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Abstract

This paper proposes a simple microeconometric framework that can sepa-

rately identify moral hazard and selection problems in insurance markets. Our

econometric model is equivalent to the approach that is utilized for entry game

analyses. We employ a Bayesian estimation approach that avoids a partial iden-

tification problem. Due to the standard identification, we propose a statistical

model selection method to detect an information structure that consumers face.

Our method is applied to the dental insurance market in the United States. In

this market, we find not only standard moral hazard but also advantageous se-

lection, which has an intuitive interpretation in the context of dental insurance.

1 Introduction

During the course of the previous decade, empirical studies have been rapidly catching

up with highly developed economic theories of asymmetric information. This paper

proposes a new microeconometric framework to analyze the information problem in

insurance markets. Our main contribution to the extant literature is that we can sep-

arately identify moral hazard and selection problems. This is a clear advantage over

a traditional method that represents information asymmetry as as single parameter.
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In particular, the conventional methodology uses a bivariate probit model for

consumer data, as discussed by Chiappori and Salanié (2000). The two dependent

variables of this model are the purchase of insurance and the occurrence of an accident.

In this approach, the standard asymmetric information problem can be detected as a

positive correlation between these two dependent variables. Specifically, moral hazard

implies that consumers increase their riskiness after they have purchased insurance,

while adverse selection implies that riskier consumers have a stronger demand for

insurance.

In addition to computational simplicity, this bivariate probit model has a nice

property in data availability. This model does not require detailed contract informa-

tion, which may be hard to obtain, but instead relies on variables that are commonly

obtained from general household surveys. Thus, bivariate probit analysis has rapidly

become a popular technique that has been applied to various insurance markets.

However, most empirical investigations have failed to detect a significantly positive

correlation between two dependent variables; in fact, some studies have even found a

negative correlation.

In response to these unexpected results, De Meza and Webb (2001) proposed

an important alternative theory to adverse selection. This theory, which is known

as advantageous selection, states that less risky individuals have a stronger demand

for insurance, due to their risk aversive preference. In contrast to adverse selection,

advantageous selection produces a negative effect of risk on an insurance purchase.

Thus, the conventional bivariate probit approach may not be applicable if both moral

hazard and advantageous selection are present because the distinct and conflicting

effects of these two factors cannot be captured by a single correlation parameter. To

assess the validity of such a theory, one must separately identify the moral hazard and

the selection problems(which mean either adverse selection or advantageous selection).

This task is beyond the scope of the bivariate probit model.

In this paper, we present a new approach that permits the separate identification

of moral hazard and selection problems. We begin our econometric modeling with

adding two terms to the bivariate probit model. These terms allow for moral hazard
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and selection problems to be measured as two distinct coefficient parameters rather

than as a correlation between two dependent variables. Despite the simple appearance

of our approach, our model specification encounters statistical difficulty due to the

existence of mutual dependencies between the dependent variables. It is shown that

we cannot separately identify two coefficients without an additional assumption.

Thus, to overcome this identification problem, we assume the simultaneous deter-

mination of the two dependent variables. This simultaneity assumption introduces

an econometric problem that has been analyzed in the literature of nonlinear simul-

taneous equation models with limited dependent variables, such as Amemiya (1975),

Heckman (1978) and Gouriéroux and Monfort (1979). These works yielded a sta-

tistical problem that is referred to as incoherency by Gouriéroux et al. (1980); this

problem involves the fact that probabilistic models are not well-defined without a

restrictive assumption on parameter values.

To handle the incoherency problem, we adopt an approach that was proposed by

Tamer (2003) and Ciliberto and Tamer (2009) in the literature on empirical analyses of

entry games. These studies introduced a latent variable that formulates a well-defined

probabilistic model. This variable is called a selection rule, because it characterizes

players’ choices among multiple Nash equilibria. However, this approach creates the

incidental parameter problem (Lancaster, 2000), because it is difficult to construct

a consistent estimator for parameters that does not depend on the sample-specific

selection rule. To overcome the incidental parameter problem, Ciliberto and Tamer

(2009) constructed a moment inequality using boundary conditions of the selection

rule. Because the resulting econometric model is partially identified, they employed

a set estimation method of Chernozhukov et al. (2007).

This paper adopts a Bayesian approach that we introduced in a prior study (Sug-

awara and Omori, 2012). A clear distinction between our Bayesian approach and

previous classical methods is that we explicitly estimate the sample-specific variable.

Because the Bayesian estimation approach can work with finite samples, the sample-

specific selection rule is estimable. The lack of the incidental parameter problem

enables us to construct a standard likelihood function rather than a moment inequal-
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ity. Thus, our methodology achieves standard identification, and therefore permits

the use of standard inference techniques.

To demonstrate the advantage of our Bayesian methodology, we propose a way to

answer the empirically important question of what type of an information structure

consumers may face. We show that distinct information structures correspond to non-

nested statistical models. This finding indicates that this question is to be answered

by statistical model selection. However, there has not yet been invented a classical

model selection procedure for our model. On the other hand, our Bayesian estimation

is accompanied with standard model selection techniques.

To provide an empirical application of our approach, we analyze the US dental

insurance market. Our model selection results indicate that moral hazard and ad-

vantageous selection are both present in this market. These findings are intuitively

interpreted as an indication that for dental care, early preventive concerns both re-

duce risk and stimulate insurance demand. The detection of advantageous selection

reveals an advantage of our methodology because this result cannot be derived from

conventional bivariate probit analysis.

Our study relates to three literatures; the econometrics of insurance markets,

Bayesian statistics and empirical analyses of dental care. First, with respect to econo-

metric analyses of insurance markets, this paper supplements two recent streams of

research. One of these research streams discusses the structural estimation approach,

such as Cardon and Hendel (2001) and Einav et al. (2010b), and was summarized

by Einav et al. (2010a). In contrast to the reduced form approach of the bivariate

probit model, the structural approach explicitly models moral hazard and selection

problems to achieve the separate identification. This body of literature continues to

grow because many variations of structural models can exist.

Another growing insurance-related literature is reduced form analyses that are

specialized in the examination of advantageous selection. These studies generally

involve a binary choice analysis in which advantageous selection is detected as an

effect of individual’s risk aversion on the insurance purchase dummy. To measure this

risk aversion, researchers have employed a variety of explanatory variables, such as
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subjective mortality rate by Cawley and Philipson (1999), seat belt use by Finkelstein

and McGarry (2006), and health status and schooling levels, which serves as proxies

for cognitive ability and financial numeracy, by Fang et al. (2008). No consensus has

yet been reached with respect to the appropriate choice of an explanatory variable

among the many candidates.

We believe that our study can complement these recent literatures. Our method-

ology proposes a simple model using commonly available data, while the structural

approaches analyze more sophisticated models using detailed but costly data. Fur-

thermore, our model requires only data regarding the occurrence of an accident, which

is commonly available information, as an explanatory variable to characterize the se-

lection problem. Therefore, one can employ a preliminary analysis using our simple

method, to make an appropriate choice among enormous candidates of models and

explanatory variables.

Second, with respect to Bayesian statistics, there is a growing literature on par-

tially identified models. Theoretically, Moon and Schorfheide (2012) and Kitagawa

(2012) provided theoretical comparisons of the classical and Bayesian estimators. For

the technical concern, Liao and Jiang (2010) proposed an estimation procedure that

applies the Bayesian version of the method of moments in Kim (2002) and Cher-

nozhukov and Hong (2003). Unlike the quasi-Bayesian approach of Liao and Jiang

(2010), our methodology is based on a standard likelihood function that is available

at the cost of a distributional assumption. Because the classical set estimation also

requires the distributional assumption for our model, this assumption seems harmless.

