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Abstract

The problem of estimating the covariance matrix of normal and non-normal
distributions is addressed when both the sample size and the dimension of covariance
matrix tend to infinity. In this paper, we consider a class of ridge-type estimators
which are linear combinations of the unbiased estimator and the identity matrix
multiplied by a scalor statistic, and we derive a leading term of their risk functions
relative to a quadratic loss function. Within this class, we obtain the optimal
ridge-type estimator by minimizing the leading term in the risk approximation. It
is interesting to note that the optimal weight is based on a statistic for testing
sphericity of the covariance matrix.

Key words and phrases: Covariance matrix, high dimension, non-normal distri-
bution, normal distribution, ridge-type estimator, risk function.

1 Introduction

Many applied problems in multivariate analysis require estimates of a covariance matrix
and/or of its inverse. For example, the inverse of estimators of the covarinace matrix
is used in the Fisher linear discriminant analysis, confidence intervals based on the Ma-
halanobis distance and weighted least squares estimator in multivariate linear regression
models. However, the unbiased estimator based on the sample covariance matrix is not
invertible when the dimension p of the variables is larger than the sample size N . When p
is large and close to N , the inverse of the unbiased estimator may be ill-conditioned even
if N > p. Thus, an estimator for the covariance matrix is required to be both invertible
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and well-conditioned. The estimation procedures satisfying these properties have been
studied in a lot of articles. For instance, see Daniels and Kass (2001), Ledoit and Wolf
(2003, 2004), Srivastava and Kubokawa (2007), Konno (2009), Fisher and Sun (2011) and
Bai and Shi (2011).

To specify the problem considered here, consider p-dimensional random vectors x1, . . . ,xN

which are mutually independently and identically distributed with mean vector µ and co-
variance matrix Σ. Then, Σ is estimated unbiasedly by S = n−1V , where

V =
N∑
j=1

(xj − x)(xj − x)t, n = N − 1, (1.1)

for x = N−1
∑N

j=1 xj. Ledoit and Wolf (2004) considered a class of a convex combination
of S and a1Ip, namely

S∗
w = wS + (1− w)a1Ip,

for a1 = tr [Σ]/p, and showed that the optimal weight w in the sense of minimizing the
risk function E[tr [(S∗

w −Σ)2]]/p is given by

w(Σ) = tr [(Σ− a1Ip)
2]/E[tr [(S − a1Ip)

2]].

Ledoit and Wolf (2004) provided an estimator ŵ of w and suggested the use of a plug-in
estimator. In the case of a normal distribution, Fisher and Sun (2011) showed that w(Σ)
is described as

w(Σ) =
n(a2 − a21)

n(a2 − a21) + pa21 + a2
,

for a2 = tr [Σ2]/p, and suggested a simple estimator of w(Σ), given by

ŵ =
n(â2 − â21)

n(â1 − â21) + pâ21 + â2
=

nT

nT + p+ T + 1
, (1.2)

where T = â2/â
2
1 − 1 for

â1 =tr [S]/p = tr [V ]/(np), (1.3)

â2 =
1

(n− 1)(n+ 2)p

[
tr [V 2]− 1

n
(tr [V ])2

]
. (1.4)

The resulting plug-in estimator is given by ŵS+(1−ŵ)â1Ip. Although it seems reasonable,
it is natural to raise the following queries.

(I) The weighted estimator S∗
w considered above is a convex combination of the statistic

S and the parameter a1Ip. Rather than this combination, it is more natural to consider
a convex combination of S and the statistic â1Ip. Are there any difference between these
two estimators ?

(II) Although the estimator w(Σ)S + (1− w(Σ))a1Ip with the optimal weight w(Σ)
is optimal in the sense of minimizing the risk, this fact does not necessarily guarantee
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the optimality of the plug-in estimator ŵS + (1 − ŵ)â1Ip, since the estimated weight ŵ
has correlations with S and â1. Can we establish any optimality property of the plug-in
estimator ?

(III) In Fisher and Sun (2011), the estimators â1 and â2 were used for a1 and a2
without any justification in cases of non-normal distributions. In the normal distribution,
Srivastava (2005) showed that these are unbiased and that â1 − a1 = Op((np)

−1/2) and
â2−a2 = Op((np)

−1/2)+Op(n
−1). However, these properties for â2 can not be necessarily

established. For instance, â2 is not an unbiased estimator of a2 in non-normal cases
as shown in Srivastava, Kollo and von Rosen (2011) and Srivastava, Yanagihara and
Kubokawa (2013). Can we derive order of â2 − a2 and show the consistency of â2 ?

In this paper, we try to answer these questions. In Section 2, we provide the optimal
weights in linear combinations c1S+c2â1Ip in normal and non-normal distributions, which
corresponds to (I). Based on approximation of the optimal weights, we can suggest the
plug-in estimator

Σ̂T =
nT

nT + p
S +

(
1− nT

nT + p

)
â1Ip,

where T = â2/â
2
1−1. It is noted that T is used as a test statistic for testing the sphericity

as shown in Srivastava (2005). Namely, the hypothesis of the sphericity is accepted if T

is small, but it is rejected otherwise. This tells us that the ridge-type estimator Σ̂T has a
reasonable form. To approximate the optimal weights and to evaluate the risk functions
of the ridge-type estimators, we need to obtain the order of â1−a1 and â2−a2 as described
in (III). In fact, some properties for moments of â1 and â2 are derived in Section 2, where
the order of â2 − a2 is harder to evaluate and the proof is given in Section 4.

In Section 3, we consider a class of estimators ŵ1S + ŵ2â1Ip with random weights ŵ1

and ŵ2 assuming some conditions, and we show that within this class, the estimator Σ̂T

is the best in the sense of minimizing the leading term of the risk function. This is in
reply to the query (II). The normal case is treated in Section 3.1 and an extension to the
non-normal cases is given in Section 3.2.

Concerning the numerical performance of multivariate procedures based on optimal
ridge-type estimator of the covariance, see, for example, Srivastava and Kubokawa (2007),
Hyodo, Yamada, Himeno and Seo (2012) and Kubokawa, Hyodo and Srivastava (2013)
who showed that the linear classification rule based on the optimal ridge-type estimator
improves on that based on the Moore-Penrose inverse in terms of the error misclassification
rates.

