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Abstract 
 

 This study investigates a timing game with irrational types; each player selects a 
time in a fixed time interval, and the player who selects the earliest time wins the game. 
We assume the possibility of irrational types in that each player is irrational with a 
positive probability, thus selecting the terminal time. We show that there exists the 
unique Nash equilibrium; according to it, every player never selects the initial time. 

As an application, we analyze a strategic aspect of leverage-driven bubbles; even if 
a company is unproductive, its stock price grows up according to an exogenous 
reinforcement pattern. During the bubble, this company is willing to raise huge funds by 
issuing new shares. We regard players as arbitrageurs, who decide whether to ride the 
bubble or burst it. We demonstrate two models, which are distinguished by whether 
crash-contingent claim, i.e., contractual agreement such that the purchaser of this claim 
receives a promised monetary amount from its seller if and only if the bubble crashes, is 
available. 

The availability of this claim deters the bubble; without crash-contingent claim, the 
bubble emerges and persists even if the degree of reinforcement is insufficient. Without 
crash-contingent claim, high leverage ratio fosters the bubble, while with 
crash-contingent claim, it rather deters the bubble. 
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1. Introduction 

 

This study investigates a timing game with irrational types; each player selects a 

time to quit the game in a fixed time interval [0,1] , and the player who selects the 

earliest time among all players wins the game. The winner’s payoff is increasing with 

respect to this time. Provided all players are rational, it is the only Nash equilibrium in 

this game for each player to quit immediately at the initial time; rational players miss 

the opportunity to obtain greater future rewords because of their excess tail-chasing 

competition. 

This study assumes the possibility of irrational types in that each player is 

irrational with a positive probability, thus naively selecting the terminal time. With the 

possibility of such irrational types, it is no longer a Nash equilibrium for all rational 

players to quit immediately. Any rational player is willing to postpone the time, because 

he can win against irrational players, receiving a larger wining payoff. 

This study theoretically shows that there exists the unique (mixed strategy) Nash 

equilibrium in the timing game with irrational types. According to this equilibrium, 

every player never quits at the initial time. 

 By applying this theoretical finding, we analyze a strategic aspect of bubbles and 

crashes in a stock market. There is a company that has no profitable business 

opportunity. This company’s stock price nevertheless grows up as a phenomenon of 

bubble according to an exogenously given reinforcement pattern. During the bubble, the 

company is willing to raise funds by issuing new shares for its owner/manager’s 

personal usage, which is unproductive and even socially wasteful. This study 

investigates the possibility that such a harmful bubble can emerge and persist long. 

There are multiple arbitrageurs each of whom decides when to sell out his (or her) 

shareholding and burst the bubble. Before selling out, he (or she) has to ride the bubble 

by continuing to purchase newly issued shares. Since these arbitrageurs have budgetary 

constraints, they borrow money from noise traders who have a plenty of money but are 

naïve in that they misperceive the company’s fundamental value, reinforce their 

misperception, and are even unaware of the crash risk and their misperception. In 

contrast to these noise traders, rational arbitrageurs are well aware of them. 
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By treating such noise traders as a reduced form, this study demonstrates two 

models of bubbles and crashes as specifications of timing games with irrational types. 

These models are distinguished by whether crash-contingent claims are available; we 

define crash-contingent claim as the contractual agreement such that the purchaser of 

this claim receives a promised monetary amount from its seller if and only if the bubble 

crashes. Because of the above-mentioned awareness heterogeneity, arbitrageurs can 

purchase crash-contingent claims from noise traders on a quite favorable condition, i.e., 

for nothing. 

We can clarify a significant difference between these models with respect to the 

impact of leverage-ratio regulation. Without crash-contingent claim, the permission of 

arbitrageurs' high leverage ratio fosters a leverage-driven bubble to emerge and persist 

long, while with the availability of crash-contingent claim, it rather deters the bubble. 

We further argue that to deter the bubble, it would be an effective policy method that we 

will make crash-contingent claims available, and then make the leverage ratio cap as 

weak as possible. Note that without crash-contingent claim, the leverage-driven bubble 

emerges and persists even if the degree of noise traders’ reinforcement is insufficient. 

It is crucial to assume that the purchaser of crash-contingent claim can receive the 

promised payment from its seller even if this purchaser successfully sells out his 

shareholding before the crash. It is also crucial to assume that he (or she) is not 

exempted from his debt obligation even if he fails to sell out before the crash. These 

assumptions imply that the purchase of crash-contingent claim increases the difference 

between the winner’s payoff and the loser’s payoff, thus urging the purchasers to sell 

out his shareholding at early times. 

