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Abstract 
 

We examine repeated prisoners’ dilemma with imperfect private monitoring and 
random termination where the termination probability is low. We run laboratory 
experiments and show subjects retaliate more severely when monitoring is more accurate. 
This experimental result contradicts the prediction of standard game theory. Instead of 
assuming full rationality and pure self-interest, we introduce naiveté and social preferences, 
i.e., reciprocal concerns, and develop a model that is consistent with, and uniquely predicts, 
the observed behavior in the experiments. Our behavioral model suggests there is a 
trade-off between naiveté and reciprocity. When people are concerned about reciprocity, 
they tend to make fewer random choices. 
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1. Introduction 

 

 It’s a well-accepted view in the literature on theory of repeated games with perfect 

monitoring that when a player deviates from the collusive relationship by selecting a 

defective action, his partner will retaliate by selecting a defective action. Hence, implicit 

collusion can be sustained as a subgame perfect equilibrium if the deviant’s instantaneous 

gain is exceeded by a future loss caused by his partner’s retaliation.3 

 The device of contingent action switch in the above manner can be applied to the case 

of imperfect monitoring, but with a limit.4 Since a player cannot directly observe his 

partner’s action choice, he instead makes his choice of action contingent on the observed 

signal. Since monitoring is imperfect, it’s inevitable a player may observe a bad signal even 

when his partner has selected a cooperative action. This causes a welfare loss peculiar to 

imperfect monitoring; a player might retaliate even when his partner has actually selected a 

cooperative action. 

 Standard game theory with rational and purely self-interested players suggests 

improvements in monitoring accuracy can decrease a welfare loss without contradicting 

incentive constraints. If monitoring technology becomes more accurate, a player can induce 

their partner to choose a cooperative action by using a milder punishment i.e., by being less 

responsive to whether the signal is good or bad. To clarify this point, this paper compares 

the behavior observed in laboratory experiments with theoretical predictions induced by a 

simple form of Nash equilibrium, namely, symmetric generous tit-for-tat Nash equilibrium.5 

For simplicity, we assume a player only responds to the signal he has received in the 

previous round. Symmetric generous tit-for-tat Nash equilibrium predicts the less accurate 

the monitoring technology, the more severely a purely self-interested player retaliates 

against his partner. 

                                                   
3 For the theoretical studies and surveys on infinitely repeated games with perfect monitoring, see Abreu 
(1988), Fudenberg and Tirole (1993), Osborne and Rubinstein (1994), and Mailath and Samuelson 
(2006). This view is supported by experimental studies such as Dal Bó, (2005). 
4 For example, see Green and Porter (1994) and Abreu, Pearce, and Stacchetti (1990). 
5 The concept of the generous tit-for-tat Nash equilibrium was explored by Nowak and Sigmund (1992), 
Takahashi (1997), Matsushima (2010), and others. 
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 Our experimental results, however, do not support this prediction. When monitoring 

technology is more accurate, laboratory subjects tend to retaliate much more severely than 

this equilibrium predicts. 

 We regard the difference in frequencies of cooperative action choices between the good 

signal and the bad signal as a proxy for the intensity of retaliation. Our experimental results 

suggest this difference tends to increase in accuracy, i.e., the subject react excessively to the 

signals as monitoring accuracy improves. This tendency makes the achievement of implicit 

collusion less likely to happen. 

In order to explain the behavior observed in our experiments, we provide a new 

behavioral model that incorporates bounded rationality. We assume with some probability a 

player is naïve, i.e. he makes random choices between the cooperative and defective actions. 

With the remaining probability, he is sophisticated and is motivated not only by pure 

self-interests but also by social preferences, namely reciprocal concerns. He bears a 

psychological cost of guilt if he chooses a defective action after having received a good 

signal. On the other hand, he bears a psychological cost of resentment if he chooses a 

cooperative action after having received bad signals.6 

We investigate an arbitrary accuracy-contingent generous tit-for-tat strategy profile that 

is consistent with the following observations from our experimental results; 1) subjects are 

more likely to select the cooperative action when they have observed good signals than bad 

signals. 2) Subjects select the cooperative action more often when the signal is more 

accurate. 3) The more accurate the signal technology, the greater the difference in 

frequency of cooperative action choices between good and bad signals. We permit a 

behavioral model to be accuracy-contingent in that the degrees of naiveté and reciprocity 

concerns are dependent on the accuracy levels. 

We then show for any such accuracy-contingent generous tit-for-tat strategy profile, 

there is a unique accuracy-contingent behavioral model in which this profile is a Nash 

                                                   
6 Economists often call the tendency to return kindness to whom they are treated kindly, and the 
tendency to punish people who treated them badly “positive reciprocity”, and “negative reciprocity”, 
respectively (Fehr and Gächter, 2000). We explicitly incorporate psychological costs associated with 
these reciprocal concerns. 
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equilibrium with modification, namely a quasi-Nash equilibrium, at all times. This 

theoretical finding characterizes the behavioral mode of a bounded-rational player in a 

manner that; 1) the probability of naiveté is single-peaked across monitoring accuracies, 2) 

There is a trade-off between naiveté and social preferences in that when people have 

reciprocity concerns, they tend to make fewer random choices. Similarly, when people are 

making random choices, they tend not to have strong reciprocity concerns. 3) When 

monitoring technology is more accurate, a player suffers from the psychological costs of 

resentment if he selects a cooperative action after having received a bad signal. This makes 

it hard for players to sustain the cooperative outcome in the case of high monitoring 

accuracy.  

Our behavioral approach has strong predictive power not just in clarifying motives as a 

behavioral model but also in describing strategy as unique equilibrium. We use 

experimental data to identify behavioral patterns, and construct a behavioral model. By 

using experimental data, we restrict the candidates of equilibria out of numerous equilibria 

that exist in repeated games with imperfect private monitoring. We find there exists a 

unique quasi-Nash equilibrium that is consistent with the behavioral patterns. 

The contribution of this paper is to demonstrate how the standard theory of infinitely 

repeated games with imperfect private monitoring does not explain behavior very well, and 

propose a behavioral model that is capable of explaining behavioral deviations from 

standard game theoretic predictions. Our model is behavioral in two ways. 1) We 

incorporate motives other than self-interests, i.e. naïve and reciprocity concerns. 2) Our 

model is context dependent in that the degrees of naiveté and reciprocal concerns are 

dependent on the accuracy level. We take into account the fact that people’s motives and 

perceptions are often context dependent. Let us consider the situation in which individual’s 

effort cannot be perfectly monitored by his partner. When monitoring is highly accurate, it 

may be harder to rebuild trust if your partner has received a bad signal about your effort 

level. However, if monitoring is poorly accurate, your partner may not punish you even if 

he has received a bad signal about your effort. Our behavioral model is capable of 

explaining such phenomenon.  
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This paper also makes an important contribution to the field of repeated games with 

imperfect private monitoring by offering a solution to a fundamental problem in this field. 

Repeated games with imperfect private monitoring have numerous equilibria, and 

identifying strategies and equilibria is considered a difficult task. However, by using 

experimental data, we are able to refine a unique quasi-Nash equilibrium that is consistent 

with behavioral patterns, and predict equilibrium strategies people may take. 

 The organization of this paper is as follows. In Section 2, we summarize related 

literature, and highlight the contribution of our study in the literature. In Section 3, we 

develop a model. Section 4 introduces the concept of symmetric generous tit-for-tat Nash 

equilibrium, and establishes the theorem that characterizes the class of symmetric generous 

tit-for-tat Nash equilibria. Section 5 illustrates the experimental design. Section 6 shows 

our experimental results. In Section 7, we incorporate bounded rationality in our model, 

propose a behavioral model, and refine a unique quasi-Nash equilibrium. Section 8 

concludes. 

 

2. Related Literatures 

 

There is a large and still growing literature of repeated game theory with private 

monitoring that provides various folk-theorem-type results. This literature generally 

assumes players are rational and purely self-interested, and it is possible for a wide range of 

payoff vectors to be sustained by Nash equilibria even if monitoring is rather inaccurate, 

provided the discount factor is close to unity.7 This literature, however, does not make any 

prediction on the equilibrium strategies people may actually take. In order to make the 

achievement of payoff vectors consistent with Nash equilibrium play, the authors generally 

                                                   
7 For early studies on repeated games with private monitoring, see Radner (1986) and Matsushima 
(1990a, 1990b). The subsequent works such as Sekiguchi (1997), Ely and Välimäki (2002), and Piccione 
(2002) demonstrate the folk-theorem-like results when monitoring is private but almost perfect. 
Matsushima (2004) proves the folk theorem in the repeated prisoners’ dilemma with conditional 
independence when monitoring is inaccurate. For surveys on the progress of repeated game theory with 
private monitoring, see Kandori (2002) and Mailath and Samuelson (2006). Sugaya (2012) recently 
demonstrates the general folk theorem. 
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tailor equilibrium strategies to the fine details of model specifications in a mathematical 

manner. This paper offers an alternative approach; we focus on a simple class of strategies, 

namely generous tit-for-tat strategies, and then explore the behavioral patterns observed in 

laboratory experiments, and offer a behavioral model consistent with the behavioral 

patterns by incorporating bounded rationality into the model. We then show there exists a 

unique quasi-Nash equilibrium consistent with the behavioral patterns. 