2 Optimal Weights and Their Estimators

Consider p-dimensional random vectors x1, . . . ,xN which are mutually independently and
identically distributed with mean vector µ and covariance matrix Σ = FF , where F is
the unique factorization of Σ. Assume that the observation vectors xj are generated as

xj = µ+ Fuj, j = 1, . . . , N, (2.1)
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with
E(uj) = 0, Cov (uj) = Ip, (2.2)

and for integers γ1, . . . , γk satisfying 0 ≤
∑p

k=1 γk ≤ 4,

E

[
p∏

k=1

uγk
jk

]
=

p∏
k=1

E(uγk
jk), j = 1, . . . , N, (2.3)

where ujk is the kth component of the vector uj = (uj1, . . . , ujk, . . . , ujp)
t. We shall write

the third and fourth moments of ujk as E[u3
jk] = K3 and E[u4

jk] = K4 + 3. In the case of
a normal distribution, we have K3 = K4 = 0.

In this paper, we use the notation ai = tr [Σi]/p for integer i ≥ 1, and we assume the
following conditions:

(A1) Both n and p tend to infinity where the relation between them is given as follows:
(A1-1) n = O(pδ) for 0 < δ ≤ 1 in the case of p ≥ n,
(A1-2) p = O(nδ) for 0 < δ ≤ 1 in the case of n > p.

(A2) ai converges to a positive constant for i = 1, 2, 3, 4. Also, a2 − a21 converges to a
positive constant.

(A3) Let a20 =
∑p

i=1 σ
2
ii/p for Σ = (σij). Then a20 converges to a positive constant.

Let â1 and â2 be defined in (1.3) and (1.4). In the case of normal distributions,
Stivastava (2005) showed that( â1

â2

)
∼ N2

(( a1
a2

)
, (np)−1

( 2a2 4a3
4a3 8a4 + 4(p/n)a22

))
, (2.4)

which imples that â1−a1 = Op((np)
−1/2) and â2−a2 = Op((np)

−1/2)+Op(n
−1) under the

conditions (A1) and (A2). However, similar results are harder to derive for non-normal
distributions.

Theorem 2.1 Assume the model described in (2.1)-(2.3) for non-normal distributions,
and the conditions (A1)-(A3). Then, E[â1] = a1 and

V ar(â1) =
1

Np
K4a20 +

2

np
a2, (2.5)

which means that â1 − a1 = Op((np)
−1/2). Also,

E[â2] =
n

N(N + 1)
K4a20 + a2, (2.6)

and

â2 − a2 =Op(n
−1p1/2) +Op((np)

−1/2)

=Op(n
−1p1/2)I(p ≥ n)

+
{
Op(n

−1p1/2)I(δ ≥ 1/2) +Op((np)
−1/2)I(δ < 1/2)

}
I(n > p), (2.7)

where in the case of p ≥ n we need to assume that δ > 1/2.
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It is hard to establish (2.7), and the proof of Theorem 2.1 is long. Thus, the proof is
deferred to Section 4. As seen from (2.6), â2 is not unbiased in non-normal cases. This
fact was pointed out in Srivastava, et al . (2011), and the same formula as in (2.6) was
derived by Srivastava, et al . (2013). Although â2 is an unbiased estimator of a2 in the
normal case since K4 = 0, in non-nomal cases â2 is not unbiased. It follows from (2.7)
that â2 − a2 satisfies

â2 − a2 = Op(n
−1p1/2)I(p ≥ n) +Op(n

−1/2)I(n > p),

which gives a weaker and simpler order in the case of n > p.

We now consider the problem of estimating Σ by an estimator Σ̂ relative to the
quadratic loss function Lq(Σ̂,Σ) = tr [(Σ̂ − Σ)2]/p. The risk function of Σ̂ is given by

R(Σ, Σ̂) = E[tr [(Σ̂ − Σ)2]]/p. An unbiased estimator of Σ is S = n−1V , where V is
given in (1.1). Since S is not invertible in the case of p > n nor well-conditioned in the
case that p is close to n even if n > p, it is reasonable to consider convex combinations of
S and a positive definite matrix based on S. We here treat a class of linear combinations

Σ̂c1,c2 = c1S + c2â1Ip,

where c1 and c2 are constants, and â1 = tr [S]/p. Then, the risk function is written as

R(Σ, Σ̂c1,c2) =E[tr [{c1S + c2â1Ip −Σ}2]]/p (2.8)

=c21E[tr [S2]/p] + c22E[â21] + a2 + 2c1c2E[â21]− 2c1a2 − 2c2a
2
1.

By differentiating the risk function with respect to c1 and c2, it can be seen that the
optimal c1 and c2 are given as solutions of the equations

c1E[tr [S2]/p] + c2E[â21] = a2,

c1E[â21] + c2E[â21] = a21.

Thus, the optimal c1 and c2 are

c1 =
a2 − a21

E[tr [S2]/p− â21]
,

c2 =
(a21/E[â21])E[tr [S2]/p]− a2

E[tr [S2]/p− â21]
.

Since â2 is defined in (1.4), ntr [S2]/p is written as

ntr [S2]/p = nâ2 + pâ21 + (1− 2/n)â2, (2.9)

so that the optimal c1 and c2 are rewritten as

c1 =
n(a2 − a21)

E[n(â2 − â21) + pâ21 + (1− 2/n)â2]
,

c2 =
(a21/E[â21])E[nâ2 + pâ21 + (1− 2/n)â2]− na2

E[n(â2 − â21) + pâ21 + (1− 2/n)â2]
.

(2.10)
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It follows from (2.5) that E[â21] = a21 + (Np)−1K4a20 + 2(np)−1a2. Using this expectation
and (2.6), we can evaluate the expectation in the denomenator of c1 and c2 as

E[n(â2 − â21) + pâ21 + (1− 2/n)â2] =n(a2 − a21) + pa21 +
p− 2

p
a2 +

n(p− 1)

Np
K4a20

=n(a2 − a21) + pa21 +O(1).