Matsushima (2013) formulated timing games with irrational types by assuming that 

the winner’s payoff has exponential growth and that the loser’s payoff is constant across 

time. This study generalizes this formulation by eliminating these assumptions. This 

generalization is necessary for specifying the two models in this study. Matsushima 

(2013) applied timing games with irrational types to an issue of bubbles and crashes, but 

did not consider the company's fund-raising and the arbitrageurs' borrowing activity; the 

bubbles that Matsushima (2013) investigated are not leverage-driven and not socially 

harmful at all. In contrast, this study seriously takes such fund-raising and leverage into 

account. 
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 Crash-contingent claim could be regarded as a version of naked credit default swap; 

the purchaser can receive the promised monetary payment from its seller irrespective of 

whether he holds the underlying assets. In this respect, Che and Sethi (2010), 

Geanakoplos (2010), and Fostel and Geanakoplos (2012) are related to this study. These 

works commonly assumed prior heterogeneity, while this study assumes awareness 

heterogeneity that originates in Abreu and Brunnermeier (2003). 

 Abreu and Brunnermeier (2003) formulated the stock market as a timing game 

similar to this study. However, Abreu and Brunnermeier (2003) assumed an aspect of 

informational asymmetry termed sequential awareness, while this study instead assumes 

the possibility of arbitrageurs' irrationality.1 

 We should distinguish crash-contingent claim from put option, a popular bailout 

policy method; it gives its purchaser the right to sell the asset at a promised price if the 

bubble crashes. The purchaser of put option must keep holding the underlying asset to 

receive the promised price. Because of this, the availability of put option generally 

facilitates bubbles. 

 We should also distinguish crash-contingent claim from covered credit default 

swap; the payment of a covered credit default swap is utilized only for paying off its 

purchaser’s debt obligation. In contrast to crash-contingent claim or naked credit default 

swap, the availability of covered credit default swap bears no influence on arbitrageurs’ 

incentive. 

The organization of this study is as follows. Section 2 defines timing games with 

irrational types and shows characterization theorems concerning the existence and 

uniqueness of Nash equilibrium. Section 3 introduces a stock-market model to explain 

leverage-driven bubbles without crash-contingent claims, and shows that the permission 

of high leverage ratio motivates arbitrageurs to ride the bubble even if the degree of 

noise traders' reinforcement is insufficient. Section 4 shows that the introduction of 

crash-contingent claim rather discourages arbitrageurs to ride the bubble, and that with 

the availability of crash-contingent claims, the permission of high leverage ratio 

discourages arbitrageurs to ride the bubble. Section 5 concludes. 

                                                 
1 See Brunnermeier and Oehmke (2013) for a survey on bubbles, crashes, and crises. See also the 
limit-to-arbitrage literature such as De Long et al. (1990) and Shleifer and Vishny (1992). 
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2. Timing Games with Irrational Types 

 

 We define a timing game with irrational types as follows.2 Consider a finite set of 

players {1,2,..., }N n , where 2n  . Let [0,1]iA   denote the set of all pure 

strategies for each player i N . A mixed strategy, shortly a strategy, for player i  is 

defined as a cumulative distribution : [0,1]i iq A  ; ( )i iq a  denotes the probability that 

player i  selects a pure strategy that is equal to or less than [0,1]ia  , which is 

non-decreasing and right-continuous. We assume that there exists a pure strategy 

[0,1)ia   such that ( ) 0i iq a  . We will simply write i iq a  when player i  selects 

ia  with certainty. Let iQ  denote the set of all strategies for player i . Let ii N
Q Q


   

and ( )i i Nq q Q  . A strategy profile q Q  is said to be symmetric if 1iq q  for all 

i N . 

 Fix an arbitrary real number (0,1)  . We assume that each player is rational with 

a probability 1 0  , while he (or she) is irrational with the remaining probability 

0  . If player i  is rational, he plays the game according to his selected strategy iq . 

If he is irrational, he selects 1ia   with certainty. Whether each player is rational or 

irrational is determined independently with each other, and is unknown to the other 

players. 

 Consider an arbitrary pure strategy profile ( )i i N ii N
a a A A 
     and an arbitrary 

nonempty subset of players H N . Suppose that any player in H  is rational, while 

any player in \N H  is irrational. Let 

( , ) min j
j H

a H a 


   and ( , ) { | ( , )}jl l a H j H a a H    . 

