS  denotes the set of possible t

is . Let 

1 2
i i iS S S    denote the set of all strategies for player i  . Let t t

ii N
S S


   , 

( )t t t
i i Ns s S  , ii N

S S


  , and ( )i i Ns s S  . 

 

3. Iterative Dominance 

 

We define iterative dominance as the following ex-post term. For every i N , let 

  1 1(0, )i i iM M   for all i i  , 

and 

   2 2(0, )i iM M   for all  . 

Let 

   1 1
0(0, ) (0, )i ii N

M M  
  , 1 1

0 \{ }
(0, ) (0, )i i j jj N i

M M    
  , 

   2 2(0, ) (0, )ii N
M M 


  , and 2 2

\{ }
(0, ) (0, )i j

j N i
M M  

  . 

Recursively, for each 1h  , we define 1 1( , ) ( 1, )i i i iM h M h     in the manner that 

1 1( , )i i im M h    if and only if there is no 1 1( 1, )i i im M h    , such that for every 

( )i i i   , 1 1
0( 1, )i i im M h      , and 2 2( 1, )m M h   , 

   1 2 1 2
0( ( , ), ( , , ), )i iu g m m x m m    
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   1 1 2 1 1 2
0( ( , , ), ( , , , ), )i i i i i iu g m m m x m m m      , 

and ( )i i i     exists, such that for every 1 1
0( 1, )i i im M h        and 

2 2( 1, )m M h   , 

   1 2 1 2
0( ( , ), ( , , ), )i iu g m m x m m    

   1 1 2 1 1 2
0( ( , , ), ( , , , ), )i i i i i iu g m m m x m m m      . 

Recursively, for each 1h  , we define 2 2( , ) ( 1, )i iM h M h     in the manner that 

22 ( , )iim hM    if and only if there is no 2 2 ( 1, )i im M h    , such that for every 

2 2 ( 1, )i im M h     and 1 1
0( 1, )m M h   , 

   1 2 1 2
0( ( , ), ( , , ), )i iu g m m x m m    

   1 2 2 1 2 2
0( ( , , ), ( , , , ), )i i i i i iu g m m m x m m m      . 

 Let 

   1 1
0( , ) ( , )i ii N

M h M h  
  , 1 1

0 \{ }
( , ) ( , )i i j jj N i

M h M h    
  , 

   2 2( , ) ( , )ii N
M h M h 


  , and  2 2

\{ }
( , ) ( , )i jj N i

M h M h  
  . 

We define 

   1 1

0
( , ) ( , )i i i i

h
M M h 




   , 1 1

0( , ) ( , )i ii N
M M  

    , 

   2 2

0
( , ) ( , )i i

h
M M h 




   , and 2 2( , ) ( , )ii N

M M 


    . 

Because of finiteness, both 1( , )i iM   and 2 ( , )iM   are non-empty, and a positive 

integer *h  exists, such that for every i N  and   , 

   1 1( , ) ( , )i i i iM h M    and 2 2( , ) ( , )i ihM M    for all *h h . 

 

Definition 3: A strategy 1 2( , )i i i is s s S    for player i   is said to be iteratively 

undominated in a dynamic mechanism   if 

   1 1( ) ( , )i i i is M    for all i i  , 

and 

   2 2( ) ( , )i is M    for all   . 
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Definition 4: A dynamic mechanism    is said to uniquely implement an SCF f   in 

iterative dominance if the unique iteratively undominated strategy profile s S  exists 

in  , and this profile induces the value of the SCF, that is, 

   ( ( )) ( )g s f   for all  . 

 

4. Full Detection 

 

 This section demonstrates a condition on the state space   , which we term full 

detection. For each i N  , consider an arbitrary function : 2 i
i i 

    , where we 

assume that for every i i  , 

   ( )i i i     , 

and 

   0 0   for all 0 0( , ) ( )i i i i            . 