Similarly, the expectation in the numerator of c2 can be approximated as

a21
E[â21]

E[nâ2 + pâ21 + (1− 2/n)â2]− na2 =
a21

a21 +O((np)−1)

{
na2 + pa21 +O(1)

}
− na2

=pa21 +O(1).

Hence, the optimal c1 and c2 can be approximated as

c1 =
nτ

nτ + p
+O(p−1)I(p ≥ n) +O(n−1)I(n > p),

c2 =
p

nτ + p
+O(p−1)I(p ≥ n) +O(n−1)I(n > p),

(2.11)

where τ = a2/a
2
1 − 1. Using these approximations, we can get the ridge-type estimator of

the form
Σ̂τ =

nτ

nτ + p
S +

(
1− nτ

nτ + p

)
â1Ip. (2.12)

Since τ is unknown, it is natural to estimate it by

T = â2/â
2
1 − 1,

which suggests the estimator

Σ̂T =
nT

nT + p
S +

(
1− nT

nT + p

)
â1Ip. (2.13)

It is interesting to note that T is used by Srivastava (2005) as a test statistics for the
sphericity test. Ledoit and Wolf (2004), Fisher and Sun (2011) and Hyodo, et al . (2012)
suggested such weighted estimators. But the dominance property of these kind of estima-
tors has not been established. In the next section, we establish this property.

Remark 2.1 As described in (4.22) in Section 4, â2 − a2 is approximated as

â2 − a2 =− 2(n2 + 1)

(n− 1)(n+ 2)nN2p

N∑
i=1

∑
j ̸=k

xt
ixjx

t
ixk

+
2

(n− 1)(n+ 2)nNp

N∑
i=1

∑
j ̸=k

xt
ixix

t
jxk

+
1

(n+ 2)nN2p

∑
A

xt
axbx

t
cxd +Op((np)

−1/2)) +Op(n
−1), (2.14)
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where
∑

A is defined below (4.4). The remainder term Op((np)
−1/2)) + Op(n

−1) corre-
sponds to the order of â2 − a2 in the normal distribution as indicated in (2.4). If the
first three terms in (2.14) were of the same order, we could establish that â2 − a2 =
Op((np)

−1/2)) +Op(n
−1).

3 Dominance Property of Ridge-type Estimators

The ridge-type estimator Σ̂T given in (2.13) is a plug-in estimator, and no dominance

property of Σ̂T has been known. In this paper, we show that the estimator Σ̂T is the best
of a class of weighted estimators in light of minimizing a leading term in the approximation
of the risk function.

3.1 Case of normal distributions

We first assume normality for the distributions of xi’s. As a general class of weighted
linear combinations of S and â1Ip, we consider a class of the weighting functions w1(X)
and w2(X) which satisfy the properties

wi(X) =Op(1)I(p ≥ n) +Op(1)I(n > p),

wi(X)− wi0 =Op(1)I(p ≥ n) +Op((p/n)
1/2)I(n > p),

(3.1)

for i = 1, 2, where wi0 = wi0(Σ) is a nonnegative function of Σ. The corresponding class
of estimators is given by

Σ̂w1,w2 = w1(X)S + w2(X)â1Ip. (3.2)

Theorem 3.1 Assume the conditions (A1) and (A2). Also assume that xi’s have normal
distributions. Then, for weighting functions w1(X) and w2(x) satisfying (3.1), the risk

function of Σ̂w1,w2 is approximated as

R(Σ, Σ̂w1,w2) = R0(Σ, Σ̂w1,w2) +O(n−1)I(p ≥ n) +O(n−1)I(n > p), (3.3)

where the leading term R0(Σ, Σ̂w1,w2) is expressed as

R0(Σ, Σ̂w1,w2) =E
[
(â1)

2
{
(T + 1 + p/n)w2

1(X) + w2
2(X) + 2w1(X)w2(X)

− 2(T + 1)w1(X)− 2w2(X) + T + 1
}]

. (3.4)

Proof. The risk function of Σ̂w1,w2 is written as

R(Σ, Σ̂w1,w2) =E
[
tr
{
w1(X)V /n+ w2(X)â1Ip −Σ

}2
]
/p

=E
[
w2

1(X)
tr [V 2]

n2p
+ w2

2(X)â21 + 2w1(X)w2(X)â21

− 2w1(X)
tr [V Σ]

np
− 2w2(X)â1a1

]
+ a2.
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Since tr [V 2]/(n2p) = {(n− 1)(n+ 2)/n2}â2 + (p/n)â21 = â2 + (p/n)â21 + {(n− 2)/n2}â2,
E[â2] = a2 and â2/â

2
1 = T + 1, the risk is rewritten as

R(Σ, Σ̂w1,w2) =E
[
â21

{
w2

1(X)
[
T + 1 +

p

n

]
+ w2

2(X) + 2w1(X)w2(X) + T + 1
}]

+
n− 2

n2
E[â21(T + 1)w2

1(X)]− 2E
[
w1(X)

tr [V Σ]

np
+ w2(X)â1a1

]
. (3.5)

It is here observed that

w1(X)
tr [V Σ]

np
=w1(X)

(
a2 + tr [(V /n−Σ)Σ]/p

)
=w1(X)â2 + (w1(X)− w10)

{
−(â2 − a2) + tr [(V /n−Σ)Σ]/p

}
+ w10

{
−(â2 − a2) + tr [(V /n−Σ)Σ]/p

}
,

which implies that

E
[
w1(X)

tr [V Σ]

np

]
=E[w1(X)â2]

+ E
[
(w1(X)− w10)

{
−(â2 − a2) + tr [(V /n−Σ)Σ]/p

}]
. (3.6)

Similarly, w2(X)â1a1 = w2(X)(â1)
2 − w2(X)(â1 − a1)

2 − (w2(X) − w20)(â1 − a1)a1 −
w20(â1 − a1)a1, so that

E[w2(X)â1a1] = E[w2(X)(â1)
2]−E[w2(X)(â1−a1)