With a probability 1
l , each player i H  who selects the minimum among all 

players   wins the game and earns the winner’s payoff ( )v  . With the remaining 

                                                 
2 This a generalization of Matsushima (2013), which is closely related to the reputation theory such 
as Kreps et al. (1982). 
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probability 
1l

l


, he loses the game and earns the loser’s payoff ( )v  . Any player who 

selects a pure strategy that is larger than   loses the game. We assume that 

   ( ) ( )v v   for all [0,1]  , 

both ( )v   and ( )v   are differentiable, and ( )v   is non-decreasing; 

( )
( ) 0

v
v




  


 for all [0,1]  . 

The expected payoff for a rational player i H  is given by 

   
1 1

( , ) ( ) ( )i

l
v H a v v

l l
 

    if ia  , 

and 

 ( , ) ( )v H a v      if ia  . 

We define the payoff function ( , ) :iu Q R   for each player i N  as the expected 

value of ( , )iv H a ; 

(1)   ( , ) [ ( , ) | , , ]i iu q E v H a q i H   , 

where [ | , , ]E q i H   denotes the expectation operator provided that player i  is 

rational. A strategy profile q Q  is said to be a Nash equilibrium if 

 ( , ) ( , , )i i i iu q u q q   for all i N  and all i iq Q . 

 An interpretation of timing game with irrational types is as follows. Each player 

selects a time to quit the game during the time interval [0,1] . A player, who selects the 

earliest time among all players, wins the game. The earlier this time is, the lesser the 

winner’s payoff is. Without irrational types ( 0  ), it is the only Nash equilibrium for 

all players to quit the game immediately at the initial time (time zero). With irrational 

types ( 0  ), however, a rational player may have incentive to postpone the time from 

time zero to improve the winning payoff; he can still win the game against irrational 

players. 

 Timing games with irrational types have the potential ability to analyze various 

economic problems. An example is the common resource problem; there is a common 

resource (tree), which grows over time but rots at the terminal time for some exogenous 

reason. There are multiple agents who can cut down this resource at any time and 
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consume all of its fruit without sharing them with the other agents. Each agent expects 

for any other agent to find it costly to cut down the resource, i.e., he is irrational as per 

this paper’s terminology, with a probability 0  . 

 This study intensively analyzes a strategic aspect of bubbles and crashes in a stock 

market as an application of timing games with irrational types. We regard a player as an 

arbitrageur. The bubble grows up during a time interval [0,1] , but it automatically 

crashes at the terminal time 1. Even before the terminal time, the bubble crashes if an 

arbitrageur sells out his (or her) shareholding. Any strategic arbitrageur attempts to sell 

out earlier than the other arbitrageurs; otherwise, he fails to sell out before the crash, 

earning nothing. The detail of bubbles and crashes will be explained in the later 

sections. 

The probability that the timing game ends at or before time [0,1]t  is given by 

   ( ; , ) 1 {1 (1 ) ( )}i
i N

D t q q t 


    . 

We define the hazard rate by 

 
( ; , )

( )
1 ( ; , )

D t q
t

D t q








, 

where 
( : , )

( : , )
D t q

D t q
t

  


. If q Q  is symmetric, we can rewrite this hazard rate 

as 

   1

1

(1 ) ( )
( )

1 (1 ) ( )

n q t
t

q t







 
. 

The probability that the timing game ends at or before time t , provided player i N  

has never quitted before, is given by 

 
\{ }

( ; , ) 1 {1 (1 ) ( )}i i j
j N i

D t q q t 


    . 

We can rewrite the payoff (1) as 

   
0

( , , ) ( ) ( : , ) ( ){1 ( : , )}
t

i i i i i iu t q v dD q v t D t q


      
   . 

Hence, we can derive the first-order condition for Nash equilibrium as 

(2)   { ( ) ( )} ( : , ) ( ){1 ( : , )}i i i iv t v t D t q v t D t q      , 
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where 
( : , )

( : , ) i i
i i

D t q
D t q

t

 


 


. We define the relative future benefit at time 

[0,1]t  as 

   
( )

(
)

) ( )
(

v t

v
t

t
R

v t




 . 

Whenever the first-order condition holds, the hazard rate ( )t  is proportional to the 

relative future benefit; 

    ( ) ( )
1

n
t R t

n
 


. 

We specify a symmetric strategy profile ( )q q Q    as follows: 

(3)    
1

1

1
1 {1 (1 ) ( )}exp[ ( ) ]

1( )
1

t
q R d

nq t
 

   




   




 
 

  for all [ ,1]t   , 

and 

   1( ) 0q t   for all [0, )t   . 

where we define the critical time ( ) [0,1)      in ways that either 

(4)   0   and 
11

exp[ ( ) ]
1

R d
n  

  


 
  

, 

or    

   0   and 
1

1 0

1
{1 (1 ) (0)}exp[ ( ) ]

1
q R d

n 
   


   

  . 