Except for Aoyagi and Fréchette (2009), there are few studies that test infinitely 

repeated games with imperfect monitoring by laboratory experiments. Aoyagi and 

Fréchette (2009) run laboratory experiments to study infinitely repeated prisoners’ dilemma 

with imperfect monitoring and vary the noise in monitoring. Their findings show laboratory 

subjects are sophisticated enough to increase the level of cooperation as monitoring 

accuracy improves. Aoyagi and Fréchette assume monitoring is public and the publicly 

observable signal is a single-dimensional real variable; from this signal, it is impossible to 

identify which player is more likely to deviate. Our substantial departure from Aoyagi and 

Fréchette is to shed light on the rise of bounded rationality if monitoring is private. 

Repeated games with imperfect private monitoring have many applications such as work 

efforts, intra-household resource allocations, and coordination of global environmental 

protection efforts. When monitoring is private, players’ action choices are monitored 

through the observation of their respective private signals.8 Since signals are private, 

people do not have common knowledge about the past actions, making it more likely that 

people choose random actions. For this reason, we take into account naiveté in our 

behavioral model. 

Experimental research on various multi-stage models such as the ultimatum game, trust 

game, and gift exchange show social preference-based motives often facilitate cooperation 

in a one-shot game framework.9 Subjects are often motivated by social preferences 

                                                   
8 There are experimental studies, such as Holcomb and Nelson (1997) and Feinberg and Snyder (2002), 
in which subjects do not necessarily observe the same signals. 
9 This paper is also related to the literature of psychological games such as Geanakoplos, Pearce, and 
Stacchetti (1989), Rabin (1993), Charness and Dufwenberg (2005). This paper implicitly assumes that 
the dependence of preference on context such as the level of monitoring accuracy stem from each 
player’s belief on how informative the observed signals are about the other players’ past action choices 
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concerning reciprocity in ways that a player’s friendly or hostile actions induce their 

partners to behave altruistically or unkindly, respectively.10 Based on these experimental 

findings, it’s possible to anticipate how social preferences could also facilitate cooperation 

in the repeated game framework. For these reasons, we take into consideration two types of 

bounded rationality in our behavioral model, namely naiveté and reciprocity. 

Duffy and Muñoz-García (2012) demonstrate social preferences help the achievement 

of implicit collusions in infinitely repeated games and operate as substitutes for time 

discounting.11 Duffy and Muñoz-García assume the discount factor is close to zero and 

monitoring is perfect. In contract, this paper assumes the discount factor is close to unity 

and monitoring is imperfect. 

Several authors in the literature of social preferences assume preferences crucially 

depend on the context of the game being played. 12  This paper demonstrates a 

context-dependent behavioral model that describes how varying context influences the 

types and degrees of naiveté and reciprocal motives in a systematic and intuitive manner. In 

this paper, the relevant context to preferences is parameterized by the level of monitoring 

accuracy. We show the degree of monitoring accuracy influences the types and the degrees 

of reciprocal motives, and our behavioral model suggests there is a trade-off between 

naiveté and reciprocal concerns. 

In sum, the contribution of this paper is the introduction of behavioral approach to 

repeated games with private monitoring. We offer an alternative way to refine equilibria, 

and provide predictive powers to repeated games with private monitoring. We also 

contribute to the social preference literature by extending its idea to the area of repeated 

games with private monitoring. 

 

                                                                                                                                                           
and also from his higher-order beliefs. 
10 For examples, see Güth, Schmittberger, and Schwarze (1982), Berg, Dickhaut, and McCabe (1995), 
Fehr and Gächter (2000), and Camerer (2003, Chapter 2). 
11 There exist a large number of experimental studies on infinitely repeated games with perfect 
monitoring. See Roth and Murnighan (1978), Murnighan and Roth (1983), Dal Bó (2005), Dal Bó and 
Fréchette (2010), and others. 
12 See Rabin (1993), Charness and Rabin (2002), Falk, Fehr, and Fischbacher (2003), Dufwenberg and 
Kirchsteiger (2004), and Falk and Fishbacher (2005). For a survey on related issues, see Sobel (2005). 
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3. The Model 
 

We investigate a repeated game played by players 1 and 2 in a discrete time horizon. 

The game ends in a finite number of rounds, and the terminal round is randomly determined. 

The component game of this repeated game is given by 
{1,2}( , )i i iS u  , where iS  denotes the 

set of all actions for player {1,2}i , i is S , 1 2S S S  , 1 2( , )s s s S  , :iu S R , 

and ( )iu s  denotes the payoff for player i  induced by action profile s S . We assume 

each player 'i s  payoff has an additively separable form; 

   ( ) ( ) ( )i i i i ju s v s w s   for all s S , where j i . 

 Two random signals, 1 1   and 2 2  , occur after action choices are made, 

where i  denotes the set of possible i , 1 2( , )   , and 1 2    . A signal profile 

   is randomly determined according to the conditional probability function 

( | ) :f s R  . Let ( | ) ( | )
j j

i if s f s


 


  . We assume that ( | )i if s  is independent 

of 
js ; we denote ( | )i i if s  instead of ( | )i if s  and use i i   to denote the signal 

for player i s  action. 

We assume monitoring is imperfect: at every round {1,2,...}t , player i  cannot 

directly observe the action ( )j js t A  his partner j i  selected. He also cannot observe 

the realized payoff profile 1 2( ( )) ( ( ( )), ( ( )))u s t u s t u s t . Instead, he receives a signal for his 

partner’s action ( )j jt   , through which he can imperfectly monitor his partner’s choice. 

We assume monitoring is private; player i  cannot observe the signal for his own action 

( )i it  .13 

Let 1( ) ( ( ), ( )) th t s      denote the history up to round t . Let us denote by 

{ ( ) | 0,1,...}H h t t   the set of possible histories, where (0)h  implies the null history. 

The payoff for player i per round with the history ( )h t H  up to round t is defined as 
                                                   
13 We assume for the experiments that the subjects observe the realization of their payoffs after the 
terminal time. 
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   1

( ( ))
( ( ))

t

i

i

u s
U h t

t






. 

Let us specify the component game as a prisoners’ dilemma with symmetry and additive 

separability; for each {1,2}i , 

{ , }iS A B , ( )iv A Y  , ( ) 0iv B  , ( )iw A X Y  , and 

( )iw B X Y Z   , 

where X , Y , and Z  are positive integers, and 0Z Y  . Let us call A  the 

cooperative action and B  the defective action. It costs player i  Y if he selects a 

cooperative action choice, but it gives the partner a benefit Z , which is greater than the 

cost Y . Note the payoff vector (X , X )  induced by the cooperative action profile ( , )A A  

is efficient, and is better than the payoff vector ( , )X Y Z X Y Z     that is induced by 

the defective action profile ( , )B B , which is a dominant strategy profile and the unique 

Nash equilibrium in the component game. 

In the experiment, we use ( , , ) (60,10,55)X Y Z  . If both players cooperate, they 

achieve the outcome (X , X )  (60,60). If player 1 cooperates and player 2 defects, they 

achieve the outcome (X  Z , X Y )  (5,70) . If player 1 defects and player 2 cooperates, 

they achieve the outcome (X Y , X  Z )  (70,5) . If both players defect, they achieve the 

outcome (X Y  Z , X Y  Z )  (15,15). The payoff matrix is described in Figure 1.  

[Figure 1] 

Let us specify 

{ , }i a b   and ( | ) ( | )i if a A f b B p  , where 1 12 p  . 

Let us call a  the good signal, and b  the bad signal. The probability index p  implies 

the level of monitoring accuracy; the greater p  is, the more accurate the signal. The 

inequality 1
2p   implies that it is more likely for player i  to receive a good signal 

when his partner selects the cooperative action A  rather than the defective action B . 

 For each history ( )h t H  up to round t, let us denote the frequency of cooperative 
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action choice A  by 

   1 2{ {1,..., } | ( ) } { {1,..., } | ( ) }
( ( ))

2

t S A t S A
h t

t

   


    
 . 

From additive separability, it follows the sum of the payoffs per round with the history 

( )h t H  up to round t is given by 

   1 2( ( )) ( ( )) 2[ {1 ( ( ))}( )]U h t U h t X h t Y Z     . 

