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1 Introduction

The literature on the sequential entry of multiproduct �rms often focuses on market

preemption by an incumbent applying product proliferation to deter the entry of other

�rms and maintain its monopoly power. For example, Schmalensee (1978) and Eaton and

Lipsey (1979) indicate that an incumbent may deter entry by producing new goods and

crowding the product spectrum to the extent that no niche remains for potential entrants.

Leading producers such as Quaker Oats and Campbell Soup proliferate brands, but

they often fail to deter the entry of new �rms. Some followers may even be more suc-

cessful than leaders in the sense of earning higher pro�ts, producing more products or

gaining larger market share. A typical example is Amazon.com, an online bookstore that

launched in 1995. Amazon�s product lines were quickly expanded to include DVDs, CDs,

software, video games, furniture, toys, and so on, and Amazon grew to become an S&P

100 company and America�s largest online retailer. However, the very �rst online book-

store was Books.com (Book Stacks Unlimited), which was founded in 1991 and launched

online in 1992. Other well-known companies have followed a similar path. For example,

Boeing did not pioneer modern jet travel, nor did Google pioneer the Internet search

engine. Nevertheless, both are now industry leaders.

Typically, in modern industries, both pioneers and followers produce multiple prod-

ucts. However, thus far, few studies have considered product scope with the sequential

entry of �rms. Judd (1985) shows that the incumbent �rm withdraws a product if it

is a close substitute for an entrant�s product to avoid intense competition. Because a

potential entrant anticipates this withdrawal, market preemption by the incumbent is not

credible, and thus, the entry may not be deterred if the cost of withdrawing a product is

low. Gilbert and Matutes (1993) and Murooka (2013) also show that brand proliferation

is not a credible entry-deterring strategy if the degree of brand-speci�c di¤erentiation is

large or if price competition is intense. Furthermore, whereas Martinez-Giralt and Neven
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(1988) and Ashiya (2000) show that �rms do not proliferate brands if price competition is

intense, Tabuchi (2012) shows that �rms do proliferate brands under intense competition

in the case of three or more �rms. However, these studies consider rather limited numbers

of products.

The literature on �rst mover advantage (FMA) often assumes single-product �rms

(Gal-Or, 1985; Dowrick,1986; Deneckere and Kovenock, 1992; Amir and Stepanova, 2006).

It is well known that a single-product leader can move preemptively to gain FMA under

Stackelberg quantity competition, and that a follower may copy the leader or undercut the

leader�s price to obtain second mover advantage (SMA) under Stackelberg price competi-

tion (Gal-Or, 1985; Baumol, 1982). However, in practice, �rms often produce a signi�cant

number of varieties. The product range is an important strategy of multiproduct �rms,

and it a¤ects the leader�s and follower�s advantages. Therefore, this study examines the

product scopes of �rst and second movers and explores the conditions for FMA when

�rms can produce an arbitrary number of products. We also discuss the strategic and

cannibalization e¤ects of product proliferation by the leader and follower.

The literature includes numerous empirical �ndings on FMA and SMA. Whereas many

studies demonstrate the existence of FMA in terms of market share or pro�ts (Kekre

and Srinivasan 1990; Robinson 1988; Robinson and Fornell 1985; Urban et al. 1986),

a growing body of evidence suggests the existence of SMA. For example, Boulding and

Christen (2003) empirically show that a leader is at a long-term pro�t disadvantage due

to the costs of product proliferation. Golder and Tellis (1993) �nd that the �rst mover is

the leader in terms of market share in only four of the �fty product categories studied.

Lieberman and Montgomery (1998) provide a comprehensive survey of the theoretical and

empirical literature and conclude that FMA is possible but is certainly not guaranteed.

The literature also includes empirical �ndings on product scope. Some evidence indi-

cates that a broader product line is advantageous to a leader (Kalyanaram et al. 1995;

Kekre and Srinivasan 1990; Robinson 1988; Robinson and Fornell 1985), but others �nd
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that product proliferation does not necessarily provide advantages to leaders (Boulding

and Christen, 2003). Bayus and Putsis (1999) show that product proliferation has a nega-

tive net impact on a �rm�s pro�tability in personal computer industry because the higher

cost associated with a broader product line dominates any potential increase in demand.

These empirical studies suggest the great importance of investigating whether FMA

exists and whether a strategy of product proliferation is advantageous for a leader. For

this purpose, we build a model of Stackelberg competition in a multiproduct duopoly

and derive the rationale for FMA and SMA. Speci�cally, we �rst consider a case in which

two multiproduct �rms enter and choose the number of product varieties sequentially, and

then set the prices of their products simultaneously. Second, we consider the case in which

the �rms engage in Stackelberg competition in both of varieties and prices. In this case,

the leader chooses both of the number of varieties and the prices of its products before

the follower does. Finally, we investigate optimal product diversi�cation and compare it

with the market one.

Our main �ndings are summarized as follows. In the three-stage game, in which �rms

sequentially choose the number of varieties and then simultaneously set prices, the leader

produces more varieties and gains FMA. By contrast, in the two-stage game, in which

the leader chooses both the number of varieties and prices before the follower does, the

equilibrium outcome depends on product demand and the cost of expanding product lines.