According to q , no player quits the game before the critical time  . After the critical 

time  , the timing game ends stochastically according to the hazard rate 

( ) ( )
1

n
t R t

n
 


. 

 From (4), the greater the relative future benefit ( )R t  is, the later the critical time 

  is. The greater the relative future benefit ( )R t  is, the smaller the probability 1( )q t  

is. Hence, the arbitrageurs tend to quit later, i.e., the timing game persists longer as the 

relative future benefits are greater. 

The following theorem shows a necessary and sufficient condition for the specified 

symmetric strategy profile q  to be a Nash equilibrium. It also shows a (almost) 

necessary and sufficient condition for q  to be the unique Nash equilibrium. This 
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theorem is a generalization of Matsushima (2013), which assumed that the winner’s 

payoff has exponential growth and the loser’s payoff is constant across time. 

  

Theorem 1: The symmetric strategy profile q  is a Nash equilibrium if and only if 

   
1

0

1
exp[ ( ) ]

1
R d

n 
  


 

  . 

It is a unique Nash equilibrium if the strict inequality holds; 

   
1

0

1
exp[ ( ) ]

1
R d

n 
  


 

  . 

 

Proof: For every ˆ [ ,1]   , we specify a symmetric strategy profile ˆ ˆ( )i i Nq q Q 
   

as follows: 

   ˆ
1 1( ) ( )q t q t    for all ˆ[ ,1]t  , 

and 

   ˆ
1 1 ˆ( ) ( )q t q    for all ˆ[0, )t  . 

According to ˆq , any rational player selects time zero with probability 1 1 ˆ(0) ( )q q   . 

After time zero, he never quits the game before time ̂ . After time ̂ , he plays the 

game according to iq . 

 

The Lemma: A symmetric strategy profile q Q  is a Nash equilibrium if and only if 

there exists ˆ [ ,1]    such that 

  ˆq q , 

(5)   1 1 1 1ˆ(0, , ) ( , , )u q u q     whenever ˆ 1   and 1(0) 0q  , 

and 

(6)   1 1 1 1ˆ(0, , ) ( , , )u q u q     whenever ˆ 1  . 

 

Proof: Consider an arbitrary symmetric Nash equilibrium q Q . Clearly, (6) is 

necessary and sufficient for the Nash equilibrium property if ˆ 1  . 
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 Assume ˆ 1  . We show that 1( )q   is continuous. Suppose that 1( )q   is not 

continuous; there exists 0    such that 1 1lim ( ) ( )q q
 

 


 . Then, by selecting any 

time slightly earlier than   , any player can dramatically increase his winning 

probability. This implies that no player selects   . This is a contradiction. 

Let 

    1 1ˆ max{ (0,1] : ( ) (0)}q q     . 

We show that 1( )q   is increasing in ˆ[ ,1] . Suppose that 1( )q   is not increasing in 

ˆ[ ,1] ; there exist ˆ[ ,1]   and ˆ[ ,1]   such that    , 1 1( ) ( )q q   , and the 

selection of    is a best response. Since no player selects any   in ( , )   , it follows 

from the continuity of q  that by selecting    instead of   , a player can increase his 

winner’s payoff without decreasing his winning probability. This is a contradiction. 

Since 1( )q   is increasing in ˆ[ ,1] , any selection ˆ[ ,1]   must be a best 

response; the first-order condition must hold for all ˆ[ ,1]  , implying ˆq q . Since 

ˆ 1   and ( )v t  is increasing, it follows that ˆq  is a Nash equilibrium if and only if 

1 1 1 1ˆ(0, , ) ( , , )u q u q     whenever 1(0) 0q  . 

This implies that (5) is necessary and sufficient. 

Q.E.D. 

 

We prove the first part of Theorem 1 as follows. Since 1   and q q  , it 

follows from the Lemma that q  is a Nash equilibrium if and only if 

either 1(0) 0q   or 1 1 1 1(0, , ) ( , , )u q u q      . 

The weak inequality in Theorem 1 implies (5), that is, 1(0) 0q  ; the weak inequality in 

Theorem 1 implies that q  is a Nash equilibrium. 

Suppose that the weak inequality in Theorem 1 does not hold; 0   and 

1(0) 0q  . This contradicts the Nash equilibrium property; any rational player prefers 

time zero to any time slightly later than time zero, because he can dramatically increase 

his winning probability without any substantial decrease in the winner’s payoff. 
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We prove the latter part of Theorem 1 as follows. From the strict inequality in 

Theorem 1, it follows that the property (4) holds and 0  . This along with the 

Lemma implies that any symmetric Nash equilibrium q  must satisfy q q  . 