2+(w2(X)−w20)(â1−a1)a1]. (3.7)

Also,

â21w
2(X)

(n− 1)(n+ 2)

n2
(T + 1) = â21w

2(X)(T + 1) +
n− 2

n2
â21w

2(X)(T + 1). (3.8)

Combining (3.5)-(3.8) gives the expression

R(Σ, Σ̂w1,w2) =E
[
(â1)

2
{
(T + 1 + p/n)w2

1(X) + w2
2(X) + 2w1(X)w2(X)

− 2(T + 1)w1(X)− 2w2(X) + T + 1
}]

+ 2E
[
(w1(X)− w10)

{
(â2 − a2)− tr [(V /n−Σ)Σ]/p

}]
− 2E[(w2(X)− w20)(â1 − a1)a1] + 2E[w2(X)(â1 − a1)

2]

+
n− 2

n2
E[â21w

2
1(X)(T + 1)]. (3.9)

It can be demonstrated that

E[
{
tr [(V /n−Σ)Σ]/p

}2
] = 2a4/(np),

so that tr [(V /n−Σ)Σ]/p = Op((np)
−1/2). It follows from (2.4) that â1−a1 = Op((np)

−1/2)
and

â2 − a2 = Op(n
−1)I(p ≥ n) +Op((np)

−1/2)I(n > p).
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Since wi(X)−wi0 = Op(1)I(p ≥ n)+Op((p/n)
1/2)I(n > p), i = 1, 2, from (3.1), it is seen

that

E
[
(w1(X)− w10)

{
(â2 − a2)− tr [(V /n−Σ)Σ]/p

}]
= O(n−1)I(p ≥ n) +O(n−1)I(n > p).

Similarly, E[(w2(X)− w20)(â1 − a1)a1] = O(n−1)I(p ≥ n) +O(n−1)I(n > p). Also, from
(3.1), it can be seen that E[w2(X)(â1 − a1)

2] = O((np)−1) and

n− 2

n2
E[â21w

2
1(X)(T + 1)] = O(n−1)I(p ≥ n) +O(n−1)I(n > p).

Hence, we get the approximation (3.3). □

The leading term R0(Σ, Σ̂w1,w2) in (3.4) is minimized at w1(X) = w∗(T ) and w2(X) =
1− w∗(T ) for

w∗(T ) =
nT

nT + p
, (3.10)

since

(T + 1+p/n)w2
1(X) + w2

2(X) + 2w1(X)w2(X)− 2(T + 1)w1(X)− 2w2(X) + T + 1

=

(
w1(X)− w∗(T )

w2(X)− 1 + w∗(T )

)t (
T + p/n+ 1 + 1 1

1 1

)(
w1(X)− w∗(T )

w2(X)− 1 + w∗(T )

)
+

pT

nT + p
.

The weight w∗(T ) minimizing the risk in the leading term of (3.3) corresponds to the

weight in the estimator Σ̂T given in (2.13). It is noted that

nT

nT + p
=Op(n/p)I(p ≥ n) +Op(1)I(n > p),

1− nT

nT + p
=Op(1)I(p ≥ n) +Op(p/n)I(n > p).

(3.11)

Also, it can be seen that

nT

nT + p
− nτ

nτ + p
=

np(T − τ)

(nT + p)(nτ + p)

=
np

(nT + p)(nτ + p)

a21(â2 − a2)− a2(â1 − a1)(â1 + a1)

â21a
2
1

=Op(p
−1)I(p ≥ n) +Op(p

1/2n−3/2)I(n > p). (3.12)

Thus, the optimal weight w∗(T ) satisfies the conditions in (3.1). Hence from Theorem
3.1, we get the following result.
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Theorem 3.2 Assume the conditions (A1) and (A2) with the normality. Among esti-
mators with weighting functions w1(X) and w2(X) satisfying (3.1), the risk function of

Σ̂w1,w2 is improved on by the ridge estimator Σ̂T given in (2.13) in terms of minimizing

the leading term R0(Σ, Σ̂w1,w2) given in (3.4). Also, the risk of Σ̂T with the best weight
w∗(T ) is evaluated as R(Σ,ΣT ) = E[pT/(nT + p)] +O(n−1)I(p ≥ n) + O(n−1)I(n > p),
where E[pT/(nT + p)] = O(1)I(p ≥ n) +O(p/n)I(n > p).

Estimators suggested by Fisher and Sun (2011) and Hyodo, et al . (2012) are slightly

different from Σ̂T , but they have the same leading term. Thus, it may be guessed that
their estimators has the same leading term in risk. In general, we consider the weighting
functions w1(X) and w2(X) which can be approximated as

w1(X) =
nT

nT + p
+Op(p

−1)I(p ≥ n) +Op(n
−1)I(n > p),

w2(X) =
p

nT + p
+Op(n

−1).
(3.13)

Since these functions clearly satisfy the conditions in (3.1), we can show thatR0(Σ, Σ̂w1,w2)
given in (3.4) is evaluated as

R0(Σ, Σ̂w1,w2) =E[pT/(nT + p)] +
{
O(p−1) +O(n−1)

}
I(p ≥ n) +O(n−1)I(n > p)

=E[pT/(nT + p)] +O(n−1)I(p ≥ n) +O(n−1)I(n > p).

Theorem 3.3 Assume the conditions (A1) and (A2) with the normality. If the weights

w1(X) and w2(X) satisfy the conditions in (3.13), then the ridge-type estimators Σ̂w1,w2

and Σ̂T have the same risk approximation, namely, R(Σ, Σ̂w1,w2) = E[pT/(nT + p)] +
O(n−1)I(p ≥ n) +O(n−1)I(n > p).

For example, for the estimator of Fisher and Sun (2011), the weight function (1.2) is
rewritten as

w1(X) = ŵ =
n(â2 − â21)

n(â2 − â21) + pâ21 + â2
=

nT

nT + p+ T + 1
,

which is approximated as nT/(nT + p) + Op(np
−2)I(p ≥ n) + Op(n

−1)I(n > p). Also, it
can be verified that

w2(X) = 1− ŵ =
p+ T + 1

nT + p+ T + 1
=

p

nT + p
+Op(p

−1)I(p ≥ n) +Op(n
−1)I(n > p).