 The interpretation of i  is as follows. Consider a direct revelation at stage 1. All 

players, including player 0, are asked to announce their respective private signals. Here, 

we regard player 0 as the dummy player who always announces 0  truthfully. In this 

direct revelation, i  describes a pattern of announcements by all players except for 

player i  ; they announce a profile that belongs to ( )i i i       whenever i  

occurs. 

 We introduce a notion on i , termed detection, as follows. 

 

Definition 5: A function i   is said to detect player i   for i   against i   if 

( )i i i    exists, such that 

(1)   ( ) ( )i i i i           for all ( )i i i    . 
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 Suppose that i  is correct, but player i  announces i i   . Suppose also that for 

every i  , the other players announce according to ( )i i i      , that is, they 

announce a profile 0( , )o i    that satisfies 

   0 0( , ) ( )i i i        . 

Note that if player 'i s   announcement i   is correct, the other players announce 

according to ( )i i     for some ( )i i i     , that is, they announce a profile 

0 0( , )i    that satisfies 

   0 0( , ) ( )i i i         . 

 Suppose that player i  expects 0 0( , ) ( )i i i i         to occur. Then, player i  

will expect the other players to announce according to ( )i i   . However, the condition 

(1) implies that if player 'i s   announcement i   is correct, the other players never 

announce according to ( )i i   . This is a contradiction; in this case, we can recognize 

that player 'i s  announcement i  is incorrect. Hence, i  successfully detects player 

i  for i  against i . 

 Based on this detection notion, we define full detection as the following condition on 

the state space   . For every {0,1,...}h  , we specify ( ) : 2 i
i ih     for all 

{0}i N  , and ( ) : 2 i
i ih 

    for all i N , in the following manner. Let 

   0 0 0(0)( ) { }    for all 0 0  . 

For every i N , let 

   (0)( )i i i    

and 

   0(0)( ) { }i i i      . 

For each {1,2,...}h , let 

   0 0 0( )( ) { }h    for all 0 0  . 

Recursively, for every {1,2,...}h   and i N  , we define ( )( ) ( 1)( )i i i ih h      

and ( )( ) ( 1)( )i i i ih h         in the following manner. For every ( 1)( )i i ih    , 
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   ( )( )i i ih     if and only if ( 1)i h   fails to detect player i  

        for i  against i , that is, 

  
( )

{ ( 1)( )} ( 1)( )
i i i

i i i ih h
 

    
 

   


  


   for all 

  ( )i i i   , 

and for every ( 1)( )i i ih       , 

   ( )( )i i ih        if and only if ( )( )j j jh     for all 

        {0}\{ }j N i  . 

 Note that ( )i h   implies the set of all announcements by all players except for 

player i   that can survive through the h  -round iterative removal of detected lies. 

Importantly, ( )( )i ih    is a partition of player 'i s   private signals, that is, for every 

i i   and i i , either ( )( ) ( )( )i i i ih h     or ( )( ) ( )( )i i i ih h      . 

 We define 

   
0

( )( ) ( )( )i i i i
h

h   



   . 

Since   is finite, it follows that ( )( )i i   is non-empty, and a positive integer **h  

exists, such that 

   ( )( ) ( )( )i i i ih      for all **h h . 

 

Full Detection: The state space   is said to satisfy full detection if for every i N  

and i i  , 

   ( )( ) { }i i i    . 

 

 Full detection implies that the iterative removal of detected lies eventually eliminates 

all lies; truth-telling is therefore the only announcement that survives through this 

removal procedure. 

 The following example satisfies full detection: 

   {1,2,3}i   for all {0}i N  , 

and 
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     if and only if 1i i    for all i N . 

In this example, **h n , and for every i N  and i i  , 

   ( )( )i i ih    for all h i , 

and 

   ( )( ) { }i i ih    for all h i , 

which implies full detection. 