This implies for given X , Y , and Z , the frequency of cooperative action choice ( ( ))h t  

uniquely determines the sum of the payoffs per round. 

Let (0,1)   denote the probability of the repeated game continuing at the end of 

each round when this game has continued up to the previous round 1t  . Then, the game is 

terminated at the end of each round 1t   with probability 1(1 )t   . Hence, the 

expected number of rounds of the repeated game is given by 1

1

(1 )t

t

t 






 . 

 For our experiments, we use 0.967  . This probability is sufficiently high. So, it 

will be beneficial for a self-interested player, who is motivated just by his own monetary 

payoff, to coordinate with his partner to achieve the cooperative outcomes, even if 

monitoring is inaccurate. 

 

 4. Symmetric Generous Tit-for-Tat Nash Equilibrium 

 

Let [0,1]i   denote a mixed action for player i; he makes the cooperative action 

choice A  with probability i . Player i s  strategy in the repeated game is defined as 

: [0,1]i H  ; he selects A  with probability ( ( 1))i i h t    in each round t with the 

history ( 1)h t   up to round 1t  . Let i  denote the set of all strategies for player i , 

1 2( , )   , and 1 2    . The expected payoff per period for player i  induced by 

   when the monitoring accuracy is given by (0,1)p  is defined by 
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1

1 1

1

1

[ (1 ) ( ( )) | , ]
( ; )

(1 )

t
t

i
t

i
t

t

E u s p
U p

t



   


 




 











 


1

1

(1 ) [ ( ( )) | , ]iE u s p



   






   , 

where [ | , ]E p  denotes the expectation operator. The expected frequency of cooperative 

action choice A  induced by    when monitoring accuracy is given by (0,1)p  is 

defined by 

1

1

1

1

[ (1 ) ( ( )) | , ]
( ; )

(1 )

t

t

t

t

E t h t p
p

t

   
 

 



















. 

From additive separability, it follows  

   1 2( ; ) ( ; ) 2[ {1 ( ; )}( )]U p U p X p Y Z        . 

Hence, for given X , Y , and Z , the expected frequency ( ; )p   uniquely determines 

the sum of the expected payoffs per period 1 2( ; ) ( ; )U p U p  . 

A strategy profile    is said to be a Nash equilibrium in the repeated game with 

monitoring accuracy (0,1)p  if 

   ( ; ) ( , ; )i i i jU p U p    for all {1,2}i  and all i i  . 

A strategy profile    is said to be symmetric generous tit-for-tat if there exists

3( , ( ), ( )) [0,1]q r a r b   such that ( ) 0r a  , ( ) ( )r a r b , 

1 2( (0)) ( (0))h h q   , 

and for each {1, 2}i , every 2t  , and every ( 1)h t H  , 

( ( 1)) ( )i h t r a    if ( 1)j t a   , 

and 

( ( 1)) ( )i h t r b    if ( 1)j t b   . 

At round 1, each player makes the cooperative action choice A  with probability q . At 

each round 2t  , each player i  makes the cooperative action choice A  with probability 
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( )jr   when he observes the signal ( 1)j jt    
for his partner’s action at the previous 

round 1t  . We will write ( , ( ), ( ))q r a r b  instead of   for any symmetric generous 

tit-for-tat strategy profile.14 

Let us define 

(1)   ( )
(2 1)

Y
w p

p Z



. 

Note 0 ( ) 1w p   if and only if 
(2 1)

Y

p Z
 


. 

The following proposition demonstrates if a symmetric generous tit-for-tat strategy profile 

( , ( ), ( ))q r a r b  is a Nash equilibrium, then the difference in probability of making the 

cooperative action choices between the good signal and the bad signal, i.e., ( ) ( )r a r b , 

must be equal to the value ( )w p  given by (1). 

 

Proposition 1: A symmetric generous tit-for-tat strategy profile ( , ( ), ( ))q r a r b  is a Nash 

equilibrium in the repeated game with monitoring accuracy p  if and only if 

(2)   
(2 1)

Y

p Z
 


, 

and 

(3)   ( ) ( ) ( )r a r b w p  . 

 

Proof: Selecting is A  instead of B  costs player i  Y  at the current round, whereas in 

the next round he can gain Z  from his partner’s response with a probability of

( ) (1 ) ( )pr a p r b   instead of (1 ) ( ) ( )p r a pr b  . This holds irrespective of rounds and 

history because of additive separability. Since he is incentivized to select either A  and B  

at all times, indifference to these action choices must be a necessary and sufficient 

condition: 

                                                   
14 The term of “generous” implies that it might be the case that ( ) 0r b  , i.e., a player selects the 

cooperative action with positive probability even if he observes the bad signal. 
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   { ( ) (1 ) ( )}Y Z pr a p r b    {(1 ) ( ) ( )}Z p r a pr b   , 

which is equivalent to 

( ) ( )
(2 1)

Y
r a r b

p Z
 


. 

The above equation corresponds to equality (3). Since ( ) ( ) 1r a r b  , it follows 

1
(2 1)

Y

p Z



. Thus, inequality (2) must hold.15 

Q.E.D. 

  

By Proposition 1, we will write ( q, r)  [0,1]2  instead of ( , ( ), ( ))q r a r b  for any 

symmetric generous tit-for-tat Nash equilibrium, where 

q  q , r  r(a) , and r(b)  r w( p)  r  Y

(2 p1)Z
. 

Since player i  is indifferent between the choices A  and B  at all times, it follows from 

additive separability that the expected frequency of the cooperative action choice induced 

by ( q, r)  is given by 

( q, r; p)  1

Z Y
[{(1) q r}Z  p

2 p1
Y ], 

and the expected payoff per round induced by ( q, r)  is given by 

U
1
( q, r; p) U

2
( q, r; p)  X {1 ( q, r; p)}(Y Z ) . 

Let us define the intensity with which a subject retaliates against his partner as the 

difference in frequency of the cooperative action choices between the good signal and the 

bad signal. The greater the difference in frequency of the cooperative action choices 

between the good signal and the bad signal, the more severely a subject retaliates against 

his partner. If a self-interested subject plays a symmetric generous tit-for-tat Nash 

                                                   
15 The generous tit-for-tat Nash equilibrium satisfies belief-freeness in the sense that each player’s 
incentive constraint is irrelevant to his belief about which signal the opponent has observed. Ely and 
Välimäki (2002) explore the belief-free construction in repeated games with private monitoring. 
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equilibrium, this difference can be approximated by the difference in probability of making 

the cooperative action choices between the good signal and the bad signal, i.e., ( )w p .  

 It’s important to note that ( )w p  is decreasing in p ; the less accurate the monitoring 

technology is, the more severely a self-interested player retaliates against his partner. In 

order to incentivize the player to select the cooperative action, it’s necessary for a player to 

select the defective action when he observes a bad signal rather than a good signal. When 

monitoring is less accurate, the player is more likely to receive the bad signal even when 

the partner has selected the cooperative action. This might cause a welfare loss; the player 

might retaliate even when his partner has actually selected the cooperative action. On the 

other hand, if monitoring technology is more accurate, a player can better incentivize his 

partner by using a milder punishment.  It could decrease the welfare loss caused by 

monitoring imperfection.  

 

5. Experimental Design 

 

 We conducted computerized experiments on October 5 and 6, 2006, at the University 

of Tokyo, where subjects were recruited from the undergraduate and graduate schools in all 

fields.16 The subjects received points equal to their earned payoffs, which were converted 

into yen (0.6 yen per point). They received a participation fee of 1500 yen in addition to 

their earned payoffs. 

We specify the prisoners’ dilemma with symmetry and additive separability as 

( , , ) (60,10,55)X Y Z  . The payoff matrix is described in Figure 1. The probability of the 

session continuing to the following round is given by 0.967  ; the probability of the 

session being terminated is set to be low enough to make sure self-interested players have 

incentives to cooperate with each other to some extent, even if monitoring is inaccurate. 

The sessions are categorized into two types: type 0.9  in which monitoring accuracy is 

0.9p  , and type 0.6  in which monitoring accuracy is 0.6p  . Type 0.9  obviously has 

                                                   
16The experiment was programmed and conducted with the software z-Tree. See Fischbacher (2007). 
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greater monitoring accuracy than type 0.6 . 