The leader is likely to produce more varieties and enjoy FMA when consumers�demand

is low and the cost of expanding product lines is high. Otherwise, the follower tends

to produce more varieties and enjoy SMA. These results sharply contrast with those of

studies of the sequential entry of single-product �rms.

The rest of this paper is organized as follows. Section 2 presents a duopolistic model of

Stackelberg competition in the number of varieties. We characterize the subgame perfect

Nash equilibrium (SPNE) and the product scopes and pro�ts of the leader and follower.

Section 3 examines Stackelberg competition in the number of varieties and price. Section
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4 considers the socially optimal level of product diversi�cation and investigates whether

the market equilibrium number of products is too high or too low. Section 5 concludes.

2 Stackelberg Competition in Variety

The economy includes two �rms i = 1, 2 that produce any number of varieties of a

horizontally di¤erentiated good. There is one unit mass of identical consumers, whose

preferences are de�ned over a number of varieties of a horizontally di¤erentiated good

and a homogeneous good chosen as the numeraire. These preferences are given by:

U = �

"
n1X
k=1

q1(k) +

n2X
k=1

q2(k)

#
��
2

"
n1X
k=1

q1(k)
2 +

n2X
k=1

q2(k)
2

#
�

2

"
n1X
k=1

q1(k) +

n2X
k=1

q2(k)

#2
+q0

(1)

where q0 denotes consumption of the homogeneous good, qi(k) is consumption of variety

k 2 f1; : : : ; nig of the di¤erentiated good produced by multiproduct �rm i = 1, 2, and

ni is the number of varieties produced by �rm i. The total number of varieties of the

di¤erentiated good in the economy is denoted by N = n1+n2. The parameters �, �, and


 are positive. A higher � means a stronger preference towards the di¤erentiated varieties

relative to that for the numeraire, a higher � implies more bias toward love for variety,

and a higher 
 indicates closer substitutes between varieties.

The budget constraint of a consumer is given by:

n1X
k=1

p1(k)q1(k) +

n2X
k=1

p2(k)q2(k) + q0 = w (2)

where w is the consumer�s wage income and pi(k) is the price of variety k produced by

�rm i. Substituting the numeraire consumption in (2) into (1) and solving the �rst-order

conditions with respect to qi(k), we obtain the linear demand for variety k of �rm i as

follows.

qi(k) =
�

� + 
N
� 1

�
pi(k) +




� (� + 
N)

"
n1X
k=1

p1(k) +

n2X
k=1

p2(k)

#
(3)

where k = 1; 2; :::; ni and i = 1; 2.
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The two �rms have the same production technology. The �xed overhead cost of launch-

ing a variety is F , and the subsequent marginal cost of producing each variety is constant

and normalized to zero. Given the demand (3), �rm i maximizes its pro�t:1

�i =

niX
k=1

pi(k)qi(k)� Fni (4)

where qi(k) is given by (3).

We �rst examine the two-stage game, in which two �rms simultaneously enter and

choose the number of varieties (n1; n2), and then compete in price (p1; p2). We seek the

SPNE by backward induction. Di¤erentiating the pro�t (4) with respect to pi(k), we

obtain the �rst-order conditions in the second stage:

�� � 2 (� + 
N) pi(k) + 


"
n1X
k=1

p1(k) +

n2X
k=1

p2(k)

#
= 0

for k = 1; 2; : : : ; ni and i = 1; 2. Using the symmetry among the varieties produced by

�rm i, we compute the prices as

pi(k) = pi �
��

	
[2� + 
(2ni + nj)] (5)

where 	 � 4�2 + 4�
(ni + nj) + 3

2ninj, i 6= j. Thus, we obtain

p1 � p2 =
��


	
(n1 � n2)

which implies that a �rm producing more varieties charges a higher price because it holds

a dominant market position.

By substituting (5) into (4), and di¤erentiating the resulting equation with respect to

ni, we obtain the two �rst-order conditions in the �rst stage as follows:

Ri(n1; n2) � �2�(� + 
nj)

	
[2� + 
(2ni + nj)][8�

4 + 4�3
(4ni + 5nj)

+ 2�2
2(4n2i+15ninj+8n
2
j)+�


3nj(10n2i+11ninj+4n
2
j)-3


4nin
3
j ]-F=0 (6)

1We assume away entry costs to avoid a monopoly by the incumbent.
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To ensure that two �rms enter and provide a positive number of varieties, the relationship

d�1
dn1 (n1;n2)=(0;0)

=
�2

4�
� F > 0

should hold. Therefore, we assume that A � �p
F�

> 2 throughout the analysis. Based on

this assumption, we can derive the following corollary.

Corollary 1 (n1; n2)�(p1; p2) :When �rms simultaneously choose the number of varieties

and then select prices, there always exists an SPNE, which may be symmetric (ne; ne) or

asymmetric (ne1; n
e
2) and (n

e
2; n

e
1) with n

e
1 > ne2.

Proof. See Appendixes 1 and 2.

Interestingly, the equilibrium outcome can be asymmetric despite the symmetric set-

ting of the game. We can numerically show that the symmetric equilibrium (ne; ne) is a

unique SPNE when the market is small, whereas the asymmetric equilibria (ne1; n
e
2) and

(ne2; n
e
1) appear when the market is large.