 

5. Necessity of Full Detection 

 

 To understand the role of full detection, we now consider a hypothetical direct 

revelation in which, at stage 1, each player i N  announces his (or her) private signal 

i , and after 0  becomes observable and verifiable, the central planner makes transfers 

according to a transfer rule x  . Assume that each player only concerns the resultant 

transfer value. 

 This situation corresponds to a degenerate case of dynamic mechanism, termed a 

direct revelation mechanism. Here, for every player i N , his (or her) second message 

space 2
iM  is a singleton, 1

i iM   , and 

   ( , , )i i iu t t    for all    and it R . 

Hence, we can simply write x  for a dynamic mechanism 1 2( , , , )M M g x  , denote 

1
0( , )ix m    instead of 1 2

0( , , )ix m m   , and denote 1
is   instead of 1 2( , )i i is s s  . Without 

loss of generality, we can focus on the possibility that the honest strategy profile 

1* 1*( )i i Ns s    is the unique iteratively undominated strategy profile in the direct 

revelation, where 

   1* ( )i i is    for all i N  and i i  . 

 For every *{1,..., }h h  , we fix an arbitrary positive real number 1( ) 0h   . We 

assume that 

(2)   
*

1 1
1

( ) ( )
h

h h

h h 
 

 


  for all *{1,..., }h h . 
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We specify a transfer rule * *( )i i Nx x    as follows. For every i N  , 1 1m M  , and 

0 0  , 

   

*

* 1 * 1
0 0

1

( , ) ( , )
h

h
i i

h

x m x m 


 , 

where, for each *{1,..., }h h , 

   * 1
0 1( , ) ( )h

ix m h      if 
1

1
0

( )
( , ) ( 1)( )

i i i

i i i
m

m h


  
 

  


 


 , 

and 

   * 1
0( , ) 0h

ix m        if 
1

1
0

( )
( , ) ( 1)( )

i i i

i i i
m

m h


  
 

  


 


 . 

 According to *h
ix , any player i N  is fined the monetary amount 1( )h  if he (or 

she) makes an announcement that is detected by ( 1)i h  , which describes the profiles 

of the other players’ announcements survived through the ( 1)h   round iterative 

removals of detected messages. This holds true irrespective of h . From (2), it follows 

that, with full detection, each player is willing to announce an undetected message, that 

is, the honest message. 

 

Theorem 1: Consider the direct revelation. If the state space satisfies full detection, then 

the honest strategy profile 1*s  is the unique iteratively undominated strategy profile in 

the specified direct revelation mechanism *x . If a direct revelation mechanism x  exists 

in which 1*s  is the unique iteratively undominated strategy profile, then the state space 

satisfies full detection. 

 

Proof: The proof of the first half of this theorem is as follows. Suppose that player i  

observes i  and announces 1 (1)( )i i im   . In this case, (0)i  detects him (or her) 

for i  against 1
im ; ( )i i i    exists, such that 

   (0)( ) (0)( )i i i i           for all 1( )i i im  . 

Since 1
0 0(0)( ) { }i i iM        , the announcement by any other player \{ }j N i  

belongs to (0)( )j j  . This implies that, by announcing 1
im , he (or she) is fined 1(1) . 
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In contrast, he (or she) can avoid this fine by announcing i  truthfully. Since 1(1)  is 

large enough to satisfy (2), player i  never announces any element that does not belong 

to (1)( )i i  . 

 Consider an arbitrary **{2,..., }h h . Suppose that any player i N  announces a 

message that belongs to ( 1)( )i ih   . Suppose that player i   observes i   and 

announces 1 ( )( )i i im h  . In this case, ( 1)i h   detects him (or her) for i  against 

1
im . That is, ( )i i i    exists, such that 

   ( 1)( ) ( 1)( )i i i ih h            for all 1( )i i im  . 