Next, we show that q  is a unique Nash equilibrium even if we consider all 

asymmetric strategy profiles. We set any Nash equilibrium q Q  arbitrarily. First, we 

show that ( )iq   must be continuous. Suppose that ( )iq   is not continuous; there 

exists 0    such that lim ( ) ( )i iq q
 

 


 . Then, any other player can drastically 

increase his winning probability by selecting any time slightly earlier than   . Hence, 

no other player selects any time that is either the same as or slightly later than   ; 

player i  can postpone the time without decreasing his winning probability. This is a 

contradiction. 

Let 

  1 max{ (0,1] : ( ) (0) }i iq q for all i N      . 

Second, we show that ( ; )D q  must be increasing in 1[ ,1] . Suppose that ( ; )D q  is 

not increasing in 1[ ,1] ; there exist 1( ,1]   and 1( ,1]   such that    , 

( ; ) ( ; )D q D q   , and the selection of    is a best response for some player. Since no 

player selects any time   in ( , )   , it follows from the continuity of q  that, by 

selecting    instead of   , any player can postpone the time from    to    without 

decreasing his winning probability. This is a contradiction. 

Third, we show that q  must be symmetric. Suppose that q  is asymmetric. The 

strict inequality in Theorem 1 implies that the selection of time zero is a dominated 

strategy. Hence, we have 1 0  , and 

  ( ) 0iq    for all i N  and 1[0, ]  . 

Since q  is continuous and ( ; )D q  is increasing in 1[ ,1] , there exist 0   ,    , 

and i N  such that 

     1( ) ( )jq t q t  for all j N  and [0, ]t   , 

(7)   

( ; ) ( ; )

min
1 ( ; ) 1 ( ; )

i h

h i
i h

D q D q
t t

D q D q

 

 

 
 

 
 for all ( , )t     
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and 

(8)   

( ; ) ( ; )

min 0
1 ( ; ) 1 ( ; )

i h

h i
i h

D q D q
t t

D q D q

 

 

  
  

  
. 

Since ( ; )D q  is increasing in 1[ ,1] , any selection of time t  in ( , )    must be a 

best response for any player j N ; 

( ; ) ( ; )

min
1 ( ; ) 1 ( ; )

j h

h i
j h

D t q D t q
t t

D t q D t q

 
 

 
, 

which implies 
( )

0jq t

t





. Hence, the first-order condition holds; for every ( , )t    , 

(1 ) ( ) ( )

1 (1 ) ( ) ( 1){ ( ) ( )}
j

j

q t v t

q t n v t v t




 


   
. 

However, from (7), 

   
(1 ) ( ) ( )

1 (1 ) ( ) ( 1){ ( ) ( )}
i

i

q t v t

q t n v t v t



 


   

, 

implying that the first-order condition does not hold for player i  for every ( , )t    ; 

instead 
( , , )

0i iu q 






 holds in this case. This inequality implies that player i  

prefers    to any time in ( , )     ; 

  
( ; )

0iD q

t





 for all ( , )      , 

where   is positive but close to zero. This is a contradiction, because the inequality in 

(8) implies 
( ; )

0iD q

t

 



. Hence, we have proved that any Nash equilibrium q  is 

symmetric. 

From the above observations, we have proved Theorem 1. 

Q.E.D. 

 

We specify another symmetric strategy profile ˆ ˆ( )i i Nq q  ; 

   ˆ (0) 1iq   for all i N . 
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According to q̂ , any player immediately quits the game at the initial time. We define 

the overall future benefit by 

   
(1) (0)

(0) (0)

v v
R

v v





. 

The following theorem shows a necessary and sufficient condition for q̂  to be a Nash 

equilibrium; the greater the overall future benefit R  is, the less likely the timing game 

immediately ends at the initial time. 

 

Theorem 2: The symmetric strategy profile q̂  is a Nash equilibrium if and only if 

   
1 1

( 1)! 1 1
( )

!( 1 )! 1
l

l n

n
R

l n l l


  

 


   . 

 

Proof: For every (0,1]t , 

   1 1
1 1ˆ( , ) ( ) (1 ) (0)n nu t q v t v  

     

   1 1
1 1ˆ(1) (1 ) (0) (1, )n nv v u q  

    , 

and 

   1
1

1 1
1

( 1)! 1
(1 ) }

!( 1 )!
ˆ(0, ) { (0

1
)l n l

l n

n

l n
u q

l
v

l
 

 

  




 


  

   1

1 1

( 1)! 1
1 (1 ) }

!
{ (0)

( 1 )! 1
l n l

l n

v
n

l n l l
   

  


 




  . 