Third, there have been several empirical studies about the information problem

in the US dental insurance market. Previous studies have consistently detected moral

hazard in various datasets from this market, such as Mueller and Monheit (1988) fro

a surveyed dataset and Manning et al. (1985) for an experimental dataset. On the

other hand, selection problems have been regarded as a non-negligible but a difficult

concept to be identified, due to the incoherency problem (Sintonen and Linnosmaa,

2000). An exceptional study is Munkin and Trivedi (2008), which we deeply owe in

our construction of an empirical study.
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The organization of this paper is as follows. In Section 2, we describe relevant

econometric models. Section 3 considers the corresponding inferential frameworks.

The proposed method is applied to the US dental care insurance market in Section

4. Section 5 concludes the paper.

2 The modeling of asymmetric information in insurance

markets

This section presents econometric models for information asymmetry in insurance

markets using consumer data. We begin with the conventional methodology which

utilizes the bivariate probit model. Then we proceed to describe our own framework

which allow for the separate identification of moral hazard and selection problems.

2.1 A conventional modeling: The bivariate probit model

Conventionally, information asymmetry is captured with a bivariate probit model

(Poirier, 1980). This line of studies targets a market of a simple insurance policy that

covers an accident in the following simple reduced-form framework.

The sample consists of N consumers who are indexed as i = 1, 2, ..., N . The

dependent variables are two observable binary variables yi = (yi1, yi2)′, in which

yi1 and yi2 represent the purchase of insurance and the occurrence of an accident,

respectively, for the ith consumer. Further, let y∗ij denote the corresponding latent

variable for the ith consumer. We assume that yij takes unity if y∗ij is non-negative

and that it takes zero otherwise. These latent variables are assumed to be linear

functions of Kj−dimensional observable regressors xij with coefficients βj and an

error term εij .

Bivariate Probit Model:

y∗ij = x′
ijβj + εij , j = 1, 2, (2.1)

yij = I[y∗ij ≥ 0]. (2.2)
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In this bivariate probit model, we can detect standard asymmetric information as a

positive correlation, namely ρ > 0, between y∗i1 and y∗i2 conditional on xi = (x′
i1, x

′
i2)

′.

Specifically, moral hazard indicates that consumers become riskier after they purchase

insurance, while adverse selection implies that riskier consumers are more likely to

purchase insurance. The above framework incorporates an implicit assumption that

only asymmetric information is the source of ρ and no omitted variable affects both

latent variables.

2.2 A new modeling to separately identify moral hazard and selec-

tion problems

2.2.1 A basic parametrization and its lack of identification

Next, we present our original econometric methodology, which separately identifies the

effects of moral hazard and selection problems. To achieve the separate identification

for these two sources of information asymmetry, we introduce two additional elements

into the bivariate probit model in (2.1) and (2.2). One element measures the effect

of the insurance purchase yi1 on the accident occurrence yi2, and another element

measures the effect of yi2 on yi1. The former element indicates moral hazard, while

the latter element represents selection problems. For simplicity, these elements are

modeled as linearly additive terms with coefficient parameters α2 and α1. In other

words,

y∗ij = x′
ijβj + αjyik + uij j = 1, 2, k 6= j, (2.3)

yij = I[y∗ij ≥ 0]. (2.4)

The information structure is now formulated in terms of the signs of α1 and α2. A

positive α2 corresponds to the existence of moral hazard, while a positive or negative

α1 indicates the existence of adverse or advantageous selection, respectively.

As a consequence of the assumption with the bivariate probit that no omitted
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variables exist given xij , the new error term uij is assumed to be independent of uik,

given xi. This assumption indicates that we do not allow for the endogeneity of uij

and yik, and uij can affect yik only via yij . This assumption is reconsidered in the

later empirical portion of this paper to assess the robustness of the robustness of the

proposed approach.

Despite a simple appearance, we cannot employ a straight-forward estimation

procedure for model parameters θ = (β′
1, β

′
2, α1, α2)′. The problem is intuitively

summarized as follows: In (2.3) and (2.4), a dependent variable yi1 appears on the

right-hand side of the equation for yi2, while yi2 appears in the right-hand side of

the equation for yi1. Despite these mutual dependencies, we wish to identify two-way

interactions, α1 and α2, using only one observed pair of dependent variables. Because

of this essential lack of observations, the separate identification cannot be achieved

without an additional assumption. This intuitive argument was formally proved in

the spatial statistics literature Besag (1974), and I summarize this proof in Appendix

A.

2.2.2 A modeling with a simultaneity assumption

To deal with the mutual dependencies, this paper assumes that equations (2.3) and

(2.4) simultaneously hold. Under this assumption, simple calculations yield the fol-

lowing relationships between outcomes and error terms:

zi = 1 ⇔
{
ui1 < −x′

i1β1, ui2 < −x′
i2β2

}
, (2.5)

zi = 2 ⇔
{
ui1 ≥ −x′

i1β1, ui2 < −x′
i2β2 − α2

}
, (2.6)

zi = 3 ⇔
{
ui1 < −x′

i1β1 − α1, ui2 ≥ −x′
i2β2

}
, (2.7)

zi = 4 ⇔
{
ui1 ≥ −x′

i1β1 − α1, ui2 ≥ −x′
i2β2 − α2

}
. (2.8)

For notational simplicity, we define a scalar variable zi = 1, 2, 3 or 4 that corre-

sponds to (yi1, yi2) = (0, 0), (1, 0), (0, 1) or (1, 1), respectively.

The simultaneity assumption can overcome the mutual dependencies of depen-
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dent variables, but this assumption introduces another econometric problem that

Gouriéroux et al. (1980) referred to as incoherency. In our situation, the incoherency

problem indicates that the probabilistic model is not well-defined unless there exists

j such that αj = 0. To observe this issue, in Figure 1, we illustrate the above corre-

spondence (2.5) - (2.8) with assuming that αj 6= 0 for neither j = 1 nor j = 2 on the

coordinates of (ui1, ui2).

Region 3

zi = 3

Region 4

zi = 4

Region 1

zi = 1

Region 2

zi = 2

Region 5
zi = 2
or 3

(−x′
i1β1,−x′

i2β2)

(−x′
i1β1 − α1,−x′

i2β2 − α2)

Region 1

zi = 1 Region 2

zi = 2

Region 3

zi = 3

Region 4

zi = 4

Region 5

No
Outcome

(−x′
i1β1,−x′

i2β2 − α2)

(−x′
i1β1 − α1,−x′

i2β2)

α1 < 0, α2 < 0 α1 < 0, α2 > 0

ui2

ui1

ui2

ui1

Figure 1: Data generating process for basic parametrization in (ui1, ui2) coordinates

Figure 1 represents two cases, namely (α1 < 0, α2 < 0) in the left side of the figure

and (α1 < 0, α2 > 0) in the right side of the figure. The remaining two sign conditions,

(α1 > 0, α2 > 0) and (α1 > 0, α2 < 0), can yield similar econometric models

and are therefore not shown in the figure. In both of the depicted cases, Regions 1

thorough 4 have a unique pair of outcomes, but Region 5 does not. In particular,

for (α1 < 0, α2 < 0), there are two candidate solutions (yi1, yi2) = (1, 0) or (0, 1),

while for (α1 < 0, α2 > 0), there is no possible pair of outcomes. Because Region 5

does not produce unique outcomes, it is impossible to obtain well-defined joint choice

probabilities unless Region 5 vanishes by assuming the coherency condition, namely
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∃j, αj = 0.

Recently, this incoherency problem has gathered a new attention, because (2.3)

and (2.4) are equivalent to the best response functions for a general class of entry

games. To address the incoherency problem, researchers who study entry games

explicitly modeled a data generating process in Region 5 using sample-specific pa-

rameters pi = (pi1, pi2, pi3, pi4) ∈ [0, 1]4 with
∑4

l=1 pil = 1, which are called selection

rules. Each selection rule pil represents a proportion of Region 5 within which each

pair of outcomes is realized. Consequently, the choice probability can be written as

follows:

Pr[zi = l|xi, θ, pil] = Pl(xi, θ) + pilP5(xi, θ), (2.9)

where Pl(xi, θ) measures an area of Region l in Figure 1. Because the choice proba-

bilities for zi = 1, 2, 3 and 4 sums to unity, the suggested approach has successfully

created a well-defined probabilistic model.