The analysis thus far has assumed that the �rms choose the number of varieties si-

multaneously. We next consider the case in which �rms choose the number of varieties

sequentially. This game consists of three stages. In the �rst stage, �rm 1 enters the

market and selects its number of varieties n1. Then, in the second stage, �rm 2 enters

and chooses its number of varieties n2. Finally, two �rms compete in price (p1; p2) in the

third stage.

Proposition 1 (n1) � (n2) � (p1; p2) : When �rms sequentially choose the number of

varieties and then compete in price, the leader produces more varieties n1 > n2 and

enjoys FMA �1 > �2.

Proof. See Appendix 3.

This proposition vindicates the importance of the product proliferation strategy by

the �rst mover, which is intuitive. In fact, the proposition is robust even when the third-

stage price competition is absent. That is, in the two-stage game of (n1) � (n2) with
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p1 = p2 = p, we can also show that the leader always o¤ers more varieties and enjoys

FMA. This result is also robust if we replace price competition with quantity competition

in the third stage. That is, we �nd product proliferation and FMA in the three-stage

game of (n1)� (n2)� (q1; q2).2

In sum, similar to their outputs, �rms�numbers of varieties are strategic substitutes,

implying that the leader proliferates product variety and enjoys FMA. This result may be

understood by considering that product proliferation is not very di¤erent from an increase

in output.

3 Stackelberg Competition in Price and Variety

In this section, we examine the case in which the leader�s price is not �exible. More

speci�cally, we consider the following two-stage game. In the �rst stage, �rm 1 chooses

the number n1 and prices p1(k) of varieties for k = 1; 2; :::; n1. In the second stage, �rm

2 selects the number n2 and prices p2(k) of varieties for k = 1; 2; :::; n2.

By backward induction, we di¤erentiate (4) with respect to n2 and p2(k). Because of

the symmetry among varieties pi(k) = pi for all k = 1; 2; : : : ; ni, we obtain the �rst-order

conditions in the second stage, from which we can determine the product scope and price

of �rm 2 as follows:

n2 =
�� + 
n1p1 � 2

p
F�(� + 
n1)

2
p
F�


(7)

p2 =
�� + 
n1p1
2 (� + 
n1)

(8)

By substituting (7) and (8) into (3), we can write the demand for �rm 2�s product as

q2 =

s
F

�

which is independent of n1 and p1.

2The proofs of these two results are provided upon request to the authors.
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Plugging (7) and (8) into equations for the pro�ts (4) of the two �rms, and di¤erentiat-

ing the resulting equation with respect to n1 and p1, we obtain the �rst-order conditions:

@�1
@n1

=

�
�2(�� p1)

(� + 
n1)2
� p1

�
p1
2�
+

p
Fp
�
p1 � F = 0 (9)

@�1
@p1

=
n1
2

 
2
p
Fp
�
+
�� 2p1
� + 
n1

� 2p1
�

!
= 0 (10)

From (10), we observe that dp1=dn1 < 0; when the leader increases the number n1 of its

varieties, its price p1 decreases. This result is due to the direct e¤ect of cannibalization

as well as the subsequent reactions of the follower.

Solving (10) for p1 and substituting the resulting equation into (9), we have

@�1
@n1

=
F

8(B + n1)2(2B + n1)2
f(n1) = 0 (11)

where

f(n1) � 2 (A� 2) (A+ 6)B4 + 16 (A� 4)B3n1 �
�
A2 � 8A+ 60

�
B2n21 � 24Bn31 � 4n41

and B � �=
. The equation f(n1) = 0 is a fourth-order polynomial and its third and

fourth derivatives are negative. Examining the signs of the �rst and second derivatives

at n1 = 0 and n1 !1 in the cases of 2 < A � 4 and A > 4, we can readily show that a

unique positive solution exists for all A > 2.

Proposition 2 (n1; p1)� (n2; p2) : In the two-stage game in which the �rst �rm chooses

its number of varieties and price, and then the second �rm selects the number of varieties

and price, a unique SPNE exists with n�1 > 0 and n
�
2 > 0.

Having established the existence of a unique SPNE, we investigate the following total

derivatives to study how product proliferation a¤ects the follower�s price and product
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scope decisions.

dp2
dn1

=
@p2
@n1
(�)

+
@p2
@p1
(+)

dp1
dn1
(�)

< 0 (12)

dn2
dn1

=
@n2
@n1

+
@n2
@p1
(+)

dp1
dn1
(�)

=
1

2

�
(A� 2)B2

(2B + n1)2
� 1
�

(13)

The sign of each term in (12) is straightforward by the two reaction functions (7) and

(8) as well as (10). The negative �rst term @p2=@n1 < 0 implies that when the leader

produces more varieties for a given p1, product competition intensi�es, and the follower

reacts by lowering its price p2. The positive term @p2=@p1 > 0 indicates that when the

leader lowers its price for a given n1, the follower reacts by reducing its price because the

two variables are strategic complements (Gal-Or, 1985). The negative term dp1=dn1 < 0

means that as the leader produces more varieties, it lowers its price p1. Therefore, as

shown in (12), the follower lowers its price when the leader produces more varieties.