Since the announcement by any other player \{ }j N i  belongs to ( 1)( )j jh  , he (or 

she) is fined 1( )h  . In contrast, he (or she) can avoid this fine by announcing i  

truthfully. Since 1( )h   is large enough to satisfy (2), player i   never announces any 

element that does not belong to ( )( )i ih  . 

From the above arguments, we have proved that if 1
is   is strictly iteratively 

undominated, then 

  1( ) ( )( )i i i i
h

s h  


   for all i i  , 

which, along with full detection, implies that 

   1( )i i is    for all i i  , that is, 1 1*
i is s . 

 The proof of the second half of this theorem is as follows. Consider an arbitrary direct 

revelation mechanism x  , and suppose 1*s   is the unique iteratively undominated 

strategy profile in x . Note that 

   1 2 1 2 1
0 0( ( , ), ( , , ), ) ( , )i i iu g m m x m m x m     , 

which implies that each player 'i s  incentive relies only on 0( , )im  . This, along with 

the definitions of iterative dominance and (1)( )i i  , automatically implies that 

   1(1, ) (1)( )i i i iM    . 

We fix 2h   arbitrarily, and suppose that 

   1( 1, ) ( 1)( )i i i iM h h      for all i N  and i i  . 
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Since each player 'i s  incentive relies only on 0( , )im  , in the same manner as above, 

it follows from the definitions of iterative dominance and (1)( )i i   that 

   1( , ) ( )( )i i i iM h h   . 

Hence, we have proved that if 1*
is  is strictly iteratively undominated, then 

   1( , ) ( )( ) { }i i i i iM        , 

implying full detection. 

Q.E.D. 

 

6. Unique Implementation 

 

 To uniquely implement an SCF f   in iterative dominance, we consider the 

following manner of designing a dynamic mechanism. We first fix the arbitrary positive 

real numbers, 

   1( ) 0h   for each *{1,..., }h h , 2 0  , and 3 0  , 

where 1( )h   was introduced in section 5. We denote 
*

1 1 1( ( ))h
hh     and assume the 

inequalities (2). We then fix an arbitrary integer 1K    and an arbitrary allocation 

*a A . 

 According to the basic method explored by Abreu and Matsushima (1992a, 1992b, 

1994), we construct a dynamic mechanism * * * 1 2
1 2 3( , , , , , ) ( , , , )f K a M M g x       

as follows. Let 

  1
i iM   , 

   2 2,

1

K
k

i i
k

M M


  , 

and 

   2,k
iM    for all {1,..., }k K . 

At stage 1, each player announces his (or her) private signal. Importantly, at stage 2, each 

player announces the state K  times. We thus denote 

   2, 2,k k
i

i N
M M


  . 
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 For each {1,..., }k K , we define 2,:k kg M  , such that for each  , 

   2,( ) ( )k kg m f      if 2,k
im   for at least 1n   players, 

and 

   2, *( )k kg m a      if no such   exists. 

We then specify 

   

2,

1 2 1

( )
( , )

K
k k

k

g m
g m m

K



. 

The allocation rule g   is independent of the first announcements 1m  . The central 

planner randomly picks up an integer k   from 1 to K, and using kg   and 2,km  , 

determines an allocation according to the lottery 2,( )k kg m . 

 Moreover, we specify 

   1 2 * 1 1 2
0 0 0( , , ) ( , ) ( , , )i i ix m m x m z m m    , 

where *
ix  was defined in section 5, 

   1 2
0 2 3( , , ) i

i

r
z m m

K
      if {1,..., }k K  exists, such that 

          2, 1
0( , )k

im m , and 

 2, 1
0( , )k

jm m   for all k k   and 

          \{ }j N i , 

and 

   1 2
0 3( , , ) i

i

r
z m m

K
     if no such {1,..., }k K  exists. 

Here, {0,..., }ir K  denotes the number of {2,..., }k K , such that 2, 1
0( , )k

im m . 

 In addition to (2), we assume for 1 2 3( , , )    that 

(3)   
*

1 1 2 3
1

( ) ( )
h

h h

h h   
 

  


  for all *{1,..., }h h . 