We conducted four experiments, and each experiment comprised six sessions, which 

consisted of several rounds. The number of experimental subjects and the number of rounds 

in each session are summarized in Table 1. Experiment 1 and Experiment 2 were conducted 

on October 5, 2006. In each experiment, three sessions of type 0.6  were played, followed 

by three sessions of type 0.9 . Experiment 1 consists of three sessions of type 0.6 with 24, 

40, and 25 rounds, and three sessions of type 0.9 with 28, 33, and 14 rounds. Experiment 2 

contains three sessions of type 0.6 with 20, 23, and 37 rounds, followed by three sessions of 

type 0.9 with 34, 34, and 19 rounds. On October 6, 2006, two experiments, Experiments 3 

and 4, were conducted with three sessions of type 0.9 , followed by three sessions of type 

0.6. Experiment 3 comprises three sessions of type 0.9 with 38, 21, and 25 rounds, followed 

by three sessions of type 0.6 with 25, 28, and 29 rounds. Experiment 4 includes three 

sessions of type 0.9 with 25, 35, and 23 rounds, and three sessions of type 0.6 with 36, 30, 

and 21 rounds (See Table 1). 

Subjects were randomly paired at the beginning of each session; the pairs remained 

unchanged throughout the session. They were rematched with another partner at the 

beginning of the following session. Therefore, each subject had 6 different partners 

throughout the experiment, i.e., one partner per session. 

[Table 1] 

Each subject was given an experiment manual with instructions about game rules and 

printed computer screen images in Japanese.17 These contents were explained by a voice 

recording. On the computer screen, each subject could always see the structure of the game, 

the history of his own action choices and the signals for his partner’s actions. 

It is important to note that the subjects were not informed in advance about how many 

rounds there are in each session. They were only informed that the number of rounds was 

randomly determined according to the probability 1 0.033   of termination. In order 

to help the subjects understand this random termination, we showed them Figure A.1 in the 

                                                   
17 See the supplement of this paper for the translation of the experiment manual and computer screen 
images into English. 
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Appendix on the computer screen at the end of each round when the session does not end at 

that round. When the session ends at a given round, Figure A.2 in the Appendix was shown 

on the computer screen. These screens were shown to help them understand that one of the 

30 cells (numbered 1 to 30)  is selected at random, and the session is terminated if and 

only if the 30th cell (number 30) is selected. When one of other 29 cells (numbers 1 to 29) is 

selected, the session continues to the next round. 

Roth and Murnighan (1978) and Murnighan and Roth (1983) established the 

experimental design for infinitely repeated games with random termination in which time 

discounting is replicated by a fixed probability had the game continues at the end of each 

round. Dal Bó (2005) reports subjects are more successful in implicit collusion in infinitely 

repeated games with random termination than in finitely repeated games with a known 

terminal round. The present paper uses a random termination device as a proper replication 

of time discounting similar to these papers.  
 

6. Experimental Results 

 

Table 2 summarizes the mean frequencies of cooperative action choices in each 

experiment denoted by 

   ( p)  Num(A; p)

Num(A; p) Num(B; p)
 

where ( ; )Num A p  and ( ; )Num B p  denote the number of times the cooperative action A 

and the cooperative action B where selected for a given level of accuracy p  ( 0.9p   or 

0.6 ), respectively. We conduct two analyses. In the first analysis, we use individual actions 

as observations, and calculate the mean frequencies of cooperative action choices. In the 

second analysis, we calculate the mean frequencies of cooperative actions for each 

individual, and use the individual means as observations. 

 The first part of Table 2 shows the result of the first analysis that uses individual 

actions as observations. It demonstrates the cooperative action A is chosen more often when 

signals are more accurate, i.e., 0.9p  , than when signals are less accurate, i.e., 0.6p  , 
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in all four experiments. On average, the cooperative action was selected 67.2 percent of 

times when monitoring accuracy is 90 percent across all experiments, while the cooperative 

action was selected only 35.5 percent of times on average when the monitoring accuracy is 

low ( 0.6p  ). We conduct a Mann-Whitney rank-sum test. The null hypothesis is there is 

no difference in the frequencies of the cooperative action choices between 0.9p   and 

0.6p  . The null hypothesis is rejected at the one percent significance level in all four 

experiments. The lower part of Table 2 shows the result of the second analysis that uses the 

means of individual’s actions as observations. On average, subjects choose the cooperative 

action 67 percent of times when monitoring accuracy is 90 percent, while they choose the 

cooperative action only 35.4 percent of times when monitoring accuracy is low ( 0.6p  ). 

 This result is consistent with the theoretical prediction that when signals are highly 

accurate, players could send good signals and effectively coordinate to achieve the 

cooperative outcome in future periods. We also checked whether the above results hold 

when we use data only from the first round from sessions, rounds 2 to 14, and rounds 15 

and above. We confirmed that the results hold in all segments of the data (See Table A.1 in 

the Appendix). 

[Table 2] 

Table 3 and Table 4 show the mean frequencies of cooperative action choices when 

subjects receive good signals and bad signals, respectively. The frequency of the 

cooperative action choices contingent on receiving good signals is defined as 

   r(a; p)  Num(A;a, p)

Num(A;a, p) Num(B;a, p)
, 

where ( ; , )Num A a p  and Num(B;a, p)  denote the number of times the cooperative 

action A and the cooperative action B were selected by subjects when they have received 

good signals, respectively. r(b; p) is similarly defined. Similar to Table 2, we conducted 

two analyses, first using individual actions as observations, and second using means of 

individual’s action choices as observations. Conducting the second analyses is particularly 

important in Tables 3 and 4. In the first analyses, the actions of those subjects who 
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happened to have cooperative and uncooperative partners (thus receiving more good and 

bad signals) become overrepresented in Tables 3 and 4, respectively.   

Table 3 shows having received good signals in the previous period, the subjects choose 

the cooperative action A more often when signals are more accurate ( 0.9p  ) than less 

accurate ( 0.6p  ). On average, the cooperative action was selected 85.2 percent of times 

when the monitoring accuracy is 90 percent, and the cooperative action was selected only 

43.7 percent of times on average when the monitoring accuracy is low ( 0.6p  ).  We 

conduct a Mann-Whitney rank-sum test with the null hypothesis that there is no difference 

in the frequencies of cooperative action choices between 0.9p   and 0.6p   when 

subjects have received good signals. The null hypothesis is rejected in all four sessions at 

the one percent significance level. We also checked whether the above results hold when 

we use data only from the first round of sessions, rounds 2 to 14, and rounds 15 and above. 

We confirmed that the results hold in all fragments (See Table A.2 in the Appendix). The 

second part of Table 3 shows the subjects select the cooperative action 78.8 percent of 

times on average if they have received good signals and 0.9p  . When 0.6p  , the 

subjects select the cooperative action 42.3 percent of times if they have received good 

signals.  

Table 4 shows the frequencies of cooperative action choices when subjects have 

received bad signals in the previous periods. Table 4 tells us that even when subjects have 

received bad signals, they still choose the cooperative action A more often under the higher 

accuracy of signals ( 0.9p  ) than the lower accuracy of signals ( 0.6p  ). On average, the 

cooperative action was selected 34.3 percent of times when the monitoring accuracy is 90 

percent, while it was selected only 27.2 percent of times when the monitoring accuracy is 

60 percent (see upper part of Table 4). The gap between frequencies of cooperate action 

choices under the high signal-accuracy treatment and the low signal-accuracy treatment is 

narrower when subjects have received bad signals than good signals. We conduct a 

Mann-Whitney rank-sum test with the null hypothesis that there is no difference in the 

frequencies of the cooperative action choices between 0.9p   and 0.6p   when 
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subjects have received bad signals. The null hypothesis is rejected in three out of four 

experiments at the one percent significance level. This result is consistent with the 

theoretical prediction when signals are highly accurate ( 0.9p  ), players who have 

received bad signals from their partners could still coordinate to realize the cooperative 

outcome in future periods more easily compared with the case in which the level of signal 

accuracy is low ( 0.6p  ). We also checked whether the above result is maintained when 

we use data only from the first round of sessions, rounds 2 to 14, and rounds 15 and above. 

We confirmed that the results hold in all three segments (See Table A.3 in the Appendix). 

 The second part of Table 4 uses the means of individual data as observations. On 

average, the subjects choose the cooperative action 44.8 percent of times when they have 

received the bad signal and 0.9p  , while they choose the cooperative action 27.9 percent 

of times when they have received the bad signal and 0.6p  . The reason why the mean 

frequency of cooperative action is higher for the second analysis than the first data analysis 

suffers from sample bias. When we use actions as observations, the subjects who have 

received the bad signals from their partners more frequently become over represented. 

These individuals are less likely to choose the cooperative actions. 

[Table 3] 

[Table 4] 

Table 5 displays the differences in mean frequencies of cooperate action choices when 

subjects have received good signals and bad signals, i.e., r(a; p) r(b; p) , for a given level 

of signal accuracy, p , respectively. 