2.2.3 The justification of the simultaneity assumption

The simultaneity assumption requires additional restrictions on the underlying eco-

nomic model. A natural candidate of for this type of behavioral models is the following

individual optimization process.

Before consumers actually make an insurance purchase, they seek their best be-

havior using a feedback loop. To begin with, these consumers receive hypothetical

draws for the error terms ui1 and ui2. They determine a hypothetical value for yi1,

whether to purchase insurance, given either value of yi2. Then, these consumers eval-

uate their hypothetical predictions for the future occurrence of an accident, yi2, based

on this insurance purchase. Furthermore, they reconsider their purchasing decision

based on this updated prediction. This feedback loop continues until consumers reach

a steady state in which equations (2.3) and (2.4) are simultaneously satisfied. This

equilibrium behavior is realized as consumers’ final decisions to purchase insurance.

In entry game models, the incoherency problem is caused by the possible lack of
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a uniqueness of Nash equilibrium. In our context, the incoherency can be interpreted

as an issue that corresponds to the non-uniqueness of the best action. If one draws

hypothetical values of ui1 and ui2 that are located in Region 5, there is no unique

steady state for the feedback loop. In this region, the case of (α1 < 0, α2 < 0)

involves multiple possible combinations of the insurance purchase decision and the

corresponding accident occurrence, while there is no best action for the case of (α1 <

0, α2 > 0).

3 Bayesian inferential technique

This section is concerned with a Bayesian inferential procedure. We implement our

estimation using the Markov chain Monte Carlo(MCMC) algorithm, whose technical

details are provided by Sugawara and Omori (2012).

3.1 Properties of Bayesian estimation

Our Bayesian methodology differs from the previous approach to the identification

status. In the previous classical approach, the sample specific selection rule produces

partial identification. On the other hand, in our Bayesian approach, the selection

rule parameter is explicitly estimated. This approach is feasible because Bayesian

estimation can work with finite samples. Thus, our method can avoid both the

incidental parameter problem and the partial identification problem.

In spite of the clear difference in identification status between the classical and

Bayesian approaches, underlying statistical setup of the Bayesian approach is similar

to the setup for a moment inequality. To express the lack of an economic theory

regarding the selection rule, we put a uniform prior distribution over [0, 1] to the

selection rule parameter. Besides, the likelihood function can only provide information

from one sample with respect to this sample specific variable. Due to this small

sample size, we should obtain a posterior distribution that might vary greatly from

the uniform prior for the selection rule. Thus, the Bayesian approach should employ

a similar setup to the moment inequality, in which the selection rule is equal likely to
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be any value on [0, 1].

A disadvantage of the Bayesian method is that it requires a distributional as-

sumption. Unlike the classical estimation which is based only on moment conditions,

Bayesian estimation requires a distributional assumption to ensure the existence of

a well-defined likelihood function1. However, the classical estimation approach of

Ciliberto and Tamer (2009) also requires a distributional assumption because their

estimator was defined via simulations. Therefore, this assumption does not appear to

be greatly harmful to the proposed approach in our situation.

3.2 Model selection for assessing an information structure

An advantage of our method is the flexibility of inferences. Because our approach

features standard identification, out Bayesian estimation is accompanied with stan-

dard inference techniques; several of these techniques have not yet been created in

the classical set estimation literature. Specifically, we use model selection in a key

empirical analysis of this paper.

In empirical analyses of insurance markets, it is important to detect the informa-

tion structure that consumers face. In (2.3) and (2.4), we formulate the information

structure as sign conditions for (α1, α2). However, it is difficult to construct a t-type

statistics to detect the sign conditions, because distinct sign conditions for (α1, α2)

produce non-nested statistical models.

To observe this fact, we demonstrate that choice probabilities have different func-

tional forms under distinct sign conditions. To prove this argument, we concentrate

on the differences in choice probabilities for zi = 2 and zi = 3 in the two cases of

(α1 < 0, α2 < 0) and (α1 < 0, α2 > 0). From (2.9) and Figure 1, for (α1 < 0, α2 < 0),

1In their comparison of classical and Bayesian estimators for partially identified models, Moon
and Schorfheide (2012) adopt a distributional assumption only for Bayesian estimation
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we obtain the following expressions:

Pr(zi = 2|θ, pi) = P2(xi,θ) + pi2P5(xi, θ) ≤ P2(xi, θ) + P5(xi, θ)

= Pr(ui1 ≥ −x′
i1β1, ui2 < −x′

i2β2 − α2), (3.1)

Pr(zi = 3|θ, pi) = P3(xi,θ) + pi3P5(xi, θ) ≤ P3(xi, θ) + P5(xi, θ)

= Pr(ui1 < −x′
i1β1 − α1, ui2 ≥ −x′

i2β2), (3.2)

while for (α1 < 0, α2 > 0), we have the following expressions:

Pr(zi = 2|θ, pi) = P2(xi, θ) + pi2P5(xi, θ) ≥ P2(xi, θ)

= Pr(ui1 ≥ −x′
i1β1, ui2 < −x′

i2β2 − α2), (3.3)

Pr(zi = 3|θ, pi) = P3(xi, θ) + pi3P5(xi, θ) ≥ P3(xi, θ)

= Pr(ui1 < −x′
i1β1 − α1, ui2 ≥ −x′

i2β2). (3.4)

Inequalities (3.1) and (3.3) imply that Pr(zi = 2|θ, pi) can be equal for these

two cases only if pi2 = 1 for (α1 < 0, α2 < 0) and pi2 = 0 for (α1 < 0, α2 > 0).

However, these conditions indicates pi3 = 0 for (α1 < 0, α2 < 0) and pi3 = 1 for

(α1 < 0, α2 > 0). Thus, given inequalities (3.2) and (3.4), these conditions imply

that Pr(zi = 3|θ, pi) can not be equal in the two cases. This reasoning indicates that

choice probabilities are differently formulated under distinct sign conditions. Distinct

choice probabilities produce different functional forms of likelihood functions, and

hence different statistical models. Thus, the models are not nested, and we need

model selection to determine an appropriate information structure.

With respect to model selection, we have the following candidates of models. First,

we have the following four models which require a selection rule approach:
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Model NN: α1 < 0, α2 < 0,

Model NP: α1 < 0, α2 > 0,

Model PN: α1 > 0, α2 < 0,

Model PP: α1 > 0, α2 > 0,

with (2.3) and (2.4). Additionally, there are following three models with coherent

conditions:

Model CI: α1 = 0, α2 = 0,

Model MH: α1 = 0, α2 ∈ R,

Model AS: α1 ∈ R, α2 = 0,

with (2.3) and (2.4). In the above expressions, CI, MH and AS represent complete in-

formation, moral hazard and “adverse or advantageous” selection, respectively. Mod-

els CI, MH and AS are estimated using standard Gibbs samplers, as seen in Koop et al.

(2007). Furthermore, we note that the bivariate probit model with zero correlation

reduces to Model CI.

Although Models NN, NP, PN and PP are not mutually nested, each of these

models is nested within the coherent models CI, MH and AS. Thus, if prior knowl-

edge could narrow our focus to a hypothesis regarding whether a specific information

structure exists, we could conduct not only model selection but also a t-type testing.

However, without such powerful knowledge, model selection is necessary to detect the

information structure that consumers face.