From the specification of x , for every i N  and 1 2 1 2
0 0( , , )m m M M    , 

   
*

1 2
0 1 2 3

1

0 ( , , ) ( )
h

i
h

x m m h   


    . 
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By choosing 
*

1 2 3
1

( )
h

h

h  


   as close to zero as possible, we can make the monetary 

transfer 1 2
0( , , )ix m m   as close to zero as possible. 

 Because of continuity, we can select a sufficiently large K , such that whenever 

(4)   
1

max ( ) ( )
a A

a a
K

 


  , 

then 

(5)   2( , , ) ( , , )i i i i i iu t u t         for all 
*

1 3
1

[0, ( ) ]
h

i
h

t h 


   and i i  . 

The inequalities (5) imply that 2  is close to zero but is sufficiently large compared with 

the change of allocation within the 
1

K
 limit. 

 We define the honest strategy for player i  in * , denoted by * 1* 2*( , )i i is s s , as 

  1* ( )i i is    for all i i  , 

and 

   2, * ( )k
is    for all {1,..., }k K  and  , 

where we denote 2* 2, *
1( )k K

i i ks s    and 2, * :k
is   . The honest strategy profile 

* *( )i i Ns s   induces the value of the SCF f  in * , that is, 

   *( ( )) ( )g s f   for all  . 

Note also that *s  induces no monetary transfers on the equilibrium path, that is, 

   *( ( ), ) 0ix s     for all i N  and  . 

 

Theorem 2: Suppose that the state space satisfies full detection. Then, the honest strategy 

profile *s  is the unique iteratively undominated strategy profile in * . 

 

Proof: Since the announcement of 1
im   is irrelevant to the allocation choice and 1  

satisfies (2) and (3), we can prove, in the same manner as Theorem 1, that if is  is strictly 

iteratively undominated in * , then 

  1 1*s s . 
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 We show below that each player i N  prefers 2,1 1
im m   . Suppose that another 

player \{ }j N i   exists who announces 2,1
jm   . In this case, by announcing 

2,1
im   instead of  , player i  is fined 2  or even more, while the resultant change 

of allocation is within the limit implied by (4). Hence, from (5), the impact of the fine 2  

on his (or her) welfare is greater than the impact of the resultant change of allocation. 

 Next, suppose that no player \{ }j N i  exists other than player i  who announces 

2,1
jm  . Then, by announcing 2,1

im   instead of  , player i  is fined 3

K


 or even 

more (Note that even if he [or she] announces 2,1
im  , he [or she] may be one of the 

first deviants, and therefore, he [or she] does not necessarily avoid the fine 2 ). From 

the specification of g  and 3n  , there is no resultant change of allocation. From these 

observations, he (or she) prefers 2,1
im    regardless of the other players’ 

announcements. 

 We now fix an arbitrary integer {2,..., }h K  . Suppose that any player i N  

announces 2,h
im     for all {1,..., 1}h h   . Suppose that a player \{ }j N i   exists 

other than player i  who announces 2,h
jm  . Then, by announcing 2 ,h

im   instead 

of  , player i  is fined 2  or even more. In the same manner as above, the impact of 

the fine 2  on his (or her) welfare is greater than the impact of the resultant change of 

allocation. Next, suppose that no player \{ }j N i   exists other than player i   who 

announces 2,h
jm  . Then, by announcing 2 ,h

im   instead of  , player i  is fined 

3

K


 or even more. In the same manner as above, there is no resultant change of allocation 

in this case. Hence, he (or she) prefers 2,h
im  . 

 From these arguments, we have proved that 2 2*
i is s . Hence, we have completed the 

proof of this theorem. 