Hence from Theorem 3.3, it follows that the estimator Σ̂T and the estimator of Fisher
and Sun (2011) have the same risk with respect to the leading term of risk.

Example 3.1 For example, a crude estimator of Σ is Σ̂0 = S, and it belongs to the class
(3.2) with w1(X) = 1 and w2(X) = 0. Since these weights clearly satisfy the conditions

(3.1), Theorem 3.2 means that S is improved on by Σ̂T under the conditions (A1) and
(A2). □
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Example 3.2 The optimal multiple among estimators cS can be derived from (2.8) and
(2.9) by

c =
n(τ + 1)

(n+ 1− 2/n)(τ + 1) + p
,

which suggests the plug-in estimator

Σ̂0B =
n(T + 1− 2/n)

(n+ 1)(T + 1) + p
S.

This belongs to the class (3.2) with w1(X) = n(T + 1)/{(n + 1 − 2/n)(T + 1) + p} and
w2(X) = 0. Similarly to (3.11) and (3.12), it can be seen that these weighst satisfy

the conditions in (3.1). Thus, from Theorem 3.2, Σ̂0B is improved on by Σ̂T under the
conditions (A1) and (A2). □

3.2 Case of non-normal distributions

We next extend the dominance result in the previous section to the non-normal models.
In this case, we need to consider a more restricted class than (3.1), since â2 − a2 ̸=
Op(n

−1) + Op((np)
−1/2) as shown in Theorem 2.1. Namely, we treat a class of weighting

functions w1(X) and w2(X) satisfying the properties

wi(X) =Op(1)I(p ≥ n) +Op(1)I(n > p),

wi(X)− wi0 =Op(p
−1/2)I(p ≥ n) +Op(n

−1/2)I(n > p),
(3.14)

for i = 1, 2, where wi0 = wi0(Σ) is a nonnegative function of Σ. The corresponding class
of estimators is given by

Σ̂w1,w2 = w1(X)S + w2(X)â1Ip. (3.15)

To establish a dominance result, we need to show the following lemma, which will be
proved in Section 4.

Lemma 3.1 Assume the conditions (A1)-(A3), and the following condition:

(A4)
∑p

i=1{(Σ
2)ii}2/p converges to a positive constant, where (Σ2)ii is the (i, i) ele-

ment of Σ2.

Then,

E[
{
tr [V Σ]/(np)− a2

}2
] =

1

Np
K4

p∑
i=1

{(Σ2)ii}2/p+
2

np
a4,

which is of O((np)−1).

Theorem 3.4 Assume the conditions (A1)-(A4). Also, it is assumed that δ > 1/2 in
the case of p ≥ n. For weighting functions w1(X) and w2(X) satisfying (3.14), the risk

function of Σ̂w1,w2 is approximated as

R(Σ, Σ̂w1,w2) = R0(Σ, Σ̂w1,w2) +O(n−1)I(p ≥ n) +O(n−1)I(n > p), (3.16)

where the leading term R0(Σ, Σ̂w1,w2) is given in (3.4).
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Proof. Recall the risk expression given in (3.9), namely,

R(Σ, Σ̂w1,w2) =R0(Σ, Σ̂w1,w2) +
n− 2

n2
E[â21w

2
1(X)(T + 1)]

+ 2E
[
(w1(X)− w10)

{
(â2 − a2)− tr [(V /n−Σ)Σ]/p

}]
− 2E[(w2(X)− w20)(â1 − a1)a1] + 2E[w2(X)(â1 − a1)

2]. (3.17)

It follows from (2.7) and Lemma 3.1 that

â2 − a2 − tr [(V /n−Σ)Σ]/p

=Op(n
−1p1/2)I(p ≥ n)

+ {Op(n
−1p1/2)I(δ ≥ 1/2) +Op((np)

−1/2)I(δ < 1/2)}I(n > p),

so that from (3.14),

E
[
(w1(X)− w10)

{
(â2 − a2)− tr [(V /n−Σ)Σ]/p

}]
= O(n−1)I(p ≥ n) +O(n−1)I(n > p).

Similarly, E[(w2(X)− w20)(â1 − a1)a1] = O(n−1)I(p ≥ n) +O(n−1)I(n > p). Also, from
(3.14), it can be seen that E[w2(X)(â1 − a1)

2] = O((np)−1) and

n− 2

n2
E[â21w

2
1(X)(T + 1)] = O(n−1)I(p ≥ n) +O(n−1)I(n > p).

Hence, we get the approximation (3.16). □

When we consider the weight w∗(T ) = nT/(nT + p) given in (3.10), it follows from
(3.11) that w∗(T ) and 1− w∗(T ) satisfy the first condition in (3.1). Similarly to (3.12),

nT

nT + p
− nτ

nτ + p
=

np

(nT + p)(nτ + p)

a21(â2 − a2)− a2(â1 − a1)(â1 + a1)

â21a
2
1

=Op(p
−1/2)I(p ≥ n) +Op(n

−1/2)I(n > p),

which satisfies the second condition in (3.14).

Theorem 3.5 Assume the conditions (A1)-(A4) and that δ > 1/2 in the case of p ≥ n.
Among estimators with weighting functions w1(X) and w2(X) satisfying (3.14), the risk

function of Σ̂w1,w2 is improved on by the ridge estimator Σ̂T given in (2.13) in terms

of minimizing the leading term R0(Σ, Σ̂w1,w2) given in (3.4). Also, the risk of Σ̂T with
the best weight w∗(T ) is evaluated as R(Σ,ΣT ) = E[pT/(nT + p)] + O(n−1)I(p ≥ n) +
O(n−1)I(n > p), where E[pT/(nT + p)] = O(1)I(p ≥ n) +O(p/n)I(n > p).

Combining Theorems 3.4 and 3.5, we can get a similar result as in Theorem 3.3
although the detail is omitted here.
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4 Proofs

In this section, we shall prove Theorem 2.1 and Lemma 3.1. Especially, we give a proof
of (2.7), since (2.5) and (2.6) can be verified similarly to (2.7).