Hence, a necessary and sufficient condition for q̂  to be a Nash equilibrium is given by 

   1 1ˆ(0, )u q  1

1 1

( 1)! 1
(1 ) }

!( 1 )! 1
{ (0)l n l

l n

n

l n l l
v   

  





    

1

1 1

( 1)! 1
1 (1 ) }

!
{ (0)

( 1 )! 1
l n l

l n

v
n

l n l l
   

  


 




   

1 1
1 1(1) (1 ) (0)n nv v     1 1ˆ(1, )u q . 

This inequality is equivalent to 

   1 1

1 1 1 1

(1) (0)( 1)! 1 1
( )

!( 1 )! 1 (0) (0)
l

l n

v vn
R

l n l l v v


  

 
 

    . 

Q.E.D. 
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3. Leverage-Driven Bubbles 

 

We analyze a strategic aspect of bubbles and crashes, which we will define as a 

timing game with irrational types as follows. There is a company whose fundamental 

value is zero; it has no profitable business opportunity. Let ( ) 0S t   denote the total 

share that the company has issued up to time [0,1]t . We assume that ( )S t  is 

non-decreasing. The company raises funds by issuing shares. There exist n  

arbitrageurs. Let ( ) 0iS t   denote the share that arbitrageur i N  possesses at time 

t . 

Even if the company is unproductive, its share price grows up as a phenomenon of 

bubble according to a exogenously given, continuous, and increasing price function 

:[0,1] (0, )P   . The bubble persists as long as the arbitrageurs continue to hold 

100n  % or more shares in totality, where 1(0, )n  . Once the arbitrageurs’ total 

shareholding falls to less than 100n  %, the bubble crashes immediately; its share 

price declines to zero, i.e., the correct fundamental value of this company. Even if no 

arbitrageur sells out through time, the bubble automatically crashes at the termination 

time 1. 

It is implicit to assume that there are many noise traders with a plenty of money. At 

any time [0,1]t , the noise traders misperceive the fundamental value and 

unconsciously reinforce their misperception according to the above-mentioned price 

function :[0,1] (0, )P   . However, once the arbitrageurs’ total shareholding falls to 

less than 100n  %, the resultant selling pressure makes the market share price 

significantly lower than their misperception, which makes the noise traders aware of 

their misperception and the crash risk, immediately bursting the bubble. 

The company is willing to raise funds as many as possible for its owner/manager’s 

private usage, but within the limit that the resultant selling pressure bursts the bubble; if 

the company issues too many shares for each arbitrageur to keep his shareholding at not 

less than 100  %, the resultant selling pressure bursts the bubble. 

An effective method for the company to raise huge funds without causing the crash 

would be to encourage each arbitrageur to borrow money from the noise traders. During 
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the bubble, the noise traders are unaware of their misperception and the crash risk, while 

the arbitrageurs are well aware of them. Because of this heterogeneity in awareness, 

each arbitrageur can enter into short-term debt contracts with these noise traders with no 

premium; the noise traders do not make any margin requirement to the arbitrageurs, 

because they are unaware of the crash risk. 

Let 1L   denote the exogenous cap of leverage ratio. Since any arbitrageur 

prefers to let his leverage ratio equal to this upper limit, he will have a debt obligation 

1
( ) ( )i

L
P t S t

L


 to his debt holders (noise traders). Hence, we define the personal capital 

( )iW t  of each arbitrageur i  as the market value of his shareholding minus his debt 

obligation: 

(9)    
1 ( ) ( )

( ) ( ) ( ) ( ) ( ) .i
i i i

L P t S t
W t P t S t P t S t

L L


    

 The personal capital ( )iW t  of arbitrageur i  can be expressed by ( (0), , )iS P L , 

i.e., the combination of his shareholding at the initial time, the price function, and the 

leverage ratio, in the following manner. Since arbitrageur i  earns a capital gain 

{ ( ) ( )} ( )iP t P t S t    from t  to t   , his personal capital increases by this amount: 

   ( ) ( ) { ( ) ( )} ( )i i iW t W t P t P t S t       . 

Hence, 

(10)   
0 0

( ) ( ) ( ) ( )
( ) lim lim ( ) ( ) ( )i i

i i i

W t W t P t P t
W t S t P t S t

 

        
 

. 

Moreover, from (9), 

(11)   
( ) ( ) ( ) ( )

( ) i i
i

P t S t P t S t
W t

L

   . 

From (10) and (11), we have 

   
( ) ( ) ( ) ( )

( ) ( ) i i
i

P t S t P t S t
P t S t

L

   , 

that is, 

   1( )
( ) (0)( )

(0)
L

i i

P t
S t S

P
 . 