Q.E.D. 
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 Following the same logic as Theorem 1, we can prove that players’ truth-telling at 

stage 1 is the unique equilibrium behavior. By using their truthful revelations at stage 1 

and the ex-post verifiable information as the reference, we apply the same logic as Abreu 

and Matsushima (1992a, 1992b, 1994) to prove that players are willing to make a truthful 

profile of announcements at stage 2. According to iz  , any first deviant from the 

combination of the profile of first announcements and the verified information 0
0( , )m  

at stage 2 is fined the monetary amount 2  . Any player is additionally fined 3

K


 

whenever he (or she) deviates from 1
0( , )m  . By setting the announcements at stage 1 

and the ex-post verified information as the reference, any player is incentivized to make 

truthful announcements at stage 2 as unique equilibrium behavior. 

 From Theorem 2, we conclude that with full detection, any SCF is uniquely 

implementable in iterative dominance, where we design a bounded mechanism, use no 

monetary transfers on the equilibrium path, and use only tiny monetary transfers even off 

the equilibrium path. 

  

Remark 1: This study assumes complete information at stage 2. However, we can 

eliminate this assumption without substantial changes by assuming ex-post incentive 

compatibility additionally. Hence, we can derive the same results as Theorems 1 and 2, 

even if players receive no additional information at stage 2. We can extend this study to 

a case in which each player receives only additional information at stage 2, as an element 

of a partition of the state space. We can also derive the same results for the two-player 

case. 

 

Remark 2: It is generally impossible for an SCF to be uniquely implementable in iterative 

dominance, if the state space has the full support, that is, 
{0}

i
i N

   


. On the other 

hand, by considering a signal-contingent probability function on 0  , that is, 

0( ) : [0,1]i ip    , we can derive possibility results similar to Theorems 1 and 2, where 

we assume that for every i N , i i  , and \{ }i i i  , 

   ( ) ( )i i i ip p  , 
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and utilize a device of scoring rules. However, in this case, it is generally impossible for 

a transfer rule to satisfy zero monetary transfers on the equilibrium path. 

 

7. Concluding Remarks 

 

 This study investigated the unique implementation of an SCF in iterative dominance 

in ex-post terms. We assumed partial ex-post verifiability; that is, after determining an 

allocation, the central planner can observe partial but verifiable information about the 

state and make ex-post monetary transfers contingent on this information. We 

demonstrated a condition on the state space (“full detection”), which we prove is a 

sufficient condition for unique implementation. We constructed a dynamic mechanism 

with boundedness, in which each player announces his (or her) private signal at stage 1 

before the other players observe it. In this construction, we only used small monetary 

transfers off the equilibrium path, but no transfers on the equilibrium path. 

 Our study contributes to the field of dynamic mechanism design (e.g., Krähmer and 

Strausz, 2015). Penta (2015) investigates full implementation in incomplete information 

environments, where players receive information over time. Unlike this study, the author 

does not consider verifiability and adopts interim solution concepts such as perfect 

Bayesian equilibrium, instead of ex-post-term concepts. Hence, it is important for future 

research to investigate a more dynamic situation than this study considered, in which 

stage 1 is divided into multiple sub-stages through which each player gradually acquires 

the whole picture of his (or her) private signals. Here, the central planner requires each 

player to make an announcement at each sub-stage. By considering these sub-stages, we 

expect to demonstrate weaker sufficient conditions than full detection. 

 This study is related to the works by Kartik and Tercieux (2012) and Ben-Porath and 

Lipman (2012), which investigate full implementation with hard evidence. These works 

assume that each player can receive verifiable information at early stages as hard evidence, 

and state that the degree to which hard evidence in the ex-ante and interim terms directly 

proves players’ announcements to be correct is crucial in implementing a wide variety of 

SCFs. In contrast, this study emphasizes that a wide variety of SCFs are implementable 

even if the information is only verifiable ex-post and to a limited extent. To deepen our 
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understanding of the role of verifiability in implementation, future research could explore 

integrating our study with Kartik and Tercieux (2012) and Ben-Porath and Lipman (2012). 
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