[1] Decomposition of â2. Note that V and V 2 are written as V =
∑N

i=1 xix
t
i−Nxxt

and V 2 = (
∑N

i=1 xix
t
i)

2 +N2(xxt)2 −Nxxt
∑N

i=1 xix
t
i −N

∑N
i=1 xix

t
ixx

t. Then,

tr [V 2] =
∑
j,k

xt
jxkx

t
kxj +N2(xtx)2 − 2Nxt

N∑
i=1

xix
t
ix,

(tr [V ])2 =(
N∑
i=1

xt
ixi)

2 +N2(xtx)2 − 2Nxtx
N∑
i=1

xt
ixi,

(4.1)

which yields that

â2 =
1

(n− 1)(n+ 2)p

[
tr [V 2]− 1

n
(tr [V ])2

]
=

1

(n− 1)(n+ 2)p

[ N∑
i=1

(xt
ixi)

2 +
∑
j ̸=k

xt
jxkx

t
kxj +N2(xtx)2 − 2Nxt

N∑
i=1

xix
t
ix

− 1

n

N∑
i=1

(xt
ixi)

2 − 1

n

∑
j ̸=k

xt
jxjx

t
kxk −

N2

n
(xtx)2 + 2

N

n
xtx

N∑
i=1

xt
ixi

]
. (4.2)

Here, it is observed that

xtx

N∑
i=1

xt
ixi =

1

N2

∑
i,j,k

xt
ixix

t
jxk =

1

N2

∑
i,j

xt
ixix

t
jxj +

1

N2

∑
i

xt
ixi

∑
j ̸=k

xt
jxk

=
1

N2

N∑
i=1

(xt
ixi)

2 +
1

N2

∑
j ̸=k

xt
jxjx

t
kxk +

1

N2

∑
i

xt
ixi

∑
j ̸=k

xt
jxk, (4.3)

xt

N∑
i=1

xix
t
ix =

1

N2

∑
i,j,k

xt
ixjx

t
ixk =

1

N2

∑
i,j

(xt
ixj)

2 +
1

N2

∑
i

∑
j ̸=k

xt
ixjx

t
ixk

=
1

N2

N∑
i=1

(xt
ixi)

2 +
1

N2

∑
j ̸=k

(xt
jxk)

2 +
1

N2

∑
i

∑
j ̸=k

xt
ixjx

t
ixk. (4.4)

To evaluate N4(xtx)2 =
∑

a,b,c,d x
t
axbx

t
cxd, note that

∑
a,b,c,d =

∑
a=b=c=d +

∑
a=c,b=d,a ̸=b

+
∑

a=c,b̸=d +
∑

a ̸=c,b=d +
∑

a ̸=c,b̸=d,a=b,c=d +
∑

a ̸=c,b̸=d,a=d,b=c +
∑

A, whereA = {(a, b, c, d)|a ̸=
c, b ̸= d} ∩ {(a, b, c, d)|a = b, c = d}c ∩ {(a, b, c, d)|a = d, b = c}c. Then,

N4(xtx)2 =
N∑
i=1

(xt
ixi)

2 + 2
∑
j ̸=k

(xt
jxk)

2 + 2
N∑
i=1

∑
j ̸=k

xt
ixjx

t
ixk

+
∑
j ̸=k

xt
jxjx

t
kxk +

∑
A

xt
axbx

t
cxd. (4.5)
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The last term can be further rewritten as∑
A

xt
axbx

t
cxd = 4

∑
i̸=j ̸=k

(xt
ixix

t
jxk + xt

ixjx
t
ixk) + 4

∑
D

xt
axbx

t
cxd, (4.6)

where
∑

i̸=j ̸=k means that the summation is taken for mutually different i, j, k, and
∑

D

means that the summation is taken for mutually different a, b, c, d.

Substituting these expressions (4.3)-(4.5) into (4.2), we get the expression

â2 = [(n− 1)(n+ 2)p]−1{I1 + I2},

where

I1 =
(
1− 1

n
− 2

N
+

2

nN
+

1

N2
− 1

nN2

) N∑
i=1

(xt
ixi)

2

+
(
− 1

n
+

2

nN
+

1

N2
− 1

nN2

)∑
j ̸=k

xt
jxjx

t
kxk, (4.7)

I2 =
(
1− 2

N
+

2

N2
− 2

nN2

)∑
j ̸=k

(xt
jxk)

2 +
(
− 2

n
+

2

N2
− 2

nN2

) N∑
i=1

∑
j ̸=k

xt
ixjx

t
ixk

+
2

nN

N∑
i=1

∑
j ̸=k

xt
ixix

t
jxk +

( 1

N2
− 1

nN2

)∑
A

xt
axbx

t
cxd. (4.8)

Noting that
∑

j ̸=k x
t
jxjx

t
kxk = (

∑N
i=1 x

t
ixi)

2−
∑N

i=1(x
t
ixi)

2, we can get a simple expression
of I1 as

I1 =
n− 1

N

{ N∑
i=1

(xt
ixi)

2 − 1

N

( N∑
i=1

xt
ixi

)2}
=

n− 1

N

N∑
i=1

{
xt
ixi −N−1

N∑
j=1

xt
jxj

}2
. (4.9)

Also, I2 can be rewritten as

I2 =
n− 1

N
(1 +

2

nN
)
∑
j ̸=k

(xt
jxk)

2 − 2
n2 + 1

nN2

N∑
i=1

∑
j ̸=k

xt
ixjx

t
ixk

+
2

nN

N∑
i=1

∑
j ̸=k

xt
ixix

t
jxk +

n− 1

nN2

∑
A

xt
axbx

t
cxd. (4.10)

The expressions (4.9) and (4.10) are used to evaluate the moments of â2 = [(n − 1)(n +
2)p]−1{I1 + I2}.