Notice subjects select the cooperative action more often when they have received good 

signals rather than bad signals regardless of the accuracy levels of signals. This also 

indicates subjects are more likely to retaliate against their partners when they have received 

bad signals instead of good signals. This result is consistent with the theoretical prediction 

that a player incentivizes his partner by rewarding when he has received a good signal, and 

retaliates against his partner when he has received a bad signal. However, the gap between 

the frequencies of cooperative action choices when subjects have received good signals and 
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bad signals, r(a; p) r(b; p) , is larger when the level of signal accuracy is higher. Table 5 

summarizes the difference between mean frequencies of cooperative actions between good 

signals and bad signals. When we use each action as an observation, the mean difference is 

0.508 for 0.9p  . When 0.6p  , the mean difference in signal-contingent frequencies is 

much smaller (0.165). When we use the mean action of individuals as observations, the gap 

is narrower for 0.9p   (35.2 percent). It is due to the sample bias discussed above. 

These experimental results contrast with the prediction of a symmetric generous 

tit-for-tat Nash Equilibrium. In Section 4, we defined the intensity with which a subject 

retaliates against his partner as the difference in frequency of the cooperative action choices 

between the good signal and the bad signal. The greater the difference in frequency of the 

cooperative action choices between the good signal and the bad signal is, the more severely 

a subject retaliates against his partner. In a symmetric generous tit-for-tat Nash Equilibrium, 

the gap between the frequencies of cooperative action choices when subjects have received 

good signals and bad signals, is decreasing in the level of signal accuracy p . However, our 

experiments yield opposite results. In the experimental results, this gap is rather increasing 

in the level of signal accuracy p . 

[Table 5] 

 The latter part of this section compares our experimental results with the theoretical 

prediction discussed in Section 4. We use all actions as observations for computation. The 

substance of the results is unchanged if we use the means of individual data as 

observations. 

 We assume experimental subjects play a symmetric generous tit-for-tat Nash 

equilibrium ( q, r)  ( q( p), r( p))  specified by 

   ( q( p), r( p))  (q( p),r(a; p)) if r(a; p)w( p)  0, 

and 

   ( q( p), r( p))  (0,w( p))  if ( ; ) ( ) 0r a p w p  . 

q( p)  denotes the theoretical prediction of the probability players select the action choice 

A  in round 1. ( )q p  represents the mean probability the subjects select the action choice
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A in round 1 in the experiments. r( p)  designates the theoretical prediction of the 

probability players select the action choice A  in any round after round 1 for given p. 

r(a; p) is the mean probability the subjects select the action choice A  in round 2 and 

afterward in the experiments when subjects have received good signals. ( )w p  is defined 

as (1) for the accuracy p , i.e., ( )
(2 1)

Y
w p

p Z



. 

Suppose ( ; ) ( ) 0r a p w p  . Then, there exists a symmetric generous tit-for-tat 

strategy profile ( q, r(a), r(b)) that is a Nash equilibrium: 

   ( q, r(a), r(b))  (q( p),r(a; p),r(a; p)w( p)) . 

We shall regard this strategy profile as the theoretical prediction based on the self-interested 

motives: ( q( p), r( p))  ( q,r(a; p)) . 

On the other hand, if ( ; ) ( ) 0r a p w p  , there exists no such symmetric generous 

tit-for-tat strategy profile. In this case, we assume r( p)  w( p)  and define a symmetric 

generous tit-for-tat Nash equilibrium as ( q( p), r( p))  (0,w( p)) . This is the worst 

symmetric generous tit-for-tat Nash equilibrium.  

From Section 4, we can calculate w(0.9), w(0.6), ( q, r;0.9) , and ( q, r;0.6)  as 

follows:  

   (0.9) 0.235w  , 

(0.6) 0.94w  , 

   ( q, r;0.9)  11(0.033q0.967 r)

9
 1

4
, 

   ( q, r;0.6)  11(0.033q0.967 r)

9
 2

3
. 

Table 6 summarizes the implied symmetric generous tit-for-tat Nash equilibria. Note 

( q(0.6), r(0.6)) is specified as the worst symmetric generous tit-for-tat Nash equilibrium 

because (0.6) ( ;0.6)w r a . 

[Table 6] 

 From Tables 2 and 6, it follows 
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   (0.9)  ( q, r;0.9) and (0.6)  ( q, r;0.6), 

which implies irrespective of monitoring accuracy, a subject is less likely to select the 

cooperative action than the specified symmetric generous tit-for-tat Nash equilibrium 

predicts. From Tables 5 and 6, it follows: 

( ;0.9) ( ;0.9) (0.9)r a r b w  . 

When 0.9p  , i.e., when the monitoring technology is highly accurate, the subject tends 

to retaliate against his partner more severely than this equilibrium predicts. This tendency 

increases the welfare loss caused by the monitoring imperfection.  

From Tables 5 and 6, it follows:  

( ;0.6) ( ;0.6) (0.6)r a r b w  . 

When 0.6p  , i.e., the monitoring technology is less accurate, the subject tends to 

retaliate against his partner less severely than the symmetric generous tit-for-tat Nash 

equilibrium predicts. Hence, when the monitoring technology is less accurate, the subjects 

are underutilizing retaliation to incentivize their partners to select the cooperative action. 

This seems to be the vital reason for welfare loss when the monitoring technology is less 

accurate. 

 

7. Behavioral Models 

 

This section provides a behavioral model. We incorporate bounded rationality to the 

model discussed in Section 3, and propose an alternative model that can explain behavioral 

deviations from the generous tit-for-tat Nash equilibria with purely self-interested players. 

Under imperfect private monitoring, it’s difficult for people to behave rationally all the time.  

Moreover, players might be motivated not only by pure self-interest but also by social 

preferences. Hence, we assume 1) players select actions randomly with some probability, 2) 

players suffer from a psychological cost of guilt if they select a defective action after 

having observed a good signal, and 3) players bear a psychological cost of resentment if 

they select a cooperative action after having observed a bad signal. 
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To be precise, a player behaves in the repeated games according to the manner that: 

(i)  With probability 1( ) [0, ]2p   , he selects A. 

(ii)  With probability  , he selects B. 

(iii) With the remaining probability 1 2 , he selects an action that maximizes his 

long-term expected utility that incorporates the following psychological costs: 

a) he suffers from a psychological cost of guilt ( ) ( ; ) 0c a c a p   if he chooses the 

defective action B after having observed a good signal a . 

b) he suffers from a psychological cost of resentment ( ) ( ; ) 0c b c b p   if he takes 

the cooperative action A after having observed a bad signal b . 

We replace the assumption of pure self-interests with behavioral assumptions specified 

above. Recall when his partner follows ( , ( ), ( ))q r a r b , a player loses Y  in the current 

round if he selects the cooperative action A, but in the next round he gains Z  from his 

partner’s cooperative response with probability ( ) (1 ) ( )pr a p r b   instead of 

(1 ) ( ) ( )p r a pr b  . In addition, he can save the psychological cost of guilt ( )c a  if he has 

observed the good signal a  and takes the cooperative action A, while he suffers from the 

psychological cost of resentment ( )c b  when he has observed the bad signal b  and 

chooses the cooperative action A. 

Associated with the behavioral model described by ( , ( ), ( ))c a c b , we define a 

solution concept named quasi-Nash equilibrium. In order to focus on the responses to 

signals, we weaken the standard Nash equilibrium concept by eliminating the incentive 

requirement at the first round. A symmetric generous tit-for-tat strategy profile 

( , ( ), ( ))q r a r b  is said to be a quasi-Nash equilibrium associated with behavioral model

( , ( ), ( ))c a c b  if 

   min[ ( ), 1 ( ), ( ), 1 ( )]r a r a r b r b    , 

(4)    [ { ( ) (1 ) ( )} {(1 ) ( ) ( )} ( )Y Z pr a p r b Z p r a pr b c a         ] 

   ⇒[ ( )r a  ], 

(5)   [ { ( ) (1 ) ( )} {(1 ) ( ) ( )} ( )Y Z pr a p r b Z p r a pr b c a         ] 
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   ⇒[1 ( )r a   ], 

(6)   [ { ( ) (1 ) ( )} ( ) {(1 ) ( ) ( )}Y Z pr a p r b c b Z p r a pr b         ] 

   ⇒[ ( )r b  ], 

and 

(7)   [ { ( ) (1 ) ( )} ( ) {(1 ) ( ) ( )}Y Z pr a p r b c b Z p r a pr b         ] 

   ⇒[1 r(b)  ]. 

The equation (4) describes the case in which a player has received a good signal from his 

partner, and attains higher utility if he selects the defective action. Then, the probability that 

the player takes the cooperative action is at the minimum level, i.e., r(a)  . The equation 

(5) explains the case in which a player has received a good signal from his partner, and 

attains higher utility if he chooses the cooperative action. Then, the probability that the 

player selects the defective action is at the minimum level, i.e., 1 ( )r a   . The equation 

(6) corresponds to the case in which a player has receives a bad signal from his partner, and 

attains higher utility if he takes the cooperative action. Then, the probability the player 

selects the defective action is at the minimum level, i.e., ( )r b  . The equation (7) relates 

to the case in which a player has receives a bad signal from his partner, and attains higher 

utility if he choose the cooperative action. Then, the probability the player selects the 

defective action is at the minimum level, i.e., 1 ( )r b   . 