By contrast, the sign of dn2=dn1 in (13) depends on the parameters. The �rst term

@n2=@n1 in (13) is ambiguous, whereas the second term is negative because dp1=dn1 < 0

and @n2=@p1 > 0. The positive term @n2=@p1 > 0 indicates that when the leader lowers

its price p1 for a given n1, the follower reacts by producing fewer varieties because the

pro�t per variety falls. Thus, the leader has an additional advantage of strategic pricing

over the number of follower�s varieties in a multiproduct duopoly. Such an outcome never

arises in a single-product duopoly.3

From (13), we can get dn2
dn1

Q 0 for A Q 18.4 Therefore, the leader�s strategic pricing

to reduce the number of follower�s varieties is e¤ective for small A (i.e., in the case of

low demand and high �xed costs). In this case, the negative e¤ect of the second term of

3In a single-product duopoly, when the leader lowers its price, the follower�s only strategy is to lower
its price, which necessarily leads to keen competition and results in an SMA (Gal-Or, 1985).

4Solving dn2
dn1

= 0 in (13), we �nd that n1 = B
p
A� 2�2B. Plugging it into f(n1), we get f(B

p
A� 2�

2B) R 0 for A R 18. However, Proposition 2 implies that f(n1) R 0 for n1 S n�1 and (13) shows that dn2dn1

decreases with n1. Thus, we can establish that dn2dn1
Q 0 for A Q 18.
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(13) dominates the positive e¤ect of the �rst term, so that an increase in n1 decreases

n2. In other words, the leader is less worried about the negative e¤ects of cannibalization

and variety competition. In contrast, n2 increases with n1 for large A. In this case,

competition is �erce, and thus, the leader has more concerns about cannibalization and

variety competition.

In sum, (12) and (13) show that when the leader produces more varieties, the follower

reacts by lowering its price and, potentially, by producing fewer varieties because of keener

competition. Although the former reaction puts the leader at a disadvantage, the latter

gives the leader an advantage.

Next, using (8) and (10), we obtain

p1 � p2 =

p
BF [n1 � (A� 2)B=2]

2(n1 +B)

Thus, p1 = p2 implies that n1 = (A� 2)B=2. Plugging it into f(n1), we �nd that

f((A� 2)B=2) = � (A� 2)2A2B4=2 < 0. However, we know from Proposition 2 that

f(n1) R 0 for n1 S n�1. Hence, it follows that p1 � p2 < 0 when n1 = n�1. That is, the

follower sets a higher price than the leader in a multiproduct oligopoly, which is in sharp

contrast to the result in a single-product oligopoly. Moreover, it can easily be shown that

q1 � q2 > 0.

Regarding product proliferation and FMA/SMA, we obtain the following.

Proposition 3 (n1; p1)� (n2; p2) : Three di¤erent outcomes may arise in equilibrium.

(i) For 2 < A < 4:2, the leader produces more varieties n1 > n2 and enjoys FMA

�1 > �2.

(ii) For 4:2 < A < 4:54, the leader produces fewer varieties n1 < n2 and enjoys FMA

�1 > �2.

(iii) For A > 4:54, the follower produces more varieties n1 < n2 and enjoys SMA �2 >

�1.
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Proof. See Appendix 4.

In Proposition 3(iii), A is large, which means that the demand � for the product is

large but the �xed costs F of a new variety are low. Then, the follower enters the market

and provide many varieties so that SMA emerges in an SPNE. However, Proposition 3(i)

shows the opposite result; if the demand � is low and the �xed costs F are high, the

follower does not produce many varieties.

Proposition 3 may be explained by the strategic behaviors of Stackelberg competition

in price and variety. As in our explanations of (12) and (13), when the leader produces

more varieties, the follower reacts by lowering its price, which intensi�es competition and

puts the leader at a disadvantage. However, when the leader produces more varieties,

its optimal price decreases, which reduces the number of follower�s varieties and gives

the leader an advantage. For small A, the leader�s strategic pricing is more e¤ective at

reducing the number of follower�s varieties, so that the leader produces more varieties and

enjoys FMA. In contrast, for large A, the leader�s strategic pricing is less e¤ective, and

thus, the follower produces more varieties and enjoys SMA.5

Proposition 3 may be intuitively understood as follows. Stackelberg competition in

price leads to SMA because prices are strategic complements. In contrast, we know from

Proposition 1 that Stackelberg competition in variety leads to FMA because the numbers

of varieties are strategic substitutes in the same way as quantities are. Therefore, the

two strategic variables have opposite e¤ects; committing to the number of varieties �rst

is advantageous to the �rst mover, but committing the price �rst is disadvantageous.

Proposition 3 is consistent with the empirical �ndings on FMA. Suarez and Lanzolla

(2005) examine the conditions for FMA and argue that when both technological innovation

and market demand develop rapidly, the leader is highly vulnerable. Netscape is often

cited as an example of leading companies overturned by followers due to the rapid churning

5If three �rms enter the market sequentially, we can verify that the �rst mover applies product pro-
liferation to obtain FMA for small �, the second mover applies product proliferation to obtain SMA for
intermediate A, and the last mover applies product proliferation to obtain last mover advantage for large
A.
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of technology and markets. Netscape�s browser was invented in 1994 and ushered in

the era of widespread Internet access, but, today, Netscape is used very infrequently.