[2] Expectation of â2. For the proofs of (2.6) and (2.7), we use the following moment
given in Srivastava, et al . (2013):

E[ztAzztBz] = K4

∑
i=1

aiibii + 2tr [AB] + tr [A]tr [B], (4.11)
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where z = (z1, . . . , zp)
t is a random vector with E[z] = 0, Cov (z) = Ip and E[z4i ] =

K4 + 3, and A = (aij) and B = (bij) are p× p matrices of constants.

To evaluate the terms in (4.9) and (4.10), it can be demonstrated that

N∑
i=1

E[(xt
ixi)

2] =NE[(xt
1x1)

2] = N{K4pa20 + 2tr [Σ2] + (tr [Σ])2} ≡ Nβ, (4.12)

E[(
N∑
i=1

xt
ixi)

2] =E[
N∑
i=1

(xt
ixi)

2 +
∑
j ̸=k

xt
jxjx

t
kxk] = Nβ +Nn(tr [Σ])2, (4.13)∑

j ̸=k

E[(xt
jxk)

2] =NnE[xt
1x2x

t
2x1] = Nntr [Σ2]. (4.14)

It can be also seen that
∑N

i=1

∑
j ̸=k E[xt

ixjx
t
ixk] = 0,

∑N
i=1

∑
j ̸=k E[xt

ixix
t
jxk] = 0 and∑

AE[xt
axbx

t
cxd] = 0 from (4.6). Using these observations, we can evaluate the expec-

taions E[I1] and E[I2] as

E[I1] =(n− 1)N−1{Nβ − β − n(tr [Σ])2} = (n− 1)nN−1{β − (tr [Σ])2}
=(n− 1)nN−1p(K4a20 + 2a2), (4.15)

E[I2] =(n− 1)N−1(nN + 2)tr [Σ2] = (n− 1)N−1(nN + 2)pa2,

which implies that

E[â2] =
n

(n+ 2)N
K4a20 + a2. (4.16)

This was shown in Srivastava, et al . (2013).

[3] Evaluation of I1. We next investigate the order of â2−a2. For I1, it is noted from
(4.9) that I1 > 0. Also from (4.15), E[I1] = O(np). Then from the Markov inequality, we
see that for any ε > 0,

P (I1 > ε) < E[I1]/ε = O(np), (4.17)

which means that I1 = Op(np), namely,

1

(n+ 2)Np

{ N∑
i=1

(xt
ixi)

2 − 1

N

( N∑
i=1

xt
ixi

)2}
= Op(n

−1). (4.18)

[4] Evaluation of (Nnp)−1
∑

j ̸=k(x
t
jxk)

2 − a2. Similarly to (4.17), it can be shown

that
∑

j ̸=k(x
t
jxk)

2 = Op(Nnp), so that

1

N(n+ 2)p
(1 +

2

nN
)
∑
j ̸=k

(xt
jxk)

2 − a2 =
1

Nnp

∑
j ̸=k

(xt
jxk)

2 − a2 +Op(n
−1). (4.19)

Thus, we shall show that

(Nnp)−1
∑
j ̸=k

(xt
jxk)

2 − a2 = Op(n
−1).
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Since E[(Nnp)−1
∑

j ̸=k(x
t
jxk)

2] = a2, it is observed that

E
[{

(Nnp)−1
∑
j ̸=k

(xt
jxk)

2 − a2

}2]
= (Nnp)−2E

[{∑
j ̸=k

(xt
jxk)

2
}2]

− a22. (4.20)

It is here note that∑
a̸=b

∑
c̸=d

(xt
axb)

2(xcxd)
2 = 2

∑
a̸=b

(xt
axb)

4 + 4
∑
a ̸=b ̸=c

(xt
axb)

2(xt
cxb)

2 +
∑
D

(xt
axb)

2(xt
cxd)

2,

where
∑

a̸=b̸=c means that the summation is taken for mutually different a, b, c, and
∑

D

means that the summation is taken for mutually different a, b, c, d. Thus,

E[
1

(Nnp)2

∑
a ̸=b

(xt
axb)

4] =
1

Nnp2
E[(xt

1x2x
t
2x1)(x

t
1x2x

t
2x1)]

=
1

Nnp2
E[K4

p∑
i=1

{(Σ1/2x2x
t
2Σ

1/2)ii}2 + 3(xt
2Σx2)

2]

≤ 1

Nn

{
K4E[(xt

2Σx2)
2]/p2 + 3K4

N∑
i=1

{(Σ2)ii}2/p2 + 6a4/p+ 3a22

}
=O(n−2),

since
∑p

i=1{(Σ
1/2x2x

t
2Σ

1/2)ii}2 ≤ tr [(Σ1/2x2x
t
2Σ

1/2)2] = (x2Σx2)
2. Also,

E[
1

(Nnp)2

∑
a ̸=b ̸=c

(xt
axb)

2(xt
cxb)

2] =
1

Np2
E[(xt

2x1x
t
1x2)(x

t
2x1x

t
1x2)] =

1

Np2
E[(xt

2Σx2)
2]

=
1

n

{
K4

p∑
i=1

{(Σ2)ii}2/p2 + 2a4/p+ a22

}
.

Finally,

E[
1

(Nnp)2

∑
D

(xt
axb)

2(xt
cxd)

2] =
N(N − 1)(N − 2)(N − 3)

(Nnp)2
E[(xt

1x2x
t
2x1)(x

t
3x4x

t
4x3)]

=
(N − 2)(N − 3)

Nnp2
E[xt

1Σx1]E[xt
3Σx3]

=
(N − 2)(N − 3)

Nn
a22 = a22 −

4

n
a22 +O(n−2).