3.3 Identification

For identification, we depend on a distributional assumption regarding error terms

(ui1, ui2). By combining this distributional assumption with functional forms in (2.3)
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and (2.4), we can calculate a closed-form expression of Pl(xi,θ) for each l. There-

fore, we can obtain a well-defined likelihood function and achieve identification. On

the other hand, Ciliberto and Tamer (2009) derived a nonparametric identification

condition using an argument of identification at infinity, unlike our parametric iden-

tification.

In our Bayesian approach, the distributional assumption is required not only for

identification, but also for estimation. Besides, as mentioned before, a nonparametric

estimation method has not yet been created within this context. Thus, from a prac-

tical perspective, our parametric identification appears to be relatively innocuous to

our approach.

4 An empirical analysis of the US dental insurance mar-

ket

In this section, we apply our methodology to the US dental care insurance market.

This market is ideal for our research because in this market, the dependent variables

take stable and modest values. In the U.S., both the rate of dental insurance coverage

and the proportion of individuals who experience at least one dental visit per year,

which we define as the occurrence of an accident, are consistently at approximately

50 % (Manski et al., 2002). These numbers might indicate the robustness of our

dependent variables to unobserved shocks. We note that in the context of health

insurance, moral hazard can produce positive impacts both for both an individual

and for society, because frequent visits to a doctor might help identify illness in its

early stages.

Our empirical study is influenced by Munkin and Trivedi (2008). They exam-

ined the American dental insurance market by a switching regression model using a

Bayesian approach. Their analysis adopted insurance purchase and the number of

dental visits as the “treatment” and the main outcome variables, respectively. This

approach had two parameters to indicate information asymmetry. One parameter

was the coefficient parameter of the effect of the insurance purchase on the accident
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occurrence. This specification is similar to our parametrization for moral hazard.

Another parameter in Munkin and Trivedi (2008) was a correlation, which could be

affected by both moral hazard and selection problems. Our study has an advantage

that selection problems are explicitly represented by a coefficient parameter that is

independent from influences of moral hazard. With the other topics that are common

between the current investigation and the work of Munkin and Trivedi (2008), our

estimation results generally correspond to their persuasive findings. This correspon-

dence provides supporting evidence of the validity of our methodology.

4.1 Data

We construct a dataset in a similar manner to Munkin and Trivedi (2008). We

use data from the 2004 wave of the Medical Expenditure Panel Survey(MEPS). The

MEPS is a rotating panel dataset that consists of five interviews during a year for each

sample individual. We restrict our samples to privately-employed workers who are

between 25 to 65 years of age. Self-employed individuals and governmental workers

are eliminated because these two groups typically feature peculiar insurance coverage

statuses. Our sample size is 5090.

Two dependent dummy variables for this study are defined as follows. First,

the accident occurrence dummy takes unity if a sampled individual obtains a dental

care at least once during the survey period. Second, the insurance purchase dummy

takes unity if a consumer possesses dental insurance at the time of the first interview.

Although the MEPS is panel data, we only use information from a respondent’s

first interview and ignore the remaining interviews to avoid a confusion due to time

inconsistency. We also adopt this approach for the time-variant explanatory variables

that are defined below.

We choose our explanatory variables from the four categories: demographic,

health-related, geographic and insurance-purchase-specific considerations. Table 1

indicates descriptive statistics for these variables. Our sample is similar to that of

Munkin and Trivedi (2008), who used the MEPS data from 1996 to 2000. Several

notes regarding the definitions of explanatory variables are provided in the following
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Mean S.D.
Insurance purchase (y1) 0.537 ( 0.499 )
1 or more Dental visit (y2) 0.550 ( 0.498 )
3 or more Dental visits 0.294 (0.456)
30 ≤ Age < 35 0.140 ( 0.347 )
35 ≤ Age < 40 0.153 ( 0.360 )
40 ≤ Age < 45 0.156 ( 0.363 )
45 ≤ Age < 50 0.146 ( 0.354 )
50 ≤ Age < 55 0.119 ( 0.324 )
55 ≤ Age < 60 0.085 ( 0.278 )
60 ≤ Age < 65 0.034 ( 0.181 )
Afro-American 0.133 ( 0.339 )
Hispanic 0.222 ( 0.416 )
Married 0.634 ( 0.482 )
Family Size 3.106 ( 1.540 )
Schooling years 12.910 ( 3.113 )
Income 38.654 ( 30.810)
Female 0.487 ( 0.500 )
Age × Female 2.054 ( 2.228 )
Very good health 0.328 ( 0.469 )
Good health 0.275 ( 0.446 )
Fair or poor health 0.105 ( 0.306 )
# Chronic conditions 0.485 ( 0.768 )
Northeast 0.158 ( 0.365 )
Midwest 0.203 ( 0.402 )
South 0.400 ( 0.490 )
MSA 0.827 ( 0.379 )
Firm size 13.617 ( 17.988)
N 5090

Table 1: Descriptive Statistics

paragraph.

With respect to the demographic variables, consumer ages are represented by

dummy variables that correspond to five-year categories. One category, “29 years

old or younger”, is excluded from the set of explanatory variables as a reference.

For health variables, self-reported health status is included in terms of the following

categorical dummies: “Very good”, “good” and “fair or poor”. “Excellent” is the ref-

erence category. In addition, we include a respondent’s number of chronic conditions,

namely diabetes, asthma, high blood pressure, coronary heart disease, emphysema

and arthritis. There are two types of geographic variables. One group consists of lo-
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cation dummies in which “west” is the reference category, while another geographical

variable is a dummy variable that takes unity if a consumer lives in a metropolitan

statistical area. Finally, the firm size, which might have an effect on available insur-

ance plans but not on dental visits, is adopted as an explanatory variable only for the

insurance purchase.

4.2 Empirical results

We employ the Bayesian methodology using the MCMC method. Detailed procedures

regarding this approach is found in Sugawara and Omori (2012). We also estimate

the bivariate probit model to allow for comparisons between my approach and the

conventional methodology.

We need a distributional assumption for error terms. For the bivariate probit

model, we adopt a standard assumption of the normal error terms with unit variances

and a correlation ρ. For the other models of this study, we assume the standard normal

distribution for error terms. Distributions other than the normal distribution can be

utilized, because the only requirement for the distributional assumption is that it

must define the area probability Pk(xi, θ).

We use the same hyperparameters for distinct schemes in the following manner.

The prior covariance matrix for θ is set as an orthogonal matrix. Its diagonal elements,

or prior variances, are assumed to be 10 for both β and α, reflecting the lack of prior

information regarding these parameters. The prior means for β1 and β2 are set to

zero. The prior means of αj depends on the domain of this variable in each model.

In particular, for models without constraints for αj , the prior mean is set to zero.

For models with constraints of αj < 0 or αj > 0, the prior means are set to −1 or

1, respectively. For the selection rule p, we set hyperparameters such that the prior

distribution is the uniform distribution. For the correlation parameter in the bivariate

probit model, we performed the Fisher transformation and utilize the normal prior

distribution with mean 0 and variance 10 for the transformed value.

For all models, we generate 10,000 posterior samples after discarding 5,000 initial

samples as the burn-in period. In the posterior sampling for Models NN, NP, PN
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and PP, because the dimensions of β1 and β2 are large, we separately generate each

element of the coefficient vectors.

4.2.1 The model selection results

(1) (2) (3)
DIC Likelihood DIC Likelihood DIC Likelihood

NN 12406 -6154.4 11596. -5749.0 12407 -6154.4
NP 12289 -6093.0 11509. -5703.7 12296 -6095.5
PN 12319 -6109.1 11559. -5729.6 12441 -6177.5
PP 12299 -6099.3 11538. -5718.3 12299 -6099.4
CI 12403 -6152.4 11592. -5747.1
AS 12327 -6113.1 11557. -5728.6 12334 -6117.4
MH 12307 -6103.9 11535. -5717.4
Bivariate Probit 12335 -6117.8 11559. -5730.1

Table 2: Model selection via DIC and likelihood at posterior mean
(1) is our basic result and (2) and (3) are results for robustness check. (2) uses an alter-
native definition for the accident dummy, and (3) adopts the alternative parametriza-
tion for selection problems.