Further examples include Maxwell, the leading producer of freeze-dried co¤ee, which was

overturned by Nestle, and Dreft, the leading producer of liquid laundry detergent, which

eventually lost ground to Tide. Audi was a leading producer of hybrid cars in 1989, but

it was overturned by Toyota and Honda in the late 1990s. Xerox invented the bitmap

display and the mouse-centered interface in 1973, but Apple and Microsoft took over the

market after several years.

By contrast, slower growth in both technology and market demand provides better

conditions for a leader to create a dominant position. Suarez and Lanzolla (2005) refer to

Hoover�s vacuum cleaner as an example. In 1908, the �rst commercial vacuum cleaner was

produced by Hoover, but, by 1930, fewer than 5% of households had purchased one. The

technology changed as slowly as the market demand. In 1935, the Hoover designer encased

the vacuum cleaner�s components in a streamlined canister, which created a technological

blueprint that persists to this day. Since Hoover had little trouble technologically keeping

up-to-date and meeting market demand, the company maintained the dominant position

in the industry. Other examples include Gillette in the safety razor industry and Sony in

the personal stereo industry.6

We next discuss results for market share. We can show that the leader acquires a larger

market share n1q1 > n2q2 for 2 < A < 4:62, whereas the follower acquires a larger market

share n1q1 < n2q2 for A > 4:62. Combining this result together with Proposition 3, we

can say that when 4:54 < A < 4:62, the leader obtains FMA in terms of market share

but he does not enjoy FMA in terms of pro�ts. This result implies that for a pioneer,

achieving FMA in terms of pro�ts is not as easy as achieving FMA in terms of market

share.
6In empirical studies of FMA, another key research stream focuses on the impact of the order of market

entry on the market share. Some empirical studies argue that market pioneers tend to maintain market
share advantages over later entrants (Robinson and Fornell, 1985; Robinson, 1988).
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Product proliferation is regarded as a strategy for pioneers, and it often yields FMA in

terms of pro�t in the literature. However, Proposition 3(ii) shows that the leader produces

fewer varieties but still enjoys FMA. Hence, a broader product line does not necessarily

coincide with a higher pro�t and a larger market share.

Next, we investigate the e¤ect of the substitutability 
 between varieties, product

demand �, �xed costs F , and consumers�love for variety � on the numbers of product

varieties provided by the leader and follower. The comparative statics are summarized as

follows and their proofs are given in Appendix 5.

(i) @n1
@


< 0, @n2
@


< 0 for A > 2

(ii)
�

@n1
@�

> 0, @n2
@�

> 0 for 2 < A < 18
@n1
@�
� 0, @n2

@�
> 0 for 18 � A

(iii)
�

@n1
@F

< 0, @n2
@F

< 0 for 2 < A < 18
@n1
@F
� 0, @n2

@F
< 0 for 18 � A

(iv)

8><>:
@n1
@�

< 0, @n2
@�

< 0 for 2 < A < 3:42
@n1
@�
� 0, @n2

@�
� 0 for 3:42 � A � 5:18

@n1
@�

> 0, @n2
@�

> 0 for A > 5:18

(i) When the varieties are closer substitutes (i.e., 
 is larger), both the leader and

follower provides fewer varieties, which is intuitive. (ii)-(iii) When the demand � is larger

and/or the �xed cost F is lower, the follower provides more varieties, which is also intu-

itive. The leader does the same when 2 < A < 18, but does the opposite when A > 18.

The latter result stems from the fact that dn2=dn1 in (13) is positive for A > 18. Be-

cause the follower reacts the leader�s increase in the number of varieties by providing more

varieties, the leader wants to reduce the negative e¤ects of cannibalization and variety

competition by providing fewer varieties. (iv) When consumers�love for variety, �, be-

comes stronger, both the leader and follower o¤er fewer varieties for 2 < A < 3:42; the

leader provides more varieties and the follower o¤ers fewer varieties for 3:42 < A < 5:18;

and both �rms provide more varieties for A > 5:18. An increase in � has two opposite

13



e¤ects. Consumers obtain more utility if they consume more varieties, and thus, each

�rm has an incentive to increase the number of varieties. However, as the love for variety

increases, the demand for each variety shrinks, which is con�rmed by equation (3). For

small demand � and large �xed costs F (i.e., small A), the latter e¤ect dominates the

former so that each �rm has incentive to reduce its number of varieties.

4 Optimal Product Diversi�cation

In this section, we explore the optimal product diversi�cation in the market and investigate

whether the equilibrium number of varieties is too high or too low. Because utility (1) is

transferable, social welfare can be de�ned by the sum of consumer surplus and producer

surplus as follows:

W � U + �1 + �2

= �

"
NX
k=1

q(k)

#
� �

2

"
NX
k=1

q(k)2

#
� 


2

"
NX
k=1

q(k)2

#2
� FN + w

Di¤erentiating the social welfare with respect to the product output and the number of

varieties and solving the �rst-order conditions, we obtain the optimal number of varieties,

output per product, and its price:

N o =
�
q

2�
F
� 2�

2

; qo =

s
2F

�
; po = 0 (14)

The optimal number of varieties is decreasing in the �xed cost F , whereas the output

for each variety is increasing in F . This result occurs because when the �xed cost is

high, the social planner reduces the total �xed cost by reducing the number of varieties

and increasing the output per variety. The latter increase in output compensates for the

former reduction in variety.