We assume that the arbitrageurs’ shares are the same at the initial time; 
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  1(0) (0)iS S  for all {1,..., }i n . 

From this assumption, the arbitrageurs’ shares are the same through time; 

   1( ) ( )iS t S t  for all {1,..., }i n  and [0,1]t . 

The company had better keep the share that each arbitrageur possesses as 100  %; 

   1( ) ( ) ( )iS t S t S t  . 

Hence, we have 

(12)   1( )
( ) (0)( )

(0)
LP t

S t S
P

 . 

From (9) and (12), we can express ( )iW t  by ( (0), , )iS P L ; 

(12)   
( )

( ) (0) (0)( )
(0)

L
i

P t
W t P S

L P


 . 

 Based on these observations, we can model a strategic aspect of bubbles and 

crashes as a specification of timing game with irrational types played by n  

arbitrageurs. Each arbitrageur (player) i N  can win the game by selling out earlier 

than any other arbitrageur; he earns his personal capital ( )iW t . If arbitrageur i  loses 

the timing game, he receives nothing. In this case, we assume that he is exempted from 

his debt obligation. 

 Hence, we specify the winner’s payoff and loser’s payoff as 

   
( )

(0) (0)( )
(0

( (
)

) )i
LP t

P S
L

v W
P

t t


  , 

and 

   ( ) 0v t  . 

We can derive the relative future benefit *( ) ( )R t R t  and the overall relative future 

benefit *R R  as 

   * 1

1

( ) ( )
( )

( ) ( )

W t P t
R t L

W t P t

 
  , 

and 

   * 1

1

(1) (1)
1 ( ) 1

(0) (0)
LW P

R
W P

    . 

Let *    denote the critical time, which is specified by 



17 

 

   
*

1( )
( )

(1)

L

nP

P

 


. 

Note that the greater 
( )

( )

P t

P t


, i.e., the degree of the noise traders’ reinforcement, the 

greater the relative future benefits *( )R t , the overall relative future benefit *R , and the 

critical time * . Hence, the stronger the noise traders’ reinforcement, the greater the 

likelihood of the bubble to emerge and persist. 

Since the model of this section depends on the leverage ratio cap L , we will write 

* *( ) ( , )R t R t L , * *( )R R L , and * *( )L   . 

Clearly, we have 

   
*( , )

0
R t L

L





, 

*( )
0

R L

L





, and 

*( )
0

L

L







. 

The greater the leverage ratio L , the greater the likelihood of the bubble to emerge and 

persist. Note also that 

   * * *lim ( , ) lim ( ) lim ( , )
L L L

R t L R L t L
  

     and *lim ( ) 1
L

L


 . 

Even if the noise traders’ reinforcement is insufficient, the bubble is likely to emerge 

and persist, provided the leverage ratio L  is sufficient. 
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4. Crash-Contingent Claims 

 

Throughout this study, we assume that the noise traders possess a plenty of money. 

To be precise, the noise-traders' total personal capital, denoted by ( )B t , is greater than 

the sum of the market value of their shareholdings and their loan to the arbitrageurs; 

    
1

( ) (1 ) ( ) ( ) ( ) ( )
L

B t n P t S t n P t S t
L

 
  

( )
(1 ) (0) (0)( )

(0)
Ln P t

P S
L P


  . 

We denote by 

    
( )

( ) ( ) (1 ) (0) (0)( )
(0)

Ln P t
Z t B t P S

L P


    

their residual amount. We assume that 

    ( ) 0B t   and ( ) 0Z t   for all [0,1]t . 

 This section permits each arbitrageur i N  to purchase crash-contingent claims 

from noise traders, which is defined as the contractual agreement such that he (or she) 

can receive a promised monetary amount ( )iZ t  from the noise traders if and only if the 

bubble crashes at time t . Since the noise traders are unaware of the crash risk, any 

arbitrageur can purchase such crash-contingent claims for nothing. 

 We assume symmetry in that 1( ) ( )iZ t Z t  for all i N , and also assume that 

   
( )

( )i

Z t
Z t

n
  for all i N . 

Note that any arbitrageur never demands crash-contingent claim exceeding 
( )Z t

n
; 

otherwise, the resulting demand pressure makes the price of the crash-contingent claim 

positive, thus making the noise traders aware of the crash risk, which bursts the bubble. 

 If an arbitrageur i  wins the game, he can earn not only ( )iW t  but also ( )iZ t . If 

he loses the game, he can earns ( )iZ t  but is not exempted from his debt obligation. 