The first two columns of Table 2 illustrate the model selection results. The first

column of Table 2 presents the deviance information criterion (DIC) of Spiegelhalter

et al. (2002). In the second column, we present values of the likelihood function

evaluated at the posterior means in the second column, to indicate the goodness of

fit of the examined models.

Both of these criteria indicate that Model NP is the most appropriate model for

the assessed situation. This selected model exhibits the existence of moral hazard and

advantageous selection. The detection of moral hazard is consistent to the findings

of previous studies. On the other hand, our important contribution is the discovery

of advantageous selection. This advantageous selection is intuitively interpreted in

the context of the dental insurance in the following manner. Dental illness is often

a result of the chronic accumulation of damage to teeth. Thus, individuals might

decide to purchase dental insurance before they actually need serious dental care. In

other words, people with early preventive concerns, individuals who purchase dental

insurance may be concerned about early preventive issues. These individuals will
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have a lower risk of dental problems than individuals who may less vigilant about

their dental health.

The uniqueness of our finding is reinforced when we compare our results with the

results from the conventional method. In the bivariate probit estimation, the pos-

terior mean for the correlation parameter ρ is 0.129 and its 95% credible interval is

[0.089, 0.168]. Thus, the posterior probability of ρ > 0 is greater than 0.95. This

result implies that the conventional methodology found evidence of standard asym-

metric information, moral hazard and/or adverse selection. However, the conventional

approach cannot detect advantageous selection that was found by our methodology.

Given the bivariate probit model is outperformed by Model NP in Table 2, it appears

likely that our dataset actually contains advantageous selection. In summary, our

methodology has the potential power to shed a new light on information asymmetry

which have remained hidden in the previous investigations.

4.2.2 Coefficient estimation results

Based on the above model selection result, we present detailed estimation results

for Model NP. Figures 3, 4 and 5 in Appendix C depict the paths of the posterior

samples that mix well and are stable. The convergences of α1 and α2 appear to be

relatively slow, but their inefficiency factors, which measures the sampling efficiency,

as discussed in Chib (2001), are 228 and 229. This result indicates that we obtained

43 (10,000 / 229 = 43.67) hypothetical uncorrelated samples to conduct statistical

inferences. We have sufficiently large acceptance rates of more than 0.95 for all the

model parameters to guarantee the efficiency of our Metropolis-Hastings algorithm.
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Table 3 shows the estimation results for the coefficient parameters of Model NP.

The effects of the health status variables are generally compatible to the effects that

were found by Munkin and Trivedi (2008). In particular, self-reported health vari-

ables, “Fair and poor” and “Good” status, produce negative effects on insurance

purchase compared to the reference category of excellent health. This result supports

the notion of advantageous selection, which states that healthier people are more

likely to purchase dental insurance. However, this type of reasoning does not hold

for chronic illnesses, which have a positive effect on dental insurance purchase. With

respect to the dental visit, all of the examined health variables have only minor im-

pacts. This result might indicate that dental health is not strongly correlated with

general health status.

An examination of the demographic variables reveals that age categories have mi-

nor effects on the insurance purchase. People who are older than 45 years of age

receive dental care more frequently than younger people. This phenomenon may re-

flect the fact that dental illness is generally caused by damages that has accumulated

over time. The positive effects of education both on the insurance purchase and

on dental visits implies that a positive relationship exists between cognitive ability

and each of these behaviors. Being female has positive effects on both the insurance

purchase and dental visits, while an interaction term between gender and age have

negative effects on dental visits. These results indicate the presence of gender-based

differences in consumer behaviors. For racial variables, we observe the same interest-

ing results as in Munkin and Trivedi (2008) where Hispanics are the least likely to

purchase dental insurance while African-Americans are the least likely to visit a den-

tist. Furthermore, employees of larger firms are more likely to have dental insurance,

which might indicate the generosity of larger firms with respect to the provision of

benefits.
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4.3 Robustness check

4.3.1 The exclusion of checkups: An alternative definition of accident

occurrence

In our empirical analysis, we define the accident occurrence dummy such that it

takes unity if a consumer visits a dentist at least once annually. However, there is a

possibility that this definition reflects checkups, which are offered for free by many

dental insurance contracts. If these free checkups provided a direct motivation to

visit a doctor, our economic model would not be directly related to the information

problem.

To resolve this issue, we introduce an alternative variable definition to exclude

a checkup visit. Specifically, we redefine the accident dummy to take unity if a

respondent engages in at least three dentist visits during a year. We then conduct

model selection using this new variable. The third and fourth columns of Table 2

show the result of this model selection. Both criteria again select the model with

moral hazard and advantageous selection. This result supports the robustness of our

findings.

4.3.2 Endogeneity in error terms

In section 2.2, we assume that there is no endogeneity in the error terms on equations

(2.3) and (2.4). Although this assumption directly corresponds to the bivariate probit

model’s assumption that no omitted variables exist, we can relax this condition by

introducing a correlation between the error terms (ui1, ui2). The ability to relax this

condition is an advantage of our methodology relative to the bivariate probit model,

which strictly eliminate any correlation pattern other than information asymmetry.

In practice, we assume that (ui1, ui2) follows a bivariate normal distribution with

unit variances and the correlation parameter ρu ∈ [−1, 1]. Except for the inclusion

of this correlation term, we utilize the same setting that were used for our basic

estimation. The MCMC sampling for the new parameter ρu is implemented for its

Fisher transformation to enlarge the support for this parameter to the the set of all
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real numbers. The prior distribution for this transformed version of ρu is set to be a

normal distribution N(0, 10).

Using this setting, we employ an additional estimation for the Model NP, which

was selected in our basic analysis. The resulting 95% credible interval for the estimates

for ρu is [−0.536, 0.084]. Because this credible interval contains zero, this result

provides supporting evidence for our basic framework, which lacks the endogeneity

between the error terms.

4.3.3 An alternative parametrization for selection problems

This subsection provides an alternative parametrization to characterize the selection

problems. In (2.3) and (2.4), selection problems are measured in terms of an effect of

the accident occurrence yi2 on the insurance purchase, yi1. Apparently, this specifica-

tion appears to exhibit an reverse causality, because an accident, which should occur

after the insurance purchase, affects a purchase decision. Alternately, we can define

selection problems as an effect of the latent variable y∗i2 on the insurance purchase,

leaving all other aspects of the proposed approach unaltered.

Alternative parametrization:

y∗i1 = x′
i1β1 + α1y

∗
i2 + ui1. (4.1)

y∗i2 = x′
i2β2 + α2yi1 + ui2. (4.2)

yij = I[y∗ij ≥ 0]. (4.3)

This modeling appears to be more natural than the basic parametrization. How-

ever, under the behavioral assumption of Section 2.2.3, the apparent reverse causality

is not truly a logical fallacy under the simultaneity assumption. Because the feed-

back loop is considered only in consumers’ mind, the accident occurrence which is

used for their decision making is not actual but instead represent hypothetically pre-

dicted values. Thus, variables yi2 and y∗i2 contain the same amount of information. In

particular, these variables represent hypothetical draws of (ui1, ui2). This reasoning

indicates that the basic and alternative parameterizations of the suggested approach
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are based on the same economic model for describing consumer behavior.