By comparing the optimal number of varieties with the equilibria obtained in the

previous section, we obtain the following proposition.
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Proposition 4 (n1; p1) � (n2; p2) : If the �rst entrant chooses both of the number of

varieties and prices before the second entrant does, the market provides too few varieties.

Proof. See Appendix 6.

The market outcome of too few varieties is somewhat similar to that of too few quanti-

ties in the case of quantity competition with a homogeneous good in oligopoly. Oligopolists

in a market of di¤erentiated goods supply a limited number of varieties in order to re-

duce the �xed costs, avoid cannibalization, and relax competition, whereas oligopolists in

the market of a homogeneous good supply a limited amount of output in order to relax

competition. In both cases, high prices and pro�ts are maintained. Furthermore, as the

number of entrants increases su¢ ciently, the number of varieties or the amount of output

increases to coincide with the optimum level.

5 Conclusion

We have examined the strategic behavior of multiproduct �rms given Stackelberg compe-

tition in the number of varieties and price. We have focused on both product proliferation

and FMA. In section 2, we showed that when �rms sequentially choose the number of

varieties and then simultaneously decide prices, the leader produces more varieties and

gains FMA. This result is due to the advantage of committing to the number of varieties

�rst. Therefore, numbers of varieties can be regarded as strategic substitutes in the same

way that quantities are.

In contrast, we have shown in section 3 that when the leader selects both the number

of varieties and the product prices before the follower does, either FMA or SMA emerges

in SPNE. This is because if the leader produces many varieties, the follower reacts by

reducing its prices, which disadvantages the leader, but the follower may also react by

producing fewer varieties, which favors the leader. When the demand is high and/or the

�xed cost of producing a new variety is low, the leader�s strategic pricing is less e¤ective in

reducing the number of follower�s varieties, which means the follower may produce more
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varieties and enjoy SMA. In contrast, when the demand is low and/or the �xed cost is

high, the leader�s strategic pricing is more e¤ective in reducing the number of follower�s

varieties, which leads to product proliferation by the leader and FMA. When the demand

and �xed cost are intermediate, the leader produces fewer varieties, but still enjoys FMA.

This result implies that product proliferation does not necessarily ensure a higher pro�t

(or a larger market share).

The results obtained in this analysis are in sharp contrast with those in the literature

on product proliferation as well as those in the literature on Stackelberg competition in

the case of a single-product duopoly.

Appendix 1: Proof of Lemma 1

Let n2 = g(n1) be the implicit function of R1(n1; n2) = 0.

Lemma 1 (n1; n2)� (p1; p2) : n2 = g(n1) is either (i) decreasing, or (ii) decreasing, then

increasing, and then decreasing.

Equation R1(n1; n2) = 0 given by (6) is a �fth-order polynomial of n1. It can be

shown that its �fth and fourth derivatives with respect to n1 are negative and that

lim n1!1R1(n1; n2) < 0. If R1(0; n2) < 0, the third, second and �rst derivatives are

shown to be negative, and thus, (6) has at most one solution of n1. On the other hand,

if R1(0; n2) � 0, (6) has at most three solutions of n1. Hence, given n2, (6) has at most

three positive solutions of n1.

Substituting n1 = 0 into (6), we get n2 = �n2 � 2�(2�A)

(A�4) . This means that if 2 < A < 4,

n2 = g(n1) crosses the vertical axis at (0; �n2) with �n2 > 0. If A � 4, n2 = g(n1) does not

cross the vertical axis, but approaches the vertical axis as lim n1!0g(n1) ! +1. On the

other hand, plugging n2 = 0 into (6), we get n1 = �n1 � �(A�2)
2


, implying that n2 = g(n1)

always crosses the horizontal axis at (�n1; 0) with �n1 > 0.
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In sum, n2 = g(n1) crosses the vertical axis at (0; �n2) where �n2 is a positive �nite value

or +1, and crosses the horizontal axis at (�n1; 0). Hence, because (6) has at most one

solution of n1 given n2, the curve n2 = g(n1) is either (i) monotone decreasing or (ii) �rst

decreasing, then increasing, and decreasing.

Appendix 2: Proof of Corollary 1

Because @�1=@n1 = 0 means n2 = g(n1), we have

g0(n1) = �
@2�1=@n

2
1

@2�1=@n1@n2
(15)

Since we can readily show that @2�1=@n1@n2 < 0, the slope g0(n1) is positive if @2�1=@n21 >

0. This implies that any point on the increasing segment of n2 = g(n1) is a local minimizer

of �1. On the other hand, the slope g0(n1) is negative if @2�1=@n21 < 0. This means that

any point on the decreasing segment of n2 = g(n1) is a local maximizer of �1.