The following theorem characterizes quasi-Nash equilibrium. 

 

Theorem 2: Suppose ( ) ( ) ( )r a r b w p   and 1 ( ) ( )r a r b  . Then, a symmetric generous 

tit-for-tat strategy profile ( , ( ), ( ))q r a r b  is a quasi-Nash equilibrium associated with a 

behavioral model ( , ( ), ( ))c a c b  if and only if either 

( ) ( ) ( )r a r b w p  , 

   1 ( )r a    and 

   ( ) (2 1){ ( ) ( )} (2 1)[{ ( ) ( )} ( )]c b Z p r a r b Y Z p r a r b w p         , 

or 
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   ( ) ( ) ( )r a r b w p  , 

   ( )r b   and 

   ( ) (2 1){ ( ) ( )} (2 1)[ ( ) { ( ) ( )}]c a Y Z p r a r b Z p w p r a r b         . 

 

Proof: Note if  

{ ( ) (1 ) ( )} {(1 ) ( ) ( )}Y Z pr a p r b Z p r a pr b        , 

that is, 

   ( ) ( ) ( )r a r b w p  , 

then the left hand side of (2) holds, i.e., 1 ( )r a   , which along with 

1 ( ) 1 ( )r a r b     , (3), and (4) implies that either ( )r b   or 

   { ( ) (1 ) ( )} ( ) {(1 ) ( ) ( )}Y Z pr a p r b c b Z p r a pr b         . 

Since 1 ( ) ( )r a r b    , it follows  

   ( ) (2 1){ ( ) ( )}c b Z p r a r b Y    . 

Note if 

  { ( ) (1 ) ( )} {(1 ) ( ) ( )}Y Z pr a p r b Z p r a pr b        , 

that is, 

   ( ) ( ) ( )r a r b w p  , 

then the left hand side of (3) holds, i.e., ( )r b  , which along with ( ) ( )r b r a   , (1), 

and (2) implies that either 1 ( )r a    or 

   { ( ) (1 ) ( )} {(1 ) ( ) ( )} ( )Y Z pr a p r b Z p r a pr b c a         . 

Since ( ) 1 ( )r b r a    , it follows 

   ( ) (2 1){ ( ) ( )}c a Y Z p r a r b    . 

Q.E.D. 

 

By using individual actions as observations, we can specify symmetric generous 

tit-for-tat strategy profiles ( , ( ), ( ))q r a r b  as follows: 

  ( ( ), ( )) (0.437, 0.272)r a r b    if 0.6p  . 
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   ( ( ), ( )) (0.852, 0.344)r a r b    if 0.9p  . 

Let us specify the parameters in the behavioral model as follows: 

   (0.6) 0.272  , (0.9) 0.148  , ( ;0.6) 8.245c a  , and ( ;0.9) 11.614c b  . 

Note the above symmetric generous tit-for-tat strategy profile, which is compatible with the 

experimental data, is a quasi-Nash equilibrium in the behavioral model associated with the 

parameters specified for each {0.9, 0.6}p . Hence, the specified parameters are consistent 

with the experimental data. In the case of 0.9p   (high accuracy), the presence of 

psychological cost of resentment ( )c b  lowers player’s utility if he selects the cooperative 

action has after having received a bad signal. As a result, the difference in the frequencies 

of cooperative action choice between good and bad signals widens in equilibrium. In the 

case of 0.6p   (low accuracy), the presence of psychological cost of guilt ( )c a  lowers 

player’s utility for selecting the defective action after having received a good signal. 

Therefore, the behavioral model predicts for the case of 0.6p  , the difference in the 

frequencies of cooperative action choices between good and bad signals is narrower in 

equilibrium. 

 By utilizing the means of individual subject’s actions as observations, we can specify 

symmetric generous tit-for-tat strategy profiles ( , ( ), ( ))q r a r b  as follows: 

   ( ( ), ( )) (0.423, 0.279)r a r b   if 0.6p  . 

   ( ( ), ( )) (0.788, 0.448)r a r b   if 0.9p  . 

Let us specify the parameters in the behavioral model as follows: 

   (0.6) 0.279  , (0.9) 0.212  , ( ;0.6) 8.469c a  , and 

( ;0.9) 4.467c b  . 

Even when we use the means of individual’s actions as observations, our results hold. 

We have developed an alternative behavioral model and tested it using the 

experimental results for 0.6p   and 0.9p  . We have confirmed the derived parameters 

in the behavioral model are consistent with the experimental results. Below, we extend the 

behavioral model to more general settings for any monitoring accuracy 1( ,1)2p . 
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The experimental results indicate 1) subjects are more likely to select the cooperative 

action when they have observed good signals than bad signals. 2) Irrespective of which 

signal they have observed, subjects select the cooperative action a  more often when the 

signal is more accurate. 3) Also the more accurate the signal technology is, the greater the 

difference in frequency of cooperative action choices are between good and bad signals. 

Based on these indications, let us fix an arbitrary accuracy-contingent symmetric 

generous tit-for-tat strategy profile given by 1( ,1)2
(( ( ), ( ; ), ( ; )))

p
q p r a p r b p


, where we 

assume ( ; ) ( ; )r a p r b p , and ( ; )r a p , ( ; )r b p , and ( ; ) ( ; )r a p r b p  are all increasing 

and continuous in 1( ,1)2p . For technical convenience, and for further relevancy to the 

experimental results, we assume ( ; )r a p , ( ; )r b p , 1 ( ; )r a p , and 1 ( ; )r b p  are all 

different values almost everywhere. This is a reasonable assumption. Note there exists a 

critical level of accuracy 1ˆ [ ,1]2p  such that 

   ( ; ) ( ; ) ( )r a p r b p w p    if ˆp p , 

and 

   ( ; ) ( ; ) ( )r a p r b p w p   if ˆp p . 

 Consider any accuracy-contingent behavioral model given by 

   1( ,1)2
(( ( ), ( ; ), ( ; )))

p
p c a p c b p


, 

where we assume ( )p , ( ; )c a p , and ( ; )c b p  are all continuous in p , and for every 

1( ,1)2p , 

   ( ) min[ ( ; ), 1 ( ; ), ( ; ), 1 ( ; )]p r a p r a p r b p r b p    . 

The following theorem characterizes the accuracy-contingent behavioral model 

1( ,1)2
(( ( ), ( ; ), ( ; )))

p
p c a p c b p


 that is compatible with the fixed accuracy-contingent 

symmetric generous tit-for-tat strategy profile 1( ,1)2
(( ( ), ( ; ), ( ; )))

p
q p r a p r b p


 in terms of 

quasi-Nash equilibrium. 
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Theorem 3: For each 1( ,1)2p  except p̂ , the symmetric generous tit-for-tat strategy 

profile ( ( ), ( ; ), ( ; ))q p r a p r b p is a quasi-Nash equilibrium associated with 

( ( ), ( ; ), ( ; ))p c a p c b p  if and only if either 

   ˆp p , 

   ( ) 1 ( ; )p r a p   , and 

   ( ; ) (2 1)[{ ( ) ( )} ( )]c b p Z p r a r b w p    , 

or 

   ˆp p , 

   ( ) ( ; )p r b p  , and 

   ( ; ) (2 1)[ ( ) { ( ) ( )}]c a p Z p w p r a r b    . 

 

Proof: Note that ˆp p  implies ( ; ) ( ; ) ( )r a p r b p w p  , and that ˆp p  implies 

( ; ) ( ; ) ( )r a p r b p w p  . Hence, we can prove this theorem straightforwardly from 

Theorem 2. 

Q.E.D. 

 

 Theorem 3 implies that: 

1) For an accuracy level greater than the critical level, i.e., ˆp p , the probability of 

naïveté ( )p  is decreasing, and the psychological cost of resentment ( ; )c b p  is 

increasing, in p . The psychological cost of guilt ( ; )c a p  is irrelevant. 

2) For an accuracy level lower than the critical level, i.e., ˆp p , the probability of naïveté 

( )p  is increasing, and the psychological cost of guilt ( ; )c a p  is decreasing, in p . The 

psychological cost of resentment ( ; )c b p  is irrelevant. 

3) With the critical level of accuracy ˆp p , the psychological costs are set equal to zero, 

i.e., 

   ˆ ˆ( ; ) ( ; ) 0c a p c b p  , 
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while the probability of naïveté ( )p  is maximum at ˆp p . 