Since his debt obligation is given by ( 1) ( )iL W t , any loser has to pay his debt holders 

the amount 
( )

min[ , ( 1) ( )]i

Z t
L W t

n
 . For simplicity, this section assumes 

    ( ) ( 1) ( )iZ t n L W t  , i.e., 
( )

min[ , ( 1) ( )] ( 1) ( )i i

Z t
L W t L W t

n
   . 
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 Since each arbitrageur's personal capital is given by (13), we specify the winner’s 

payoff and the loser’s payoff by 

   ( ) ( ) ( )i iv t W t Z t   

   
1 2 ( )

{ ( ) (1 ) (0) (0)( ) }
(0)

Ln P t
B t P S

n L P


   , 

and 

   ( ) ( ) ( 1) ( )i iv t Z t L W t    

   
1 ( 2) ( )

[ ( ) {1 } (0) (0)( ) ]
(0)

LL n P t
B t P S

n L P


   . 

Hence, we can derive the relative future benefit **( ) ( )R t R t  and the overall relative 

future benefit **R R  as 

   ** 1 1

1

( ) ( )
( )

( )

W t Z t
R t

LW t

 
  

   
( ) ( )

( ) ( )(0) (0)( )
(0)

1
{ ( 2 ) }

L

B t P t
P t P tP S
P

L n
L n




 





, 

and 

   ** 1 1 1 1

1

(1) (1) { (0) (0)}

(0)

W Z W Z
R

LW

  
  

    

2 (1)
(1) (0) (1 ) (0) (0){( ) 1}

(0)
(0) (0)

Ln P
B B P S

L P
n P S





   
 . 

 Since the model of this section depends on the leverage ratio L , we will write 

** **( ) ( , )R t R t L  and ** **( )R R L . 

Clearly, both **( , )R t L  and **( )R L  are decreasing in L ; the higher the leverage ratio 

L  is, the less likely the bubble emerges and persists. These are in contrast to the 

Section 3’s model; a high leverage ratio fosters the bubble when crash-contingent 

claims are not available, while it rather deters the bubble when crash-contingent claims 

are available. 
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 The increase in L  enhances future loans to arbitrageurs, which crowd out the 

future reserve for the crash-contingent claims, thus decreasing the relative future benefit. 

This drives the high leverage ratio to deter the bubble. 

 Clearly, we have 

* **
1[ ( ) ( )] [ ( 1) ( ) ( )]R t R t n L W t Z t     , 

and 

* **
1 1[ ] [ ( 1){ (1) (0)} (1) (0)]R R n L W W Z Z      . 

If the leverage ratio L  is sufficient and the residual amount ( )Z t  does not grow 

sufficient, the bubble is less likely to emerge and persist with crash-contingent claim 

than without it. It is crucial to assume that any arbitrageur i  can receive ( )iZ t  even if 

he wins the timing game. It is also crucial to assume that he is not exempted from his 

debt obligation even if he loses the game. These assumptions imply that the purchase of 

crash-contingent claims increases the difference between the winner’s payoff and the 

loser’s payoff, thus urging the purchasers to sell out his shareholding at early times. 
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5. Conclusion 

 

 We investigated the timing game with irrational types, which is a generalization of 

Matsushima (2013). We showed a (almost) necessary and sufficient condition for the 

uniqueness of Nash equilibrium. According to this unique Nash equilibrium, every 

player never quits the game at the initial time. 

By applying the theoretical framework of this game, we analyzed leverage-driven 

bubbles in the stock market for the unproductive company; this company’s stock price 

grows up according to an exogenously given reinforcement pattern. During the bubble, 

the company is willing to raise funds by issuing new shares as many as possible. 

We regarded players as strategic arbitrageurs who decide whether to ride the 

bubble by continuing to purchase shares, or to burst the bubble by selling out their 

respective shareholdings. To ride the bubble, each arbitrageur borrow money from the 

noise traders by making use of the heterogeneity in awareness between the arbitrageurs 

and the noise traders concerning the crash risk and the noise traders’ misperception. 

We demonstrated two models, which are distinguished by whether crash-contingent 

claim, a version of naked credit default swap concerning the crash risk, is available. We 

then showed that the availability of crash-contingent claim gives a significant impact on 

the emergence and persistence of leverage-driven bubbles and the policy implication of 

leverage-ratio regulation. The availability of crash-contingent claim deters the bubble, 

while without crash-contingent claim, the bubble emerges and persists even if the 

degree of reinforcement is insufficient. Without crash-contingent claim, high leverage 

ratio fosters the bubble, while with crash-contingent claim, it rather deters the bubble. 

Hence, it would be an effective policy method that we will make crash-contingent 

claims available, and then make the leverage ratio cap as weak as possible. 
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