Since implicit function n2 = g(n1) in case (i) is decreasing, it is the locus of a unique

maximizer of �1, and hence, it is the reaction function of �rm 1. In case (ii), however,

because one increasing segment of n2 = g(n1) is a local minimizer, �rm 1�s reaction

function consists of two noncontiguous parts of decreasing segments of n2 = g(n1). That

is, �rm 1�s reaction function is discontinuous such that

n2 =

�
g(n1) for 0 � n1 < bn
g(n1) for n1 � en (16)

where �1(bn; g(bn)) = �1(en; g(en)) and g(bn) = g(en) with bn < en. It can be rewritten as
n1 = g�1(n2), which jumps at n2 = n. Firm 2�s reaction function is a mirror image of

(16) with respect to the 45 degree line and is given by

n1 =

�
g(n2) for 0 � n2 < bn
g(n2) for n2 � en (17)

which can be rewritten as n2 = g�1(n1), which jumps at n1 = n.

An example of these reaction functions is given in Figure 1. Firm 1�s reaction func-
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tion is bold curves KJ and AB, which correspond to the �rst and second lines in (16),

respectively. Firm 2�s reaction function is bold curves IH and CD, which correspond to

the �rst and second lines in (17), respectively. Points B and I are given by (�n1; 0) and

(0; �n1), respectively. Point F is the intersection of JA and HC and is on the 45 degree

line. The discontinuity may occur di¤erently such that both H and C are northwest of F

or both H and C are southeast of F.

Let (ne; ne) be the intersection point of n2 = g1(n1) and the 45 degree line, which can

be shown to be unique for all A > 2. For any reaction functions (16) and (17), two cases

may arise in the simultaneous two-stage game (n1; n2) � (p1; p2): the reaction functions

are (a) continuous at (ne; ne); (b) discontinuous at (ne; ne). In case (a), (ne; ne) is an

SPNE. In case (b), A is east of F and C is south of F as shown Figure 1. Furthermore,

B is southwest of D from the proof of Lemma 1. Therefore, the two reaction functions

intersect at E, which is an SPNE (ne1; n
e
2) with n

e
1 > ne2. By symmetry, G (n

e
2; n

e
1) is also

an SPNE.
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Figure 1: Reaction functions of simultaneous two-stage game
(n1; n2)� (p1; p2)

Appendix 3: Proof of Proposition 1

(I) Suppose asymmetric SPNEs (ne1; n
e
2) and (n

e
2; n

e
1) exist. First, consider the domain

n1 � n2 > 0. The �rst-order condition of the leader is given by

d�1
dn1

=
@�1
@n1

+
@�1
@n2

g�10(n1) (18)

where n2 = g�1(n1) is the implicit function of R2(n1; n2) = 0.

Because @�1
@n1

= 0 holds on the �rm 1�s reaction function, it must be that @�1
@n1

> 0 in

the domain left of curve AB, and thus, @�1
@n1

> 0 holds on curve CE. Sequential choice of

the number of varieties implies that the Stackelberg equilibrium should be somewhere on
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2�s reaction function CD. However, on CE, we have

d�1
dn1

����
on CE

=
@�1
@n1
+

+
@�1
@n2
�

g�10(n1)
�

> 0

because @�1
@n2

< 0 is easily shown and g�1(n1) is downward sloping. Hence, d�1dn1
> 0 for

all (n1; n2) on curve CE. This implies that the Stackelberg equilibrium point must be

somewhere on �rm 2�s reaction function n2 = g�1(n1) with n1 > ne1, i.e., on curve ED.

Second, consider the whole domain. Since @�1
@n2

< 0 always holds, �1(n1; g�1(n1)) on

IHCE is lower than �1(n1; n2) on LE for any �xed n1. However, @�1@n1
> 0 in the domain

left of curve AB, �1(n1; n2) on LE is not higher than �1(n1; n2) at E. Hence, we have

shown that Stackelberg equilibrium (ns1; n
s
2) with product proliferation exists somewhere

on curve ED.

(II) Suppose (ne1; n
e
2) and (n

e
2; n

e
1) do not exist. Then, (n

e; ne) is the unique SPNE in

the simultaneous two-stage game (n1; n2) � (p1; p2). We can apply the �rst part of case

(I) in the above and show that Stackelberg equilibrium (ns1; n
s
2) is somewhere on �rm 2�s

reaction function in the domain n1 > n2 > 0.

Hence, we have proven that ns1 > ns2 and �1(n
s
1; n

s
2) > �2(n

s
1; n

s
2).

Appendix 4: Proof of Proposition 3

Using (4), (7), (8), and (10), the pro�t di¤erential can be written as

�1 � �2 =
F

16(B + n1)(2B + n1)2
(64B4 � 64AB4 + 16A2B4 + 208B3n1 � 144AB3n1

+20A2B3n1 + 220B
2n21 � 100AB2n21 + 7A

2B2n21 + 88Bn
3
1 � 20ABn31 + 12n41)

Applying the Buchberger�s algorithm to solve f(n1) = 0 and �1 � �2 = 0 simultaneously,

we compute the Gröbner bases, which leads to 725A4�4700A3+7268A2�3104A�3776 =

0. Solving it, we can verify that �1 � �2 R 0 for A S 4:54.
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Similarly, using (7) and (10), the variety di¤erential is given by

n1 � n2 =
8B2 � 4A+ 18Bn1 � 3ABn1 + 6n21

4(2B + 
n1)

Solving f(n1) = 0 and n1�n2 = 0 simultaneously, we obtain 9A3�174A2+416A+656 = 0.

Thus, we verify that n1 � n2 R 0 for A S 4:2.