 Theorem 3 demonstrates the following predictions on players’ behavioral motives. The 

probability of naiveté is single-peaked across accuracies with the peak at the critical level 

p̂ . A player is most naïve at the critical level p̂ . He becomes more sophisticated as the 

accuracy level moves further away from the critical level p̂ . At the same time, he is more 

motivated by social preferences as the accuracy level moves further away from the critical 

level p̂ . This implies there is a trade-off between naiveté and social preferences: when a 

player is making naïve decisions, he is less motivated by social preferences, i.e., reciprocity. 

Likewise, when a player has strong reciprocal concerns, he makes few random decisions. 

 Finally, fix an accuracy-contingent behavioral model 1( ,1)2
(( ( ), ( ; ), ( ; )))

p
p c a p c b p


 

arbitrarily, where we assume there exists a critical level 1ˆ [ ,1)2p  that satisfies the 

above-mentioned properties 1), 2), and 3). We characterize the associated 

accuracy-contingent quasi-Nash equilibrium 1( ,1)2
( ( ; ), ( ; )))

p
r a p r b p


 in the following 

manner. 

Note from Theorem 2 that for any accuracy level 1( ,1)2p  and any behavioral 

model ( , ( ), ( ))c a c b , there may exist two (and only two) quasi-Nash equilibria, 18 

( ( ), ( ))r a r b  and ( ( ), ( ))r a r b , where the psychological cost of guilt ( )c a  is relevant to 

( ( ), ( ))r a r b , i.e., 

( )
( ) ( )

(2 1)

c a
r a w p

Z p



  


 and ( )r b  , 

while the psychological cost of resentment ( )c b  is relevant to ( ( ), ( ))r a r b , i.e., 

   ( ) 1r a    and 
( )

( ) 1 ( )
(2 1)

c b
r a w p

Z p



   


.19 

Note that 
                                                   
18 Since q  is irrelevant to quasi-Nash equilibria, we write ( ( ), ( ))r a r b  instead of (q,r(a),r(b)). 
19 There may exist another equilibrium that is not generous tit-for-tat, such that ( ) ( )r a r b   , i.e., 

sophisticated players have no incentive to select the defective action, irrespective of the observed signal. 
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( )

( ) ( ) ( ) ( )
(2 1)

c a
r a r b w p w p

Z p
   


, 

and 

   
( )

( ) ( ) ( ) ( )
(2 1)

c b
r a r b w p w p

Z p
   


, 

where 

   ( ) ( ) ( ) ( ) ( )r a r b r a r b w p     if ˆp p .20 

Consider the behavioral model that corresponds to the experimental data in the case of 

0.9p  , i.e., 0.148   and ( ) 11.614c b  , where we let ( ) 0c a   arbitrarily. Clearly, 

( ( ), ( )) (0.852, 0.344)r a r b   corresponds to the experimental data. There exists another 

quasi-Nash equilibrium to which the psychological cost of guilt ( )c a  is relevant, i.e., 

( ( ), ( )) (0.383, 0.148)r a r b  , which is much less collusive than 

( ( ), ( )) (0.852, 0.344)r a r b  . 

If we require 1( ,1)2
( ( ; ), ( ; )))

p
r a p r b p


 to satisfy the experimental data of the intensity 

of retaliation ( ; ) ( ; )r a p r b p  being decreasing in p , the accuracy-contingent behavioral 

model can uniquely determine 1( ,1)2
( ( ; ), ( ; )))

p
r a p r b p


as the associated 

accuracy-contingent quasi-Nash equilibrium as follows. 

 

Theorem 4: Consider an arbitrary accuracy-contingent behavioral model 

1( ,1)2
(( ( ), ( ; ), ( ; )))

p
p c a p c b p


 and an arbitrary accuracy-contingent quasi-Nash 

equilibrium 1( ,1)2
( ( ; ), ( ; )))

p
r a p r b p


. Suppose there exists 1ˆ [ ,1)2p  that satisfies the 

above properties 1), 2), and 3), and that ( ; ) ( ; )r a p r b p  is increasing in p . Then, for 

every 1( ,1)2p , 

   ( ; ) 1 ( )r a p p   and 
( ; )

( ; ) 1 ( ) ( )
(2 1)

c b p
r b p p w p

Z p



   


  if ˆp p , 

                                                   
20 There exists no other symmetric generous tit-for-tat quasi-Nash equilibrium. 
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and 

  
( ; )

( ; ) ( ) ( )
(2 1)

c a p
r a p p w p

Z p



  


 and ( ; ) ( )r b p p    if ˆp p . 

 

Proof: We show below that whenever ˆp p , the psychological cost of resentment is 

relevant to ( ( ; ), ( ; ))r a p r b p , while whenever ˆp p , the psychological of guilt is relevant 

to ( ( ; ), ( ; ))r a p r b p . 

Suppose ˆp p , and the psychological cost of guilt is relevant. Then, 

( )
ˆ ˆ ˆ( ; ) ( ; ) ( ) ( ) ( ) ( ; ) ( ; )

(2 1)

c a
r a p r b p w p w p w p r a p r b p

Z p
      


, 

which contradicts the pattern of experimental data, that is ( ; ) ( ; )r a p r b p  is increasing in 

p . Next, suppose ˆp p , but the psychological cost of resentment is relevant. Then, 

   
( )

ˆ ˆ ˆ( ; ) ( ; ) ( ) ( ) ( ) ( ; ) ( ; )
(2 1)

c b
r a p r b p w p w p w p r a p r b p

Z p
      


, 

which again contradicts the experimental data that ( ; ) ( ; )r a p r b p  is increasing in p . 

Hence, we have proved this theorem. 

Q.E.D. 

 

 Theorem 4 implies the generous tit-for-tat strategy profile derived from the 

experimental data is the unique plausible quasi-Nash equilibrium associated with the 

underlying behavioral model. This theoretical finding proves our behavioral approach has 

strong predictive power in terms of both describing strategies and clarifying motives. 

 

8. Conclusion 

  

 We proposed a behavioral approach to infinitely repeated games with imperfect private 

monitoring by conducting laboratory experiment to test the standard game theory, 

examining motives and strategies behind the behavioral deviations from theoretical 
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predictions, and constructing a behavioral model which is consistent with the behavioral 

patterns observed in the experiment. We then showed there exists a unique quasi-Nash 

equilibrium that is consistent with the behavioral patterns. 

 We conducted experiments with varying monitoring accuracy and showed the 

experimental results contradict the prediction of standard game theory. In contrast to the 

theoretical prediction, our subjects retaliate more severely when monitoring is more 

accurate, making a welfare loss severer than the theory predicts. In the case of low 

monitoring accuracy, subjects underutilize punishment, making it hard for them to 

incentivize their partners to select the cooperative action. 

Having explored the behavioral patterns from the experimental data, we provided an 

alternative behavioral model. The proposed model is behavioral in two important ways. 

First, we incorporate bounded rationality, namely naiveté and social preferences. We 

assume a player makes a random choice with some probability, and with the remaining 

probability, he is sophisticated but is motivated by social preferences. A player suffers from 

the psychological cost of guilt if he selects the defective action after having received a good 

signal. On the other hand, a player suffers from the psychological cost of resentment if he 

selects the cooperative action after having received a bad signal. Second, our model is 

context dependent in that the degrees of naiveté and reciprocal concerns are dependent on 

the levels of monitoring accuracy. We take into account the fact that people’s motives and 

perceptions are often context dependent. We showed that the experimental data is consistent 

with the substantial part of the behavioral model, and that the strategy profile derived from 

the experimental data is the unique quasi-Nash equilibrium associated with the derived 

behavioral model. 

The accuracy-contingent behavioral model also suggests the structure of players’ 

motives such as naiveté, social preferences, and pure self-interests. The probability of 

naiveté is single-peaked across monitoring accuracies. There is a trade-off between naiveté 

and social preferences in that people make random choices when they do not have strong 

reciprocal concerns. Conversely, when people are concerned about reciprocity, they make 

fewer random choices. 
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Our behavioral approach has strong predictive power not just in clarifying motives as a 

behavioral model but also in describing a strategy as a unique equilibrium. By using 

experimental data, we restrict the candidates of equilibria out of numerous equilibria that 

exist in repeated games with imperfect private monitoring. We then find there exists a 

unique quasi-Nash equilibrium that is consistent with the behavioral patterns. 

 It is important to conduct follow-up experiments, change contexts, and attempt to 

develop behavioral models that better fit various contexts. It might be necessary to replace 

generous tit-for-tat strategies with a wider class of strategies, where action choices are 

permitted to be contingent not on the last period observations but on the entire history of 

observations. The theory of repeated games explore the concept of review strategy, in 

which players utilize the relative frequency of good signal observations in the history of 

plays in order to decide whether to retaliate against the opponent now or watch his state for 

a while. As Rader (1986), Matsushima (2004), and Sugaya (2012) show the concept of 

review strategy plays a powerful role in facilitating collusion under imperfect private 

monitoring. Hence, the important question on the line of our behavioral approach would be 

to study what kinds of behavioral motives will encourage players to make action choices 

that depend of a history of behaviors. 