Combining these observations gives that

(Nnp)−2E
[{∑

j ̸=k

(xt
jxk)

2
}2]

− a22 =
1

n

{
K4

p∑
i=1

{(Σ2)ii}2/p2 + 2a4/p
}
+O(n−2)

=O((np)−1) +O(n−2).
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Then from (4.19),

1

N(n+ 2)p
(1 +

2

nN
)
∑
j ̸=k

(xt
jxk)

2 − a2 = Op((np)
−1/2)) +Op(n

−1). (4.21)

[5] Evaluation of â2 − a2. It follows from (4.10), (4.18) and (4.21) that

â2 − a2 =− 2(n2 + 1)

(n− 1)(n+ 2)nN2p

N∑
i=1

∑
j ̸=k

xt
ixjx

t
ixk

+
2

(n− 1)(n+ 2)nNp

N∑
i=1

∑
j ̸=k

xt
ixix

t
jxk

+
1

(n+ 2)nN2p

∑
A

xt
axbx

t
cxd +Op((np)

−1/2)) +Op(n
−1). (4.22)

In (4.22), we shall evaluate the term
∑N

i=1

∑
j ̸=k x

t
ixix

t
jxk, which is

N∑
i=1

xt
ixi

∑
j ̸=k

xt
jxk = 2

∑
j ̸=k

xt
jxjx

t
jxk +

∑
i ̸=j ̸=k

xt
ixix

t
jxk. (4.23)

Since E[
∑N

i=1 x
t
ixi] = Npa1, it follows that

∑N
i=1 x

t
ixi = Op(np). Noting that

E[{
∑
j ̸=k

xt
jxk}2] = 2E[

∑
j ̸=k

(xt
jxk)

2] = 2Nnpa2 = O(n2p),

we can see that
N∑
i=1

xt
ixi

∑
j ̸=k

xt
jxk = Op(n

2p3/2), (4.24)

which gives that

2

(n− 1)(n+ 2)nNp

N∑
i=1

∑
j ̸=k

xt
ixix

t
jxk = Op(n

−2p1/2). (4.25)

On the other hand,

E
[{ ∑

i ̸=j ̸=k

xt
ixix

t
jxk

}2]
=2

∑
i̸=j ̸=k

E[{xt
ixix

t
jxk}2]

=2N(N − 1)(N − 2)E[(xt
1x1)

2]E[(xt
2x3)

2]

=2N(N − 1)(N − 2)βtr [Σ2] = O(n3p3),
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which shows that
∑

i̸=j ̸=k x
t
ixix

t
jxk = Op((np)

3/2). Hence, from (4.23),∑
j ̸=k

xt
jxjx

t
jxk = Op(n

2p3/2)−Op((np)
3/2) = Op(n

2p3/2). (4.26)

Using (4.26), we evaluate the term
∑N

i=1

∑
j ̸=k x

t
ixjx

t
ixk in (4.22), which is

N∑
i=1

∑
j ̸=k

xt
ixjx

t
ixk = 2

∑
j ̸=k

xt
jxjx

t
jxk +

∑
i̸=j ̸=k

xt
ixjx

t
ixk.

Since it can be verified that
∑

i̸=j ̸=k x
t
ixjx

t
ixk = Op((np)

3/2), from (4.26), it is observed
that

N∑
i=1

∑
j ̸=k

xt
ixjx

t
ixk = Op(n

2p3/2), (4.27)

which leads to

2(n2 + 1)

(n− 1)(n+ 2)nN2p

N∑
i=1

∑
j ̸=k

xt
ixjx

t
ixk = Op(n

−1p1/2). (4.28)

Finally, from (4.6),∑
A

xt
axbx

t
cxd =4

∑
i̸=j ̸=k

(xt
ixix

t
jxk + xt

ixjx
t
ixk) + 4

∑
D

xt
axbx

t
cxd

=Op((np)
3/2) +Op(n

2p),

which implies that

1

(n+ 2)nN2p

∑
A

xt
axbx

t
cxd = Op(n

−5/2p1/2) +Op(n
−2). (4.29)

Thus, combining (4.22), (4.21), (4.25), (4.28) and (4.29), we can see that

â2 − a2 = Op(n
−1p1/2) +Op((np)

−1/2). (4.30)

[6] Variance of â1. Concerning the variance of â1, from (4.1),

E[(â1 − a1)
2] =

1

(np)2
E
[
(

N∑
i=1

xt
ixi)

2 +N2(xtx)2 − 2Nxtx

N∑
i=1

xt
ixi

]
− a21.

We can use (4.3), (4.5), (4.12), (4.13) and (4.14) to evaluate the moments of the variance,
and we get

E[(â1 − a1)
2] =

1

(np)2

{n2

N
β +

2n

N
pa2(Nn+

n

N
− 2n)p2a21

}
−a21

=
1

Np
K4a20 +

2

np
a2,
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which is order O((np)−1).

[7] Proof of Lemma 3.1. It is observed that

E[{tr [V Σ]/(np)− a2}2] = E[{tr [V Σ]}2]/(np)2 − a22,

and that {tr [V Σ]}2 =
{∑N

i=1 x
t
iΣxi

}2−2NxtΣx
∑N

i=1 x
t
iΣxi+N2(xtΣx)2. To calculate

the expectation, we can use similar decompositions and evaluations as in (4.3), (4.4), (4.5),
(4.11), (4.12), (4.13) and (4.14). Then, we can prove Lemma 3.1.

5 Concluding Remarks

As invertible and well-conditioned estimators of a large covariance matrix, the plug-in
estimators based on the optimal convex combination of S and a1Ip have been suggested
in the literature. However, the plug-in estimators can not necessarily be guaranteed to
be optimal because there exist correlations between the random weights and S and â1.
In this paper, we have shown that the plug-in estimators are optimal properties within
a class of estimators with random convex combinations in the sense of minimizing the
leading term of the risk approximation. This dominance property has been established
not only for a normal distribution, but also for non-normal distributions. In the case of
non-normal distributions, we have obtained the order of â2 − a2, which is necessary for
proving the dominance property.

Through normal and non-normal distributions, it is seen that â1 − a1 = Op((np)
−1/2).

However, it is harder to evaluate â2 − a2 for non-normal distributions. As shown in
Srivastava (2005), â2−a2 = Op((np)

−1/2)+Op(n
−1) for a normal distribution. In the case

of non-normal distributions, however, â2 − a2 = Op(n
−1p1/2) + Op((np)

−1/2) as shown in
Theorem 2.1. Especially, we need to assume that δ > 1/2 for consistency of â2 in the case
of p ≥ n and n = O(pδ) for 0 < δ ≤ 1. As described in Remark 2.1, we hope that the
order of â2 − a2 will be improved on in a future.
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