Similar to the basic parametrization, the alternative parametrization has mutual

dependencies between its two dependent variables. It still requires an additional as-

sumption to identify moral hazard and selection problems separately, as shown in Ap-

pendix A. We again adopt the simultaneity assumption and address the incoherency

problem2. The correspondences between outcomes and error terms are as follows.

zi = 1 ⇔
{
ui1 + α1ui2 ≤ −x′

i1β1 − α1x
′
i2β2, ui2 ≤ −x′

i2β2

}
, (4.4)

zi = 2 ⇔
{
ui1 + α1ui2 ≥ −x′

i1β1 − α1x
′
i2β2 − α1α2, ui2 ≤ −x′

i2β2 − α2

}
,

(4.5)

zi = 3 ⇔
{
ui1 + α1ui2 ≤ −x′

i1β1 − α1x
′
i2β2, ui2 ≥ −x′

i2β2

}
, (4.6)

zi = 4 ⇔
{
ui1 + α1ui2 ≥ −x′

i1β1 − α1x
′
i2β2 − α1α2, ui2 ≥ −x′

i2β2 − α2

}
.

. (4.7)

B

A

DC

α1 < 0, α2 < 0

Region 1 Region 2 Region 3

Region 7
zi = 1

Region 8
zi = 3

Region 9
zi = 3

zi = 2 zi = 2 zi = 4

Region 4

zi = 1 or 2

zi = 2 or 3

Region 5

zi = 3 or 4

Region 6 A

B

CD

α1 < 0, α2 > 0

Region 1 Region 2 Region 3

Region 7
zi = 1

Region 8
zi = 1

Region 9
zi = 3

zi = 2 zi = 4 zi = 4

Region 4

No Outcome Region 5

Region 6

No Outcome

No
Outcome

Figure 2: Data generating process for alternative parametrization in (ui2, ui1) coor-
dinates

Figure 2 illustrates the above correspondences (4.4) - (4.7) on the coordinates of
2This is listed by Maddala (1983, p.119) as an example of incoherent econometric models.
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(ui2, ui1). We concentrate on the two cases (α1 < 0, α2 < 0) and (α1 < 0, α2 > 0).

The four lines in Figure 2 are defined as:

A : ui1 + α1ui2 = −x′
i1β1 − α1x

′
i2β2, (4.8)

B : ui1 + α1ui2 = −x′
i1β1 − α1x

′
i2β2 − α1α2, (4.9)

C : ui2 = −x′
i2β2, (4.10)

D : ui2 = −x′
i2β2 − α2. (4.11)

For both cases, Regions 1, 2, 3, 7, 8 and 9 have a unique pair of outcomes, while

Regions 4, 5 and 6 lack this trait. We refer to regions without a unique pair of

outcomes as nonsingular regions. The coherency condition is ∃j, αj = 0, which make

the two lines A and B to be equivalent. If this condition is not satisfied, we again

introduce selection rules. If Region k is nonsingular, the data generating process can

be modeled using pik = (pik1, pik2, pik3, pik4) ∈ [0, 1]4 with
∑4

l=1 pikl = 1. In this

expression, pikl represents a proportion of Region k for the outcome zi = l. Thus, we

obtain the following choice probability for zi = l:

Pr[zi = l|xi, θ, pi] =
∑

k:zi=l uniquely
Pk(xi, θ) +

∑
k: nonsingular

piklPk(xi, θ), (4.12)

where Pk(xi,θ) measures an area of Region k in Figure 2 and pi is a vector with

elements pikl for all the nonsingular k and l = 1, 2, 3 and 4. Appendix B provides

further details regarding the Bayesian estimation for this alternative parametrization.

For model selection, certain models with a coherency restriction are the same in

the basic and alternative parameterizations. Specifically, these two parameterizations

share the same Models CI and MH but have different Model AS. Accordingly, the

alternative parametrization produces five new models:
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Model NN, alternative parametrization: α1 < 0, α2 < 0,

Model NP, alternative parametrization: α1 < 0, α2 > 0,

Model PN, alternative parametrization: α1 > 0, α2 < 0,

Model PP, alternative parametrization: α1 > 0, α2 > 0,

Model AS, alternative parametrization: α1 ∈ R, α2 = 0,

with (4.1), (4.2) and (4.3).

A clear disadvantage of the alternative parametrization is its computational bur-

den relative to the basic parametrization. The models of the alternative parametriza-

tion require many selection rules, which slow down the convergence of our estimation

algorithm. We generate different numbers of posterior samples for distinct models to

ensure that each Markov chain mixes well. For Model AS, we generate 10,000 poste-

rior samples after discarding 5,000 initial samples as the burn-in period. For Models

NN and PP of the alternative parametrization, we run 20,000 iterations after a burn-

in of 20,000 iterations. For Models NP and PN with the alternative parametrization,

we generate 50,000 posterior samples after 20,000 burn-in iterations.

The fifth and sixth columns of Table 2 show the results of model selection. For

both model selection criteria, Model NP with the basic parametrization outperforms

all of the models that are generated with the alternative selection mechanism. More-

over, Model NP remains the best of the models of the alternative parametrization.

This result indicates the robustness of our model selection result for the information

structure of the U.S. dental insurance market.

5 Conclusion

This paper has proposed an econometric methodology to analyze moral hazard and

selection problems separately in insurance markets. We adopted a Bayesian approach

to detect the information structure that consumers face. Our empirical study has
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shown that moral hazard and advantageous selection are present in the US dental

insurance market.

Our method can have a good synergy effect in combination with structural ap-

proaches. For example, our results indicate that we can concentrate on structural

models with moral hazard and advantageous selection for the purpose of analyzing

the U.S. dental insurance market.
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A A proof for impossibility of the separate identification

without additional assumption

This appendix provides a formal proof for the statement that from equations (2.3) and

(2.4) alone, we cannot separately identify α1 and α2. We also provide a correspond-

ing proof for the alternative parametrization that is defined by equations (4.1), (4.2)

31



and (4.3) in the later portion of this appendix. To deal with mutual dependencies of

dependent variables without an additional assumption, there is a modeling methodol-

ogy called the conditional specification in spatial statistics. As mentioned by Anselin

(2003), the conditional specification handles the exogenous effects of the conditioned

variable, which are not explained by an underlying economic model. Accordingly, the

conditional specification is suitable for a reduced-form analysis, if feasible.

A conditional specification begins with defining the conditional distributions yj

given yk, namely yj |yk, for j, k = 1, 2 and j 6= k. A main difficulty of the conditional

specification is that we do not always have a corresponding joint distribution for given

conditional distributions. To obtain a well-defined multivariate statistical model, we

must recover the joint distribution for dependent variables from conditional distri-

butions. This recoverability is known as compatibility and has been actively studied

(Arnold et al., 1999).

To analyze the compatibility, we follow an argument presented by Besag (1974)

and summarized by Cressie (1993). It is difficult to assess the compatibility directly in

general distributions. Instead, we first assume that we have compatible conditionals

and then consider the necessary conditions for the compatibility. Specifically, we

begin our discussion with assuming that we have conditional distributions for y1|y2

and y2|y1, and that there exists a corresponding joint distribution for (y1, y2). At

this stage, the discussion is completely nonparametric, in the sense that it does not

requires specific distributional nor functional assumptions but only relies on the fact

that the binary variables y1 and y2 are mutually dependent. We assume that y = 0

occurs with a positive probability. Let us then define a negpotential function Q as

Q(y) = log[Pr(y)/Pr(y = 0)]. Besag (1974) provided the following two fundamental

theorems:

Theorem 1

For compatible conditional distributions, the following relationship hold:

Pr(yj |yk)
Pr(yj = 0|yk)

=
Pr(y)

Pr(yj = 0, yk)
= exp[Q(y) − Q(yj = 0, yk)]. (A.1)
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Theorem 2

Q can be expanded as follows:

Q(y) = y1G1(y1) + y2G2(y2) + y1y2G12(y1, y2), (A.2)

where G· and G·· are uniquely determined if we define Gj(yj) = 0 when yj = 0 and

G12(y1, y2) = 0 when y1 = 0 or y2 = 0.