 This paper contributes to the field of repeated games with private monitoring by 

introducing behavioral approach, and offering an alternative way to refine strategies and 

equilibria. As far as we know, this paper is the first attempt to propose a behavioral model 

in infinitely repeated games. This paper also makes an important contribution by offering a 

solution to a fundamental problem in repeated games. Repeated games have numerous 

equilibria, and identifying strategies and equilibria has been considered a difficult task. 

However, by analyzing behavioral patterns in the experiments, we are able to refine a 

unique quasi-Nash equilibrium that is consistent with behavioral patterns. We also 

contribute to the social preference literature by extending its idea to the area of repeated 

games with private monitoring. We believe an accumulation of both experimental and 

theoretical studies and the interactions of the two fields are necessary to advance behavioral 

approach to infinitely repeated games with private monitoring, and other areas in game 
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theory. 
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Figure 1: 

Prisoners’ dilemma with Symmetry and Additive Separability 

( , , ) (60,10,55)X Y Z   

 

 A B 

A 60  60 5  70 

B 70  5 15  15 
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Table 1: Experimental Design 

Experiment Subjects Type (rounds per session) 

Experiment 1 (October 5, 2006) 28 0.6 (24, 40, 25), 0.9 (28, 33, 14) 

Experiment 2 (October 5, 2006) 24 0.6 (20, 23, 37), 0.9 (34, 34, 19) 

Experiment 3 (October 6, 2006) 28 0.9 (38, 21, 25), 0.6 (25, 28, 29) 

Experiment 4 (October 6, 2006) 28 0.9 (25, 35, 23), 0.6 (36, 30, 21) 
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Table 2: Mean frequencies of Cooperative Action Choices, ( p)  

1) All actions  p=0.9   p=0.6  

Experiment 1 0.748 *** (2,100) 0.401 (2,492) 

Experiment 2 0.690 *** (2,088) 0.422 (1,920) 

Experiment 3 0.722 *** (2,352) 0.420 (2,296) 

Experiment 4 0.538 *** (2,324) 0.193 (2,436) 

Total 0.672 *** (8,864) 0.355 (9,144) 

2) Means of individuals’ actions  p=0.9   p=0.6  

Experiment 1 0.740 *** (28) 0.397 (28) 

Experiment 2 0.687 *** (24) 0.417 (24) 

Experiment 3 0.718 *** (28) 0.419 (28) 

Experiment 4 0.537 *** (28) 0.190 (28) 

Total 0.670 *** (108) 0.354 (108) 

1) Numbers of observations are in parentheses.  

2) *** indicates the mean frequencies of cooperative action choices when p=0.9 are 

significantly higher than when p=0.6 at the 1 percent significance level by the 

Mann-Whitney rank-sum test. 
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Table 3: Mean Frequencies of Cooperative Actions Choices on Good Signals, r(a; p) 

1) All actions  p=0.9   p=0.6  

Experiment 1 0.887 *** (1,425) 0.480 (1,200) 

Experiment 2 0.865 *** (1,315) 0.520  (924) 

Experiment 3 0.864 *** (1,539) 0.510 (1,090) 

Experiment 4 0.777 *** (1,174) 0.237 (1,051) 

Total 0.852 *** (5,453) 0.437 (4,265) 

2) Means of individuals’ actions p=0.9   p=0.6  

Experiment 1 0.858 *** (28) 0.474 (28) 

Experiment 2 0.813 *** (24) 0.498 (24) 

Experiment 3 0.820 *** (28) 0.498 (28) 

Experiment 4 0.707 *** (28) 0.235 (28) 

Total 0.788 *** (108) 0.423 (108) 

1) Numbers of observations are in parentheses.  

2) *** indicates the mean frequencies of cooperative action choices when p=0.9 is 

significantly higher than when p=0.6 at the 1 percent level by the Mann-Whitney rank-sum 

test. 
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Table 4: Mean Frequencies of Cooperative Action Choices on Bad Signals, r(b; p) 

1) All actions p=0.9   p=0.6  

Experiment 1 0.386 ***  (591) 0.315 (1,208) 

Experiment 2 0.351   (701) 0.313  (924) 

Experiment 3 0.407 ***  (729) 0.332 (1,122) 

Experiment 4 0.272 *** (1,066) 0.152 (1,301) 

Total 0.344 *** (3,087) 0.272 (4,555) 

2) Means of individuals’ actions p=0.9   p=0.6  

Experiment 1 0.525 *** (28) 0.320 (28) 

Experiment 2 0.438 * (24) 0.320 (24) 

Experiment 3 0.497 *** (28) 0.330 (28) 

Experiment 4 0.330 *** (28) 0.154 (28) 

Total 0.448 *** (108) 0.279 (108) 

1) Numbers of observations are in parentheses.  

2) *** indicates the mean frequencies of cooperative action choices when p=0.9 is 

significantly higher than when p=0.6 at the 1 percent level by the Mann-Whitney rank-sum 

test. 
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Table 5:  Differences in Mean Frequencies of Cooperative Action Choices 

between Good Signals and Bad Signals, r(a; p) r(b; p)   

1) All actions p=0.9   p=0.6   

Experiment 1 0.501 *** (2,016) 0.166 (2,408)  

Experiment 2 0.514 *** (2,016) 0.208 (1,848)  

Experiment 3 0.457 *** (2,268) 0.178 (2,212)  

Experiment 4 0.506 *** (2,240) 0.084 (2,352)  

Total 0.508 *** (8,540) 0.165 (8,820)  

2) Means of individuals’ actions p=0.9   p=0.6   

Experiment 1 0.334 *** (28) 0.154 (28)  

Experiment 2 0.375 *** (24) 0.178 (24)  

Experiment 3 0.323 ** (28) 0.167 (28)  

Experiment 4 0.377 *** (28) 0.081 (28)  

Total 0.352 *** (108) 0.144 (108)  

1) Numbers of observations are in parentheses.  

2) *** indicates the mean frequencies of cooperative action choices when p=0.9 is 

significantly higher than when p=0.6 at the 1 percent level by the Mann-Whitney rank-sum 

test. 

3) ** indicates the mean frequencies of cooperative action choices when p=0.9 is 

significantly higher than when p=0.6 at the 5 percent level by the Mann-Whitney rank-sum 

test. 
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Table 6: Symmetric Generous Tit-for-Tat Nash Equilibria ( q( p), r( p))  

 
 0.9p   0.6p   

q( p)  0.781 0.000 
r( p)  0.852 0.940 

( )w p  0.235 0.940 
( q( p), r( p); p)  0.788 0.444 
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Figure A.1: 

Random Termination Device 
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Figure A.2: 

Random Termination Device 
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Table A.1: Mean frequencies of Cooperative Action Choices, ( p)  

 p=0.9   p=0.6  

Round 1 0.781 ***  (324) 0.438  (324) 

Round 2-14 0.707 *** (4,212) 0.395 (4,212) 

Round 15 -  0.631 *** (4,328) 0.312 (4608) 

Total 0.672 *** (8,864) 0.355 (9,144) 

 

1) Numbers of observations are in parentheses.  

2) *** indicates the mean frequencies of cooperative action choices when p=0.9 are 

significantly higher than when p=0.6 at the 1 percent significance level by the 

Mann-Whitney rank-sum test. 
 

  



47 
 

Table A.2: Mean Frequencies of Cooperative Actions Choices on Good Signals, r(a; p)

 p=0.9   p=0.6  

Round 2-14 0.859 *** (2,841) 0.479 (2,072) 

Round 15 -  0.844 *** (2,612) 0.397 (2,193) 

Total 0.852 *** (5,453) 0.437 (4,265) 

1) Numbers of observations are in parentheses.  

2) *** indicates the mean frequencies of cooperative action choices when p=0.9 is 

significantly higher than when p=0.6 at the 1 percent level by the Mann-Whitney rank-sum 

test. 
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Table A.3: Mean Frequencies of Cooperative Action Choices on Bad Signals, r(b; p) 

 p=0.9   p=0.6  

Round 2-14 0.392 *** (1,371) 0.314 (2,140) 

Round 15 -  0.305 *** (1,716) 0.235 (2,415) 

Total 0.344 *** (3,087) 0.272 (4,555) 

1) Numbers of observations are in parentheses.  

2) *** indicates the mean frequencies of cooperative action choices when p=0.9 is 

significantly higher than when p=0.6 at the 1 percent level by the Mann-Whitney rank-sum 

test. 
 

 