Appendix 5: Proof of comparative statics

De�ne h � F
4f(n1). Using the implicit function theorem, we have

@n1
@


= � @h=@


@h=@n1
= �n1



< 0

@n1
@�

= � @h=@�

@h=@n1
=

�B 3
2 (4B2 + 2AB2 + 8Bn1 + 4n

2
1 � An21)p

F
(8AB3 � 32B3 � 60B2n1 + 8AB2n1 � A2B2n1 � 36Bn21 � 8n31)
@n1
@F

= � @h=@F
@h=@n1

=
2 (B + n1)

2 (6B2 � AB2 + 4Bn1 + n21)

F (8AB3 � 32B3 � 60B2n1 + 8AB2n1 � A2B2n1 � 36Bn21 � 8n31)
@n1
@�

= � @h=@�

@h=@n1

=
96B3 � 28AB3 � 6A2B3 + 192B2n1 � 40AB2n1 + 120Bn

2
1 � 12ABn21 + A2Bn21 + 24n

3
1

2
(8AB3 � 32B3 � 60B2n1 + 8AB2n1 � A2B2n1 � 36Bn21 � 8n31)

It obvious that @n1
@


< 0. By applying the Buchberger�s algorithm (Cox et al., 1997)

to solve the equations (11) and @n1
@�
= 0 simultaneously, we compute the Gröbner bases,

one of which is the polynomial with one variable A. Then, we can solve for A and verify

that @n1
@�

> 0 for A < 18 and @n1
@�
� 0 for A � 18. Similarly, we can verify that @n1

@F
< 0 for

A < 18 and @n1
@F
� 0 for A � 18. Besides, @n1

@�
< 0 for A < 3:42 and @n1

@�
� 0 for A � 3:42.
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The comparative statics of n2 are also straightforward as follows:

@n2
@


=
@n2
@


+
@n2
@n1

@n1
@


=
8B2 � 4AB2 + 10Bn1 � 3ABn1 + 2n21

4(2B + n1)


@n2
@�

= �
p
B(208B5 � 80AB5 + 4A2B5 + 672B4n1 � 144AB4n1 + 8A

2B4n1 + 864B
3n21

�88AB3n21 + 8A
2B3n21 + 556B

2n31 � 16AB2n31 + 3A
2B2n31 + 180Bn

4
1 + 2ABn

4
1 + 24n

5
1)

=
h
4
p

F (2B + n1)

2(�32B3 + 8AB3 � 60B2n1 + 8AB
2n1 � A2B2n1 � 36Bn21 � 8n31)

i
@n2
@F

= �(288B6 � 352AB6 + 72A2B6 + 960B5n1 � 1056AB5n1 + 160A
2B5n1 � 8A3B5n1

+1280B4n21 � 1224AB4n21 + 112A
2B4n21 � 10A3B4n21 + 896B

2n31 � 700AB3n31

+24A2B3n31 � 3A3B3n31 + 360B
2n41 � 204AB2n41 + 80Bn

5
1 � 24ABn51 + 8n61)

=
�
8(2B + n1)

2
(�32B3 + 8AB3 � 60B2n1 + 8AB
2n1 � A2B2n1 � 36Bn21 � 8n31)

�
and

@n2
@�

= �(128B5 � 16AB5 � 80A2B5 + 12A3B5 + 128B4n1 + 96AB
4n1 � 112A2B4n1

+8A3B4n1 � 288B3n21 + 336AB
3n21 � 80A2B3n21 + 4A

3B3n21 � 496B2n31

+332AB2n31 � 28A2B2n31 + 3A
3B2n31 � 256Bn41 + 132ABn41 + 2A2Bn41 � 48n51 + 24An51)

=
�
8(2B + n1)

2
(�32B3 + 8AB3 � 60B2n1 + 8AB
2n1 � A2B2n1 � 36Bn21 � 8n31)

�
Solving @n2

@

= 0, we obtain a unique solution of n2 > 0. By substituting it into (11),

we can verify that @n2
@


< 0. Besides, applying the Buchberger�s algorithm to solve the

equations (11) and @n1
@�
= 0 simultaneously, we compute the Gröbner bases, one of which

is the polynomial with one variable A. Then, we can solve for A and verify that @n2
@�

> 0

for all A > 2. Similarly, we can also verify that @n1
@F

< 0 for A > 2, and @n1
@�

< 0 for

A < 5:18 and @n1
@�
� 0 for A � 5:18.
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Appendix 6: Proof of Proposition 4

Using (7), (8) and (14), the di¤erence between the equilibrium number of varieties and

the optimal one can be written as

N �N o =
2n21 +

�
(3� 2

p
2)A+ 2

�
Bn1 � 4(

p
2� 1)AB2

4 (2B + n1)

Accordingly, for N �N o R 0, we should have

n1 R ~n1 =
B

4

h
(2
p
2� 3)A� 2 +  

i
where  �

q
4 + A(17A� 12

p
2A� 20 + 24

p
2). Substituting n1 = ~n1 into (11), we have

@�1
@n1

=
1

32(9� 4
p
2)

n
(152

p
2� 215)A2 + (412� 296

p
2)A+ 144

p
2� 316

+ [(26
p
2� 37)A+ 50� 24

p
2]
o
< 0

for all A > 2. This implies n1 < ~n1, and hence, we have N < N o.
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