In words, Theorem 1 indicates the relationship among the conditional distribu-

tion, the joint distribution and the negpotential function, while Theorem 2 provides

a unique decomposition of the negpotential function. In our context, Theorem 2

specifies the unique negpotential function as follows:

Q(y) = y1G1(1) + y2G2(1) + y1y2G12(1, 1). (A.3)

By letting µj = Gj(1) and γ = G1,2(1, 1), we have:

Q(yj = 1, yk) − Q(yj = 0, yk) = ykGk(1) + Gj(1) + ykG12(1, 1) − ykGk(1)

= µj + γyk. (A.4)

Applying Theorem 1, we obtain conditional distributions explicitly as:

1 − Pr(yj = 0|yk)
Pr(yj = 0|yk)

=
Pr(yj = 1|yk)
Pr(yj = 0|yk)

= exp[Q(yj = 1, yk) − Q(yj = 0, yk)]

= exp[µj + γyk]. (A.5)
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These distributions produce the following relationships:

Pr(yj = 0|yk) =
1

1 + exp[µj + γyk]
, (A.6)

Pr(yj = 1|yk) =
exp[µj + γyk]

1 + exp[µj + γyk]
. (A.7)

Finally, letting µj = x′
jβj , we have the following conditional probability:

Pr(yj |yk) =
yj{exp[x′

jβj + γyk]}
1 + exp[x′

jβj + γyk]
, j = 1, 2, k 6= j. (A.8)

Because γ does not depend on either j or k, the above equation implies that the

effect of yk on the conditional distribution for yj is the same as the effect of yj on the

conditional distribution for yk. The requirement of such a specific conditional distri-

bution is a direct consequence of Besag’s theorems for any compatible system under

the completely nonparametric setting. In other words, it is a necessary condition for

compatibility in our context.

The above discussion indicates that, for the basic parametrization, the conditional

specification cannot distinguish effects of moral hazard and selection problems because

they are to be measured by the same parameter γ. For the alternative parametriza-

tion, the compatibility condition (A.8) also yields a deterministic relationship between

moral hazard and the selection problems, which are measured by γyi1 and γI[y∗i2 ≥ 0],

respectively.

B Estimation details for models with the alternative parametriza-

tion

B.1 Functional forms of choice probabilities

This appendix presents detailed analysis for models with the alternative parametriza-

tion, which is described in Section 4.3.3. First, we provide functional forms of the

choice probabilities (4.12). For notational simplicity, we define the following variables:
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ũi1 = ui1 + α1ui2, (B.1)

Wi1 = −x′
i1β1 − α1x

′
i2β2 (B.2)

Wi2 = −x′
i1β1 − α1x

′
i2β2 − α1α2 (B.3)

Wi3 = −x′
i2β2 (B.4)

Wi4 = −x′
i2β2 − α2. (B.5)

Using these variables, we have simple expressions for the lines A, B, C and D

which are defined in Section 4.3.3 as

A : ũi1 = Wi1, B : ũi1 = Wi2, (B.6)

C : ui2 = Wi3, D : ui2 = Wi4. (B.7)

To obtain choice probabilities, we separately consider Models NN (α1 < 0, α2 < 0)

and NP (α1 < 0, α2 > 0). For Model NN, Figure 2 shows that each of nonsingular

regions has two possible pairs of outcomes, namely zi = 1 or 2 in Region 4, zi = 2 or 3

in Region 5 and zi = 3 or 4 in Region 6. We then need to define three selection rules,

each of which distributes a nonsingular region into two pairs of outcomes. Specifically,

we assume that pi4, pi5, and pi6 represent proportions of zi = 1 in Region 4, zi = 2

in Region 5 and zi = 3 in Region 6, respectively. Then we have the following choice
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probabilities:

Pr(zi = 1|θ, pi) = P7(xi, θ) + pi4P4(xi, θ), (B.8)

Pr(zi = 2|θ, pi) = P1(xi, θ) + P2(xi, θ) + (1 − pi4)P4(xi, θ) + pi5P5(xi, θ),

(B.9)

Pr(zi = 3|θ, pi) = P8(xi, θ) + P9(xi, θ) + (1 − pi5)P5(xi, θ) + pi6P6(xi, θ),

(B.10)

Pr(zi = 4|θ, pi) = P3(xi, θ) + (1 − pi6)P6(xi, θ), (B.11)

where pi = (pi4, pi5, pi6). We define p = (p1, ...,pN ) for the future reference.

Next, we provide area probabilities Pk(xi,θ), for k = 1, ..., 9. From the definition

of lines A, B ,C and D, these area probabilities are formulated as functions of joint

probabilities of (ũ1i, ui2). Specifically:

P7(xi, θ) = Pr(ũi1 ≤ Wi2, ui2 ≤ Wi3), (B.12)

P4(xi, θ) = Pr(ũi1 ≤ Wi1, ui2 ≤ Wi3) − P7(xi,θ), (B.13)

P1(xi, θ) = Pr(ui2 ≤ Wi3) − P4(xi,θ) − P7(xi, θ), (B.14)

P8(xi, θ) = Pr(ũi1 ≤ Wi2, ui2 ≤ Wi4) − P7(xi,θ), (B.15)

P5(xi, θ) = Pr(ũi1 ≤ Wi1, ui2 ≤ Wi4) − P4(xi,θ) − P7(xi,θ) − P8(xi,θ), (B.16)

P2(xi, θ) = Pr(ui2 ≤ Wi4) − P1(xi,θ) − P4(xi, θ) − P5(xi, θ) − P7(xi, θ) − P8(xi, θ),

(B.17)

P9(xi, θ) = Pr(ũi1 ≤ Wi2) − P7(xi,θ) − P8(xi, θ), (B.18)

P6(xi, θ) = Pr(ũi1 ≤ Wi1) − P4(xi,θ) − P5(xi, θ) − P7(xi, θ) − P8xi,θ) − P9(xi,θ),

(B.19)

P3(xi, θ) = 1 − P1(xi, θ) − P2(xi,θ) − P4(xi,θ) − P5(xi,θ) − P6(xi, θ) − P7(xi, θ)

−P8(xi, θ) − P9(xi, θ). (B.20)
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For Model NP, Figure 2 shows that each of nonsingular regions has all four possible

pairs of outcomes, zi = 1, 2, 3 and 4. Then we need to define three selection rule

vectors each of which distributes a nonsingular region into four pairs. Namely, we

assume that for each Region k = 4, 5, and 6, pik = (pik,1, pik,2, pik,3, pik,4) represents

the proportion of zi = 1, 2, 3 and 4, respectively. Consequently, we have the following

choice probabilities:

Pr(zi = 1|θ, pi) = P7(xi, θ) + P8(xi, θ) + pi4,1P4(xi, θ) + pi5,1P5(xi, θ) + pi6,1P6(xi, θ),

(B.21)

Pr(zi = 2|θ, pi) = P1(xi, θ) + pi4,2P4(xi, θ) + pi5,2P5(xi, θ) + pi6,2P6(xi, θ), (B.22)

Pr(zi = 3|θ, pi) = P9(xi, θ) + pi4,3P4(xi, θ) + pi5,3P5(xi, θ) + pi6,3P6(xi, θ), (B.23)

Pr(zi = 4|θ, pi) = P2(xi, θ) + P3(xi, θ) + pi4,4P4(xi, θ) + pi5,4P5(xi, θ) + pi6,4P6(xi, θ),

(B.24)

where pi = (pi4,pi5,pi6). We define p = (p1, ...,pN ) for the future reference. We

have the area probabilities as:
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P7(xi, θ) = Pr(ũi1 ≤ Wi1, ui2 ≤ Wi4), (B.25)

P4(xi, θ) = Pr(ũi1 ≤ Wi2, u2 ≤ Wi4) − P7(xi, θ), (B.26)

P1(xi, θ) = Pr(ui2 ≤ Wi4) − P4(xi,θ) − P7(xi, θ), (B.27)

P8(xi, θ) = Pr(ũi1 ≤ Wi1, ui2 ≤ Wi3) − P7(xi,θ), (B.28)

P5(xi, θ) = Pr(ũi1 ≤ Wi2, ui2 ≤ Wi3) − P4(xi,θ) − P7(xi,θ) − P8(xi,θ), (B.29)

P2(xi, θ) = Pr(ui2 ≤ Wi3) − P1(xi,θ) − P4(xi, θ) − P5(xi, θ) − P7(xi, θ) − P8(xi, θ),

(B.30)

P9(xi, θ) = Pr(ũi1 ≤ Wi1) − P7(xi,θ) − P8(xi, θ), (B.31)

P6(xi, θ) = Pr(ũi1 ≤ Wi2) − P4(xi,θ) − P5(xi, θ) − P7(xi, θ) − P8(xi, θ) − P9(xi, θ),

(B.32)

P3(xi, θ) = 1 − P1(xi, θ) − P2(xi,θ) − P4(xi,θ) − P5(xi,θ) − P6(xi, θ) − P7(xi, θ)

−P8(xi, θ) − P9(xi, θ). (B.33)

B.2 Bayesian estimation for models with the alternative parametriza-

tion

B.2.1 Additional hierarchical structure and the likelihood function

This appendix provides an estimation procedure for the models with the alterna-

tive parametrization. For technical tractability, we insert an additional structure

using hierarchical Bayesian modeling. Specifically, we introduce a latent dummy

variable λ which takes unity in proportion to the selection rule p. We need differ-

ent hierarchical structures for Models NN and NP: First, for Model NN, we adopt

λik|pik ∼ Bernoulli(pik) for k = 4, 5 and 6. Second, for Model NP, we adopt

λik = (λik,1, λik,2, λik,3, λik,4)|pik ∼ Multinomial(1;pik). We let λi = (λi4, λi5, λi6)

or λi = (λi4, λi5, λi6) for Models NN and NP, respectively. For both models, we

define λ = (λ1, ...,λN ). Using these new structures, the choice probabilities can be
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represented as:

Pr(zi = l|θ, λi) =
∫

Pr(zi = l|θ, p)π(λi|pi)dpi. (B.34)

For Model NN, new representations of the choice probabilities are:

Pr(zi = 1|θ, λi) = P7(xi, θ) + λi4P4(xi, θ), (B.35)

Pr(zi = 2|θ, λi) = P1(xi, θ) + P2(xi, θ) + (1 − λi4)P4(xi, θ) + (1 − λi5)P5(xi,θ),

(B.36)

Pr(zi = 3|θ, λi) = P8(xi, θ) + P9(xi, θ) + λi5P5(xi, θ) + λi6P6(xi, θ),

(B.37)

Pr(zi = 4|θ, λi) = P3(xi, θ) + (1 − λ6i)P6(xi, θ). (B.38)

For Model NP:

Pr(zi = 1|θ, λi) = P7(xi, θ) + P8(xi, θ) + λi4,1P4(xi, θ) + λi5,1P5(xi, θ) + λi6,1P6(xi, θ),

(B.39)

Pr(zi = 2|θ, λi) = P1(xi, θ) + λi4,2P4(xi, θ) + λi5,2P5(xi, θ) + λi6,2P6(xi, θ), (B.40)

Pr(zi = 3|θ, λi) = P9(xi, θ) + λi4,3P4(xi, θ) + λi5,3P5(xi, θ) + λi6,3P6(xi, θ), (B.41)

Pr(zi = 4|θ, λi) = P2(xi, θ) + P3(xi, θ) + λi4,4P4(xi, θ) + λi5,4P5(xi, θ) + λi6,4P6(xi, θ).

(B.42)

Given these choice probabilities, the likelihood function is obtained as:

f(z|θ, λ) =
N∏

i=1

4∏
l=1

Pr(zi = l|θ, λi)I[zi=l]. (B.43)

There are two remarks on the above likelihood function. First, because of the hi-

erarchical nature of our setting, the marginal posterior distribution for the parameter
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θ is equivalent whether we use λ or p. Second, to have the closed form expression for

the likelihood function, we need to provide distributional assumptions for error terms

(ui1, ui2) to calculate the area probabilities Pk(xi,θ).

B.2.2 Prior distributions

For coefficient parameters θ, we assume a normal prior distribution with mean θ0

and covariance matrix Σ0 truncated on the region R:

θ ∼ TNR(θ0, Σ0).

The truncation corresponds to a prescribed sign condition for (α1, α2). For exam-

ple, we take the region R = (−∞,∞)K1+K2 × (−∞, 0) × (−∞, 0) for Model NN.

For p, we use conjugate prior distributions: In Model NN, we assume the beta

prior with parameters (aik1, aik2) for pik, k = 4, 5 and 6:

pik ∼ Beta(aik1, aik2).

In Model NP, the prior distribution of pik is assumed to be a Dirichlet distribution

with parameter aik = (aik1, . . . , aik4):

pik ∼ Dirichlet(aik).

B.2.3 Posterior sampling for Model NN with the alternative parametriza-

tion

Here we derive the MCMC sampling procedure for Model NN. Given the likelihood

function and the prior distributions, we have the joint posterior density as:

π(θ, λ, p|z) ∝ f(z|θ, λ)π(θ)
N∏

i=1

6∏
k=4

p
(λik+aik1)−1
ik (1 − pik)(1−λik+aik2)−1, (B.44)

40



where π(θ) denotes a probability density function of the truncated normal distribution

TNR(θ0, Σ0). The conditional posterior distributions of λik and pik are:

λik|θ, pik, zi ∼ Bernoulli(qik), (B.45)

pik|θ, λik, zi ∼ Beta(aik1 + λik, aik2 + 1 − λik), (B.46)

where

qik =
paik1

ik (1 − pik)aik2−1f(zi|θ, λik = 1,λi,(−k)

paik1
ik (1 − pik)aik2−1f(zi|θ, λik = 1, λi,(−k)) + paik1−1

ik (1 − pik)aik2f(zi|θ, λh,m = 0, λ(−h),m)
,

(B.47)

and λi,(−k) is a vector which consists of components of λi except λik and f(zi|θ, λi)

is the individual i’s contribution to the likelihood function.

Because the conditional posterior distributions take familiar forms, we implement

Gibbs samplers for λik and pik, for k = 4, 5 and 6 and i = 1, ..., N . On the other

hand, θ is sampled using the Metropolis-Hastings algorithm.

B.2.4 Posterior sampling for Model NP with alternative parametrization

Next, we describe the MCMC implementation for Model NP. The joint posterior

density is:

π(θ, λ, p|z) = f(z|θ, λ)π(θ)
N∏

i=1

6∏
k=4

4∏
l=1

pλikl+aikl−1
ikl . (B.48)

The conditional posterior distributions of λik and pik are:

λik|θ, pik, zi ∼ Multinomial(1, qik), (B.49)

pik|θ, λik, zi ∼ Dirichlet(aik + λik), (B.50)
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where qik = (qik1, ..., qik4) such that:

qikl =
paikl

ikl

(∏
j 6=l p

aikj−1
ikj

)
f(zi|θ, λikl = 1,λik\l = 0)∑4

h=1 paikh
ikh

(∏
j 6=h p

aikj−1
ikj

)
f(zi|θ, λikh = 1, λik\h = 0)

, l = 1, ..., 4, (B.51)

and λik\h = 0 is a vector which consists of λikh and zeros.

Using the above conditional posterior densities, we can implement Gibbs samplers

for λik and pik, for k = 4, 5 and 6 and i = 1, ..., N . For θ, we implement the

Metropolis-Hastings algorithm for the posterior sampling.

C Posterior sample paths for the MCMC samplers
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Figure 3: Sample paths of β1 for Model NP with basic parametrization
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Figure 4: Sample paths of β2 for Model NP with basic parametrization
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Figure 5: Sample paths of α for Model NP with basic parametrization
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